
Verilog Wires and Registers

. . . are the basic components for

1. Connecting gates and modules

2. Creating signals

3. Keeping a status

283

4-valued Logic

Wires and registers carry the following values:

• 0 logic zero (FALSE)

• 1 logic one (TRUE)

• z high impedance output

• x unknown (any or none of above)

1. Unconnected inputs are ‘z’

2. ‘z’ as input equals ‘x’

3. initially, everything is ‘x’

284

Example for NAND Gate

Truth table:

0 1 z x

0 1 1 1 1

1 1 0 x x

z 1 x x x

x 1 x x x

285

Purpose (Wire)

• A wire is a structural element that con-
nects a source of a signal with a number
of sinks

• it does not have any status and must be
continuously driven

• it provides the only way of connecting mod-
ules with each other

286

Defining a Wire

• A wire is declared as

wire cable;

and is referred to by its name “cable”

• a wire can be connected with one output,
either from a gate or another module

• a wire can be connected with any number
of inputs for gates or modules

287

Defining a Wire

• wires can be assigned to other wires:

wire cable1, cable2;
assign cable2 = cable1;

which implies that cable2 is branched from
cable1

• input and output ports of a module are
usually wires

288



Purpose (Register)

• A register generates a signal

• it can be set or changed by procedural as-
signments only

• it has a status at any time

• a register usually feeds a wire

289

Defining a Register

• A register is declared as

reg bit;

and is referred to by its name “bit”

• a register can be used to feed any input
where a wire could be used as well, but a
wire cannot feed a register!

290

Defining a Register

• a register has a status, which remains con-
stant until it is changed by a procedural
assignment

• the initial status is “x” (unknown)

• a register can never be an input port, but
it can feed an output port

291

Initial and Always Constructs

Modules can perform one or more concurrent
sequences of actions (processes, threads)

1. initial: a sequence is to be performed
once only immediately after the instantia-
tion of a module

2. always: a sequence is to be repeated as
long as the module exists

292

Initial and Always Constructs

• In particular, the sequence contains

1. procedural assignments to initialize
or modify register values

2. delay specifications to schedule ac-
tions for a specific time and order

• Sequences may contain control statements

293

Example:

A clock signal generator: after initialization,
change the value every n time intervals:

module clockgen (clock);
output clock;
reg clock;

initial
#5 clock = 1;

always
#50 clock = ~clock;

endmodule

294



Continuous Assignments

. . . either describe fixed connections between
two wires, or how to create a new signal out
of others:

• module everNAND (out, ina, inb);
input ina, inb;
output out;

assign out = ~(ina & inb);

endmodule

Note: Only wires can be used on the left hand
side of a continuous assignment!

295

Procedural Assignments

. . . describe the assignment of a specific value
to a register at a specific time:

• module idleNAND (out, ina, inb);
input ina, inb;
output out;
reg out;

always
#20 out = ~(ina & inb);

endmodule

Note: Only registers can be used for a procedu-
ral assignment!

296

Module Declarations

A module is declared following this scheme:

1. module name (ports);

2. input input-ports;
3. output output-ports;
4. reg output-registers;

5. wire local wires;
6. reg local registers;

7. assign wire = expression;

8. module [name] (ports);

9. initial statement-list
10. always statement-list

11. endmodule

297

Registers as Output-Ports

Ports are in general considered wires

• a register can never be an input port

• a register can feed an output port:

output outreg;
reg outreg;

the output port outreg has always the value
of the register outreg

⇒ A register cannot be altered by any other
module than the one in which it is declared!

298

Vectors

. . . “bundle” a set of wires or registers

Example

a set of four registers can be defined as:
reg [3:0] regset;

and accessed as regset[0] . . . regset[3]

299

Vectors

• the numbering may be freely specified:
[3:0] numbers i ∈ {3, 2, 1, 0}
[0:3] numbers i ∈ {0, 1, 2, 3}
[6:9] numbers i ∈ {6, 7, 8, 9}

including negative indices

• subvectors can be specified on either side
of an assignment, e.g. regset[2:1]

• scalars and vectors can be combined to
new vectors with {a, b, ...}

300



Example:

module split_vector;
reg [7:0] source;
wire [3:0] part1;
wire [3:0] part2;
wire [3:0] center;
wire [3:0] outer;

// connect parts with source
assign part1 = source[3:0];
assign part2 = source[7:4];

// derive center and outer
// from parts 1 and 2
assign center = {part2[1:0],part1[3:2]};

assign outer[3:2] = part2[3:2];
assign outer[1:0] = part1[1:0];

initial
begin

...
end

endmodule

301

7

33 0

3

0

0

3

0

0

OUTER

PART2

CENTER

SOURCE

PART1

302

Constant Signals

They may be specified in

• binary 1’b0

• octal 3’o5

• decimal 8’d135

• hexadecimal 12’h3B7

number preceding “’” is width of vector

303

Constant Signals

Constants may appear

1. on the right hand side of an assignment

2. as an input for a module port

Defaults:

• if no width→ entire vector is used

• no base→ decimal values are assumed

304


