
Verilog Wires and Registers

. . . are the basic components for

1. Connecting gates and modules

2. Creating signals

3. Keeping a status
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4-valued Logic

Wires and registers carry the following values:

• 0 logic zero (FALSE)

• 1 logic one (TRUE)

• z high impedance output

• x unknown (any or none of above)

1. Unconnected inputs are ‘z’

2. ‘z’ as input equals ‘x’

3. initially, everything is ‘x’
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Example for NAND Gate

Truth table:

0 1 z x

0 1 1 1 1

1 1 0 x x

z 1 x x x

x 1 x x x
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Purpose (Wire)

• A wire is a structural element that con-
nects a source of a signal with a number
of sinks

• it does not have any status and must be
continuously driven

• it provides the only way of connecting mod-
ules with each other
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Defining a Wire

• A wire is declared as

wire cable;

and is referred to by its name “cable”

• a wire can be connected with one output,
either from a gate or another module

• a wire can be connected with any number
of inputs for gates or modules
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Defining a Wire

• wires can be assigned to other wires:

wire cable1, cable2;
assign cable2 = cable1;

which implies that cable2 is branched from
cable1

• input and output ports of a module are
usually wires
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Purpose (Register)

• A register generates a signal

• it can be set or changed by procedural as-
signments only

• it has a status at any time

• a register usually feeds a wire
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Defining a Register

• A register is declared as

reg bit;

and is referred to by its name “bit”

• a register can be used to feed any input
where a wire could be used as well, but a
wire cannot feed a register!
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Defining a Register

• a register has a status, which remains con-
stant until it is changed by a procedural
assignment

• the initial status is “x” (unknown)

• a register can never be an input port, but
it can feed an output port
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Initial and Always Constructs

Modules can perform one or more concurrent
sequences of actions (processes, threads)

1. initial: a sequence is to be performed
once only immediately after the instantia-
tion of a module

2. always: a sequence is to be repeated as
long as the module exists
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Initial and Always Constructs

• In particular, the sequence contains

1. procedural assignments to initialize
or modify register values

2. delay specifications to schedule ac-
tions for a specific time and order

• Sequences may contain control statements
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Example:

A clock signal generator: after initialization,
change the value every n time intervals:

module clockgen (clock);
output clock;
reg clock;

initial
#5 clock = 1;

always
#50 clock = ~clock;

endmodule
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Continuous Assignments

. . . either describe fixed connections between
two wires, or how to create a new signal out
of others:

• module everNAND (out, ina, inb);
input ina, inb;
output out;

assign out = ~(ina & inb);

endmodule

Note: Only wires can be used on the left hand
side of a continuous assignment!
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Procedural Assignments

. . . describe the assignment of a specific value
to a register at a specific time:

• module idleNAND (out, ina, inb);
input ina, inb;
output out;
reg out;

always
#20 out = ~(ina & inb);

endmodule

Note: Only registers can be used for a procedu-
ral assignment!
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Module Declarations

A module is declared following this scheme:

1. module name (ports);

2. input input-ports;
3. output output-ports;
4. reg output-registers;

5. wire local wires;
6. reg local registers;

7. assign wire = expression;

8. module [name] (ports);

9. initial statement-list
10. always statement-list

11. endmodule
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Registers as Output-Ports

Ports are in general considered wires

• a register can never be an input port

• a register can feed an output port:

output outreg;
reg outreg;

the output port outreg has always the value
of the register outreg

⇒ A register cannot be altered by any other
module than the one in which it is declared!
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Vectors

. . . “bundle” a set of wires or registers

Example

a set of four registers can be defined as:
reg [3:0] regset;

and accessed as regset[0] . . . regset[3]
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Vectors

• the numbering may be freely specified:
[3:0] numbers i ∈ {3, 2, 1, 0}
[0:3] numbers i ∈ {0, 1, 2, 3}
[6:9] numbers i ∈ {6, 7, 8, 9}

including negative indices

• subvectors can be specified on either side
of an assignment, e.g. regset[2:1]

• scalars and vectors can be combined to
new vectors with {a, b, ...}
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Example:

module split_vector;
reg [7:0] source;
wire [3:0] part1;
wire [3:0] part2;
wire [3:0] center;
wire [3:0] outer;

// connect parts with source
assign part1 = source[3:0];
assign part2 = source[7:4];

// derive center and outer
// from parts 1 and 2
assign center = {part2[1:0],part1[3:2]};

assign outer[3:2] = part2[3:2];
assign outer[1:0] = part1[1:0];

initial
begin

...
end

endmodule
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Constant Signals

They may be specified in

• binary 1’b0

• octal 3’o5

• decimal 8’d135

• hexadecimal 12’h3B7

number preceding “’” is width of vector

303

Constant Signals

Constants may appear

1. on the right hand side of an assignment

2. as an input for a module port

Defaults:

• if no width→ entire vector is used

• no base→ decimal values are assumed
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