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INTRODUCTION.

IT is to be hoped that, as a consequence of the present
active scrutiny of our educational aims and methods, and
of the resulting encouragement of the study of modern
languages, we shall not remain, as a nation, so much iso-
lated from ideas and tendencies in continental thought
and literature as we have been in the past. As things
are, however, the translation of this book is doubtless
required; at any rate, it brings vividly before us an in-
structive point of view. Though some of M. Poincaré’s
chapters have been collected from well-known treatises
written several years ago, and indeed are sometimes in
detail not quite up to date, besides occasionally suggest-
ing the suspicion that his views may possibly have been
modified in the interval, yet their publication in a com-
pact form has excited a warm welcome in this country.

It must be confessed that the English language hardly
lends itself as a perfect medium for the rendering of the
delicate shades of suggestion and allusion characteristic
of M. Poincaré’s play around his subject; notwithstand-
ing the excellence of the translation, loss in this respect
is inevitable.
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There has been of late a growing trend of opinion,
prompted in part by general philosophical views, in the
direction that the theoretical constructions of physical
science are largely factitious, that instead of presenting
a valid image of the relations of things on which further
progress can be based, they are still little better than a
mirage. The best method of abating this scepticism is to
become acquainted with the real scope and modes of ap-
plication of conceptions which, in the popular language
of superficial exposition—and even in the unguarded and
playful paradox of their authors, intended only for the in-
structed eye—often look bizarre enough. But much ad-
vantage will accrue if men of science become their own
epistemologists, and show to the world by critical expo-
sition in non-technical terms of the results and methods
of their constructive work, that more than mere instinct
is involved in it: the community has indeed a right to
expect as much as this.

It would be hard to find any one better qualified for
this kind of exposition, either from the profundity of his
own mathematical achievements, or from the extent and
freshness of his interest in the theories of physical sci-
ence, than the author of this book. If an appreciation
might be ventured on as regards the later chapters, they
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are, perhaps, intended to present the stern logical ana-
lyst quizzing the cultivator of physical ideas as to what
he is driving at, and whither he expects to go, rather
than any responsible attempt towards a settled confes-
sion of faith. Thus, when M. Poincaré allows himself for
a moment to indulge in a process of evaporation of the
Principle of Energy, he is content to sum up: “Eh bien,
quelles que soient les notions nouvelles que les expéri-
ences futures nous donneront sur le monde, nous sommes
strs d’avance qu’il y aura quelque chose qui demeurera
constant et que nous pourrons appeler énergie” (p. 185),
and to leave the matter there for his readers to think it
out. Though hardly necessary in the original French, it
may not now be superfluous to point out that indepen-
dent reflection and criticism on the part of the reader are
tacitly implied here as elsewhere.

An interesting passage is the one devoted to Maxwell’s
theory of the functions of the sether, and the comparison
of the close-knit theories of the classical French mathe-
matical physicists with the somewhat loosely-connected
corpus of ideas by which Maxwell, the interpreter and
successor of Faraday, has (posthumously) recast the
whole face of physical science. How many times has that
theory been re-written since Maxwell’s day? and yet how



INTRODUCTION. X

little has it been altered in essence, except by further
developments in the problem of moving bodies, from the
form in which he left it! If, as M. Poincaré remarks, the
French instinct for precision and lucid demonstration
sometimes finds itself ill at ease with physical theories of
the British school, he as readily admits (pp. 248, 250),
and indeed fully appreciates, the advantages on the other
side. Our own mental philosophers have been shocked at
the point of view indicated by the proposition hazarded
by Laplace, that a sufficiently developed intelligence, if it
were made acquainted with the positions and motions of
the atoms at any instant, could predict all future history:
no amount of demur suffices sometimes to persuade them
that this is not a conception universally entertained in
physical science. It was not so even in Laplace’s own
day. From the point of view of the study of the evolution
of the sciences, there are few episodes more instruc-
tive than the collision between Laplace and Young with
regard to the theory of capillarity. The precise and in-
tricate mathematical analysis of Laplace, starting from
fixed preconceptions regarding atomic forces which were
to remain intact throughout the logical development of
the argument, came into contrast with the tentative,
mobile intuitions of Young; yet the latter was able to



INTRODUCTION. X

grasp, by sheer direct mental force, the fruitful though
partial analogies of this recondite class of phenomena
with more familiar operations of nature, and to form
a direct picture of the way things interacted, such as
could only have been illustrated, quite possibly damaged
or obliterated, by premature effort to translate it into
elaborate analytical formulas. The apercus of Young
were apparently devoid of all cogency to Laplace; while
Young expressed, doubtless in too extreme a way, his
sense of the inanity of the array of mathematical logic of
his rival. The subsequent history involved the Nemesis
that the fabric of Laplace was taken down and recon-
structed in the next generation by Poisson; while the
modern cultivator of the subject turns, at any rate in
England, to neither of those expositions for illumination,
but rather finds in the partial and succinct indications
of Young the best starting-point for further effort.

It seems, however, hard to accept entirely the dis-
tinction suggested (p. 237) between the methods of culti-
vating theoretical physics in the two countries. To men-
tion only two transcendent names which stand at the
very front of two of the greatest developments of physi-
cal science of the last century, Carnot and Fresnel, their
procedure was certainly not on the lines thus described.
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Possibly it is not devoid of significance that each of them
attained his first effective recognition from the British
school.

It may, in fact, be maintained that the part played
by mechanical and such-like theories—analogies if you
will—is an essential one. The reader of this book will
appreciate that the human mind has need of many in-
struments of comparison and discovery besides the un-
relenting logic of the infinitesimal calculus. The dynam-
ical basis which underlies the objects of our most fre-
quent experience has now been systematised into a great
calculus of exact thought, and traces of new real rela-
tionships may come out more vividly when considered in
terms of our familiar acquaintance with dynamical sys-
tems than when formulated under the paler shadow of
more analytical abstractions. It is even possible for a
constructive physicist to conduct his mental operations
entirely by dynamical images, though Helmholtz, as well
as our author, seems to class a predilection in this di-
rection as a British trait. A time arrives when, as in
other subjects, ideas have crystallised out into distinct-
ness; their exact verification and development then be-
comes a problem in mathematical physics. But whether
the mechanical analogies still survive, or new terms are
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now introduced devoid of all naive mechanical bias, it
matters essentially little. The precise determination of
the relations of things in the rational scheme of nature
in which we find ourselves is the fundamental task, and
for its fulfilment in any direction advantage has to be
taken of our knowledge, even when only partial, of new
aspects and types of relationship which may have become
familiar perhaps in quite different fields. Nor can it be
forgotten that the most fruitful and fundamental concep-
tions of abstract pure mathematics itself have often been
suggested from these mechanical ideas of flux and force,
where the play of intuition is our most powerful guide.
The study of the historical evolution of physical theories
is essential to the complete understanding of their im-
port. It is in the mental workshop of a Fresnel, a Kelvin,
or a Helmholtz, that profound ideas of the deep things of
Nature are struck out and assume form; when pondered
over and paraphrased by philosophers we see them react
on the conduct of life: it is the business of criticism to
polish them gradually to the common measure of human
understanding. Oppressed though we are with the ne-
cessity of being specialists, if we are to know anything
thoroughly in these days of accumulated details, we may
at any rate profitably study the historical evolution of
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knowledge over a field wider than our own.

The aspect of the subject which has here been dwelt
on is that scientific progress, considered historically, is
not a strictly logical process, and does not proceed by
syllogisms. New ideas emerge dimly into intuition, come
into consciousness from nobody knows where, and be-
come the material on which the mind operates, forging
them gradually into consistent doctrine, which can be
welded on to existing domains of knowledge. But this
process is never complete: a crude connection can always
be pointed to by a logician as an indication of the imper-
fection of human constructions.

If intuition plays a part which is so important, it is
surely necessary that we should possess a firm grasp of its
limitations. In M. Poincaré’s earlier chapters the reader
can gain very pleasantly a vivid idea of the various and
highly complicated ways of docketing our perceptions of
the relations of external things, all equally valid, that
were open to the human race to develop. Strange to
say, they never tried any of them; and, satisfied with the
very remarkable practical fitness of the scheme of geom-
etry and dynamics that came naturally to hand, did not
consciously trouble themselves about the possible exis-
tence of others until recently. Still more recently has it
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been found that the good Bishop Berkeley’s logical jibes
against the Newtonian ideas of fluxions and limiting ra-
tios cannot be adequately appeased in the rigorous math-
ematical conscience, until our apparent continuities are
resolved mentally into discrete aggregates which we only
partially apprehend. The irresistible impulse to atom-
ize everything thus proves to be not merely a disease of
the physicist; a deeper origin, in the nature of knowledge
itself, is suggested.

Everywhere want of absolute, exact adaptation can
be detected, if pains are taken, between the various con-
structions that result from our mental activity and the
impressions which give rise to them. The bluntness of
our unaided sensual perceptions, which are the source
in part of the intuitions of the race, is well brought out
in this connection by M. Poincaré. Is there real con-
tradiction? Harmony usually proves to be recovered by
shifting our attitude to the phenomena. All experience
leads us to interpret the totality of things as a consis-
tent cosmos—undergoing evolution, the naturalists will
say—in the large-scale workings of which we are inter-
ested spectators and explorers, while of the inner rela-
tions and ramifications we only apprehend dim glimpses.
When our formulation of experience is imperfect or even
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paradoxical, we learn to attribute the fault to our point
of view, and to expect that future adaptation will put
it right. But Truth resides in a deep well, and we shall
never get to the bottom. Only, while deriving enjoyment
and insight from M. Poincaré’s Socratic exposition of the
limitations of the human outlook on the universe, let us
beware of counting limitation as imperfection, and drift-
ing into an inadequate conception of the wonderful fabric
of human knowledge.

J. LARMOR.
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To the superficial observer scientific truth is unassail-
able, the logic of science is infallible; and if scientific men
sometimes make mistakes, it is because they have not un-
derstood the rules of the game. Mathematical truths are
derived from a few self-evident propositions, by a chain
of flawless reasonings; they are imposed not only on us,
but on Nature itself. By them the Creator is fettered,
as it were, and His choice is limited to a relatively small
number of solutions. A few experiments, therefore, will
be sufficient to enable us to determine what choice He has
made. From each experiment a number of consequences
will follow by a series of mathematical deductions, and
in this way each of them will reveal to us a corner of the
universe. This, to the minds of most people, and to stu-
dents who are getting their first ideas of physics, is the
origin of certainty in science. This is what they take to be
the role of experiment and mathematics. And thus, too,
it was understood a hundred years ago by many men of
science who dreamed of constructing the world with the
aid of the smallest possible amount of material borrowed
from experiment.
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But upon more mature reflection the position held by
hypothesis was seen; it was recognised that it is as nec-
essary to the experimenter as it is to the mathematician.
And then the doubt arose if all these constructions are
built on solid foundations. The conclusion was drawn
that a breath would bring them to the ground. This
sceptical attitude does not escape the charge of superfi-
ciality. To doubt everything or to believe everything are
two equally convenient solutions; both dispense with the
necessity of reflection.

Instead of a summary condemnation we should exam-
ine with the utmost care the role of hypothesis; we shall
then recognise not only that it is necessary, but that in
most cases it is legitimate. We shall also see that there
are several kinds of hypotheses; that some are verifiable,
and when once confirmed by experiment become truths
of great fertility; that others may be useful to us in fixing
our ideas; and finally, that others are hypotheses only in
appearance, and reduce to definitions or to conventions
in disguise. The latter are to be met with especially in
mathematics and in the sciences to which it is applied.
From them, indeed, the sciences derive their rigour; such
conventions are the result of the unrestricted activity of
the mind, which in this domain recognises no obstacle.
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For here the mind may affirm because it lays down its
own laws; but let us clearly understand that while these
laws are imposed on our science, which otherwise could
not exist, they are not imposed on Nature. Are they then
arbitrary? No; for if they were, they would not be fertile.
Experience leaves us our freedom of choice, but it guides
us by helping us to discern the most convenient path to
follow. Our laws are therefore like those of an absolute
monarch, who is wise and consults his council of state.
Some people have been struck by this characteristic of
free convention which may be recognised in certain fun-
damental principles of the sciences. Some have set no
limits to their generalisations, and at the same time they
have forgotten that there is a difference between liberty
and the purely arbitrary. So that they are compelled
to end in what is called nominalism; they have asked if
the savant is not the dupe of his own definitions, and if
the world he thinks he has discovered is not simply the
creation of his own caprice.! Under these conditions sci-
ence would retain its certainty, but would not attain its
object, and would become powerless. Now, we daily see
what science is doing for us. This could not be unless

ICf. M. le Roy: “Science et Philosophie,” Revue de Méta-
physique et de Morale, 1901.
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it taught us something about reality; the aim of science
is not things themselves, as the dogmatists in their sim-
plicity imagine, but the relations between things; outside
those relations there is no reality knowable.

Such is the conclusion to which we are led; but to
reach that conclusion we must pass in review the series
of sciences from arithmetic and geometry to mechanics
and experimental physics. What is the nature of mathe-
matical reasoning? Is it really deductive, as is commonly
supposed? Careful analysis shows us that it is nothing of
the kind; that it participates to some extent in the nature
of inductive reasoning, and for that reason it is fruitful.
But none the less does it retain its character of absolute
rigour; and this is what must first be shown.

When we know more of this instrument which is
placed in the hands of the investigator by mathematics,
we have then to analyse another fundamental idea, that
of mathematical magnitude. Do we find it in nature, or
have we ourselves introduced it? And if the latter be
the case, are we not running a risk of coming to incor-
rect conclusions all round? Comparing the rough data
of our senses with that extremely complex and subtle
conception which mathematicians call magnitude, we are
compelled to recognise a divergence. The framework into
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which we wish to make everything fit is one of our own
construction; but we did not construct it at random, we
constructed it by measurement so to speak; and that is
why we can fit the facts into it without altering their
essential qualities.

Space is another framework which we impose on the
world. Whence are the first principles of geometry de-
rived? Are they imposed on us by logic? Lobatschewsky,
by inventing non-Euclidean geometries, has shown that
this is not the case. Is space revealed to us by our senses?
No; for the space revealed to us by our senses is abso-
lutely different from the space of geometry. Is geometry
derived from experience? Careful discussion will give the
answer—no! We therefore conclude that the principles
of geometry are only conventions; but these conventions
are not arbitrary, and if transported into another world
(which I shall call the non-Euclidean world, and which I
shall endeavour to describe), we shall find ourselves com-
pelled to adopt more of them.

In mechanics we shall be led to analogous conclu-
sions, and we shall see that the principles of this science,
although more directly based on experience, still share
the conventional character of the geometrical postulates.
So far, nominalism triumphs; but we now come to the
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physical sciences, properly so called, and here the scene
changes. We meet with hypotheses of another kind, and
we fully grasp how fruitful they are. No doubt at the
outset theories seem unsound, and the history of science
shows us how ephemeral they are; but they do not en-
tirely perish, and of each of them some traces still remain.
It is these traces which we must try to discover, because
in them and in them alone is the true reality.

The method of the physical sciences is based upon
the induction which leads us to expect the recurrence of
a phenomenon when the circumstances which give rise to
it are repeated. If all the circumstances could be simul-
taneously reproduced, this principle could be fearlessly
applied; but this never happens; some of the circum-
stances will always be missing. Are we absolutely cer-
tain that they are unimportant? Evidently not! It may
be probable, but it cannot be rigorously certain. Hence
the importance of the role that is played in the physi-
cal sciences by the law of probability. The calculus of
probabilities is therefore not merely a recreation, or a
guide to the baccarat player; and we must thoroughly
examine the principles on which it is based. In this con-
nection I have but very incomplete results to lay before
the reader, for the vague instinct which enables us to de-
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termine probability almost defies analysis. After a study
of the conditions under which the work of the physicist
is carried on, I have thought it best to show him at work.
For this purpose I have taken instances from the history
of optics and of electricity. We shall thus see how the
ideas of Fresnel and Maxwell took their rise, and what
unconscious hypotheses were made by Ampére and the
other founders of electro-dynamics.
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PART L.
NUMBER AND MAGNITUDE.

CHAPTER L
ON THE NATURE OF MATHEMATICAL REASONING.
L

THE very possibility of mathematical science seems an
insoluble contradiction. If this science is only deductive
in appearance, from whence is derived that perfect rigour
which is challenged by none? If, on the contrary, all the
propositions which it enunciates may be derived in order
by the rules of formal logic, how is it that mathematics
is not reduced to a gigantic tautology? The syllogism
can teach us nothing essentially new, and if everything
must spring from the principle of identity, then every-
thing should be capable of being reduced to that princi-
ple. Are we then to admit that the enunciations of all
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the theorems with which so many volumes are filled, are
only indirect ways of saying that A is A?

No doubt we may refer back to axioms which are at
the source of all these reasonings. If it is felt that they
cannot be reduced to the principle of contradiction, if we
decline to see in them any more than experimental facts
which have no part or lot in mathematical necessity, there
is still one resource left to us: we may class them among
a priori synthetic views. But this is no solution of the
difficulty—it is merely giving it a name; and even if the
nature of the synthetic views had no longer for us any
mystery, the contradiction would not have disappeared;
it would have only been shirked. Syllogistic reasoning
remains incapable of adding anything to the data that
are given it; the data are reduced to axioms, and that is
all we should find in the conclusions.

No theorem can be new unless a new axiom intervenes
in its demonstration; reasoning can only give us imme-
diately evident truths borrowed from direct intuition; it
would only be an intermediary parasite. Should we not
therefore have reason for asking if the syllogistic appara-
tus serves only to disguise what we have borrowed?

The contradiction will strike us the more if we open
any book on mathematics; on every page the author an-
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nounces his intention of generalising some proposition al-
ready known. Does the mathematical method proceed
from the particular to the general, and, if so, how can it
be called deductive?

Finally, if the science of number were merely ana-
lytical, or could be analytically derived from a few syn-
thetic intuitions, it seems that a sufficiently powerful
mind could with a single glance perceive all its truths;
nay, one might even hope that some day a language would
be invented simple enough for these truths to be made
evident to any person of ordinary intelligence.

Even if these consequences are challenged, it must be
granted that mathematical reasoning has of itself a kind
of creative virtue, and is therefore to be distinguished
from the syllogism. The difference must be profound.
We shall not, for instance, find the key to the mystery in
the frequent use of the rule by which the same uniform
operation applied to two equal numbers will give identical
results. All these modes of reasoning, whether or not
reducible to the syllogism, properly so called, retain the
analytical character, and ipso facto, lose their power.
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I1.

The argument is an old one. Let us see how Leibnitz
tried to show that two and two make four. I assume the
number one to be defined, and also the operation z +1—
i.e., the adding of unity to a given number x. These
definitions, whatever they may be, do not enter into the
subsequent reasoning. I next define the numbers 2, 3, 4
by the equalities

(1) 1+1=2  (2) 2+1=3; (3) 3+1=4

and in the same way I define the operation x + 2 by the
relation
4) z4+2=(x+1)+1.

Given this, we have

242=(241) 41, (def. 4);

24+1)+1=3+1, (def. 2);
3+1=4, (def. 3);
whence 2 4+ 2 = 4, Q.E.D.

It cannot be denied that this reasoning is purely an-
alytical. But if we ask a mathematician, he will reply:
“This is not a demonstration properly so called; it is a
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verification.” We have confined ourselves to bringing to-
gether one or other of two purely conventional definitions,
and we have verified their identity; nothing new has been
learned. Verification differs from proof precisely because
it is analytical, and because it leads to nothing. It leads
to nothing because the conclusion is nothing but the pre-
misses translated into another language. A real proof,
on the other hand, is fruitful, because the conclusion is
in a sense more general than the premisses. The equal-
ity 2 4+ 2 = 4 can be verified because it is particular.
Each individual enunciation in mathematics may be al-
ways verified in the same way. But if mathematics could
be reduced to a series of such verifications it would not
be a science. A chess-player, for instance, does not create
a science by winning a piece. There is no science but the
science of the general. It may even be said that the ob-
ject of the exact sciences is to dispense with these direct
verifications.

III.

Let us now see the geometer at work, and try to surprise
some of his methods. The task is not without difficulty;
it is not enough to open a book at random and to anal-
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yse any proof we may come across. First of all, geometry
must be excluded, or the question becomes complicated
by difficult problems relating to the role of the postulates,
the nature and the origin of the idea of space. For analo-
gous reasons we cannot avail ourselves of the infinitesimal
calculus. We must seek mathematical thought where it
has remained pure—i.e., in Arithmetic. But we still have
to choose; in the higher parts of the theory of numbers
the primitive mathematical ideas have already undergone
so profound an elaboration that it becomes difficult to
analyse them.

It is therefore at the beginning of Arithmetic that
we must expect to find the explanation we seek; but it
happens that it is precisely in the proofs of the most el-
ementary theorems that the authors of classic treatises
have displayed the least precision and rigour. We may
not impute this to them as a crime; they have obeyed
a necessity. Beginners are not prepared for real mathe-
matical rigour; they would see in it nothing but empty,
tedious subtleties. It would be waste of time to try to
make them more exacting; they have to pass rapidly and
without stopping over the road which was trodden slowly
by the founders of the science.

Why is so long a preparation necessary to habituate
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oneself to this perfect rigour, which it would seem should
naturally be imposed on all minds? This is a logical and
psychological problem which is well worthy of study. But
we shall not dwell on it; it is foreign to our subject. All I
wish to insist on is, that we shall fail in our purpose unless
we reconstruct the proofs of the elementary theorems,
and give them, not the rough form in which they are left
so as not to weary the beginner, but the form which will
satisfy the skilled geometer.

DEFINITION OF ADDITION.

I assume that the operation x + 1 has been defined; it
consists in adding the number 1 to a given number z.
Whatever may be said of this definition, it does not enter
into the subsequent reasoning.

We now have to define the operation = + a, which
consists in adding the number a to any given number .
Suppose that we have defined the operation

z+ (a—1);
the operation = 4 a will be defined by the equality

(1) z+a=[z+(a—1)] +1.
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We shall know what z+a is when we know what z+(a—1)
is, and as I have assumed that to start with we know what
x + 1 is, we can define successively and “by recurrence”
the operations = + 2,  + 3, etc. This definition deserves
a moment’s attention; it is of a particular nature which
distinguishes it even at this stage from the purely logi-
cal definition; the equality (1), in fact, contains an infi-
nite number of distinct definitions, each having only one
meaning when we know the meaning of its predecessor.

PROPERTIES OF ADDITION.

Associative.—I say that
a+(b+c)=(a+b) +c¢

in fact, the theorem is true for ¢ = 1. It may then be
written

a+(b+1)=(a+0b)+1;

which, remembering the difference of notation, is nothing
but the equality (1) by which I have just defined addition.
Assume the theorem true for ¢ = v, I say that it will be
true for ¢ =+ 1. Let

(a+b)+v=a+ (b+7);
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it follows that

[(a+b)+7] +1=[a+ (b+7)] +1;
or by def. (1),
(a+b)+(v+1)=a+(b+vy+1)=a+ b+ (y+1)];

which shows by a series of purely analytical deductions

that the theorem is true for v + 1. Being true for ¢ = 1,

we see that it is successively true for ¢ = 2, ¢ = 3, etc.
Commutative—(1) I say that

a+1=1+a.

The theorem is evidently true for a = 1; we can verify
by purely analytical reasoning that if it is true for a = ~
it will be true for a = v + 1. Now, it is true for a = 1,
and therefore is true for a = 2, a = 3, and so on. This is
what is meant by saying that the proof is demonstrated
“by recurrence.”

(2) T say that

a+b=>b+a.

Yor (v+1)+1=(1+v)+1=1+(y+1)—[TR]
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The theorem has just been shown to hold good for b =1,
and it may be verified analytically that if it is true for
b = /3, it will be true for b = 3 4+ 1. The proposition is
thus established by recurrence.

DEFINITION OF MULTIPLICATION.
We shall define multiplication by the equalities

(1) ax1=a;
(2) axb=lax(b-1)]+a.

Both of these include an infinite number of definitions;
having defined a x 1, it enables us to define in succession
a X 2,ax 3, and so on.

PROPERTIES OF MULTIPLICATION.

Distributive—1 say that
(a+b)xc=(axc)+ (bxc).

We can verify analytically that the theorem is true for
¢ = 1; then if it is true for ¢ = ~, it will be true for
c =7+ 1. The proposition is then proved by recurrence.
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Commutative—(1) I say that
ax1l=1xa.

The theorem is obvious for a = 1. We can verify ana-
lytically that if it is true for a = «, it will be true for
a=aoa+1.

(2) 1 say that

axb=>bxa.

The theorem has just been proved for b = 1. We can
verify analytically that if it be true for b = 3 it will be
true for b= (G + 1.

IV.

This monotonous series of reasonings may now be laid
aside; but their very monotony brings vividly to light the
process, which is uniform, and is met again at every step.
The process is proof by recurrence. We first show that a
theorem is true for n = 1; we then show that if it is true
for n—1 it is true for n, and we conclude that it is true for
all integers. We have now seen how it may be used for
the proof of the rules of addition and multiplication—
that is to say, for the rules of the algebraical calculus.
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This calculus is an instrument of transformation which
lends itself to many more different combinations than the
simple syllogism; but it is still a purely analytical instru-
ment, and is incapable of teaching us anything new. If
mathematics had no other instrument, it would immedi-
ately be arrested in its development; but it has recourse
anew to the same process—i.e., to reasoning by recur-
rence, and it can continue its forward march. Then if we
look carefully, we find this mode of reasoning at every
step, either under the simple form which we have just
given to it, or under a more or less modified form. It is
therefore mathematical reasoning par excellence, and we
must examine it closer.

V.

The essential characteristic of reasoning by recurrence
is that it contains, condensed, so to speak, in a single
formula, an infinite number of syllogisms. We shall see
this more clearly if we enunciate the syllogisms one after
another. They follow one another, if one may use the ex-
pression, in a cascade. The following are the hypothetical
syllogisms:—The theorem is true of the number 1. Now,
if it is true of 1, it is true of 2; therefore it is true of 2.
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Now, if it is true of 2, it is true of 3; hence it is true of 3,
and so on. We see that the conclusion of each syllogism
serves as the minor of its successor. Further, the majors
of all our syllogisms may be reduced to a single form. If
the theorem is true of n — 1, it is true of n.

We see, then, that in reasoning by recurrence we con-
fine ourselves to the enunciation of the minor of the first
syllogism, and the general formula which contains as par-
ticular cases all the majors. This unending series of syl-
logisms is thus reduced to a phrase of a few lines.

It is now easy to understand why every particular con-
sequence of a theorem may, as I have above explained,
be verified by purely analytical processes. If, instead of
proving that our theorem is true for all numbers, we only
wish to show that it is true for the number 6 for instance,
it will be enough to establish the first five syllogisms in
our cascade. We shall require 9 if we wish to prove it
for the number 10; for a greater number we shall require
more still; but however great the number may be we shall
always reach it, and the analytical verification will al-
ways be possible. But however far we went we should
never reach the general theorem applicable to all num-
bers, which alone is the object of science. To reach it we
should require an infinite number of syllogisms, and we
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should have to cross an abyss which the patience of the
analyst, restricted to the resources of formal logic, will
never succeed in crossing.

I asked at the outset why we cannot conceive of a
mind powerful enough to see at a glance the whole body
of mathematical truth. The answer is now easy. A chess-
player can combine for four or five moves ahead; but,
however extraordinary a player he may be, he cannot
prepare for more than a finite number of moves. If he
applies his faculties to Arithmetic, he cannot conceive its
general truths by direct intuition alone; to prove even
the smallest theorem he must use reasoning by recur-
rence, for that is the only instrument which enables us to
pass from the finite to the infinite. This instrument is al-
ways useful, for it enables us to leap over as many stages
as we wish; it frees us from the necessity of long, te-
dious, and monotonous verifications which would rapidly
become impracticable. Then when we take in hand the
general theorem it becomes indispensable, for otherwise
we should ever be approaching the analytical verifica-
tion without ever actually reaching it. In this domain of
Arithmetic we may think ourselves very far from the in-
finitesimal analysis, but the idea of mathematical infinity
is already playing a preponderating part, and without it
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there would be no science at all, because there would be
nothing general.

VL

The views upon which reasoning by recurrence is based
may be exhibited in other forms; we may say, for in-
stance, that in any finite collection of different integers
there is always one which is smaller than any other. We
may readily pass from one enunciation to another, and
thus give ourselves the illusion of having proved that rea-
soning by recurrence is legitimate. But we shall always
be brought to a full stop—we shall always come to an
indemonstrable axiom, which will at bottom be but the
proposition we had to prove translated into another lan-
guage. We cannot therefore escape the conclusion that
the rule of reasoning by recurrence is irreducible to the
principle of contradiction. Nor can the rule come to us
from experiment. Experiment may teach us that the rule
is true for the first ten or the first hundred numbers, for
instance; it will not bring us to the indefinite series of
numbers, but only to a more or less long, but always
limited, portion of the series.

Now, if that were all that is in question, the principle
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of contradiction would be sufficient, it would always en-
able us to develop as many syllogisms as we wished. It
is only when it is a question of a single formula to em-
brace an infinite number of syllogisms that this principle
breaks down, and there, too, experiment is powerless to
aid. This rule, inaccessible to analytical proof and to
experiment, is the exact type of the a priori synthetic
intuition. On the other hand, we cannot see in it a con-
vention as in the case of the postulates of geometry.

Why then is this view imposed upon us with such an
irresistible weight of evidence? It is because it is only
the affirmation of the power of the mind which knows it
can conceive of the indefinite repetition of the same act,
when the act is once possible. The mind has a direct
intuition of this power, and experiment can only be for
it an opportunity of using it, and thereby of becoming
conscious of it.

But it will be said, if the legitimacy of reasoning by
recurrence cannot be established by experiment alone,
is it so with experiment aided by induction? We see
successively that a theorem is true of the number 1, of
the number 2, of the number 3, and so on—the law is
manifest, we say, and it is so on the same ground that
every physical law is true which is based on a very large
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but limited number of observations.

[t cannot escape our notice that here is a striking anal-
ogy with the usual processes of induction. But an essen-
tial difference exists. Induction applied to the physical
sciences is always uncertain, because it is based on the
belief in a general order of the universe, an order which
is external to us. Mathematical induction—:i.e., proof by
recurrence—is, on the contrary, necessarily imposed on
us, because it is only the affirmation of a property of the
mind itself.

VIL

Mathematicians, as I have said before, always endeavour
to generalise the propositions they have obtained. To
seek no further example, we have just shown the equality

a+1=1+a,
and we then used it to establish the equality
a+b=b+a,

which is obviously more general. Mathematics may,
therefore, like the other sciences, proceed from the
particular to the general. This is a fact which might
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otherwise have appeared incomprehensible to us at the
beginning of this study, but which has no longer any-
thing mysterious about it, since we have ascertained
the analogies between proof by recurrence and ordinary
induction.

No doubt mathematical recurrent reasoning and
physical inductive reasoning are based on different foun-
dations, but they move in parallel lines and in the same
direction—namely, from the particular to the general.

Let us examine the case a little more closely. To prove
the equality

(1) a+2=2+a,

we need only apply the rule
a+1l=1+4a
twice, and write
(2) a+2=a+1+1=14a+1=1+14+a=2+a.

The equality thus deduced by purely analytical means
is not, however, a simple particular case. It is something
quite different. We may not therefore even say in the re-
ally analytical and deductive part of mathematical rea-
soning that we proceed from the general to the particular
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in the ordinary sense of the words. The two sides of the
equality (2) are merely more complicated combinations
than the two sides of the equality (1), and analysis only
serves to separate the elements which enter into these
combinations and to study their relations.

Mathematicians therefore proceed “by construction,”
they “construct” more complicated combinations. When
they analyse these combinations, these aggregates, so to
speak, into their primitive elements, they see the relations
of the elements and deduce the relations of the aggregates
themselves. The process is purely analytical, but it is not
a passing from the general to the particular, for the ag-
gregates obviously cannot be regarded as more particular
than their elements.

Great importance has been rightly attached to this
process of “construction,” and some claim to see in it the
necessary and sufficient condition of the progress of the
exact sciences. Necessary, no doubt, but not sufficient!
For a construction to be useful and not mere waste of
mental effort, for it to serve as a stepping-stone to higher
things, it must first of all possess a kind of unity en-
abling us to see something more than the juxtaposition
of its elements. Or more accurately, there must be some
advantage in considering the construction rather than the
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elements themselves. What can this advantage be? Why
reason on a polygon, for instance, which is always decom-
posable into triangles, and not on elementary triangles?
It is because there are properties of polygons of any num-
ber of sides, and they can be immediately applied to any
particular kind of polygon. In most cases it is only after
long efforts that those properties can be discovered, by
directly studying the relations of elementary triangles. If
the quadrilateral is anything more than the juxtaposition
of two triangles, it is because it is of the polygon type.
A construction only becomes interesting when it can
be placed side by side with other analogous constructions
for forming species of the same genus. To do this we must
necessarily go back from the particular to the general,
ascending one or more steps. The analytical process “by
construction” does not compel us to descend, but it leaves
us at the same level. We can only ascend by mathemat-
ical induction, for from it alone can we learn something
new. Without the aid of this induction, which in certain
respects differs from, but is as fruitful as, physical induc-
tion, construction would be powerless to create science.
Let me observe, in conclusion, that this induction is
only possible if the same operation can be repeated indef-
initely. That is why the theory of chess can never become
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a science, for the different moves of the same piece are
limited and do not resemble each other.



CHAPTER II
MATHEMATICAL MAGNITUDE AND EXPERIMENT.

IF we want to know what the mathematicians mean by
a continuum, it is useless to appeal to geometry. The
geometer is always seeking, more or less, to represent
to himself the figures he is studying, but his representa-
tions are only instruments to him; he uses space in his
geometry just as he uses chalk; and further, too much
importance must not be attached to accidents which are
often nothing more than the whiteness of the chalk.
The pure analyst has not to dread this pitfall. He has
disengaged mathematics from all extraneous elements,
and he is in a position to answer our question:—‘Tell
me exactly what this continuum is, about which math-
ematicians reason.” Many analysts who reflect on their
art have already done so—M. Tannery, for instance, in
his Introduction a la théorie des Fonctions d’une variable.
Let us start with the integers. Between any two con-
secutive sets, intercalate one or more intermediary sets,
and then between these sets others again, and so on in-
definitely. We thus get an unlimited number of terms,
and these will be the numbers which we call fractional,
rational, or commensurable. But this is not yet all; be-
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tween these terms, which, be it marked, are already in-
finite in number, other terms are intercalated, and these
are called irrational or incommensurable.

Before going any further, let me make a preliminary
remark. The continuum thus conceived is no longer a col-
lection of individuals arranged in a certain order, infinite
in number, it is true, but external the one to the other.
This is not the ordinary conception in which it is sup-
posed that between the elements of the continuum exists
an intimate connection making of it one whole, in which
the point has no existence previous to the line, but the
line does exist previous to the point. Multiplicity alone
subsists, unity has disappeared—the continuum is unity
in multiplicity,” according to the celebrated formula. The
analysts have even less reason to define their continuum
as they do, since it is always on this that they reason
when they are particularly proud of their rigour. It is
enough to warn the reader that the real mathematical
continuum is quite different from that of the physicists
and from that of the metaphysicians.

It may also be said, perhaps, that mathematicians
who are contented with this definition are the dupes of
words, that the nature of each of these sets should be
precisely indicated, that it should be explained how they
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are to be intercalated, and that it should be shown how it
is possible to do it. This, however, would be wrong; the
only property of the sets which comes into the reasoning
is that of preceding or succeeding these or those other
sets; this alone should therefore intervene in the defini-
tion. So we need not concern ourselves with the manner
in which the sets are intercalated, and no one will doubt
the possibility of the operation if he only remembers that
“possible” in the language of geometers simply means ex-
empt from contradiction. But our definition is not yet
complete, and we come back to it after this rather long
digression.

Definition of Incommensurables.—The mathemati-
cians of the Berlin school, and Kronecker in particular,
have devoted themselves to constructing this continuous
scale of irrational and fractional numbers without using
any other materials than the integer. The mathemati-
cal continuum from this point of view would be a pure
creation of the mind in which experiment would have no
part.

The idea of rational number not seeming to present
to them any difficulty, they have confined their attention
mainly to defining incommensurable numbers. But be-
fore reproducing their definition here, I must make an
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observation that will allay the astonishment which this
will not fail to provoke in readers who are but little fa-
miliar with the habits of geometers.

Mathematicians do not study objects, but the rela-
tions between objects; to them it is a matter of indif-
ference if these objects are replaced by others, provided
that the relations do not change. Matter does not engage
their attention, they are interested by form alone.

If we did not remember it, we could hardly under-
stand that Kronecker gives the name of incommensurable
number to a simple symbol—that is to say, something
very different from the idea we think we ought to have
of a quantity which should be measurable and almost
tangible.

Let us see now what is Kronecker’s definition. Com-
mensurable numbers may be divided into classes in an
infinite number of ways, subject to the condition that
any number whatever of the first class is greater than
any number of the second. It may happen that among
the numbers of the first class there is one which is smaller
than all the rest; if, for instance, we arrange in the first
class all the numbers greater than 2, and 2 itself, and
in the second class all the numbers smaller than 2, it is
clear that 2 will be the smallest of all the numbers of the
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first class. The number 2 may therefore be chosen as the
symbol of this division.

It may happen, on the contrary, that in the second
class there is one which is greater than all the rest. This is
what takes place, for example, if the first class comprises
all the numbers greater than 2, and if, in the second, are
all the numbers less than 2, and 2 itself. Here again the
number 2 might be chosen as the symbol of this division.

But it may equally well happen that we can find nei-
ther in the first class a number smaller than all the rest,
nor in the second class a number greater than all the
rest. Suppose, for instance, we place in the first class
all the numbers whose squares are greater than 2, and
in the second all the numbers whose squares are smaller
than 2. We know that in neither of them is a number
whose square is equal to 2. Evidently there will be in
the first class no number which is smaller than all the
rest, for however near the square of a number may be
to 2, we can always find a commensurable whose square
is still nearer to 2. From Kronecker’s point of view, the
incommensurable number v/2 is nothing but the symbol
of this particular method of division of commensurable
numbers; and to each mode of repartition corresponds in
this way a number, commensurable or not, which serves
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as a symbol. But to be satisfied with this would be to for-
get the origin of these symbols; it remains to explain how
we have been led to attribute to them a kind of concrete
existence, and on the other hand, does not the difficulty
begin with fractions? Should we have the notion of these
numbers if we did not previously know a matter which
we conceive as infinitely divisible—1.e., as a continuum?

The Physical Continuum.—We are next led to ask if
the idea of the mathematical continuum is not simply
drawn from experiment. If that be so, the rough data of
experiment, which are our sensations, could be measured.
We might, indeed, be tempted to believe that this is so,
for in recent times there has been an attempt to mea-
sure them, and a law has even been formulated, known
as Fechner’s law, according to which sensation is propor-
tional to the logarithm of the stimulus. But if we examine
the experiments by which the endeavour has been made
to establish this law, we shall be led to a diametrically op-
posite conclusion. It has, for instance, been observed that
a weight A of 10 grammes and a weight B of 11 grammes
produced identical sensations, that the weight B could no
longer be distinguished from a weight C of 12 grammes,
but that the weight A was readily distinguished from the
weight C. Thus the rough results of the experiments may
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be expressed by the following relations
A =B, B=C, A< C,

which may be regarded as the formula of the physical
continuum. But here is an intolerable disagreement with
the law of contradiction, and the necessity of banishing
this disagreement has compelled us to invent the mathe-
matical continuum. We are therefore forced to conclude
that this notion has been created entirely by the mind,
but it is experiment that has provided the opportunity.
We cannot believe that two quantities which are equal to
a third are not equal to one another, and we are thus led
to suppose that A is different from B, and B from C, and
that if we have not been aware of this, it is due to the
imperfections of our senses.

The Creation of the Mathematical Continuum: First
Stage.—So far it would suffice, in order to account for
facts, to intercalate between A and B a small number of
terms which would remain discrete. What happens now
if we have recourse to some instrument to make up for
the weakness of our senses? If, for example, we use a
microscope? Such terms as A and B, which before were
indistinguishable from one another, appear now to be dis-
tinct: but between A and B, which are distinct, is inter-
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calated another new term D, which we can distinguish
neither from A nor from B. Although we may use the
most delicate methods, the rough results of our experi-
ments will always present the characters of the physical
continuum with the contradiction which is inherent in it.
We only escape from it by incessantly intercalating new
terms between the terms already distinguished, and this
operation must be pursued indefinitely. We might con-
ceive that it would be possible to stop if we could imagine
an instrument powerful enough to decompose the physi-
cal continuum into discrete elements, just as the telescope
resolves the Milky Way into stars. But this we cannot
imagine; it is always with our senses that we use our in-
struments; it is with the eye that we observe the image
magnified by the microscope, and this image must there-
fore always retain the characters of visual sensation, and
therefore those of the physical continuum.

Nothing distinguishes a length directly observed
from half that length doubled by the microscope. The
whole is homogeneous to the part; and there is a fresh
contradiction—or rather there would be one if the num-
ber of the terms were supposed to be finite; it is clear
that the part containing less terms than the whole cannot
be similar to the whole. The contradiction ceases as soon
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as the number of terms is regarded as infinite. There is
nothing, for example, to prevent us from regarding the
aggregate of integers as similar to the aggregate of even
numbers, which is however only a part of it; in fact, to
each integer corresponds another even number which is
its double. But it is not only to escape this contradiction
contained in the empiric data that the mind is led to
create the concept of a continuum formed of an indefinite
number of terms.

Here everything takes place just as in the series of the
integers. We have the faculty of conceiving that a unit
may be added to a collection of units. Thanks to ex-
periment, we have had the opportunity of exercising this
faculty and are conscious of it; but from this fact we feel
that our power is unlimited, and that we can count indef-
initely, although we have never had to count more than a
finite number of objects. In the same way, as soon as we
have intercalated terms between two consecutive terms
of a series, we feel that this operation may be continued
without limit, and that, so to speak, there is no intrinsic
reason for stopping. As an abbreviation, I may give the
name of a mathematical continuum of the first order to
every aggregate of terms formed after the same law as
the scale of commensurable numbers. If, then, we inter-
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calate new sets according to the laws of incommensurable
numbers, we obtain what may be called a continuum of
the second order.

Second Stage.—We have only taken our first step. We
have explained the origin of continuums of the first order;
we must now see why this is not sufficient, and why the
incommensurable numbers had to be invented.

If we try to imagine a line, it must have the characters
of the physical continuum-—that is to say, our representa-
tion must have a certain breadth. Two lines will therefore
appear to us under the form of two narrow bands, and
if we are content with this rough image, it is clear that
where two lines cross they must have some common part.
But the pure geometer makes one further effort; without
entirely renouncing the aid of his senses, he tries to imag-
ine a line without breadth and a point without size. This
he can do only by imagining a line as the limit towards
which tends a band that is growing thinner and thinner,
and the point as the limit towards which is tending an
area that is growing smaller and smaller. Our two bands,
however narrow they may be, will always have a common
area; the smaller they are the smaller it will be, and its
limit is what the geometer calls a point. This is why it is
said that the two lines which cross must have a common
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point, and this truth seems intuitive.

But a contradiction would be implied if we conceived
of lines as continuums of the first order—i.e., the lines
traced by the geometer should only give us points, the
co-ordinates of which are rational numbers. The con-
tradiction would be manifest if we were, for instance, to
assert the existence of lines and circles. It is clear, in fact,
that if the points whose co-ordinates are commensurable
were alone regarded as real, the in-circle of a square and
the diagonal of the square would not intersect, since the
co-ordinates of the point of intersection are incommensu-
rable.

Even then we should have only certain incommensu-
rable numbers, and not all these numbers.

But let us imagine a line divided into two half-rays
(demi-droites). Fach of these half-rays will appear to
our minds as a band of a certain breadth; these bands
will fit close together, because there must be no interval
between them. The common part will appear to us to be
a point which will still remain as we imagine the bands
to become thinner and thinner, so that we admit as an
intuitive truth that if a line be divided into two half-rays
the common frontier of these half-rays is a point. Here
we recognise the conception of Kronecker, in which an
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incommensurable number was regarded as the common
frontier of two classes of rational numbers. Such is the
origin of the continuum of the second order, which is the
mathematical continuum properly so called.

Summary.—To sum up, the mind has the faculty of
creating symbols, and it is thus that it has constructed
the mathematical continuum, which is only a particular
system of symbols. The only limit to its power is the
necessity of avoiding all contradiction; but the mind only
makes use of it when experiment gives a reason for it.

In the case with which we are concerned, the reason
is given by the idea of the physical continuum, drawn
from the rough data of the senses. But this idea leads
to a series of contradictions from each of which in turn
we must be freed. In this way we are forced to imagine
a more and more complicated system of symbols. That
on which we shall dwell is not merely exempt from in-
ternal contradiction,—it was so already at all the steps
we have taken,—but it is no longer in contradiction with
the various propositions which are called intuitive, and
which are derived from more or less elaborate empirical
notions.

Measurable Magnitude.—So far we have not spoken
of the measure of magnitudes; we can tell if any one of
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them is greater than any other, but we cannot say that
it is two or three times as large.

So far, I have only considered the order in which the
terms are arranged; but that is not sufficient for most
applications. We must learn how to compare the interval
which separates any two terms. On this condition alone
will the continuum become measurable, and the opera-
tions of arithmetic be applicable. This can only be done
by the aid of a new and special convention; and this con-
vention is, that in such a case the interval between the
terms A and B is equal to the interval which separates
C and D. For instance, we started with the integers, and
between two consecutive sets we intercalated n interme-
diary sets; by convention we now assume these new sets
to be equidistant. This is one of the ways of defining the
addition of two magnitudes; for if the interval AB is by
definition equal to the interval CD, the interval AD will
by definition be the sum of the intervals AB and AC.
This definition is very largely, but not altogether, arbi-
trary. It must satisfy certain conditions—the commuta-
tive and associative laws of addition, for instance; but,
provided the definition we choose satisfies these laws, the
choice is indifferent, and we need not state it precisely.

Remarks.—We are now in a position to discuss several
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important questions.

(1) Is the creative power of the mind exhausted by the
creation of the mathematical continuum? The answer
is in the negative, and this is shown in a very striking
manner by the work of Du Bois Reymond.

We know that mathematicians distinguish between
infinitesimals of different orders, and that infinitesimals
of the second order are infinitely small, not only abso-
lutely so, but also in relation to those of the first order.
It is not difficult to imagine infinitesimals of fractional
or even of irrational order, and here once more we find
the mathematical continuum which has been dealt with
in the preceding pages. Further, there are infinitesimals
which are infinitely small with reference to those of the
first order, and infinitely large with respect to the or-
der 1 + ¢, however small ¢ may be. Here, then, are new
terms intercalated in our series; and if I may be permit-
ted to revert to the terminology used in the preceding
pages, a terminology which is very convenient, although
it has not been consecrated by usage, I shall say that we
have created a kind of continuum of the third order.

It is an easy matter to go further, but it is idle to do
so, for we would only be imagining symbols without any
possible application, and no one will dream of doing that.



SCIENCE AND HYPOTHESIS 36

This continuum of the third order, to which we are led by
the consideration of the different orders of infinitesimals,
is in itself of but little use and hardly worth quoting.
Geometers look on it as a mere curiosity. The mind only
uses its creative faculty when experiment requires it.

(2) When we are once in possession of the conception
of the mathematical continuum, are we protected from
contradictions analogous to those which gave it birth?
No, and the following is an instance:—

He is a savant indeed who will not take it as evi-
dent that every curve has a tangent; and, in fact, if we
think of a curve and a straight line as two narrow bands,
we can always arrange them in such a way that they
have a common part without intersecting. Suppose now
that the breadth of the bands diminishes indefinitely: the
common part will still remain, and in the limit, so to
speak, the two lines will have a common point, although
they do not intersect—i.e., they will touch. The geome-
ter who reasons in this way is only doing what we have
done when we proved that two lines which intersect have
a common point, and his intuition might also seem to
be quite legitimate. But this is not the case. We can
show that there are curves which have no tangent, if we
define such a curve as an analytical continuum of the sec-
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ond order. No doubt some artifice analogous to those we
have discussed above would enable us to get rid of this
contradiction, but as the latter is only met with in very
exceptional cases, we need not trouble to do so. Instead
of endeavouring to reconcile intuition and analysis, we
are content to sacrifice one of them, and as analysis must
be flawless, intuition must go to the wall.

The Physical Continuum of several Dimensions.—We
have discussed above the physical continuum as it is de-
rived from the immediate evidence of our senses—or, if
the reader prefers, from the rough results of Fechner’s ex-
periments; I have shown that these results are summed
up in the contradictory formulae

A=B, B=C, A<C

Let us now see how this notion is generalised, and
how from it may be derived the concept of continuums
of several dimensions. Consider any two aggregates of
sensations. We can either distinguish between them, or
we cannot; just as in Fechner’s experiments the weight
of 10 grammes could be distinguished from the weight
of 12 grammes, but not from the weight of 11 grammes.
This is all that is required to construct the continuum of
several dimensions.
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Let us call one of these aggregates of sensations an
element. It will be in a measure analogous to the point
of the mathematicians, but will not be, however, the same
thing. We cannot say that our element has no size, for we
cannot distinguish it from its immediate neighbours, and
it is thus surrounded by a kind of fog. If the astronomical
comparison may be allowed, our “elements” would be like
nebulae, whereas the mathematical points would be like
stars.

If this be granted, a system of elements will form a
continuum, if we can pass from any one of them to any
other by a series of consecutive elements such that each
cannot be distinguished from its predecessor. This lin-
ear series is to the line of the mathematician what the
isolated element was to the point.

Before going further, I must explain what is meant
by a cut. Let us consider a continuum C, and remove
from it certain of its elements, which for a moment we
shall regard as no longer belonging to the continuum. We
shall call the aggregate of elements thus removed a cut.
By means of this cut, the continuum C will be subdi-
vided into several distinct continuums; the aggregate of
elements which remain will cease to form a single contin-
uum. There will then be on C two elements, A and B,
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which we must look upon as belonging to two distinct
continuums; and we see that this must be so, because it
will be impossible to find a linear series of consecutive el-
ements of C (each of the elements indistinguishable from
the preceding, the first being A and the last B), unless
one of the elements of this series is indistinguishable from
one of the elements of the cut.

It may happen, on the contrary, that the cut may not
be sufficient to subdivide the continuum C. To classify
the physical continuums, we must first of all ascertain
the nature of the cuts which must be made in order to
subdivide them. If a physical continuum, C, may be sub-
divided by a cut reducing to a finite number of elements,
all distinguishable the one from the other (and therefore
forming neither one continuum nor several continuums),
we shall call C a continuum of one dimension. If, on the
contrary, C can only be subdivided by cuts which are
themselves continuums, we shall say that C is of several
dimensions; if the cuts are continuums of one dimension,
then we shall say that C has two dimensions; if cuts of two
dimensions are sufficient, we shall say that C is of three
dimensions, and so on. Thus the notion of the physical
continuum of several dimensions is defined, thanks to the
very simple fact, that two aggregates of sensations may
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be distinguishable or indistinguishable.

The Mathematical Continuum of Several Dimen-
sions.—The conception of the mathematical continuum
of n dimensions may be led up to quite naturally by a
process similar to that which we discussed at the be-
ginning of this chapter. A point of such a continuum is
defined by a system of n distinct magnitudes which we
call its co-ordinates.

The magnitudes need not always be measurable; there
is, for instance, one branch of geometry independent of
the measure of magnitudes, in which we are only con-
cerned with knowing, for example, if, on a curve ABC,
the point B is between the points A and C, and in which
it is immaterial whether the arc AB is equal to or twice
the arc BC. This branch is called Analysis Situs. It con-
tains quite a large body of doctrine which has attracted
the attention of the greatest geometers, and from which
are derived, one from another, a whole series of remark-
able theorems. What distinguishes these theorems from
those of ordinary geometry is that they are purely qual-
itative. They are still true if the figures are copied by
an unskilful draughtsman, with the result that the pro-
portions are distorted and the straight lines replaced by
lines which are more or less curved.
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As soon as measurement is introduced into the contin-
uum we have just defined, the continuum becomes space,
and geometry is born. But the discussion of this is re-
served for Part II.



PART II.
SPACE.

CHAPTER IIL
NON-EUCLIDEAN GEOMETRIES.

EVERY conclusion presumes premisses. These premisses
are either self-evident and need no demonstration, or can
be established only if based on other propositions; and,
as we cannot go back in this way to infinity, every deduc-
tive science, and geometry in particular, must rest upon
a certain number of indemonstrable axioms. All treatises
of geometry begin therefore with the enunciation of these
axioms. But there is a distinction to be drawn between
them. Some of these, for example, “Things which are
equal to the same thing are equal to one another,” are
not propositions in geometry but propositions in analy-
sis. I look upon them as analytical a priori intuitions,
and they concern me no further. But I must insist on
other axioms which are special to geometry. Of these
most treatises explicitly enunciate three:—(1) Only one
line can pass through two points; (2) a straight line is the
shortest distance between two points; (3) through one
point only one parallel can be drawn to a given straight
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line. Although we generally dispense with proving the
second of these axioms, it would be possible to deduce it
from the other two, and from those much more numer-
ous axioms which are implicitly admitted without enun-
ciation, as I shall explain further on. For a long time
a proof of the third axiom known as Euclid’s postulate
was sought in vain. It is impossible to imagine the efforts
that have been spent in pursuit of this chimera. Finally,
at the beginning of the nineteenth century, and almost
simultaneously, two scientists, a Russian and a Hungar-
ian, Lobatschewsky and Bolyai, showed irrefutably that
this proof is impossible. They have nearly rid us of in-
ventors of geometries without a postulate, and ever since
the Académic des Sciences receives only about one or
two new demonstrations a year. But the question was
not exhausted, and it was not long before a great step
was taken by the celebrated memoir of Riemann, enti-
tled: Ueber die Hypothesen welche der Geometrie zum
Grunde liegen. This little work has inspired most of the
recent treatises to which I shall later on refer, and among
which I may mention those of Beltrami and Helmholtz.
The Geometry of Lobatschewsky.—If it were possible
to deduce Euclid’s postulate from the several axioms, it
is evident that by rejecting the postulate and retaining
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the other axioms we should be led to contradictory con-
sequences. It would be, therefore, impossible to found
on those premisses a coherent geometry. Now, this is
precisely what Lobatschewsky has done. He assumes at
the outset that several parallels may be drawn through a
point to a given straight line, and he retains all the other
axioms of Fuclid. From these hypotheses he deduces a
series of theorems between which it is impossible to find
any contradiction, and he constructs a geometry as im-
peccable in its logic as Euclidean geometry. The theo-
rems are very different, however, from those to which we
are accustomed, and at first will be found a little discon-
certing. For instance, the sum of the angles of a triangle
is always less than two right angles, and the difference
between that sum and two right angles is proportional
to the area of the triangle. It is impossible to construct
a figure similar to a given figure but of different dimen-
sions. If the circumference of a circle be divided into
n equal parts, and tangents be drawn at the points of
intersection, the n tangents will form a polygon if the
radius of the circle is small enough, but if the radius is
large enough they will never meet. We need not multi-
ply these examples. Lobatschewsky’s propositions have
no relation to those of Euclid, but they are none the less
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logically interconnected.

Riemann’s Geometry.—Let us imagine to ourselves
a world only peopled with beings of no thickness, and
suppose these “infinitely flat” animals are all in one and
the same plane, from which they cannot emerge. Let us
further admit that this world is sufficiently distant from
other worlds to be withdrawn from their influence, and
while we are making these hypotheses it will not cost
us much to endow these beings with reasoning power,
and to believe them capable of making a geometry. In
that case they will certainly attribute to space only two
dimensions. But now suppose that these imaginary ani-
mals, while remaining without thickness, have the form
of a spherical, and not of a plane figure, and are all on
the same sphere, from which they cannot escape. What
kind of a geometry will they construct? In the first place,
it is clear that they will attribute to space only two di-
mensions. The straight line to them will be the shortest
distance from one point on the sphere to another—that
is to say, an arc of a great circle. In a word, their ge-
ometry will be spherical geometry. What they will call
space will be the sphere on which they are confined, and
on which take place all the phenomena with which they
are acquainted. Their space will therefore be unbounded,
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since on a sphere one may always walk forward without
ever being brought to a stop, and yet it will be finite;
the end will never be found, but the complete tour can
be made. Well, Riemann’s geometry is spherical geom-
etry extended to three dimensions. To construct it, the
German mathematician had first of all to throw over-
board, not only Euclid’s postulate but also the first ax-
iom that only one line can pass through two points. On
a sphere, through two given points, we can in general
draw only one great circle which, as we have just seen,
would be to our imaginary beings a straight line. But
there was one exception. If the two given points are at
the ends of a diameter, an infinite number of great circles
can be drawn through them. In the same way, in Rie-
mann’s geometry—at least in one of its forms—through
two points only one straight line can in general be drawn,
but there are exceptional cases in which through two
points an infinite number of straight lines can be drawn.
So there is a kind of opposition between the geometries
of Riemann and Lobatschewsky. For instance, the sum
of the angles of a triangle is equal to two right angles
in Euclid’s geometry, less than two right angles in that
of Lobatschewsky, and greater than two right angles in
that of Riemann. The number of parallel lines that can
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be drawn through a given point to a given line is one
in Euclid’s geometry, none in Riemann’s, and an infinite
number in the geometry of Lobatschewsky. Let us add
that Riemann’s space is finite, although unbounded in
the sense which we have above attached to these words.

Surfaces with Constant Curvature.—One objection,
however, remains possible. There is no contradiction be-
tween the theorems of Lobatschewsky and Riemann; but
however numerous are the other consequences that these
geometers have deduced from their hypotheses, they had
to arrest their course before they exhausted them all, for
the number would be infinite; and who can say that if
they had carried their deductions further they would not
have eventually reached some contradiction? This dif-
ficulty does not exist for Riemann’s geometry, provided
it is limited to two dimensions. As we have seen, the
two-dimensional geometry of Riemann, in fact, does not
differ from spherical geometry, which is only a branch
of ordinary geometry, and is therefore outside all con-
tradiction. Beltrami, by showing that Lobatschewsky’s
two-dimensional geometry was only a branch of ordinary
geometry, has equally refuted the objection as far as it
is concerned. This is the course of his argument: Let us
consider any figure whatever on a surface. Imagine this
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figure to be traced on a flexible and inextensible canvas
applied to the surface, in such a way that when the canvas
is displaced and deformed the different lines of the figure
change their form without changing their length. As a
rule, this flexible and inextensible figure cannot be dis-
placed without leaving the surface. But there are certain
surfaces for which such a movement would be possible.
They are surfaces of constant curvature. If we resume
the comparison that we made just now, and imagine be-
ings without thickness living on one of these surfaces,
they will regard as possible the motion of a figure all
the lines of which remain of a constant length. Such a
movement would appear absurd, on the other hand, to
animals without thickness living on a surface of variable
curvature. These surfaces of constant curvature are of
two kinds. The curvature of some is positive, and they
may be deformed so as to be applied to a sphere. The ge-
ometry of these surfaces is therefore reduced to spherical
geometry—namely, Riemann’s. The curvature of others
is megative. Beltrami has shown that the geometry of
these surfaces is identical with that of Lobatschewsky.
Thus the two-dimensional geometries of Riemann and
Lobatschewsky are connected with Euclidean geometry.

Interpretation of Non-Fuclidean Geometries.—Thus
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vanishes the objection so far as two-dimensional geome-
tries are concerned. It would be easy to extend Bel-
trami’s reasoning to three-dimensional geometries, and
minds which do not recoil before space of four dimen-
sions will see no difficulty in it; but such minds are few
in number. I prefer, then, to proceed otherwise. Let us
consider a certain plane, which I shall call the fundamen-
tal plane, and let us construct a kind of dictionary by
making a double series of terms written in two columns,
and corresponding each to each, just as in ordinary dic-
tionaries the words in two languages which have the same
signification correspond to one another:—

Space ...l The portion of space situated
above the fundamental
plane.

Plane .............. Sphere cutting orthogonally
the fundamental plane.

Line ............... Circle cutting orthogonally the
fundamental plane.

Sphere ............. Sphere.

Circle .............. Circle.

Angle .............. Angle.
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Distance between two  Logarithm of the anharmonic
points .......... ratio of these two points
and of the intersection of
the fundamental plane with
the circle passing through
these two points and cut-

ting it orthogonally.

Ete. ... Etc.

Let us now take Lobatschewsky’s theorems and trans-
late them by the aid of this dictionary, as we would trans-
late a German text with the aid of a German-French dic-
tionary. We shall then obtain the theorems of ordinary
geometry. For instance, Lobatschewsky’s theorem: “The
sum of the angles of a triangle is less than two right
angles,” may be translated thus: “If a curvilinear tri-
angle has for its sides arcs of circles which if produced
would cut orthogonally the fundamental plane, the sum
of the angles of this curvilinear triangle will be less than
two right angles.” Thus, however far the consequences of
Lobatschewsky’s hypotheses are carried, they will never
lead to a contradiction; in fact, if two of Lobatschewsky’s
theorems were contradictory, the translations of these
two theorems made by the aid of our dictionary would be
contradictory also. But these translations are theorems



NON-EUCLIDEAN GEOMETRIES. 51

of ordinary geometry, and no one doubts that ordinary
geometry is exempt from contradiction. Whence is the
certainty derived, and how far is it justified? That is a
question upon which I cannot enter here, but it is a very
interesting question, and I think not insoluble. Nothing,
therefore, is left of the objection I formulated above. But
this is not all. Lobatschewsky’s geometry being suscep-
tible of a concrete interpretation, ceases to be a useless
logical exercise, and may be applied. I have no time
here to deal with these applications, nor with what Herr
Klein and myself have done by using them in the inte-
gration of linear equations. Further, this interpretation is
not unique, and several dictionaries may be constructed
analogous to that above, which will enable us by a simple
translation to convert Lobatschewsky’s theorems into the
theorems of ordinary geometry.

Implicit Azioms.—Are the axioms implicitly enunci-
ated in our text-books the only foundation of geometry?
We may be assured of the contrary when we see that,
when they are abandoned one after another, there are
still left standing some propositions which are common to
the geometries of Euclid, Lobatschewsky, and Riemann.
These propositions must be based on premisses that ge-
ometers admit without enunciation. It is interesting to



SCIENCE AND HYPOTHESIS 52

try and extract them from the classical proofs.

John Stuart Mill asserted® that every definition con-
tains an axiom, because by defining we implicitly affirm
the existence of the object defined. That is going rather
too far. It is but rarely in mathematics that a definition
is given without following it up by the proof of the exis-
tence of the object defined, and when this is not done it
is generally because the reader can easily supply it; and
it must not be forgotten that the word “existence” has
not the same meaning when it refers to a mathematical
entity as when it refers to a material object.

A mathematical entity exists provided there is no con-
tradiction implied in its definition, either in itself, or with
the propositions previously admitted. But if the observa-
tion of John Stuart Mill cannot be applied to all defini-
tions, it is none the less true for some of them. A plane is
sometimes defined in the following manner:—The plane
is a surface such that the line which joins any two points
upon it lies wholly on that surface. Now, there is obvi-
ously a new axiom concealed in this definition. It is true
we might change it, and that would be preferable, but
then we should have to enunciate the axiom explicitly.
Other definitions may give rise to no less important re-

! Logic, c. viii., cf. Definitions, §5-6.—|TR.]
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flections, such as, for example, that of the equality of two
figures. Two figures are equal when they can be super-
posed. To superpose them, one of them must be displaced
until it coincides with the other. But how must it be dis-
placed? If we asked that question, no doubt we should
be told that it ought to be done without deforming it,
and as an invariable solid is displaced. The vicious circle
would then be evident. As a matter of fact, this defini-
tion defines nothing. It has no meaning to a being living
in a world in which there are only fluids. If it seems clear
to us, it is because we are accustomed to the properties
of natural solids which do not much differ from those of
the ideal solids, all of whose dimensions are invariable.
However, imperfect as it may be, this definition implies
an axiom. The possibility of the motion of an invariable
figure is not a self-evident truth. At least it is only so in
the application to Euclid’s postulate, and not as an an-
alytical a prior: intuition would be. Moreover, when we
study the definitions and the proofs of geometry, we see
that we are compelled to admit without proof not only
the possibility of this motion, but also some of its prop-
erties. This first arises in the definition of the straight
line. Many defective definitions have been given, but the
true one is that which is understood in all the proofs in
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which the straight line intervenes. “It may happen that
the motion of an invariable figure may be such that all
the points of a line belonging to the figure are motion-
less, while all the points situate outside that line are in
motion. Such a line would be called a straight line.” We
have deliberately in this enunciation separated the def-
inition from the axiom which it implies. Many proofs
such as those of the cases of the equality of triangles, of
the possibility of drawing a perpendicular from a point
to a straight line, assume propositions the enunciations
of which are dispensed with, for they necessarily imply
that it is possible to move a figure in space in a certain
way.

The Fourth Geometry.—Among these explicit axioms
there is one which seems to me to deserve some attention,
because when we abandon it we can construct a fourth
geometry as coherent as those of Euclid, Lobatschewsky,
and Riemann. To prove that we can always draw a per-
pendicular at a point A to a straight line AB, we consider
a straight line AC movable about the point A, and ini-
tially identical with the fixed straight line AB. We then
can make it turn about the point A until it lies in AB
produced. Thus we assume two propositions—first, that
such a rotation is possible, and then that it may continue
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until the two lines lie the one in the other produced. If
the first point is conceded and the second rejected, we
are led to a series of theorems even stranger than those
of Lobatschewsky and Riemann, but equally free from
contradiction. I shall give only one of these theorems,
and I shall not choose the least remarkable of them. A
real straight line may be perpendicular to itself.

Lie’s Theorem.—The number of axioms implicitly in-
troduced into classical proofs is greater than necessary,
and it would be interesting to reduce them to a mini-
mum. It may be asked, in the first place, if this reduction
is possible—if the number of necessary axioms and that
of imaginable geometries is not infinite? A theorem due
to Sophus Lie is of weighty importance in this discussion.
It may be enunciated in the following manner:—Suppose
the following premisses are admitted: (1) space has n di-
mensions; (2) the movement of an invariable figure is
possible; (3) p conditions are necessary to determine the
position of this figure in space.

The number of geometries compatible with these pre-
musses will be limited. I may even add that if n is given, a
superior limit can be assigned to p. If, therefore, the pos-
sibility of the movement is granted, we can only invent
a finite and even a rather restricted number of three-
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dimensional geometries.

Riemann’s Geometries.—However, this result seems
contradicted by Riemann, for that scientist constructs
an infinite number of geometries, and that to which his
name is usually attached is only a particular case of them.
All depends, he says, on the manner in which the length
of a curve is defined. Now, there is an infinite number of
ways of defining this length, and each of them may be the
starting-point of a new geometry. That is perfectly true,
but most of these definitions are incompatible with the
movement of a variable figure such as we assume to be
possible in Lie’s theorem. These geometries of Riemann,
so interesting on various grounds, can never be, there-
fore, purely analytical, and would not lend themselves to
proofs analogous to those of Euclid.

On the Nature of Azioms.—Most mathematicians re-
gard Lobatschewsky’s geometry as a mere logical curios-
ity. Some of them have, however, gone further. If sev-
eral geometries are possible, they say, is it certain that
our geometry is the one that is true? Experiment no
doubt teaches us that the sum of the angles of a trian-
gle is equal to two right angles, but this is because the
triangles we deal with are too small. According to Lo-
batschewsky, the difference is proportional to the area of
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the triangle, and will not this become sensible when we
operate on much larger triangles, and when our measure-
ments become more accurate? Euclid’s geometry would
thus be a provisory geometry. Now, to discuss this view
we must first of all ask ourselves, what is the nature of
geometrical axioms? Are they synthetic a priori intu-
itions, as Kant affirmed? They would then be imposed
upon us with such a force that we could not conceive of
the contrary proposition, nor could we build upon it a
theoretical edifice. There would be no non-Euclidean ge-
ometry. To convince ourselves of this, let us take a true
synthetic a prior: intuition—the following, for instance,
which played an important part in the first chapter:—If
a theorem is true for the number 1, and if it has been
proved that it is true of n + 1, provided it is true of n, it
will be true for all positive integers. Let us next try to
get rid of this, and while rejecting this proposition let us
construct a false arithmetic analogous to non-Euclidean
geometry. We shall not be able to do it. We shall be
even tempted at the outset to look upon these intuitions
as analytical. Besides, to take up again our fiction of
animals without thickness, we can scarcely admit that
these beings, if their minds are like ours, would adopt
the Euclidean geometry, which would be contradicted by
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all their experience. Ought we, then, to conclude that
the axioms of geometry are experimental truths? But we
do not make experiments on ideal lines or ideal circles;
we can only make them on material objects. On what,
therefore, would experiments serving as a foundation for
geometry be based? The answer is easy. We have seen
above that we constantly reason as if the geometrical
figures behaved like solids. What geometry would bor-
row from experiment would be therefore the properties
of these bodies. The properties of light and its propa-
gation in a straight line have also given rise to some of
the propositions of geometry, and in particular to those
of projective geometry, so that from that point of view
one would be tempted to say that metrical geometry is
the study of solids, and projective geometry that of light.
But a difficulty remains, and is unsurmountable. If ge-
ometry were an experimental science, it would not be an
exact science. It would be subjected to continual revi-
sion. Nay, it would from that day forth be proved to be
erroneous, for we know that no rigorously invariable solid
exists. The geometrical axioms are therefore neither syn-
thetic a priort intuitions nor experimental facts. They
are conventions. Our choice among all possible conven-
tions is guided by experimental facts; but it remains free,
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and is only limited by the necessity of avoiding every
contradiction, and thus it is that postulates may remain
rigorously true even when the experimental laws which
have determined their adoption are only approximate.
In other words, the axioms of geometry (I do not speak
of those of arithmetic) are only definitions in disguise.
What, then, are we to think of the question: Is Euclidean
geometry true? It has no meaning. We might as well ask
if the metric system is true, and if the old weights and
measures are false; if Cartesian co-ordinates are true and
polar co-ordinates false. One geometry cannot be more
true than another; it can only be more convenient. Now,
Euclidean geometry is, and will remain, the most con-
venient: 1st, because it is the simplest, and it is not so
only because of our mental habits or because of the kind
of direct intuition that we have of Euclidean space; it is
the simplest in itself, just as a polynomial of the first de-
gree is simpler than a polynomial of the second degree;
2nd, because it sufficiently agrees with the properties of
natural solids, those bodies which we can compare and
measure by means of our senses.



CHAPTER IV.
SPACE AND GEOMETRY.

LET us begin with a little paradox. Beings whose minds
were made as ours, and with senses like ours, but without
any preliminary education, might receive from a suitably-
chosen external world impressions which would lead them
to construct a geometry other than that of Euclid, and to
localise the phenomena of this external world in a non-
Euclidean space, or even in space of four dimensions.
As for us, whose education has been made by our ac-
tual world, if we were suddenly transported into this new
world, we should have no difficulty in referring phenom-
ena to our Euclidean space. Perhaps somebody may ap-
pear on the scene some day who will devote his life to it,
and be able to represent to himself the fourth dimension.

Geometrical Space and Representative Space.—It is
often said that the images we form of external objects
are localised in space, and even that they can only be
formed on this condition. It is also said that this space,
which thus serves as a kind of framework ready prepared
for our sensations and representations, is identical with
the space of the geometers, having all the properties of
that space. To all clear-headed men who think in this
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way, the preceding statement might well appear extra-
ordinary; but it is as well to see if they are not the vic-
tims of some illusion which closer analysis may be able
to dissipate. In the first place, what are the properties of
space properly so called? I mean of that space which is
the object of geometry, and which I shall call geometrical
space. The following are some of the more essential:—

1st, it is continuous; 2nd, it is infinite; 3rd, it is of
three dimensions; 4th, it is homogeneous—that is to say,
all its points are identical one with another; 5th, it is
isotropic. Compare this now with the framework of our
representations and sensations, which I may call repre-
sentative space.

Visual Space.—First of all let us consider a purely
visual impression, due to an image formed on the back
of the retina. A cursory analysis shows us this image as
continuous, but as possessing only two dimensions, which
already distinguishes purely visual from what may be
called geometrical space. On the other hand, the image
is enclosed within a limited framework; and there is a
no less important difference: this pure visual space is not
homogeneous. All the points on the retina, apart from the
images which may be formed, do not play the same role.
The yellow spot can in no way be regarded as identical
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with a point on the edge of the retina. Not only does the
same object produce on it much brighter impressions, but
in the whole of the limited framework the point which
occupies the centre will not appear identical with a point
near one of the edges. Closer analysis no doubt would
show us that this continuity of visual space and its two
dimensions are but an illusion. It would make visual
space even more different than before from geometrical
space, but we may treat this remark as incidental.
However, sight enables us to appreciate distance, and
therefore to perceive a third dimension. But every one
knows that this perception of the third dimension reduces
to a sense of the effort of accommodation which must
be made, and to a sense of the convergence of the two
eyes, that must take place in order to perceive an object
distinctly. These are muscular sensations quite different
from the visual sensations which have given us the con-
cept of the two first dimensions. The third dimension will
therefore not appear to us as playing the same role as the
two others. What may be called complete visual space is
not therefore an isotropic space. It has, it is true, exactly
three dimensions; which means that the elements of our
visual sensations (those at least which concur in forming
the concept of extension) will be completely defined if we
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know three of them; or, in mathematical language, they
will be functions of three independent variables. But let
us look at the matter a little closer. The third dimen-
sion is revealed to us in two different ways: by the effort
of accommodation, and by the convergence of the eyes.
No doubt these two indications are always in harmony;
there is between them a constant relation; or, in mathe-
matical language, the two variables which measure these
two muscular sensations do not appear to us as indepen-
dent. Or, again, to avoid an appeal to mathematical ideas
which are already rather too refined, we may go back to
the language of the preceding chapter and enunciate the
same fact as follows:—If two sensations of convergence
A and B are indistinguishable, the two sensations of ac-
commodation A’ and B’ which accompany them respec-
tively will also be indistinguishable. But that is, so to
speak, an experimental fact. Nothing prevents us a pri-
ort from assuming the contrary, and if the contrary takes
place, if these two muscular sensations both vary inde-
pendently, we must take into account one more indepen-
dent variable, and complete visual space will appear to
us as a physical continuum of four dimensions. And so in
this there is also a fact of external experiment. Nothing
prevents us from assuming that a being with a mind like
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ours, with the same sense-organs as ourselves, may be
placed in a world in which light would only reach him af-
ter being passed through refracting media of complicated
form. The two indications which enable us to appreciate
distances would cease to be connected by a constant rela-
tion. A being educating his senses in such a world would
no doubt attribute four dimensions to complete visual
space.

Tactile and Motor Space.—Tactile space” is more
complicated still than visual space, and differs even more
widely from geometrical space. It is useless to repeat
for the sense of touch my remarks on the sense of sight.
But outside the data of sight and touch there are other
sensations which contribute as much and more than they
do to the genesis of the concept of space. They are those
which everybody knows, which accompany all our move-
ments, and which we usually call muscular sensations.
The corresponding framework constitutes what may be
called motor space. Each muscle gives rise to a special
sensation which may be increased or diminished so that
the aggregate of our muscular sensations will depend
upon as many variables as we have muscles. From this
point of view motor space would have as many dimen-
stons as we have muscles. 1 know that it is said that if
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the muscular sensations contribute to form the concept
of space, it is because we have the sense of the direction
of each movement, and that this is an integral part of
the sensation. If this were so, and if a muscular sense
could not be aroused unless it were accompanied by this
geometrical sense of direction, geometrical space would
certainly be a form imposed upon our sensitiveness. But
I do not see this at all when I analyse my sensations.
What I do see is that the sensations which correspond
to movements in the same direction are connected in
my mind by a simple association of ideas. It is to this
association that what we call the sense of direction is
reduced. We cannot therefore discover this sense in a
single sensation. This association is extremely complex,
for the contraction of the same muscle may correspond,
according to the position of the limbs, to very different
movements of direction. Moreover, it is evidently ac-
quired; it is like all associations of ideas, the result of
a habit. This habit itself is the result of a very large
number of experiments, and no doubt if the education
of our senses had taken place in a different medium,
where we would have been subjected to different impres-
sions, then contrary habits would have been acquired,
and our muscular sensations would have been associated
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according to other laws.

Characteristics of Representative Space.—Thus rep-
resentative space in its triple form—visual, tactile, and
motor—differs essentially from geometrical space. It is
neither homogeneous nor isotropic; we cannot even say
that it is of three dimensions. It is often said that we
“project” into geometrical space the objects of our exter-
nal perception; that we “localise” them. Now, has that
any meaning, and if so what is that meaning? Does it
mean that we represent to ourselves external objects in
geometrical space? Our representations are only the re-
production of our sensations; they cannot therefore be
arranged in the same framework—that is to say, in rep-
resentative space. It is also just as impossible for us
to represent to ourselves external objects in geometri-
cal space, as it is impossible for a painter to paint on a
flat surface objects with their three dimensions. Repre-
sentative space is only an image of geometrical space, an
image deformed by a kind of perspective, and we can only
represent to ourselves objects by making them obey the
laws of this perspective. Thus we do not represent to our-
selves external bodies in geometrical space, but we reason
about these bodies as if they were situated in geometrical
space. When it is said, on the other hand, that we “lo-
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calise” such an object in such a point of space, what does
it mean? It simply means that we represent to ourselves
the movements that must take place to reach that object.
And it does not mean that to represent to ourselves these
movements they must be projected into space, and that
the concept of space must therefore pre-exist. When I
say that we represent to ourselves these movements, I
only mean that we represent to ourselves the muscular
sensations which accompany them, and which have no
geometrical character, and which therefore in no way im-
ply the pre-existence of the concept of space.

Changes of State and Changes of Position.—But, it
may be said, if the concept of geometrical space is not
imposed upon our minds, and if, on the other hand, none
of our sensations can furnish us with that concept, how
then did it ever come into existence? This is what we
have now to examine, and it will take some time; but
[ can sum up in a few words the attempt at explana-
tion which I am going to develop. None of our sensa-
tions, if isolated, could have brought us to the concept of
space; we are brought to it solely by studying the laws
by which those sensations succeed one another. We see
at first that our impressions are subject to change; but
among the changes that we ascertain, we are very soon
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led to make a distinction. Sometimes we say that the
objects, the causes of these impressions, have changed
their state, sometimes that they have changed their po-
sition, that they have only been displaced. Whether an
object changes its state or only its position, this is always
translated for us in the same manner, by a modification
in an aggregate of impressions. How then have we been
enabled to distinguish them? If there were only change
of position, we could restore the primitive aggregate of
impressions by making movements which would confront
us with the movable object in the same relative situa-
tion. We thus correct the modification which was pro-
duced, and we re-establish the initial state by an inverse
modification. If, for example, it were a question of the
sight, and if an object be displaced before our eyes, we
can “follow it with the eye,” and retain its image on the
same point of the retina by appropriate movements of the
eyeball. These movements we are conscious of because
they are voluntary, and because they are accompanied
by muscular sensations. But that does not mean that
we represent them to ourselves in geometrical space. So
what characterises change of position, what distinguishes
it from change of state, is that it can always be corrected
by this means. It may therefore happen that we pass
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from the aggregate of impressions A to the aggregate B
in two different ways. First, involuntarily and without
experiencing muscular sensations—which happens when
it is the object that is displaced; secondly, voluntarily,
and with muscular sensation—which happens when the
object is motionless, but when we displace ourselves in
such a way that the object has relative motion with re-
spect to us. If this be so, the translation of the aggre-
gate A to the aggregate B is only a change of position. It
follows that sight and touch could not have given us the
idea of space without the help of the “muscular sense.”
Not only could this concept not be derived from a single
sensation, or even from a series of sensations; but a mo-
tionless being could never have acquired it, because, not
being able to correct by his movements the effects of the
change of position of external objects, he would have had
no reason to distinguish them from changes of state. Nor
would he have been able to acquire it if his movements
had not been voluntary, or if they were unaccompanied
by any sensations whatever.

Conditions of Compensation.—How is such a com-
pensation possible in such a way that two changes, oth-
erwise mutually independent, may be reciprocally cor-
rected? A mind already familiar with geometry would
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reason as follows:—If there is to be compensation, the
different parts of the external object on the one hand, and
the different organs of our senses on the other, must be in
the same relative position after the double change. And
for that to be the case, the different parts of the external
body on the one hand, and the different organs of our
senses on the other, must have the same relative position
to each other after the double change; and so with the
different parts of our body with respect to each other. In
other words, the external object in the first change must
be displaced as an invariable solid would be displaced,
and it must also be so with the whole of our body in the
second change, which is to correct the first. Under these
conditions compensation may be produced. But we who
as yet know nothing of geometry, whose ideas of space are
not yet formed, we cannot reason in this way—we cannot
predict a priori if compensation is possible. But experi-
ment shows us that it sometimes does take place, and we
start from this experimental fact in order to distinguish
changes of state from changes of position.

Solid Bodies and Geometry—Among surrounding ob-
jects there are some which frequently experience displace-
ments that may be thus corrected by a correlative move-
ment of our own body—mnamely, solid bodies. The other
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objects, whose form is variable, only in exceptional cir-
cumstances undergo similar displacement (change of po-
sition without change of form). When the displacement
of a body takes place with deformation, we can no longer
by appropriate movements place the organs of our body
in the same relative situation with respect to this body;
we can no longer, therefore, reconstruct the primitive ag-
gregate of impressions.

It is only later, and after a series of new experiments,
that we learn how to decompose a body of variable form
into smaller elements such that each is displaced approx-
imately according to the same laws as solid bodies. We
thus distinguish “deformations” from other changes of
state. In these deformations each element undergoes a
simple change of position which may be corrected; but
the modification of the aggregate is more profound, and
can no longer be corrected by a correlative movement.
Such a concept is very complex even at this stage, and
has been relatively slow in its appearance. It would not
have been conceived at all had not the observation of solid
bodies shown us beforehand how to distinguish changes
of position.

If, then, there were no solid bodies in nature there
would be no geometry.
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Another remark deserves a moment’s attention. Sup-
pose a solid body to occupy successively the positions
« and (; in the first position it will give us an aggregate of
impressions A, and in the second position the aggregate
of impressions B. Now let there be a second solid body,
of qualities entirely different from the first—of different
colour, for instance. Assume it to pass from the posi-
tion «, where it gives us the aggregate of impressions A’
to the position (3, where it gives the aggregate of impres-
sions B’. In general, the aggregate A will have nothing in
common with the aggregate A’, nor will the aggregate B
have anything in common with the aggregate B’. The
transition from the aggregate A to the aggregate B, and
that of the aggregate A’ to the aggregate B, are therefore
two changes which in themselves have in general nothing
in common. Yet we consider both these changes as dis-
placements; and, further, we consider them the same dis-
placement. How can this be? It is simply because they
may be both corrected by the same correlative movement
of our body. “Correlative movement,” therefore, consti-
tutes the sole connection between two phenomena which
otherwise we should never have dreamed of connecting.

On the other hand, our body, thanks to the number
of its articulations and muscles, may have a multitude
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of different movements, but all are not capable of “cor-
recting” a modification of external objects; those alone
are capable of it in which our whole body, or at least all
those in which the organs of our senses enter into play
are displaced en bloc—i.e., without any variation of their
relative positions, as in the case of a solid body.

To sum up:—

1. In the first place, we distinguish two categories of
phenomena:—The first involuntary, unaccompanied by
muscular sensations, and attributed to external objects—
they are external changes; the second, of opposite char-
acter and attributed to the movements of our own body,
are internal changes.

2. We notice that certain changes of each in these
categories may be corrected by a correlative change of
the other category.

3. We distinguish among external changes those that
have a correlative in the other category—which we call
displacements; and in the same way we distinguish among
the internal changes those which have a correlative in the
first category.

Thus by means of this reciprocity is defined a partic-
ular class of phenomena called displacements. The laws
of these phenomena are the object of geometry.
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Law of Homogeneity.—The first of these laws is the
law of homogeneity. Suppose that by an external change
we pass from the aggregate of impressions A to the ag-
gregate B, and that then this change « is corrected by a
correlative voluntary movement (3, so that we are brought
back to the aggregate A. Suppose now that another ex-
ternal change o/ brings us again from the aggregate A
to the aggregate B. Experiment then shows us that this
change o, like the change o, may be corrected by a volun-
tary correlative movement (', and that this movement 3’
corresponds to the same muscular sensations as the move-
ment ( which corrected a.

This fact is usually enunciated as follows:—Space is
homogeneous and isotropic. We may also say that a
movement which is once produced may be repeated a
second and a third time, and so on, without any varia-
tion of its properties. In the first chapter, in which we
discussed the nature of mathematical reasoning, we saw
the importance that should be attached to the possibility
of repeating the same operation indefinitely. The virtue
of mathematical reasoning is due to this repetition; by
means of the law of homogeneity geometrical facts are
apprehended. To be complete, to the law of homogeneity
must be added a multitude of other laws, into the details
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of which I do not propose to enter, but which mathemati-
cians sum up by saying that these displacements form a
“group.”

The Non-FEuclidean World.—If geometrical space
were a framework imposed on each of our representa-
tions considered individually, it would be impossible to
represent to ourselves an image without this framework,
and we should be quite unable to change our geometry.
But this is not the case; geometry is only the summary
of the laws by which these images succeed each other.
There is nothing, therefore, to prevent us from imagining
a series of representations, similar in every way to our
ordinary representations, but succeeding one another ac-
cording to laws which differ from those to which we are
accustomed. We may thus conceive that beings whose
education has taken place in a medium in which those
laws would be so different, might have a very different
geometry from ours.

Suppose, for example, a world enclosed in a large
sphere and subject to the following laws:—The temper-
ature is not uniform; it is greatest at the centre, and
gradually decreases as we move towards the circumfer-
ence of the sphere, where it is absolute zero. The law of
this temperature is as follows:—If R be the radius of the
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sphere, and r the distance of the point considered from
the centre, the absolute temperature will be proportional
to R? — r2. Further, I shall suppose that in this world
all bodies have the same co-efficient of dilatation, so that
the linear dilatation of any body is proportional to its ab-
solute temperature. Finally, I shall assume that a body
transported from one point to another of different tem-
perature is instantaneously in thermal equilibrium with
its new environment. There is nothing in these hypothe-
ses either contradictory or unimaginable. A moving ob-
ject will become smaller and smaller as it approaches the
circumference of the sphere. Let us observe, in the first
place, that although from the point of view of our or-
dinary geometry this world is finite, to its inhabitants
it will appear infinite. As they approach the surface of
the sphere they become colder, and at the same time
smaller and smaller. The steps they take are therefore
also smaller and smaller, so that they can never reach
the boundary of the sphere. If to us geometry is only
the study of the laws according to which invariable solids
move, to these imaginary beings it will be the study of
the laws of motion of solids deformed by the differences
of temperature alluded to.

No doubt, in our world, natural solids also experience
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variations of form and volume due to differences of tem-
perature. But in laying the foundations of geometry we
neglect these variations; for besides being but small they
are irregular, and consequently appear to us to be acci-
dental. In our hypothetical world this will no longer be
the case, the variations will obey very simple and regu-
lar laws. On the other hand, the different solid parts of
which the bodies of these inhabitants are composed will
undergo the same variations of form and volume.

Let me make another hypothesis: suppose that light
passes through media of different refractive indices, such
that the index of refraction is inversely proportional
to R? — 2. Under these conditions it is clear that the
rays of light will no longer be rectilinear but circular. To
justify what has been said, we have to prove that cer-
tain changes in the position of external objects may be
corrected by correlative movements of the beings which
inhabit this imaginary world; and in such a way as to
restore the primitive aggregate of the impressions expe-
rienced by these sentient beings. Suppose, for example,
that an object is displaced and deformed, not like an
invariable solid, but like a solid subjected to unequal
dilatations in exact conformity with the law of temper-
ature assumed above. To use an abbreviation, we shall
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call such a movement a non-Euclidean displacement.

If a sentient being be in the neighbourhood of such a
displacement of the object, his impressions will be mod-
ified; but by moving in a suitable manner, he may re-
construct them. For this purpose, all that is required is
that the aggregate of the sentient being and the object,
considered as forming a single body, shall experience one
of those special displacements which I have just called
non-Euclidean. This is possible if we suppose that the
limbs of these beings dilate according to the same laws
as the other bodies of the world they inhabit.

Although from the point of view of our ordinary
geometry there is a deformation of the bodies in this
displacement, and although their different parts are no
longer in the same relative position, nevertheless we shall
see that the impressions of the sentient being remain the
same as before; in fact, though the mutual distances
of the different parts have varied, yet the parts which
at first were in contact are still in contact. It follows
that tactile impressions will be unchanged. On the other
hand, from the hypothesis as to refraction and the cur-
vature of the rays of light, visual impressions will also
be unchanged. These imaginary beings will therefore
be led to classify the phenomena they observe, and to
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distinguish among them the “changes of position,” which
may be corrected by a voluntary correlative movement,
just as we do.

If they construct a geometry, it will not be like ours,
which is the study of the movements of our invariable
solids; it will be the study of the changes of position
which they will have thus distinguished, and will be “non-
Fuclidean displacements,” and this will be non-Fuclidean
geometry. So that beings like ourselves, educated in such
a world, will not have the same geometry as ours.

The World of Four Dimensions.—Just as we have pic-
tured to ourselves a non-Euclidean world, so we may pic-
ture a world of four dimensions.

The sense of light, even with one eye, together with
the muscular sensations relative to the movements of the
eyeball, will suffice to enable us to conceive of space of
three dimensions. The images of external objects are
painted on the retina, which is a plane of two dimen-
sions; these are perspectives. But as eye and objects are
movable, we see in succession different perspectives of
the same body taken from different points of view. We
find at the same time that the transition from one per-
spective to another is often accompanied by muscular
sensations. If the transition from the perspective A to
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the perspective B, and that of the perspective A’ to the
perspective B’ are accompanied by the same muscular
sensations, we connect them as we do other operations
of the same nature. Then when we study the laws ac-
cording to which these operations are combined, we see
that they form a group, which has the same structure
as that of the movements of invariable solids. Now, we
have seen that it is from the properties of this group
that we derive the idea of geometrical space and that of
three dimensions. We thus understand how these per-
spectives gave rise to the conception of three dimensions,
although each perspective is of only two dimensions,—
because they succeed each other according to certain laws.
Well, in the same way that we draw the perspective of
a three-dimensional figure on a plane, so we can draw
that of a four-dimensional figure on a canvas of three
(or two) dimensions. To a geometer this is but child’s
play. We can even draw several perspectives of the same
figure from several different points of view. We can eas-
ily represent to ourselves these perspectives, since they
are of only three dimensions. Imagine that the different
perspectives of one and the same object to occur in suc-
cession, and that the transition from one to the other is
accompanied by muscular sensations. It is understood
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that we shall consider two of these transitions as two
operations of the same nature when they are associated
with the same muscular sensations. There is nothing,
then, to prevent us from imagining that these operations
are combined according to any law we choose—for in-
stance, by forming a group with the same structure as
that of the movements of an invariable four-dimensional
solid. In this there is nothing that we cannot represent
to ourselves, and, moreover, these sensations are those
which a being would experience who has a retina of two
dimensions, and who may be displaced in space of four
dimensions. In this sense we may say that we can repre-
sent to ourselves the fourth dimension.

Conclusions.—It is seen that experiment plays a con-
siderable role in the genesis of geometry; but it would be
a mistake to conclude from that that geometry is, even
in part, an experimental science. If it were experimental,
it would only be approximative and provisory. And what
a rough approximation it would be! Geometry would be
only the study of the movements of solid bodies; but, in
reality, it is not concerned with natural solids: its object
is certain ideal solids, absolutely invariable, which are
but a greatly simplified and very remote image of them.
The concept of these ideal bodies is entirely mental, and



SCIENCE AND HYPOTHESIS 82

experiment is but the opportunity which enables us to
reach the idea. The object of geometry is the study of a
particular “group”; but the general concept of group pre-
exists in our minds, at least potentially. It is imposed on
us not as a form of our sensitiveness, but as a form of our
understanding; only, from among all possible groups, we
must choose one that will be the standard, so to speak,
to which we shall refer natural phenomena.

Experiment guides us in this choice, which it does not
impose on us. It tells us not what is the truest, but what
is the most convenient geometry. It will be noticed that
my description of these fantastic worlds has required no
language other than that of ordinary geometry. Then,
were we transported to those worlds, there would be no
need to change that language. Beings educated there
would no doubt find it more convenient to create a ge-
ometry different from ours, and better adapted to their
impressions; but as for us, in the presence of the same
impressions, it is certain that we should not find it more
convenient to make a change.



CHAPTER V.
EXPERIMENT AND GEOMETRY.

1. T have on several occasions in the preceding pages
tried to show how the principles of geometry are not ex-
perimental facts, and that in particular Euclid’s postu-
late cannot be proved by experiment. However convinc-
ing the reasons already given may appear to me, I feel
I must dwell upon them, because there is a profoundly
false conception deeply rooted in many minds.

2. Think of a material circle, measure its radius and
circumference, and see if the ratio of the two lengths is
equal to 7. What have we done? We have made an ex-
periment on the properties of the matter with which this
roundness has been realised, and of which the measure
we used is made.

3. Geometry and Astronomy.—The same question
may also be asked in another way. If Lobatschewsky’s
geometry is true, the parallax of a very distant star will
be finite. If Riemann’s is true, it will be negative. These
are the results which seem within the reach of exper-
iment, and it is hoped that astronomical observations
may enable us to decide between the three geometries.
But what we call a straight line in astronomy is simply
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the path of a ray of light. If, therefore, we were to dis-
cover negative parallaxes, or to prove that all parallaxes
are higher than a certain limit, we should have a choice
between two conclusions: we could give up Euclidean
geometry, or modify the laws of optics, and suppose that
light is not rigorously propagated in a straight line. It
is needless to add that every one would look upon this
solution as the more advantageous. Fuclidean geometry,
therefore, has nothing to fear from fresh experiments.

4. Can we maintain that certain phenomena which
are possible in Euclidean space would be impossible in
non-Euclidean space, so that experiment in establish-
ing these phenomena would directly contradict the non-
Euclidean hypothesis? I think that such a question can-
not be seriously asked. To me it is exactly equivalent to
the following, the absurdity of which is obvious:—There
are lengths which can be expressed in metres and cen-
timetres, but cannot be measured in toises, feet, and
inches; so that experiment, by ascertaining the existence
of these lengths, would directly contradict this hypothe-
sis, that there are toises divided into six feet. Let us look
at the question a little more closely. I assume that the
straight line in Euclidean space possesses any two prop-
erties, which I shall call A and B; that in non-Euclidean
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space it still possesses the property A, but no longer
possesses the property B; and, finally, I assume that
in both Euclidean and non-Euclidean space the straight
line is the only line that possesses the property A. If
this were so, experiment would be able to decide be-
tween the hypotheses of Euclid and Lobatschewsky. It
would be found that some concrete object, upon which we
can experiment—for example, a pencil of rays of light—
possesses the property A. We should conclude that it is
rectilinear, and we should then endeavour to find out if
it does, or does not, possess the property B. But it is not
so. There exists no property which can, like this prop-
erty A, be an absolute criterion enabling us to recognise
the straight line, and to distinguish it from every other
line. Shall we say, for instance, “This property will be
the following: the straight line is a line such that a figure
of which this line is a part can move without the mu-
tual distances of its points varying, and in such a way
that all the points in this straight line remain fixed?
Now, this is a property which in either Euclidean or non-
Euclidean space belongs to the straight line, and belongs
to it alone. But how can we ascertain by experiment if
it belongs to any particular concrete object? Distances
must be measured, and how shall we know that any con-
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crete magnitude which I have measured with my material
instrument really represents the abstract distance? We
have only removed the difficulty a little farther off. In
reality, the property that I have just enunciated is not a
property of the straight line alone; it is a property of the
straight line and of distance. For it to serve as an abso-
lute criterion, we must be able to show, not only that it
does not also belong to any other line than the straight
line and to distance, but also that it does not belong to
any other line than the straight line, and to any other
magnitude than distance. Now, that is not true, and
if we are not convinced by these considerations, I chal-
lenge any one to give me a concrete experiment which
can be interpreted in the Euclidean system, and which
cannot be interpreted in the system of Lobatschewsky.
As T am well aware that this challenge will never be ac-
cepted, I may conclude that no experiment will ever be in
contradiction with Euclid’s postulate; but, on the other
hand, no experiment will ever be in contradiction with
Lobatschewsky’s postulate.

5. But it is not sufficient that the Euclidean (or non-
Euclidean) geometry can ever be directly contradicted by
experiment. Nor could it happen that it can only agree
with experiment by a violation of the principle of suffi-



EXPERIMENT AND GEOMETRY. 87

cient reason, and of that of the relativity of space. Let me
explain myself. Consider any material system whatever.
We have to consider on the one hand the “state” of the
various bodies of this system—for example, their temper-
ature, their electric potential, etc.; and on the other hand
their position in space. And among the data which enable
us to define this position we distinguish the mutual dis-
tances of these bodies that define their relative positions,
and the conditions which define the absolute position of
the system and its absolute orientation in space. The law
of the phenomena which will be produced in this system
will depend on the state of these bodies, and on their
mutual distances; but because of the relativity and the
inertia of space, they will not depend on the absolute po-
sition and orientation of the system. In other words, the
state of the bodies and their mutual distances at any mo-
ment will solely depend on the state of the same bodies
and on their mutual distances at the initial moment, but
will in no way depend on the absolute initial position of
the system and of its absolute initial orientation. This is
what we shall call, for the sake of abbreviation, the law
of relativity.

So far I have spoken as a Euclidean geometer. But
I have said that an experiment, whatever it may be, re-
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quires an interpretation on the Euclidean hypothesis; it
equally requires one on the non-Euclidean hypothesis.
Well, we have made a series of experiments. We have
interpreted them on the Euclidean hypothesis, and we
have recognised that these experiments thus interpreted
do not violate this “law of relativity.” We now interpret
them on the non-Euclidean hypothesis. This is always
possible, only the non-Euclidean distances of our differ-
ent bodies in this new interpretation will not generally
be the same as the Euclidean distances in the primitive
interpretation. Will our experiment interpreted in this
new manner be still in agreement with our “law of rela-
tivity,” and if this agreement had not taken place, would
we not still have the right to say that experiment has
proved the falsity of non-Euclidean geometry? It is easy
to see that this is an idle fear. In fact, to apply the law
of relativity in all its rigour, it must be applied to the en-
tire universe; for if we were to consider only a part of the
universe, and if the absolute position of this part were
to vary, the distances of the other bodies of the universe
would equally vary; their influence on the part of the
universe considered might therefore increase or dimin-
ish, and this might modify the laws of the phenomena
which take place in it. But if our system is the entire
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universe, experiment is powerless to give us any opinion
on its position and its absolute orientation in space. All
that our instruments, however perfect they may be, can
let us know will be the state of the different parts of the
universe, and their mutual distances. Hence, our law of
relativity may be enunciated as follows:—The readings
that we can make with our instruments at any given mo-
ment will depend only on the readings that we were able
to make on the same instruments at the initial moment.
Now such an enunciation is independent of all interpre-
tation by experiments. If the law is true in the Euclidean
interpretation, it will be also true in the non-Euclidean
interpretation. Allow me to make a short digression on
this point. I have spoken above of the data which define
the position of the different bodies of the system. I might
also have spoken of those which define their velocities. I
should then have to distinguish the velocity with which
the mutual distances of the different bodies are chang-
ing, and on the other hand the velocities of translation
and rotation of the system; that is to say, the veloci-
ties with which its absolute position and orientation are
changing. For the mind to be fully satisfied, the law of
relativity would have to be enunciated as follows:—The
state of bodies and their mutual distances at any given
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moment, as well as the velocities with which those dis-
tances are changing at that moment, will depend only
on the state of those bodies, on their mutual distances
at the initial moment, and on the velocities with which
those distances were changing at the initial moment. But
they will not depend on the absolute initial position of
the system nor on its absolute orientation, nor on the ve-
locities with which that absolute position and orientation
were changing at the initial moment. Unfortunately, the
law thus enunciated does not agree with experiments—at
least, as they are ordinarily interpreted. Suppose a man
were translated to a planet, the sky of which was con-
stantly covered with a thick curtain of clouds, so that he
could never see the other stars. On that planet he would
live as if it were isolated in space. But he would notice
that it revolves, either by measuring its ellipticity (which
is ordinarily done by means of astronomical observations,
but which could be done by purely geodesic means), or by
repeating the experiment of Foucault’s pendulum. The
absolute rotation of this planet might be clearly shown
in this way. Now, here is a fact which shocks the philoso-
pher, but which the physicist is compelled to accept. We
know that from this fact Newton concluded the existence
of absolute space. I myself cannot accept this way of
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looking at it. I shall explain why in Part III., but for the
moment it is not my intention to discuss this difficulty. I
must therefore resign myself, in the enunciation of the law
of relativity, to including velocities of every kind among
the data which define the state of the bodies. However
that may be, the difficulty is the same for both Euclid’s
geometry and for Lobatschewsky’s. I need not therefore
trouble about it further, and I have only mentioned it in-
cidentally. To sum up, whichever way we look at it, it is
impossible to discover in geometric empiricism a rational
meaning.

6. Experiments only teach us the relations of bod-
ies to one another. They do not and cannot give us the
relations of bodies and space, nor the mutual relations
of the different parts of space. “Yes!” you reply, “a sin-
gle experiment is not enough, because it only gives us
one equation with several unknowns; but when I have
made enough experiments I shall have enough equations
to calculate all my unknowns.” If I know the height of the
main-mast, that is not sufficient to enable me to calculate
the age of the captain. When you have measured every
fragment of wood in a ship you will have many equa-
tions, but you will be no nearer knowing the captain’s
age. All your measurements bearing on your fragments
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of wood can tell you only what concerns those fragments;
and similarly, your experiments, however numerous they
may be, referring only to the relations of bodies with one
another, will tell you nothing about the mutual relations
of the different parts of space.

7. Will you say that if the experiments have refer-
ence to the bodies, they at least have reference to the
geometrical properties of the bodies. First, what do you
understand by the geometrical properties of bodies? I
assume that it is a question of the relations of the bodies
to space. These properties therefore are not reached by
experiments which only have reference to the relations of
bodies to one another, and that is enough to show that
it is not of those properties that there can be a ques-
tion. Let us therefore begin by making ourselves clear
as to the sense of the phrase: geometrical properties of
bodies. When I say that a body is composed of several
parts, I presume that I am thus enunciating a geometri-
cal property, and that will be true even if I agree to give
the improper name of points to the very small parts I am
considering. When I say that this or that part of a cer-
tain body is in contact with this or that part of another
body, I am enunciating a proposition which concerns the
mutual relations of the two bodies, and not their rela-
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tions with space. I assume that you will agree with me
that these are not geometrical properties. I am sure that
at least you will grant that these properties are indepen-
dent of all knowledge of metrical geometry. Admitting
this, I suppose that we have a solid body formed of eight
thin iron rods, oa, ob, oc, od, oe, of, og, oh, connected
at one of their extremities, 0. And let us take a second
solid body—for example, a piece of wood, on which are
marked three little spots of ink which I shall call a 3 7.
I now suppose that we find that we can bring into con-
tact a8y with ago; by that I mean a with a, and at the
same time [ with g, and v with o. Then we can suc-
cessively bring into contact oy with bgo, cgo, dgo, ego,
fgo, then with aho, bho, cho, dho, eho, fho; and then
ary successively with ab, be, cd, de, ef, fa. Now these are
observations that can be made without having any idea
beforehand as to the form or the metrical properties of
space. They have no reference whatever to the “geometri-
cal properties of bodies.” These observations will not be
possible if the bodies on which we experiment move in a
group having the same structure as the Lobatschewskian
group (I mean according to the same laws as solid bodies
in Lobatschewsky’s geometry). They therefore suffice to
prove that these bodies move according to the Euclidean
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group; or at least that they do not move according to
the Lobatschewskian group. That they may be compati-
ble with the Fuclidean group is easily seen; for we might
make them so if the body afv were an invariable solid
of our ordinary geometry in the shape of a right-angled
triangle, and if the points abcde f gh were the vertices of
a polyhedron formed of two regular hexagonal pyramids
of our ordinary geometry having abcde f as their common
base, and having the one g and the other h as their ver-
tices. Suppose now, instead of the previous observations,
we note that we can as before apply a3y successively
to ago, bgo, cgo, dgo, ego, fgo, aho, bho, cho, dho, eho,
fho, and then that we can apply af (and no longer avy)
successively to ab, be, cd, de, ef, and fa. These are ob-
servations that could be made if non-Euclidean geometry
were true. If the bodies a3y, oabcde fgh were invariable
solids, if the former were a right-angled triangle, and
the latter a double regular hexagonal pyramid of suit-
able dimensions. These new verifications are therefore
impossible if the bodies move according to the Euclidean
group; but they become possible if we suppose the bodies
to move according to the Lobatschewskian group. They
would therefore suffice to show, if we carried them out,
that the bodies in question do not move according to the



EXPERIMENT AND GEOMETRY. 95

Euclidean group. And so, without making any hypothe-
sis on the form and the nature of space, on the relations
of the bodies and space, and without attributing to bod-
ies any geometrical property, I have made observations
which have enabled me to show in one case that the bod-
ies experimented upon move according to a group, the
structure of which is Euclidean, and in the other case,
that they move in a group, the structure of which is Lo-
batschewskian. It cannot be said that all the first ob-
servations would constitute an experiment proving that
space is Euclidean, and the second an experiment proving
that space is non-Euclidean; in fact, it might be imagined
(note that I use the word imagined) that there are bod-
ies moving in such a manner as to render possible the
second series of observations: and the proof is that the
first mechanic who came our way could construct it if he
would only take the trouble. But you must not conclude,
however, that space is non-Euclidean. In the same way,
just as ordinary solid bodies would continue to exist when
the mechanic had constructed the strange bodies I have
just mentioned, he would have to conclude that space
is both Euclidean and non-Euclidean. Suppose, for in-
stance, that we have a large sphere of radius R, and that
its temperature decreases from the centre to the surface
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of the sphere according to the law of which I spoke when I
was describing the non-Euclidean world. We might have
bodies whose dilatation is negligible, and which would
behave as ordinary invariable solids; and, on the other
hand, we might have very dilatable bodies, which would
behave as non-Euclidean solids. We might have two dou-
ble pyramids oabede fgh and o'a’b'd'd'e’ f'¢g'h’, and two tri-
angles a0y and o/(3'+'. The first double pyramid would
be rectilinear, and the second curvilinear. The trian-
gle afy would consist of undilatable matter, and the
other of very dilatable matter. We might therefore make
our first observations with the double pyramid o’a’h’ and
the triangle o/3'y'.

And then the experiment would seem to show—first,
that Euclidean geometry is true, and then that it is false.
Hence, experiments have reference not to space but to
bodies.

SUPPLEMENT.

8. To round the matter off, I ought to speak of a very
delicate question, which will require considerable devel-
opment; but I shall confine myself to summing up what I
have written in the Revue de Métaphysique et de Morale
and in the Monist. When we say that space has three
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dimensions, what do we mean? We have seen the impor-
tance of these “internal changes” which are revealed to
us by our muscular sensations. They may serve to char-
acterise the different attitudes of our body. Let us take
arbitrarily as our origin one of these attitudes, A. When
we pass from this initial attitude to another attitude B
we experience a series of muscular sensations, and this
series S of muscular sensations will define B. Observe,
however, that we shall often look upon two series S and S’
as defining the same attitude B (since the initial and fi-
nal attitudes A and B remaining the same, the intermedi-
ary attitudes of the corresponding sensations may differ).
How then can we recognise the equivalence of these two
series? Because they may serve to compensate for the
same external change, or more generally, because, when
it is a question of compensation for an external change,
one of the series may be replaced by the other. Among
these series we have distinguished those which can alone
compensate for an external change, and which we have
called “displacements.” As we cannot distinguish two dis-
placements which are very close together, the aggregate
of these displacements presents the characteristics of a
physical continuum. Experience teaches us that they are
the characteristics of a physical continuum of six dimen-
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sions; but we do not know as yet how many dimensions
space itself possesses, so we must first of all answer an-
other question. What is a point in space? Every one
thinks he knows, but that is an illusion. What we see
when we try to represent to ourselves a point in space is
a black spot on white paper, a spot of chalk on a black-
board, always an object. The question should therefore
be understood as follows:—What do I mean when I say
the object B is at the point which a moment before was
occupied by the object A? Again, what criterion will
enable me to recognise it? I mean that although I have
not moved (my muscular sense tells me this), my finger,
which just now touched the object A, is now touching
the object B. T might have used other criteria—for in-
stance, another finger or the sense of sight—but the first
criterion is sufficient. I know that if it answers in the
affirmative all other criteria will give the same answer. |
know it from experiment. I cannot know it a priori. For
the same reason I say that touch cannot be exercised at
a distance; that is another way of enunciating the same
experimental fact. If I say, on the contrary, that sight is
exercised at a distance, it means that the criterion fur-
nished by sight may give an affirmative answer while the
others reply in the negative.
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To sum up. For each attitude of my body my finger
determines a point, and it is that and that only which
defines a point in space. To each attitude corresponds
in this way a point. But it often happens that the same
point corresponds to several different attitudes (in this
case we say that our finger has not moved, but the rest of
our body has). We distinguish, therefore, among changes
of attitude those in which the finger does not move. How
are we led to this? It is because we often remark that in
these changes the object which is in touch with the finger
remains in contact with it. Let us arrange then in the
same class all the attitudes which are deduced one from
the other by one of the changes that we have thus dis-
tinguished. To all these attitudes of the same class will
correspond the same point in space. Then to each class
will correspond a point, and to each point a class. Yet it
may be said that what we get from this experiment is not
the point, but the class of changes, or, better still, the
corresponding class of muscular sensations. Thus, when
we say that space has three dimensions, we merely mean
that the aggregate of these classes appears to us with the
characteristics of a physical continuum of three dimen-
sions. Then if, instead of defining the points in space
with the aid of the first finger, I use, for example, an-
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other finger, would the results be the same? That is by
no means a priori evident. But, as we have seen, experi-
ment has shown us that all our criteria are in agreement,
and this enables us to answer in the affirmative. If we
recur to what we have called displacements, the aggre-
gate of which forms, as we have seen, a group, we shall
be brought to distinguish those in which a finger does
not move; and by what has preceded, those are the dis-
placements which characterise a point in space, and their
aggregate will form a sub-group of our group. To each
sub-group of this kind, then, will correspond a point in
space. We might be tempted to conclude that experiment
has taught us the number of dimensions of space; but in
reality our experiments have referred not to space, but
to our body and its relations with neighbouring objects.
What is more, our experiments are exceeding crude. In
our mind the latent idea of a certain number of groups
pre-existed; these are the groups with which Lie’s theory
is concerned. Which shall we choose to form a kind of
standard by which to compare natural phenomena? And
when this group is chosen, which of the sub-groups shall
we take to characterise a point in space? Experiment has
guided us by showing us what choice adapts itself best
to the properties of our body; but there its role ends.



PART III.
FORCE.

CHAPTER VL
THE CLASSICAL MECHANICS.

THE English teach mechanics as an experimental science;
on the Continent it is taught always more or less as a de-
ductive and a prior: science. The English are right, no
doubt. How is it that the other method has been per-
sisted in for so long; how is it that Continental scientists
who have tried to escape from the practice of their pre-
decessors have in most cases been unsuccessful? On the
other hand, if the principles of mechanics are only of ex-
perimental origin, are they not merely approximate and
provisory? May we not be some day compelled by new
experiments to modify or even to abandon them? These
are the questions which naturally arise, and the difficulty
of solution is largely due to the fact that treatises on me-
chanics do not clearly distinguish between what is exper-
iment, what is mathematical reasoning, what is conven-
tion, and what is hypothesis. This is not all.

1. There is no absolute space, and we only conceive of
relative motion; and yet in most cases mechanical facts



SCIENCE AND HYPOTHESIS 102

are enunciated as if there is an absolute space to which
they can be referred.

2. There is no absolute time. When we say that two
periods are equal, the statement has no meaning, and
can only acquire a meaning by a convention.

3. Not only have we no direct intuition of the equality
of two periods, but we have not even direct intuition of
the simultaneity of two events occurring in two different
places. I have explained this in an article entitled “Mesure
du Temps.”

4. Finally, is not our Euclidean geometry in itself only
a kind of convention of language? Mechanical facts might
be enunciated with reference to a non-Euclidean space
which would be less convenient but quite as legitimate as
our ordinary space; the enunciation would become more
complicated, but it still would be possible.

Thus, absolute space, absolute time, and even geom-
etry are not conditions which are imposed on mechan-
ics. All these things no more existed before mechanics
than the French language can be logically said to have
existed before the truths which are expressed in French.
We might endeavour to enunciate the fundamental law of

! Revue de Métaphysique et de Morale, t. vi., pp. 1-13, January,
1898.
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mechanics in a language independent of all these conven-
tions; and no doubt we should in this way get a clearer
idea of those laws in themselves. This is what M. An-
drade has tried to do, to some extent at any rate, in his
Legons de Mécanique physique. Of course the enunciation
of these laws would become much more complicated, be-
cause all these conventions have been adopted for the
very purpose of abbreviating and simplifying the enun-
ciation. As far as we are concerned, I shall ignore all
these difficulties; not because I disregard them, far from
it; but because they have received sufficient attention in
the first two parts, of the book. Provisionally, then, we
shall admit absolute time and FEuclidean geometry.

The Principle of Inertia.—A body under the action
of no force can only move uniformly in a straight line.
Is this a truth imposed on the mind a priori? If this
be so, how is it that the Greeks ignored it? How could
they have believed that motion ceases with the cause of
motion? or, again, that every body, if there is nothing to
prevent it, will move in a circle, the noblest of all forms
of motion?

If it be said that the velocity of a body cannot change,
if there is no reason for it to change, may we not just as
legitimately maintain that the position of a body cannot
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change, or that the curvature of its path cannot change,
without the agency of an external cause? Is, then, the
principle of inertia, which is not an a priori truth, an
experimental fact? Have there ever been experiments on
bodies acted on by no forces? and, if so, how did we know
that no forces were acting”? The usual instance is that of
a ball rolling for a very long time on a marble table; but
why do we say it is under the action of no force? Is it be-
cause it is too remote from all other bodies to experience
any sensible action? It is not further from the earth than
if it were thrown freely into the air; and we all know that
in that case it would be subject to the attraction of the
earth. Teachers of mechanics usually pass rapidly over
the example of the ball, but they add that the principle
of inertia is verified indirectly by its consequences. This
is very badly expressed; they evidently mean that various
consequences may be verified by a more general princi-
ple, of which the principle of inertia is only a particular
case. I shall propose for this general principle the fol-
lowing enunciation:—The acceleration of a body depends
only on its position and that of neighbouring bodies, and
on their velocities. Mathematicians would say that the
movements of all the material molecules of the universe
depend on differential equations of the second order. To
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make it clear that this is really a generalisation of the law
of inertia we may again have recourse to our imagination.
The law of inertia, as I have said above, is not imposed
on us a priort; other laws would be just as compatible
with the principle of sufficient reason. If a body is not
acted upon by a force, instead of supposing that its ve-
locity is unchanged we may suppose that its position or
its acceleration is unchanged.

Let us for a moment suppose that one of these two
laws is a law of nature, and substitute it for the law
of inertia: what will be the natural generalisation? A
moment’s reflection will show us. In the first case, we
may suppose that the velocity of a body depends only on
its position and that of neighbouring bodies; in the sec-
ond case, that the variation of the acceleration of a body
depends only on the position of the body and of neigh-
bouring bodies, on their velocities and accelerations; or,
in mathematical terms, the differential equations of the
motion would be of the first order in the first case and of
the third order in the second.

Let us now modify our supposition a little. Suppose a
world analogous to our solar system, but one in which by
a singular chance the orbits of all the planets have nei-
ther eccentricity nor inclination; and further, I suppose
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that the masses of the planets are too small for their
mutual perturbations to be sensible. Astronomers living
in one of these planets would not hesitate to conclude
that the orbit of a star can only be circular and parallel
to a certain plane; the position of a star at a given mo-
ment would then be sufficient to determine its velocity
and path. The law of inertia which they would adopt
would be the former of the two hypothetical laws I have
mentioned.

Now, imagine this system to be some day crossed by
a body of vast mass and immense velocity coming from
distant constellations. All the orbits would be profoundly
disturbed. Our astronomers would not be greatly aston-
ished. They would guess that this new star is in itself
quite capable of doing all the mischief; but, they would
say, as soon as it has passed by, order will again be es-
tablished. No doubt the distances of the planets from
the sun will not be the same as before the cataclysm,
but the orbits will become circular again as soon as the
disturbing cause has disappeared. It would be only when
the perturbing body is remote, and when the orbits, in-
stead of being circular are found to be elliptical, that the
astronomers would find out their mistake, and discover
the necessity of reconstructing their mechanics.
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I have dwelt on these hypotheses, for it seems to me
that we can clearly understand our generalised law of
inertia only by opposing it to a contrary hypothesis.

Has this generalised law of inertia been verified by
experiment, and can it be so verified? When Newton
wrote the Principia, he certainly regarded this truth as
experimentally acquired and demonstrated. It was so in
his eyes, not only from the anthropomorphic conception
to which I shall later refer, but also because of the work
of Galileo. It was so proved by the laws of Kepler. Ac-
cording to those laws, in fact, the path of a planet is
entirely determined by its initial position and initial ve-
locity; this, indeed, is what our generalised law of inertia
requires.

For this principle to be only true in appearance—Iest
we should fear that some day it must be replaced by one
of the analogous principles which I opposed to it just
now—we must have been led astray by some amazing
chance such as that which had led into error our imagi-
nary astronomers. Such an hypothesis is so unlikely that
it need not delay us. No one will believe that there can
be such chances; no doubt the probability that two ec-
centricities are both exactly zero is not smaller than the
probability that one is 0.1 and the other 0.2. The proba-
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bility of a simple event is not smaller than that of a com-
plex one. If, however, the former does occur, we shall
not attribute its occurrence to chance; we shall not be
inclined to believe that nature has done it deliberately
to deceive us. The hypothesis of an error of this kind
being discarded, we may admit that so far as astronomy
is concerned our law has been verified by experiment.

But Astronomy is not the whole of Physics. May we
not fear that some day a new experiment will falsify the
law in some domain of physics? An experimental law is
always subject to revision; we may always expect to see
it replaced by some other and more exact law. But no
one seriously thinks that the law of which we speak will
ever be abandoned or amended. Why? Precisely because
it will never be submitted to a decisive test.

In the first place, for this test to be complete, all the
bodies of the universe must return with their initial ve-
locities to their initial positions after a certain time. We
ought then to find that they would resume their original
paths. But this test is impossible; it can be only par-
tially applied, and even when it is applied there will still
be some bodies which will not return to their original
positions. Thus there will be a ready explanation of any
breaking down of the law.
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Yet this is not all. In Astronomy we see the bodies
whose motion we are studying, and in most cases we grant
that they are not subject to the action of other invisible
bodies. Under these conditions, our law must certainly
be either verified or not. But it is not so in Physics.
If physical phenomena are due to motion, it is to the
motion of molecules which we cannot see. If, then, the
acceleration of bodies we cannot see depends on some-
thing else than the positions or velocities of other visible
bodies or of invisible molecules, the existence of which
we have been led previously to admit, there is nothing
to prevent us from supposing that this something else is
the position or velocity of other molecules of which we
have not so far suspected the existence. The law will be
safeguarded. Let me express the same thought in another
form in mathematical language. Suppose we are observ-
ing n molecules, and find that their 3n co-ordinates sat-
isfy a system of 3n differential equations of the fourth
order (and not of the second, as required by the law of
inertia). We know that by introducing 3n variable auxil-
iaries, a system of 3n equations of the fourth order may
be reduced to a system of 6n equations of the second or-
der. If, then, we suppose that the 3n auxiliary variables
represent the co-ordinates of n invisible molecules, the
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result is again conformable to the law of inertia. To sum
up, this law, verified experimentally in some particular
cases, may be extended fearlessly to the most general
cases; for we know that in these general cases it can nei-
ther be confirmed nor contradicted by experiment.

The Law of Acceleration.—The acceleration of a body
is equal to the force which acts on it divided by its mass.

Can this law be verified by experiment? If so, we
have to measure the three magnitudes mentioned in the
enunciation: acceleration, force, and mass. I admit that
acceleration may be measured, because I pass over the
difficulty arising from the measurement of time. But how
are we to measure force and mass? We do not even know
what they are. What is mass? Newton replies: “The
product of the volume and the density.” “It were better
to say,” answer Thomson and Tait, “that density is the
quotient of the mass by the volume.” What is force? “It
is,” replies Lagrange, “that which moves or tends to move
a body.” “It is,” according to Kirchoff, “the product of the
mass and the acceleration.” Then why not say that mass
is the quotient of the force by the acceleration? These
difficulties are insurmountable.

When we say force is the cause of motion, we are
talking metaphysics; and this definition, if we had to be
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content with it, would be absolutely fruitless, would lead
to absolutely nothing. For a definition to be of any use it
must tell us how to measure force; and that is quite suf-
ficient, for it is by no means necessary to tell what force
is in itself, nor whether it is the cause or the effect of mo-
tion. We must therefore first define what is meant by the
equality of two forces. When are two forces equal? We
are told that it is when they give the same acceleration
to the same mass, or when acting in opposite directions
they are in equilibrium. This definition is a sham. A
force applied to a body cannot be uncoupled and applied
to another body as an engine is uncoupled from one train
and coupled to another. It is therefore impossible to say
what acceleration such a force, applied to such a body,
would give to another body if it were applied to it. It
is impossible to tell how two forces which are not act-
ing in exactly opposite directions would behave if they
were acting in opposite directions. It is this definition
which we try to materialise, as it were, when we mea-
sure a force with a dynamometer or with a balance. Two
forces, F and F’, which I suppose, for simplicity, to be
acting vertically upwards, are respectively applied to two
bodies, C and C’. T attach a body weighing P first to C
and then to C'; if there is equilibrium in both cases I



SCIENCE AND HYPOTHESIS 112

conclude that the two forces F and F’ are equal, for they
are both equal to the weight of the body P. But am I
certain that the body P has kept its weight when I trans-
ferred it from the first body to the second? Far from it.
I am certain of the contrary. I know that the magnitude
of the weight varies from one point to another, and that
it is greater, for instance, at the pole than at the equa-
tor. No doubt the difference is very small, and we neglect
it in practice; but a definition must have mathematical
rigour; this rigour does not exist. What I say of weight
would apply equally to the force of the spring of a dy-
namometer, which would vary according to temperature
and many other circumstances. Nor is this all. We can-
not say that the weight of the body P is applied to the
body C and keeps in equilibrium the force F. What is
applied to the body C is the action of the body P on the
body C. On the other hand, the body P is acted on by
its weight, and by the reaction R of the body C on P
the forces F and A are equal, because they are in equi-
librium; the forces A and R are equal by virtue of the
principle of action and reaction; and finally, the force R
and the weight P are equal because they are in equilib-
rium. From these three equalities we deduce the equality
of the weight P and the force F.
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Thus we are compelled to bring into our definition of
the equality of two forces the principle of the equality of
action and reaction; hence this principle can no longer be
regarded as an experimental law but only as a definition.

To recognise the equality of two forces we are then
in possession of two rules: the equality of two forces in
equilibrium and the equality of action and reaction. But,
as we have seen, these are not sufficient, and we are com-
pelled to have recourse to a third rule, and to admit that
certain forces—the weight of a body, for instance—are
constant in magnitude and direction. But this third rule
is an experimental law. It is only approximately true:
it is a bad definition. We are therefore reduced to Kir-
choff’s definition: force is the product of the mass and
the acceleration. This law of Newton in its turn ceases
to be regarded as an experimental law, it is now only a
definition. But as a definition it is insufficient, for we
do not know what mass is. It enables us, no doubt, to
calculate the ratio of two forces applied at different times
to the same body, but it tells us nothing about the ratio
of two forces applied to two different bodies. To fill up
the gap we must have recourse to Newton’s third law,
the equality of action and reaction, still regarded not as
an experimental law but as a definition. Two bodies,
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A and B, act on each other; the acceleration of A, multi-
plied by the mass of A, is equal to the action of B on A;
in the same way the acceleration of B, multiplied by the
mass of B is equal to the reaction of A on B. As, by def-
inition, the action and the reaction are equal, the masses
of A and B arc respectively in the inverse ratio of their
masses. Thus is the ratio of the two masses defined, and
it is for experiment to verify that the ratio is constant.
This would do very well if the two bodies were alone
and could be abstracted from the action of the rest of
the world; but this is by no means the case. The accel-
eration of A is not solely due to the action of B, but to
that of a multitude of other bodies, C, D, .... To apply
the preceding rule we must decompose the acceleration
of A into many components, and find out which of these
components is due to the action of B. The decomposi-
tion would still be possible if we suppose that the action
of C on A is simply added to that of B on A, and that
the presence of the body C does not in any way modify
the action of B on A, or that the presence of B does not
modify the action of C on A; that is, if we admit that any
two bodies attract each other, that their mutual action is
along their join, and is only dependent on their distance
apart; if, in a word, we admit the hypothesis of central
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forces.

We know that to determine the masses of the heavenly
bodies we adopt quite a different principle. The law of
gravitation teaches us that the attraction of two bodies is
proportional to their masses; if r is their distance apart,
m and m' their masses, k a constant, then their attraction
will be kmm//r?. What we are measuring is therefore
not mass, the ratio of the force to the acceleration, but
the attracting mass; not the inertia of the body, but its
attracting power. It is an indirect process, the use of
which is not indispensable theoretically. We might have
said that the attraction is inversely proportional to the
square of the distance, without being proportional to the
product of the masses, that it is equal to f/r? but without
having f = kmm/. If it were so, we should nevertheless,
by observing the relative motion of the celestial bodies,
be able to calculate the masses of these bodies.

But have we any right to admit the hypothesis of
central forces? Is this hypothesis rigorously accurate? Is
it certain that it will never be falsified by experiment?
Who will venture to make such an assertion? And if we
must abandon this hypothesis, the building which has
been so laboriously erected must fall to the ground.

We have no longer any right to speak of the compo-
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nent of the acceleration of A which is due to the action
of B. We have no means of distinguishing it from that
which is due to the action of C or of any other body. The
rule becomes inapplicable in the measurement of masses.
What then is left of the principle of the equality of action
and reaction? If we reject the hypothesis of central forces
this principle must go too; the geometrical resultant of
all the forces applied to the different bodies of a system
abstracted from all external action will be zero. In other
words, the motion of the centre of gravity of this system
will be uniform and in a straight line. Here would seem to
be a means of defining mass. The position of the centre
of gravity evidently depends on the values given to the
masses; we must select these values so that the motion of
the centre of gravity is uniform and rectilinear. This will
always be possible if Newton’s third law holds good, and
it will be in general possible only in one way. But no sys-
tem exists which is abstracted from all external action;
every part of the universe is subject, more or less, to the
action of the other parts. The law of the motion of the
centre of gravity is only rigorously true when applied to
the whole universe.

But then, to obtain the values of the masses we must
find the motion of the centre of gravity of the universe.
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The absurdity of this conclusion is obvious; the motion
of the centre of gravity of the universe will be for ever
to us unknown. Nothing, therefore, is left, and our ef-
forts are fruitless. There is no escape from the following
definition, which is only a confession of failure: Masses
are co-efficients which it 1s found convenient to introduce
into calculations.

We could reconstruct our mechanics by giving to our
masses different values. The new mechanics would be in
contradiction neither with experiment nor with the gen-
eral principles of dynamics (the principle of inertia, pro-
portionality of masses and accelerations, equality of ac-
tion and reaction, uniform motion of the centre of gravity
in a straight line, and areas). But the equations of this
mechanics would not be so simple. Let us clearly under-
stand this. It would be only the first terms which would
be less simple—i.e., those we already know through ex-
periment; perhaps the small masses could be slightly al-
tered without the complete equations gaining or losing in
simplicity.

Hertz has inquired if the principles of mechanics are
rigorously true. “In the opinion of many physicists it
seems inconceivable that experiment will ever alter the
impregnable principles of mechanics; and yet, what is due
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to experiment may always be rectified by experiment.”
From what we have just seen these fears would appear to
be groundless. The principles of dynamics appeared to us
first as experimental truths, but we have been compelled
to use them as definitions. It is by definition that force
is equal to the product of the mass and the acceleration;
this is a principle which is henceforth beyond the reach
of any future experiment. Thus it is by definition that
action and reaction are equal and opposite. But then it
will be said, these unverifiable principles are absolutely
devoid of any significance. They cannot be disproved
by experiment, but we can learn from them nothing of
any use to us; what then is the use of studying dynam-
ics? This somewhat rapid condemnation would be rather
unfair. There is not in Nature any system perfectly iso-
lated, perfectly abstracted from all external action; but
there are systems which are nearly isolated. If we ob-
serve such a system, we can study not only the relative
motion of its different parts with respect to each other,
but the motion of its centre of gravity with respect to
the other parts of the universe. We then find that the
motion of its centre of gravity is nearly uniform and rec-
tilinear in conformity with Newton’s Third Law. This is
an experimental fact, which cannot be invalidated by a
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more accurate experiment. What, in fact, would a more
accurate experiment teach us? It would teach us that
the law is only approximately true, and we know that
already. Thus is explained how experiment may serve as
a basis for the principles of mechanics, and yet will never
mwvalidate them.

Anthropomorphic Mechanics—It will be said that
Kirchoff has only followed the general tendency of math-
ematicians towards nominalism; from this his skill as a
physicist has not saved him. He wanted a definition of
a force, and he took the first that came handy; but we
do not require a definition of force; the idea of force is
primitive, irreducible, indefinable; we all know what it
is; of it we have direct intuition. This direct intuition
arises from the idea of effort which is familiar to us from
childhood. But in the first place, even if this direct intu-
ition made known to us the real nature of force in itself,
it would prove to be an insufficient basis for mechanics;
it would, moreover, be quite useless. The important
thing is not to know what force is, but how to measure
it. Everything which does not teach us how to measure
it is as useless to the mechanician as, for instance, the
subjective idea of heat and cold to the student of heat.
This subjective idea cannot be translated into numbers,
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and is therefore useless; a scientist whose skin is an ab-
solutely bad conductor of heat, and who, therefore, has
never felt the sensation of heat or cold, would read a
thermometer in just the same way as any one else, and
would have enough material to construct the whole of
the theory of heat.

Now this immediate notion of effort is of no use to
us in the measurement of force. It is clear, for example,
that I shall experience more fatigue in lifting a weight of
100 1b. than a man who is accustomed to lifting heavy
burdens. But there is more than this. This notion of ef-
fort does not teach us the nature of force; it is definitively
reduced to a recollection of muscular sensations, and no
one will maintain that the sun experiences a muscular
sensation when it attracts the earth. All that we can
expect to find from it is a symbol, less precise and less
convenient than the arrows (to denote direction) used by
geometers, and quite as remote from reality.

Anthropomorphism plays a considerable historic role
in the genesis of mechanics; perhaps it may yet furnish
us with a symbol which some minds may find convenient;
but it can be the foundation of nothing of a really scien-
tific or philosophical character.

The Thread School—M. Andrade, in his Lecons de
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Meécanique physique, has modernised anthropomorphic
mechanics. To the school of mechanics with which Kir-
choff is identified, he opposes a school which is quaintly
called the “Thread School.”

This school tries to reduce everything to the consid-
eration of certain material systems of negligible mass, re-
garded in a state of tension and capable of transmitting
considerable effort to distant bodies—systems of which
the ideal type is the fine string, wire, or thread. A thread
which transmits any force is slightly lengthened in the
direction of that force; the direction of the thread tells
us the direction of the force, and the magnitude of the
force is measured by the lengthening of the thread.

We may imagine such an experiment as the
following:—A body A is attached to a thread; at the
other extremity of the thread acts a force which is made
to vary until the length of the thread is increased by «,
and the acceleration of the body A is recorded. A is
then detached, and a body B is attached to the same
thread, and the same or another force is made to act
until the increment of length again is «, and the accel-
eration of B is noted. The experiment is then renewed
with both A and B until the increment of length is .
The four accelerations observed should be proportional.
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Here we have an experimental verification of the law of
acceleration enunciated above. Again, we may consider
a body under the action of several threads in equal ten-
sion, and by experiment we determine the direction of
those threads when the body is in equilibrium. This is
an experimental verification of