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Big Picture

• Supervised Learning

– Classification

• Input x: feature vector

• Output: discrete class label

– Regression

• Input x: feature vector

• Output y: continuous value



Tax Fraud Detection

Diagnosing sickle 
cell anemia

Anemic cell
Healthy cell

Web Classification
Sports
Science
News

Predict squirrel hill
resident

Drive to CMU, Rachel’s fan,
Shop at SH Giant Eagle

Resident
Not resident

Features, X Labels, Y

Classification Tasks
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Goal:

Classification

Sports
Science
News

Features, X Labels, Y

Probability of Error



Classification

Optimal predictor:
(Bayes classifier)
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Depends on unknown distribution



6

Discrete to Continuous Labels

Sports
Science
News

Classification

Regression

Anemic cell
Healthy cell

Stock Market 
Prediction

Y = ?

X = Feb01 

X = Document Y = Topic X = Cell Image Y = Diagnosis



Regression

• What is the equivalent of Bayes-optimal 
classifier?

• How about if we can model P(Y|X)?

• How can we predict Y given new X?

• We need a LOSS function

– How about square loss?

– What should be the prediction?



Regression  (See board)

Optimal predictor:
(Conditional Mean)
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Dropping subscripts
for notational convenience



Models

• So how can we proceed?

• We need to make some assumption to model 
P(Y|X)

– Linear form (basis function)

– Noise distribution

– Loss function

– Etc.



Regression algorithms

Learning algorithm
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Linear Regression
Lasso, Ridge regression (Regularized Linear Regression)
Nonlinear Regression
Kernel Regression
Regression Trees, Splines, Wavelet estimators, …

Empirical Risk Minimizer:

Empirical mean



Least Squares Estimator (on board)
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Vector Derivative (see notes from 
website)

• Some useful facts: assume that A is symmetric
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Probabilistic Interpretation: MLE 
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Intuition: Signal plus (zero-mean) Noise model

Least Square Estimate is same as Maximum Likelihood Estimate under a 
Gaussian model !

log likelihood



Variations

• What if the noise terms are independent but 
not identical?

– Homework

• What if they are IID but not Gaussian?

• Think about robustness

– What if we have outliers?



Robustness

• The best fit from a quadratic 
regression

• But this is probably better …



Regularized Least Squares and MAP
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What if                   is not invertible ? 

log likelihood log prior

Prior belief that β is Gaussian with zero-mean biases solution to “small” β

I) Gaussian Prior

0

Ridge Regression

Closed form: HW



Regularized Least Squares and MAP
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What if                   is not invertible ? 

log likelihood log prior

Prior belief that β is Laplace with zero-mean biases solution to “small” β

Lasso

Closed form: HW

II) Laplace Prior



Ridge Regression vs Lasso
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Ridge Regression: Lasso: HOT!

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates
Good for high-dimensional problems – don’t have to store all coordinates!

βs with 
constant 
l1 norm

βs with constant J(β)
(level sets of J(β))

βs with 
constant 
l2 norm

β2

β1
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Case study: 
predicting gene expression

The genetic picture

CGTTTCACTGTACAATTT

causal SNPs

a univariate phenotype:

i.e., the expression intensity of 
a gene



© Eric Xing @ CMU, 2006-2008 20

Individual 1

Individual 2

Individual N

Phenotype (BMI)

2.5

4.8

4.7

Genotype

. . C . . . . .  T . . C . . . . . . . T . . .

. . C . . . . .  A . . C . . . . . . . T . . .

. . G  . . . . . A . . G . . . . . . . A . . .

. . C . . . . .  T . . C . . . . . . . T . . .

. . G  . . . . . T . . C . . . . . . . T . . .

. . G  . . . . . T . . G . . . . . . . T . . .

Causal SNPBenign SNPs

…
Association Mapping as Regression
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Individual 1

Individual 2

Individual N

Phenotype (BMI)

2.5

4.8

4.7

Genotype

. . 0 . . . . .  1 . . 0 . . . . . . . 0 . . .

. . 1  . . . . . 1 . . 1 . . . . . . . 1 . . .

. . 2  . . . . . 2 . . 1 . . . . . . . 0 . . .

…

yi =

J

j

jijx
1

SNPs with large 
|βj| are relevant

Association Mapping as Regression
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Experimental setup

• Asthama dataset
– 543 individuals, genotyped at 34 SNPs
– Diploid data was transformed into 0/1 (for homozygotes) or 2 (for 

heterozygotes)
– X=543x34 matrix
– Y=Phenotype variable (continuous)

• A single phenotype was used for regression

• Implementation details
– Iterative methods: Batch update and online update implemented.
– For both methods, step size α is chosen to be a small fixed value (10-6). 

This choice is based on the data used for experiments.
– Both methods are only run to a maximum of 2000 epochs or until the 

change in training MSE is less than 10-4
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Convergence Curves

• For the batch method, 
the training MSE is 
initially large due to 
uninformed 
initialization

• In the online update, N 
updates for every 
epoch reduces MSE to 
a much smaller value.
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The Learned Coefficients
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Performance vs. Training Size

 The results from B and O 
update are almost identical. 
So the plots coincide.

 The test MSE from the 
normal equation is more 
than that of B and O during 
small training. This is 
probably due to overfitting.

 In B and O, since only 2000 
iterations are allowed at 
most. This roughly acts as a 
mechanism that avoids 
overfitting.


