Linear Combination of Sine and Cosine

Any linear combination of a cosine and a sine of equal periods is equal to a single sine with the same period but with a phase shift and a different amplitude.

In other words, given any c_{1} and c_{2}, we can find \mathcal{A} and ϕ such that

$$
\begin{equation*}
c_{1} \cos \omega t+c_{2} \sin \omega t=A \sin (\omega t+\phi) . \tag{1}
\end{equation*}
$$

We will now show how to find A and ϕ.

Using the identity

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

we deduce that (1) is equivalent to

$$
c_{1} \cos \omega t+c_{2} \sin \omega t=A \cos \phi \sin \omega t+A \sin \phi \cos \omega t .
$$

By setting equal the coefficients of $\cos \omega t$ and $\sin \omega t$, we obtain

$$
A \sin \phi=c_{1} \quad \text { and } \quad A \cos \phi=c_{2} .
$$

Observe that if $c_{2}=0$, then

$$
A=\mathrm{c}_{1} \text { and } \phi=\pi / 2 .
$$

If $c_{2} \neq 0$, we can find A and ϕ using

$$
A=\sqrt{c_{1}^{2}+c_{2}^{2}} \quad \text { and } \quad \tan \phi=\frac{c_{1}}{c_{2}} .
$$

To find ϕ, we need to first identify its quadrant. The four cases are shown below.

$\phi=\arctan \left(\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}\right) \quad \phi=\pi+\arctan \left(\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}\right) \quad \phi=\pi+\arctan \left(\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}\right) \quad \phi=\arctan \left(\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}\right)$

Example. Express $2 \cos (3 t)-5 \sin (3 t)$ as $A \sin (\omega t+\phi)$.
Solution. First observe that $\omega=3$. Since $\mathrm{c}_{1}=2$ and $\mathrm{c}_{2}=-5$, then

$$
A=\sqrt{c_{1}^{2}+c_{2}^{2}}=\sqrt{2^{2}+(-5)^{2}}=\sqrt{29} .
$$

To find the quadrant of ϕ, observe that

$$
\cos \phi=\frac{c_{2}}{A}<0 \quad \text { and } \quad \sin \phi=\frac{c_{1}}{A}>0 .
$$

We see that ϕ is a second-quadrant angle, therefore

$$
\phi=\pi+\arctan \left(\frac{c_{1}}{c_{2}}\right)=\pi+\arctan \left(\frac{2}{-5}\right) \approx 2.761 .
$$

We conclude that

$$
2 \cos (3 t)-5 \sin (3 t)=\sqrt{29} \sin (3 t+\arctan (-2 / 5)+\pi) \approx \sqrt{29} \sin (3 t+2.761) .
$$

