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Abstract—A firewall is a security guard placed between a
private network and the outside Internet that monitors all
incoming and outgoing packets. The function of a firewall is to
examine every packet and decide whether to accept or discard
it based upon the firewall’s policy. This policy is specified as a
sequence of (possibly conflicting) rules. When a packet comes to
a firewall, the firewall searches for the first rule that the packet
matches, and executes the decision of that rule.

With the explosive growth of Internet-based applications
and malicious attacks, the number of rules in firewalls have
been increasing rapidly, which consequently degrades network
performance and throughput. In this paper, we propose Firewall
Compressor, a framework that can significantly reduce the
number of rules in a firewall while keeping the semantics of
the firewall unchanged.

We make three major contributions in this paper. First,
we propose an optimal solution using dynamic programming
techniques for compressing one-dimensional firewalls. Second, we
present a systematic approach to compressing multi-dimensional
firewalls. Last, we conducted extensive experiments to evaluate
Firewall Compressor. In terms of effectiveness, Firewall Com-
pressor achieves an average compression ratio of 52.3% on real-
life rule sets. In terms of efficiency, Firewall Compressor runs
in seconds even for a large firewall with thousands of rules.
Moreover, the algorithms and techniques proposed in this paper
are not limited to firewalls. Rather, they can be applied to other
rule-based systems such as packet filters on Internet routers.

I. INTRODUCTION

Firewalls represent a critical component of network security.
They are deployed at all points of entry between a private
network and the outside internet to monitor all incoming and
outgoing packets. A packet can be viewed as a tuple with a
finite number of fields such as source/destination IP addresses,
source/destination port numbers, and the protocol type. The
function of a firewall is to examine every packet’s field values
and decide whether to accept or discard it based upon the
firewall’s policy. This policy is specified as a sequence of
(possibly conflicting) rules. Each rule in a firewall has a
predicate over some packet header fields and a decision to
be performed upon the packets that match the predicate. A
rule that examines d-dimensional fields can be viewed as
a d-dimensional object. Real-life firewalls are typically 4-
dimensional or 5-dimensional.

When a packet comes to a firewall, the firewall searches for
the first (i.e., highest priority) rule that the packet matches, and
executes the decision of that rule. Two firewalls are equivalent
if and only if they have the same decision for every possible

packet. Table I shows an example firewall of four rules. The
format of these rules is based upon the format used in Access
Control Lists on Cisco routers.

In this paper, we consider the Firewall Compression Prob-
lem: given a firewall f , generate another firewall f ′ that is
semantically equivalent to f but has the minimum possible
number of rules. We call this process “firewall compression”.

Firewall compression is important for two major reasons.
First, some firewall products have hard constraints on the
number of rules that they support. For example, NetScreen-
100 only allows firewalls with at most 733 rules. If your
firewall has more than 733 rules, you must purchase a more
expensive firewall product. Firewall compression may allow
users to convert a large rule set into an equivalent small rule
set bypassing the need for a more expensive firewall product.
Second, many state-of-the-art systems still employ sequential
search to identify the first firewall rule that matches a packet.
Therefore, more rules means more per-packet processing time,
and reducing the number of rules should improve firewall
performance. This is especially important as the number of
rules in firewalls increases dramatically due to more applica-
tions and services being deployed on the Internet and as more
vulnerabilities, threats, and attacks are discovered.

Note that firewall compression does not interfere with
firewall logging. When compressing firewall rules, decisions
accept, accept & log, discard and discard & log are treated as
four different decisions. Given a firewall f1 and its compressed
version f2, a packet p is logged by f1 if and only if p is logged
by f2. In some cases, firewall managers may monitor how
many times each original rule in f1 is the first rule to match a
packet. Given a compressed firewall, this detailed monitoring
can still be performed “offline” in software or hardware so as
not to slow down packet processing speed. Full details will be
given in the extended version of this paper.

A. A Motivating Example

We next give an intuitive example that shows the possi-
bilities of generating an equivalent firewall with fewer rules.
Our input firewall with 5 rules is depicted in Figure 1(A). For
simplicity, we assume this firewall only examines one packet
field F , and the domain of this field is [1, 100]. The geometric
representation of these five rules is given in Figure 1(a).
Geometrically, the predicate of a rule in a one-dimensional
firewall can be represented as a segment, and the decision of
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Rule # Source IP Destination IP Source Port Destination Port Protocol Action
1 192.168.*.* 1.2.3.* * [4000, 5000] TCP discard
2 192.168.*.* 1.2.3.* * [0, 3999] TCP accept
3 192.168.*.* 1.2.3.* * [5001, 65535] TCP accept
4 * * * * * discard

TABLE I
AN EXAMPLE FIREWALL

 
F ∈ [41, 60]→ d1

F ∈ [21, 55]→ d2

F ∈ [45, 80]→ d2

F ∈ [1, 65]→ d3

F ∈ [75, 100]→ d3

F ∈ [41, 60]→ d1

F ∈ [21, 40]→ d2

F ∈ [61, 80]→ d2

F ∈ [1, 20]→ d3

F ∈ [81, 100]→ d3

F ∈ [41, 60]→ d1

F ∈ [21, 80]→ d2

F ∈ [1, 100]→ d3

41 60

21 40 61 80

1 20 81 100

41 60

21 55

45 80

1 65 75 100

41 60

21 80

1 100

decompose rescheduling

(a) (b) (c)

(A) (B) (C)

Fig. 1. minimizing firewall rules

the rule can be represented by the color of the segment. In
Figure 1(a), we use five segments to represent the five rules
in Figure 1(A), and we use three different colors to represent
the three different decisions d1, d2, and d3. Geometrically, a
packet can be represented as a point, and the decision for the
packet is the color of the first segment that contains the point.

To generate another sequence of rules that is equivalent to
the firewall in Figure 1(A) but with the minimum number of
rules, we first decompose the five rules into non-overlapping
rules as shown in Figure 1(B). The geometric representation
of these five non-overlapping rules is in Figure 1(b).

Based on the geometric representation of the five rules in
Figure 1(B), we have the following observations. (1) If we
schedule the interval [41, 60] first, then we can schedule the
two intervals [21, 40] and [61, 80] together using one interval
[21, 80] based on the first-match semantics. (2) Furthermore,
we can use the intervals that have been scheduled, i.e., [41, 60]
and [21, 80], to fill the gap between the two intervals [1, 20]
and [81, 100]. The three firewalls in Figure 1(A), 1(B) and
1(C) are equivalent, but with different numbers of rules.

B. Key Contributions

In this paper, we make the following three key contributions.
1) We propose an optimal algorithm for the one-

dimensional firewall compression problem. This algo-
rithm uses dynamic programming techniques.

2) We present a systematic approach to the multi-
dimensional firewall compression problem. This algo-
rithm achieves local optimality one dimension at a time
using our optimal one-dimensional algorithm.

3) We conducted extensive experiments on both real-life
and synthetic rule sets. The results show that our firewall
compression algorithm achieves an average compression
ratio of 52.3% on real-life rule sets.

Note that our firewall compression algorithm is designed to
run off-line. Firewall operators do not need to read or manage

the compressed firewall. That is, firewall operators can con-
tinue to design and maintain an intuitive and understandable
firewall f while using our algorithms to generate and deploy a
minimal, semantically equivalent firewall f ′. Furthermore, the
theory and algorithms presented in this paper are not limited
to firewalls per se. Rather, they can be applied to the Access
Control Lists (ACLs) on routers as well. Most routers on
the Internet have ACLs in place for quality of service (QoS)
filtering, traffic accounting, load balancing, etc.

The rest of the paper proceeds as follows. We first formally
define our problem and notation in II. In Section III, we review
related work. In Section IV, we present an optimal solution
using dynamic programming techniques to a generalized one-
dimensional firewall compression problem. In Section V, we
give a solution to the multi-dimensional firewall compression
problem. Experimental results are shown in Section VI. Fi-
nally, we give concluding remarks in Section VII.

II. FORMAL DEFINITIONS

We now formally define the concepts of fields, packets,
firewalls, and the Firewall Compression Problem. A field Fi is
a variable whose domain, denoted D(Fi), is a finite interval of
nonnegative integers. For example, the domain of the source
address in an IP packet is [0, 232 − 1]. A packet over the
d fields F1, · · · , Fd is a d-tuple (p1, · · · , pd) where each pi

(1 ≤ i ≤ d) is an element of D(Fi). We use Σ to denote the
set of all packets over fields F1, · · · , Fd. It follows that Σ is
a finite set and |Σ| = |D(F1)| × · · · × |D(Fd)|, where |Σ|
denotes the number of elements in set Σ and |D(Fi)| denotes
the number of elements in set D(Fi) for each i.

A firewall rule has the form 〈predicate〉 → 〈decision〉. A
〈predicate〉 defines a set of packets over the fields F1 through
Fd specified as F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd where each Si is
one nonempty interval that is a subset of D(Fi). A packet
(p1, · · · , pd) matches a predicate F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd

and the corresponding rule if and only if the condition p1 ∈
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S1∧· · ·∧pd ∈ Sd holds. We use α to denote the set of possible
values that 〈decision〉 can be. Typical elements of α include
accept, discard, accept with logging, and discard with logging.

Some existing firewall products, such as Linux’s ipchains
[1], represent source and destination IP addresses as prefixes
in their rules. An example of a prefix is 192.168.0.0/16 or
192.168. ∗ .∗, both of which represent the set of IP addresses
in the range from 192.168.0.0 to 192.168.255.255. Essentially,
each prefix represents one integer interval (as we can treat an
IP address as a 32-bit integer). In this paper, we uniformly
represent firewall rules using intervals.

A firewall f over the d fields F1, · · · , Fd is a sequence of
firewall rules. The size of f , denoted |f |, is the number of rules
in f . A sequence of rules 〈r1, · · · , rn〉 is complete if and only
if for any packet p, there is at least one rule in the sequence
that p matches. A sequence of rules needs to be complete for
it to serve as a firewall. To ensure that a firewall is complete,
the predicate of the last rule in a firewall is usually specified as
F1 ∈ D(F1)∧· · ·Fd ∈ ∧D(Fd), which every packet matches.
Figure 2 shows an example of a firewall over the two fields
F1, F2 where D(F1) = D(F2) = [1, 100].

r1 : F1 ∈ [20, 40] ∧ F2 ∈ [30, 50] → accept
r2 : F1 ∈ [30, 60] ∧ F2 ∈ [40, 80] → discard
r3 : F1 ∈ [1, 100] ∧ F2 ∈ [1, 100] → accept

Fig. 2. A firewall example

Two rules in a firewall may overlap; that is, a single packet
may match both rules. Furthermore, two rules in a firewall
may conflict; that is, the two rules not only overlap but also
have different decisions. To resolve such conflicts, firewalls
typically employ a first-match resolution strategy where the
decision for a packet p is the decision of the first (i.e., highest
priority) rule that p matches in f . The decision that firewall f
makes for packet p is denoted f(p).

We can think of a firewall f as defining a many-to-one
mapping function from Σ to α. Two firewalls f1 and f2 are
equivalent, denoted f1 ≡ f2, if and only if they define the
same mapping function from Σ to α; that is, for any packet
p ∈ Σ, we have f1(p) = f2(p). For any firewall f , we use {f}
to denote the set of firewalls that are semantically equivalent
to f .

We define the Firewall Compression Problem as follows.
Given any firewall f1, find a firewall that is semantically
equivalent to f1 with the minimum possible number of rules.
More formally,

Definition 2.1 (Firewall Compression Problem): Given a
firewall f1, find a firewall f2 ∈ {f1} such that ∀f ∈ {f1} the
condition |f2| ≤ |f | holds.

III. RELATED WORK

There are two main types of firewalls: software-based
and hardware-based. For software-based systems, packet clas-
sification is typically done using sequential search. Many
studies have investigated faster software-based classification
approaches [11]. However, these approaches rarely have been

deployed due to their complexity and their potentially large
space requirements. One such approach that is related to our
work is the Geometric Efficient Matching (GEM) algorithm
[9]. GEM searches for the first rule that matches a given
packet using a similar data structure to our Firewall Decision
Diagrams (FDD).

Hardware-based systems search all firewall entries in paral-
lel for the first one that matches the given packet. However,
these systems require that the firewall rules be in prefix format,
which is more restrictive than interval format. This leads to
the related but different problem of compressing firewalls that
have prefix rules. Draves et al. proposed an optimal solution
for one-dimensional prefix rules in the context of minimizing
routing tables in [4]. Subsequently, in the same context of
minimizing routing tables, Suri et al. proposed an optimal
dynamic programming solution for one-dimensional prefix
rules. They extended their dynamic program to optimally solve
a special two-dimensional problem in which two rules either
are non-overlapping or one contains the other geometrically
[10]. Suri et al. noted that their dynamic program would not
be optimal for rules with more than 2 dimensions. In [3], Dong
et al. proposed four techniques of expanding rules, trimming
rules, adding rules, and merging rules to minimize prefix rules.
Meiners et al. proposed a systematic approach to minimizing
prefix rules in [8]. Our method achieves more compression
than these prefix approaches because interval rules allow more
compression than prefix rules.

The problem of minimizing interval rules has been inde-
pendently investigated by Applegate et al. in [2]. They prove
that the two-dimensional problem with two decisions is NP-
hard. They then give an optimal, polynomial time algorithm
for the two-dimensional problem where there are only two
decisions where all rules must be strip rules, which means
that only one field can be a proper subset of its domain, and
they use this to create O(min(n1/3), OPT 1/2)-approximation
algorithms for the general two-dimensional problem where
n is the number of rules in the input firewall and OPT is
the optimal firewall size. It is not obvious how to extend
their ideas to more dimensions. Applegate et al. also cited
a TopCoder programming contest named StripePainter that
formulated and solved the one-dimensional problem and state
the problem can be solved via dynamic programming with
running time O(Kn3) where K is the number of distinct
decisions. However, the StripePainter problem is a special
case of our weighted one-dimensional firewall compression
problem. Furthermore, our solution has a superior running time
of O(k2n) where k is the maximum number of rules that have
a common decision.

IV. ONE-DIMENSIONAL FIREWALL COMPRESSION

We first consider the weighted one-dimensional firewall
compression problem, the solution of which will be used in
the next section as a building block for the multi-dimensional
firewall compression problem. We use dynamic programming
to develop an optimal solution for this problem. Due to space
limitations, we highlight the key ideas and omit the proofs of
the lemmas and theorems.
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A. Firewall Decomposition and Serialization

In a non-overlapping one-dimensional firewall, for any two
rules, say F ∈ [a, b] → dx and F ∈ [c, d] → dy , if they have
the same decision (i.e., dx = dy) and the two intervals [a, b]
and [c, d] are contiguous (i.e., b+1 = c or d+1 = a), then the
two rules can be merged into one rule (i.e., F ∈ [a, d] → dx

if b + 1 = c, and F ∈ [c, b] → dx if d + 1 = a). A non-
overlapping one-dimensional firewall is called canonical if and
only if no two rules in the firewall can be merged into one
rule. For example, Figure 1(B) shows a canonical firewall that
is equivalent to the firewall in Figure 1(A).

Given a (possibly overlapping) one-dimensional firewall f ,
we first convert it to an equivalent canonical firewall f ′. It is
easy to prove that |f ′| ≤ 2 × |f | − 1.

We then serialize the canonical firewall f ′ using the fol-
lowing two steps: (1) sort all the intervals in an increasing
order, (2) replace the i-th interval with the integer i for every
i. The resulting firewall f ′′ is called a serialized firewall.
For any two non-overlapping intervals [a, b] and [c, d], if
b < c, then we say the interval [a, b] is less than the
interval [c, d]. This serialization procedure creates a one-to-one
mapping δ from the intervals in a canonical firewall to those
in its serialized version while keeping the relations between
intervals unchanged. In other words, two intervals S and S′

are contiguous if and only if δ(S) and δ(S′) are contiguous.
Next, we discuss how to compress the number of rules

in the serialized firewall f ′′. Given the one-to-one mapping
between f ′′ and f ′, an optimal solution for f ′′ can be directly
mapped to an optimal solution for f ′. We formulate the
one-dimension firewall compression problem as the following
firewall scheduling problem.

B. The Firewall Scheduling Problem

In the firewall scheduling problem, the input consists of a
universe of tasks to be executed where each task has a color
and a cost. More formally:
• Let U = {1, 2, . . . , n} be the universe of tasks to be

executed. Each task i in U has a color. For any i (1 ≤
i ≤ n − 1), task i and i + 1 have different colors.

• Let C = {1, 2, · · · , z} be the set of z different colors that
the n tasks in U exhibit, and for 1 ≤ i ≤ z, let |i| denote
the number of tasks with color i.

• Let X = {x1, . . . xz} be the cost vector where it costs
xi to execute any task that has color i for 1 ≤ i ≤ z.

Then an input instance to the firewall scheduling problem is
I = (U,C,X). We use c(i) to denote the color of task i. It
follows that the number of tasks with color c(i) is |c(i)|.

Intuitively, U represents a serialized firewall where each
task in U represents a rule in the firewall and the color of the
task represents the decision of the rule. In the one-dimensional
firewall compression problem, the cost of every task is 1; that
is, we assign the value 1 to every xi (1 ≤ i ≤ z). We consider
the general weighted one-dimensional firewall compression
problem because its solution can be used as a routine in solving
the multi-dimensional firewall compression problem.

For any firewall scheduling input instance I = (U,C,X), a
firewall schedule S(I) = 〈r1, . . . , rm〉 is an ordered list of m

intervals. An interval ri = [pi, qi] where 1 ≤ pi ≤ qi ≤ n is
the set of consecutive tasks from pi to qi.

In a firewall schedule, a task is fired (i.e. executed) in the
first interval that it appears in. More formally, the set of tasks
fired in interval ri of schedule S(I) is f(ri, S(I)) = ri −⋃i−1

j=1 rj . We call f(ri, S(I)) the core of interval ri in S(I).
A schedule S(I) of m intervals is a legal schedule for I if

and only if the following two conditions are satisfied.

1) For each interval 1 ≤ i ≤ m, all the tasks fired in
interval i have the same color.

2) All tasks in U are fired by some interval in S; that is,⋃m
i=1 f(ri, S(I)) = U .

The cost of interval ri in legal schedule S(I), denoted
x(ri, S(I)), is the cost xj where j is the color that all the
tasks in fi exhibit. If fi = ∅, we set x(ri, S(I)) = 0. To
simplify notation, we will often use fi to denote f(ri, S(I))
and x(ri) to denote x(ri, S(I)) when there is no ambiguity.

The cost of a schedule S(I), denoted C(S(I)), is the sum
of the cost of every interval in S(I), that is, C(S(I)) =∑m

i=1 x(ri, S(I)). The goal is to find a legal schedule S(I)
that minimizes C(S(I)).

C. An Optimal Solution

For any input instance I , we give an optimal solution using
dynamic programming techniques. We start by making several
basic observations to simplify the problem. The first is to
define the notion of a canonical schedule.

Definition 4.1 (Canonical Schedule): For any input in-
stance I = (U,C,X), a legal schedule S(I) = {r1, . . . , rm}
is a canonical schedule if for each interval ri = [pi, qi],
1 ≤ i ≤ m, it holds that pi ∈ fi and qi ∈ fi. �

We then observe that there exists an optimal canonical
schedule for any input instance. This allows us to consider
only canonical schedules for the remainder of this section.

Lemma 4.1: For any input instance I , for any legal schedule
S(I) with m intervals, there exists a canonical schedule S′(I)
with at most m intervals and with C(S′(I)) = C(S(I)). �

We next observe that in any canonical schedule S, swapping
two adjacent intervals that do not overlap results in a canonical
schedule with the same cost.

Lemma 4.2: For any input instance I , for any canonical
schedule S(I) containing two consecutive intervals ri =
[pi, qi] and ri+1 = [pi+1, qi+1] where [pi, qi]∩[pi+1, qi+1] = ∅,
the schedule S′(I) that is identical to schedule S(I) except
interval r′i = ri+1 = [pi+1, qi+1] and interval r′i+1 = ri =
[pi, qi] is also a canonical schedule. Furthermore, C(S′(I)) =
C(S(I)). �

For any input instance I , we say that a schedule S(I) is 1-
canonical if it is canonical and task 1 is fired in the last interval
of S(I). A key insight is that there exists a 1-canonical optimal
schedule Opt(I) for any input instance I .

Lemma 4.3: For any input instance I and any canonical
schedule S(I) with m intervals, we can create a 1-canonical
schedule S′(I) with m intervals such that C(S′(I)) ≤
C(S(I)). �

Let k be the number of tasks with the same color as task 1.
Given Lemma 4.3 and the definition of canonical schedules,
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there are k possibilities for the final interval rm = (1, qm) in
an optimal 1-canonical schedule S(I). The right endpoint qm

must be one of the k tasks that has the same color as task 1.
We next observe that in any canonical schedule S(I), each

interval imposes some structure on all the previous intervals
in S(I). Specifically, the last interval rm of any canonical
schedule S(I) partitions all previous intervals to have both
endpoints lie strictly between consecutive elements of fm, to
the left of all elements of fm, or to the right of all elements
of fm.

Lemma 4.4: For any input instance I , any canonical sched-
ule S(I), any interval ri = [pi, qi] ∈ S(I), consider any task
t ∈ fi. For any 1 ≤ j ≤ i− 1, let rj = [pj , qj ]. It must be the
case that either t < pj or qj < t. �

Given input instance I = (U,C,X) with |U | = n, we define
the following notations for 1 ≤ i ≤ j ≤ n:
• I(i, j) denotes an input instance with a universe of tasks

{i, . . . , j} and a set of colors that are updated to reflect
having only these tasks and a set of costs that are updated
to reflect having only these tasks.

• Opt(I(i, j)) denotes an optimal 1-canonical schedule for
I(i, j).

• C(i, j) denotes the cost of Opt(I(i, j)).
Lemma 4.5: Given any input instance I = (U,C,X) with

|U | = n and an optimal 1-canonical schedule Opt(I(1, n)).
1) If task 1 is the only task fired in the last interval of

Opt(I(1, n)), then the schedule Opt(I(2, n)) concate-
nated with the interval [1, 1] is also an optimal canonical
schedule for I(1, n), and C(1, n) = xc(1) + C(2, n).

2) If task 1 is not the only task fired in the last rule, letting
t′ be the smallest task larger than 1 fired in the last
interval of Opt(I(1, n)), then the schedule Opt(I(2, t′−
1)) concatenated with the schedule Opt(I(t′, n)) where
the last interval of Opt(I(t′, n)) is extended to include
task 1 is also an optimal canonical schedule for I(1, n),
and C(1, n) = C(2, t′ − 1) + C(t′, n). �

Based on the above observations, we formulate our dynamic
programming solution to the firewall scheduling problem. For
1 ≤ j ≤ z, we use Gj to denote the set of all the tasks that
have color j. Recall that we use c(i) to denote the color of
task i (1 ≤ i ≤ n). Therefore, for 1 ≤ i ≤ n, Gc(i) denotes
the set of all the tasks that have the same color as task i.

Theorem 4.1: C(i, j) can be computed by the following
recurrence relation.
For 1 ≤ i ≤ n, C(i, i) = xc(i).
For 1 ≤ i < j ≤ n, C(i, j) = min(xc(i) + C(i +
1, j),minx∈Gc(i)∧i+2≤x≤j](C(i + 1, x − 1) + C(x, j))). �

D. Firewall Scheduling Algorithm

Figure 3 shows the pseudocode of the firewall scheduling
algorithm based on Theorem 4.1. This algorithm uses two n×
n arrays C and M . In array C, a nonzero entry C[i, j] stores
the cost of an optimal schedule Opt(I(i, j)). In array M , for a
nonzero entry M [i, j], if M [i, j] = i, it means that i is the only
task fired in the last interval of Opt(I(i, j)); if M [i, j] �= i,
it means that the smallest numbered task (other than i) that is
also fired in the last interval of Opt(I(i, j)) is M [i, j].

Firewall Scheduling Algorithm
Input : (1) array color [1..n] where color [i] is the color of task i;

(2) array cost[1..z] where cost[j] is the cost of executing task j;
(3) array group[1..z] where group[h] is the set of all tasks with color h;

Output : (1) an optimal schedule of the n tasks;
(2) the cost of the optimal schedule;

Variables: C, M : array [1..n][1..n] of integer; /*initial values of C and M are zeros*/
Steps:
1. FSA-Cost(1, n); /*compute optimal cost, store trace info in M*/
2. Print-FSA(1, 1, n); /*print an optimal schedule using array M*/
3. print the optimal cost C[1, n];
End

FSA-Cost(i, j)
if C[i, j] = 0 then{

1. min ← cost[color [i]] + FSA-Cost(i + 1, j);
2. M [i, j]← i;
3. for every element x in group[color [i]] do

if i + 2 ≤ x ≤ j then
if FSA-Cost(i + 1, x− 1) +

FSA-Cost(x, j) < min then{
min ← FSA-Cost(i + 1, x− 1) +

FSA-Cost(x, j);
M [i, j]← x;

}
4. C[i, j]← min ;
}
return C[i, j];

Print-FSA(t, i, j)
if i = j then print interval [t, i];
else{

if M [i, j] = i then{
Print-FSA(i + 1, i + 1, j);
print interval [t, i];
}else{

Print-FSA(i + 1, i + 1, M [i, j]− 1);
Print-FSA(t, M [i, j], j);
}

}

Fig. 3. Firewall Scheduling Algorithm

The function FSA-Cost(i, j) computes the cost for
Opt(I(i, j)). At the same time, this function also stores the
trace information in array M . The information stored in M
by FSA-Cost is used by the function Print-FSA. The function
Print-FSA(t, i, j) basically prints out the optimal schedule
Opt(I(i, j)), but in the last interval of Opt(I(i, j)), the left
point i is replaced by t.

The complexity of this algorithm is O(k2n) where n is the
total number of tasks and k = maxi∈P |i| is the maximum
number of tasks in U that exhibit the same color. Note that

n/z� ≤ k ≤ 
n/2�. The O(k2n) running time follows from
two observations. First, we need to compute C(i, j) for at most
kn pairs of (i, j). For every task i ≥ 1, we need to compute
C(i, n). In addition, for any task i + 1 where i ≥ 1, we only
need to compute C(i + 1, j − 1) where task j has the same
color as task i and j > i, and there are at most k − 1 such
values of j. Second, we need to compare at most k values
when computing C(i, j).

V. MULTI-DIMENSIONAL FIREWALL COMPRESSION

In this section, we present Firewall Compressor, a frame-
work for compressing multi-dimensional firewalls. Similar to
the algorithm for minimizing multi-dimensional prefix rules
in [8], we process one dimension at a time using the optimal
one-dimensional solution. Given a firewall f1, our Firewall
Compressor algorithm consists of the following four steps:

1) Convert f1 to a firewall decision diagram f2.
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2) Reduce f2 to a reduced firewall decision diagram f3.
3) Compute a firewall f4 from f3.
4) Remove redundant rules from f4. The resulting firewall

f5 is the final output.

A. Step 1: Conversion to Firewall Decision Diagrams

To facilitate processing a firewall one dimension at a time,
we first convert firewall f1 to an equivalent firewall decision
diagram f2 [5] using the FDD construction algorithm in [6].

A Firewall Decision Diagram (FDD) with a decision set DS
and over fields F1, · · · , Fd is an acyclic and directed graph that
has the following five properties:

1) There is exactly one node that has no incoming edges.
This node is called the root. The nodes that have no
outgoing edges are called terminal nodes.

2) Each node v has a label, denoted F (v), such that

F (v) ∈
{ {F1, · · · , Fd} if v is a nonterminal node,

DS if v is a terminal node.

3) Each edge e:u → v is labeled with a nonempty set of
integers, denoted I(e), where I(e) is a subset of the
domain of u’s label (i.e., I(e) ⊆ D(F (u))).

4) A directed path from the root to a terminal node is called
a decision path. No two nodes on a decision path have
the same label.

5) The set of all outgoing edges of a node v, denoted E(v),
satisfies the following two conditions:

a) Consistency: I(e) ∩ I(e′) = ∅ for any two distinct
edges e and e′ in E(v).

b) Completeness:
⋃

e∈E(v) I(e) = D(F (v)). �

Figure 4 shows an example of a firewall decision diagram
over the two fields F1, F2 where D(F1) = D(F2) = [1, 100].
Note that in labelling the terminal nodes, we use letter “a”
as a shorthand for “accept” and letter “d” as a shorthand for
“discard”.

[20,30] [1,19]
[41,59]

F

a

[60,70]
[81,100]

1

F2 F2

d d

[30,50]
[1,29]

[51,100]
[1,100]

a

F2

d

[30,50]
[1,29]

[51,100]

[31,40]
[71,80]

Fig. 4. A firewall decision diagram

B. Step 2: FDD Reduction

We next create a reduced FDD f3. An FDD is reduced if
and only if it satisfies the following two conditions: (1) no
two nodes are isomorphic; (2) no two nodes have more than
one edge between them. Two nodes v and v′ in an FDD are
isomorphic if and only if v and v′ satisfy one of the following
two conditions: (1) both v and v′ are terminal nodes with
identical labels; (2) both v and v′ are nonterminal nodes and
there is a one-to-one correspondence between the outgoing
edges of v and the outgoing edges of v′ such that every pair of

corresponding edges have identical labels and they both point
to the same node. Note that we relax the definition of reduced
FDD in [5] by removing the requirement that no node has only
one outgoing edge. This relation simplifies the implementation
of our algorithm without losing any benefit of reducing FDDs.

A brute force deep comparison algorithm for FDD reduction
was proposed in [5]. Here we present a more efficient FDD
reduction algorithm that processes the nodes level by level
from the terminal nodes to the root node using signatures to
speed up comparisons.

1) At each level, first compute a signature for each node
at that level. For a terminal node v, set v’s signature to
be its label. For a non-terminal node v, we assume we
have the k children v1, v2, · · · , vk, in increasing order
of signature (Sig(vi) < Sig(vi+1) for 1 ≤ i ≤ k − 1),
and the edge between v and its child vi is labeled with
a sequence of non-overlapping intervals in increasing
order Ei. Set signature of node v as follows:

Sig(v) = h(Sig(v1), E1, · · · ,Sig(vk), Ek)

where h is a hash function.
2) After we have assigned signatures to all nodes at a given

level, we check for redundancy as follows. For every
pair of nodes vi and vj (1 ≤ i �= j ≤ k) at this level, if
Sig(vi) �= Sig(vj), then we can conclude that vi and vj

are not isomorphic; otherwise, we explicitly determine
if vi and vj are isomorphic. If vi and vj are isomorphic,
we delete node vj and its outgoing edges, and redirect
all the edges that point to vj to point to vi. Further, we
eliminate double edges between node vi and its parents.

Figure 5 shows a reduced FDD, which is equivalent to the
one in Figure 4.

[20,40] [1,19]
[41,59]

F

a

[60,80] [81,100]

1

F2 F2

d

[30,50]

[1,29]
[51,100] [1,100]

v1

v2
v3

Fig. 5. A reduced firewall decision diagram

C. Step 3: Computing Firewall

Next, we present the core algorithm for compressing multi-
dimensional firewalls. We start the discussion of our algorithm
by examining the reduced FDD in Figure 5. We first look at
the subgraph rooted at node v2. This subgraph can be seen as
representing a one-dimension firewall over field F2. We can
use the Firewall Scheduling Algorithm in Figure 3 to minimize
the number of rules for this one-dimensional firewall. The
algorithm is given the following 3 intervals as input:

[30, 50] (with color accept and cost 1),
[1, 29] (with color discard and cost 1),
[51, 100] (with color discard and cost 1).
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The algorithm will produce a minimum firewall of two rules:
F2 ∈ [30, 50] → accept and F2 ∈ [1, 100] → discard .
Similarly, from the subgraph rooted at node v3, we can get a
minimum firewall of one rule F2 ∈ [1, 100] → discard .

Next, we look at the root v1. Without changing the seman-
tics of the FDD, we can split the outgoing edges of v1 into 5
edges labeled with intervals [20, 40], [60, 80], [1, 19], [41, 59],
and [81, 100] respectively. As shown in Figure 6, we view the
subgraph rooted at v2 as a decision with a multiplication factor
or cost of 2, and the subgraph rooted at v3 as another decision
with a cost of 1. Thus, the graph rooted at v1 can be thought
of as a “virtual” one-dimensional firewall over field F1 with
a generalized cost vector.

[20,40]

[1,19][41,59]

F

[60,80]
[81,100]

1

F2 [30,50] accept

F2 [1,100] discard
F2 [1,100] discard

Fig. 6. “Virtual” one-dimensional firewall

Now we are ready to use the Firewall Scheduling Algorithm
in Figure 3 to minimize the number of rules for this “virtual”
one-dimensional firewall. The algorithm is given the following
5 intervals as input:

[20, 40] (with color v2 and cost 2),
[60, 80] (with color v2 and cost 2),
[1, 19] (with color v3 and cost 1),
[41, 59] (with color v3 and cost 1),
[81, 100] (with color v3 and cost 1),

Running the Firewall Scheduling Algorithm on the above input
will produce the “virtual” one-dimensional firewall of three
rules as shown in Figure 7:

F1 ∈ [41, 59]→ go to node v3

F1 ∈ [20, 80]→ go to node v2

F1 ∈ [1, 100]→ go to node v3

Fig. 7. A minimum firewall corresponding to v1

Combining the “virtual” firewall in Figure 7 and the two
firewalls that correspond to nodes v2 and v3, we get a firewall
of 4 rules as shown in Figure 8.

r1 : F1 ∈ [41, 59] ∧ F2 ∈ [1, 100] → discard
r2 : F1 ∈ [20, 80] ∧ F2 ∈ [30, 50] → accept
r3 : F1 ∈ [20, 80] ∧ F2 ∈ [1, 100] → discard
r4 : F1 ∈ [1, 100] ∧ F2 ∈ [1, 100] → discard

Fig. 8. Firewall generated from the FDD in Figure 4

To summarize, in this step, we compute a firewall f4 from
a reduced FDD f3 in the following bottom up fashion. For
every terminal node of f3, assign a cost of 1. For a non-
terminal node v with z outgoing edges {e1, · · · , ez}, formulate
a firewall scheduling problem as follows. For every interval i

in the label of edge ej , (1 ≤ j ≤ z), we set c(i), the color
of interval i, to be j, and the cost xj is the cost of the node
that edge ej points to. Use the optimal firewall scheduling
algorithm in Figure 3 to compute an optimal schedule of all
the intervals that appear in the outgoing edges of node v, and
set the cost of node v to be the cost of this schedule. After
the root node has been processed, generate firewall f4 using
the interval schedules computed at each node. The cost of the
root indicates the total number of rules in firewall f4.

D. Step 4: Redundancy Removal

Next, we observe that rule r3 in the firewall in Figure 8
is redundant. A rule in a firewall is redundant if and only
if removing the rule from the firewall does not change the
semantics of the firewall. Removing rule r3, all the packets
that used to be resolved by r3, that is, all the packets that
match r3 but do not match r1 and r2, are now resolved by r4,
and r4 has the same decision as r3. Therefore, removing rule
r3 does not change the semantics of the firewall. Redundant
rules in a firewall can be removed using the algorithms in [7].
Finally, after removing redundant rules, we get a firewall of 3
rules from the FDD in Figure 4. The geometric representation
of this firewall (Figure 9) clearly shows that 3 is the minimum
number of rules needed to represent this firewall.

20 40 60 80

30

50

1
1 100

100

Fig. 9. Geometric representation

VI. EXPERIMENTAL RESULTS

We now evaluate the effectiveness and efficiency of Firewall
Compressor on both real-life and synthetic firewalls.

A. Methodology

Measurement Metrics. We first define the metrics that we
used to measure the effectiveness of Firewall Compressor.
In this paragraph, f denotes a firewall, S denotes a set of
firewalls, and FC denotes Firewall Compressor. We then let
FC (f) denote the firewall produced by applying Firewall
Compressor on f . We define the following two metrics for
assessing the performance of FC on a set of firewalls S.

• The average compression ratio of FC over S =
Σf∈S

|FC(f)|
|f|

|S| .
• The total compression ratio of FC over S =

Σf∈S |FC (f)|
Σf∈S |f | .

Real-life Firewalls. We next define a set RL of 17 real-
life firewalls that we performed experiments on. We actually
obtained 42 real-life firewalls including router ACLs from
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distinct network service providers that range in size from
dozens to hundreds of rules. Although this collection of fire-
walls is diverse, some firewalls from the same network service
provider have similar structure and exhibited similar results
under Firewall Compressor. To prevent this repetition from
skewing the performance data, we divided the 42 firewalls
into 17 structurally distinct groups, and we randomly chose
one from each of the 17 groups to form the set RL.

Synthetic Firewalls. Firewall rules are considered confiden-
tial due to security concerns. Thus, it is difficult to get many
real-life firewalls to experiment with. To address this issue and
further evaluate the effectiveness of Firewall Compressor, we
generated a set of synthetic firewalls, denoted SY N , in the
following fashion. Every predicate of a rule in our synthetic
firewalls has five fields: source IP address, destination IP
address, source port number, destination port number, and
protocol type. We first randomly generated a list of values
for each field. For IP addresses, we generated a random class
C address; for ports we generated a random interval; for
protocols, we generated a random protocol number. Given
these lists, we generated a list of predicates by taking the cross
product of all these lists. We added a final default predicate to
our list. Finally, we randomly assigned one of two decisions,
accept or deny, to each predicate to make a complete rule.

B. Variable Ordering

The variable order that we used to convert a firewall into
an equivalent FDD affects the effectiveness of Firewall Com-
pressor. There are 5! = 120 different permutations of the five
packet fields (protocol type, source IP address, destination IP
address, source port number, and destination port number). A
question that naturally arises is: which variable order achieves
the best average compression ratio? To answer this question,
for each permutation, we computed the average and the total
compression ratios that Firewall Compressor achieved over
RL, which are shown shown in Figure 10 and 11 respectively.
From these two figures, we can see that the effectiveness of
Firewall Compressor does not significantly depend on variable
order. For all variable orders, the average compression ratios
achieved by Firewall Compressor fall in the range between
52.3% and 60.0%. Likewise, for all variable orders, the total
compression ratios achieved by Firewall Compressor fall in
the range between 61.4% and 72.6%.

Still, we are interested in the variable order that achieves the
best average compression ratio. Six permutations achieve the
best average compression ratio, which is 52.3%. Interestingly,
these six permutations all achieve the same total compression
ratio, which is 69.4%. The six permutations are all formulated
as follows: destination IP, source IP, any permutation of the
other three fields. To break the tie, we further evaluated
the average compression ratios of the six permutations on
synthetic rule sets. Finally, the permutation of (destination
IP, source IP, destination port, source port, protocol type)
was best. We use Firewall Compressor(12430) to denote the
Firewall Compressor algorithm using this permutation.

The next natural question to ask is: is permutation 12430 the
best order for most firewalls? The answer for RL is yes. For a
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Fig. 10. The average compression ratio for each permutation
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Fig. 11. The total compression ratio for each permutation

given firewall f , we use Firewall Compressor(Best) to denote
Firewall Compressor using the best of the 120 permutations
for f . In Figure 12, for each firewall in RL, we show the
compression ratios of Firewall Compressor(Best) and Firewall
Compressor(12430). The results show that permutation 12430
achieves almost the best compression ratio for each rule set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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Firewall Compressor(Best)
Firewall Compressor(12430)

Fig. 12. Compression ratios of real-life firewall groups

C. Effectiveness

Compression Ratio of Real-life Rule Sets. The average
and total compression ratios of Firewall Compressor(12430)
over RL are 52.3% and 69.4%. Figure 13 shows the distri-
bution of compression ratios achieved by Firewall Compres-
sor(12430) over RL.
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Fig. 13. Distribution of real-life firewalls by compression ratio

Compression Ratio of Synthetic Rule Sets. The average
and total compression ratios of Firewall Compressor(12430)
over SY N are 32.0% and 7.4%respectively. Figure 14 shows
the distribution of compression ratios achieved by Firewall
Compressor(12430) over SY N .
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Fig. 14. Distribution of synthetic firewalls by compression ratio

D. Efficiency

We implemented our algorithm using C++. Our experiments
were carried out on a desktop PC running Windows XP with
1G memory and Intel Pentium D Processor 820 of 2.8 GHz.

Efficiency on Real-life Rule Sets Table II shows the
running time of Firewall Compressor(12430) for three rep-
resentative rule sets.

Number of Original Rules Running Time (seconds)
42 0.2
87 3.5
661 14.9

TABLE II
SAMPLE RUNNING TIME DATA FOR REAL-LIFE FIREWALLS

Efficiency on Synthetic Rule Sets Figure 15 shows the
average running time of Firewall Compressor(12430).

VII. CONCLUSIONS

In this paper, we present Firewall Compressor, a framework
for compressing firewall rules. Specifically, we make three
major contributions. First, we give an optimal algorithm for
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Fig. 15. Total running time of Firewall Compressor(12430) vs. number of
original rules

compressing one-dimensional firewalls. Second, we present a
systematic solution for compressing multi-dimensional fire-
walls. Third, we conducted extensive experiments on both real-
life and synthetic rule sets. Our experimental results show that
Firewall Compressor achieves an average compression ratio of
52.3%. Moreover, the algorithms proposed in this paper are
not limited to firewalls. Rather, they can be applied to other
rule-based systems such as packet filters on Internet routers.
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