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ABSTRACT
This paper studies a linear radial basis function network (RBFN) for
unmixing hyperspectral images. The proposed RBFN assumes that
the observed pixel reflectances are nonlinear mixtures of known end-
members (extracted from a spectral library or estimated with an end-
member extraction algorithm), with unknown proportions (usually
referred to as abundances). We propose to estimate the model abun-
dances using a linear combination of radial basis functions whose
weights are estimated using training samples. The main contribution
of this paper is to study an orthogonal least squares algorithm which
allows the number of RBFN centers involved in the abundance esti-
mation to be significantly reduced. The resulting abundance estima-
tor is combined with a fully constrained estimation procedure ensur-
ing positivity and sum-to-one constraints for the abundances. The
performance of the nonlinear unmixing strategy is evaluated with
simulations conducted on synthetic and real data.

Index Terms— Radial basis functions, hyperspectral image,
spectral unmixing

1. INTRODUCTION

Spectral unmixing (SU) has been widely used in remote sensing for
hyperspectral image analysis. SU assumes that the hyperspectral im-
age pixels are mixtures of spectral components associated to pure
materials (referred to as endmembers). According to physical con-
siderations, the fractions of these endmembers (called abundances)
have to satisfy positivity and sum-to-one constraints. The most com-
mon mixture model is the linear mixing model (LMM) that has been
widely studied in the literature. However, the LMM has also shown
some limitations which has motivated the consideration of nonlin-
ear mixing models. These nonlinear mixing models include models
based on intimate mixtures [1] or bilinear models [2, 3]. Unfortu-
nately, these nonlinear mixing models are not appropriate to any kind
of nonlinearity. For instance, bilinear models have nice properties to
handle multipath effects as light scatters from one object to another.
However, they cannot model the nonlinearity due to intimate mix-
tures [4]. This paper considers a linear radial basis function network
(RBFN) that was originally studied in [5] for nonlinear SU. Motiva-
tions for considering neural networks for SU include the universal
approximation theorem which states that any nonlinear function can
be approximated by a neural network structure with any desired pre-
cision [6, p. 208].

This paper focuses on a supervised approach where the RBFN
is trained using ground truth data. The ground truth data are used to
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estimate the inverse nonlinear function relating the observations to
the abundances. Our main contribution is to study a new supervised
training algorithm selecting a limited number of centers from the
training data in order to reduce the computational complexity of the
RBFN learning. The proposed algorithm has also the nice property
to ensure positivity and sum-to-one constraints for the abundances.

2. LINEAR RADIAL BASIS FUNCTION NETWORK

An observed pixel spectrum y of the hyperspectral image (inL spec-
tral bands) is assumed to be a mixture of R known pure components
spectra mr, r = 1, . . . , R, according to the following nonlinear
model

y = fM (a) + n, (1)

where M = [m1, . . . ,mR] is a known matrix containing the end-
members, a = [a1, . . . , aR]T is the unknown abundance vector, fM

is an unknown nonlinear function from RR to RL and n is an addi-
tive noise vector. The abundances of any pixel satisfy the following
positivity and sum-to-one constraints

R∑
r=1

ar = 1, ar ≥ 0,∀r ∈ {1, . . . , R} . (2)

The SU algorithm studied in this paper is based on the RBFN ini-
tially introduced in [5]. This network expresses the estimated abun-
dance vector â ∈ RR as a linear combination ofN radial basis func-
tions (RBFs)

â =

N∑
n=1

φn(y)wn (3)

where N is the number of pixels of a ground truth image (image
with known abundances), wn = [wn,1, . . . , wn,R]T is the weight
vector of the nth element of the ground truth image and φn(y) is the
projection of the data vector y onto the nth basis function. The main
motivation for unmixing hyperspectral images using an RBFN is that
the proposed structure (linear combination of RBFs) has known ca-
pacities to approximate any nonlinearity with good accuracy. In par-
ticular, no prior knowledge about fM is required and the RBFN is
sufficiently general to handle linear and nonlinear mixtures. In the
context of hyperspectral unmixing, the proposed RBFN is used as an
efficient tool to invert the nonlinear relations relating the observation
vector y to the abundance vector a defined in (1). This study focuses
on Gaussian RBFs parameterized by their centers ci and by a unique
dispersion parameter σ2 such that



φn(y) , φ(y, cn) = exp

(
−‖y − cn‖

2

2σ2

)
. (4)

The RBF parameter σ2 is chosen as the squared average distance
between the pixels, ensuring that the individual RBFs are not too
peaked or too flat. However, it is interesting to note that this param-
eter might be estimated jointly with the abundances (see [7, p. 123]
for details). The next section describes a procedure for selecting a
reduced number of RBF centers {cn}n=1,...,M involved in (3) from
the ground truth data, by ensuring M ≤ N is as small as possible.

3. ESTIMATING RBF CENTERS USING OLS

The main issue concerning the proposed RBFN is the choice of
the centers defining the basis functions. For that purpose, we pro-
pose as in [5] to use training data with known abundances. Thus,
we consider N training pixels y1, . . . ,yN with their associated
known abundance vectors a1, . . . , aN . The centers of the proposed
RBFN and their associated weights w1, . . . ,wN are determined
using these training samples and the orthogonal least squares (OLS)
procedure described in this section. By transposing (3) for the abun-
dance vectors of the training samples, the following decomposition
can be obtained

A = [a1, . . . , aN ]T = ΦW +E, (5)

where φ(y) = [φ1(y), . . . , φN (y)]T ∈ RN contains the projection
of y on the N RBFs, Φ = [φ(y1), . . . ,φ(yN )]T = [φ1, . . . ,φN ]
is an N × N matrix, W = [w1, . . . ,wN ]T is an N × R matrix
containing the weight vectors of the N centers, A is an N × R
matrix containing the abundances of the training vectors and E is
a projection error matrix of size N × R. The learning procedure
proposed in [5] consists of estimating W by solving the following
least squares problem

min
W
‖A−ΦW ‖2F (6)

where ‖.‖F is the Frobenius norm. However, numerical problems
can be obtained for large values of N , e.g., because the matrix Φ is
ill-conditioned. To alleviate this problem, we propose in this paper to
reduce the complexity of the RBFN by selecting a reduced number of
M << N centers of the RBFN. For this, all the N training samples
are first considered as potential centers. The use of a permutation
matrix Π of size N ×N , allows the columns of Φ to be rearranged
in a matrix Φ(Π) as follows

A = ΦΠΠTW +E = Φ(Π)W (Π) +E, (7)

where Φ(Π) = ΦΠ and W (Π) = ΠTW . Note that Π is cho-
sen so that the M first columns of W (Π) contain the projections of
y1, . . . ,yN on the M centers of highest interest. By decomposing
Φ(Π) as a concatenation of two submatrices Φ

(Π)
1:M and Φ

(Π)
M+1:N

containing the M relevant and N − M non-relevant columns of
Φ(Π), the abundance matrix can be written

A = Φ
(Π)
1:MW

(Π)
M +EM , (8)

where Φ
(Π)
1:M (resp. Φ

(Π)
M+1:N ) contains the M first relevant (resp.

the last non-relevant) columns of Φ(Π), W (Π)
M (resp. W (Π)

N−M )
contains the M first (resp. the P − M last) rows of W (Π) and
EM = Φ

(Π)
M+1:NW

(Π)
N−M +E.

The permutation matrix Π and the number of centers M can be
determined using an exhaustive search to minimize ‖EM‖2F . How-
ever, this method requires prohibitive computational cost. As an al-
ternative, the proposed center selection procedure is achieved in a
forward regression manner (as in [5]) using a QR decomposition of
Φ(Π). Indeed, the abundance matrix can be rewritten1

A = QRW (Π) +E = QΘ +E, (9)

where Q = [q1, . . . , qN ] = is an N × N matrix with orthogonal
columns and Θ = RW (Π) is a new unknown weight matrix of size
N × R. After decomposing the matrix Q as the concatenation of
two sub-matrices Q1:M and QM+1:P containing the relevant and
non-relevant columns ofQ, the abundance matrix can be written

A = Q1:MΘM +EM , (10)

where ΘM contains the M first rows of Θ. For any permutation
matrix Π, allowing relevant centers to be selected, (10) is used to
estimate ΘM according to the least-squares principle.

To determine the best permutation matrix and a stopping rule for
the proposed algorithm, an appropriate error criterion (referred to as
error reduction ratio) has to be defined. Using the orthogonality of
Q, the output energy can be written

ATA =

N∑
n=1

θTnq
T
nqnθn +ETE

=

M∑
m=1

θTmq
T
mqmθm +ET

MEM . (11)

In order to measure the contribution of the first M orthogonal re-
gressors, it makes sense to consider the following error reduction
rate due to q1, ..., qM

εM =

∥∥∥∑M
m=1 θ

T
mq

T
mqmθm

∥∥∥
F∥∥ATA

∥∥
F

. (12)

This procedure is repeated in a forward regression manner (i.e.,
M = 1, 2, . . .) until the relative error ∆M = |εM−1 − εM | /εM−1

is less than a given threshold ρ > 0. The resulting algorithm is
summarized in Table 1. Note that the algorithm providesM relevant
centers c̃1 = yn1 , . . . , c̃M = ynM (out of the initial N training
data) that will be used for abundance estimation. The next section
proposes a modification of this algorithm to ensure positivity and
sum-to-one constraints for the abundances.

4. CONSTRAINED ABUNDANCE ESTIMATION

Once the M most relevant centers {c̃m}m=1,...,M associated with
{φnm

}m=1,...,M and the corresponding weight matrix W (Π)
M have

been selected (using the OLS procedure), the RBFN has to be used
to estimate the abundance vector associated with a new observation
vector y. The estimated abundance vector of y might be defined as
the output â of the RBFN defined by

â =

M∑
m=1

φ̃m(y)w(Π)
m = W

(Π)T
M φ̃(y) (13)

1The QR decomposition of Φ(Π) should be denoted Φ(Π) =

Q(Π)R(Π). However, the upperscript (Π) has been removed to simplify
notations.



1: First step (M = 1)
2: for n = 1 : N do
3: Compute q(n)

1 = φn
(Define a permutation matrix Π such that
Φ(Π) = [φn,φ1, . . . ,φn−1,φn+1, . . . ,φN ])

4: Compute θ(n)
1 according to (10)

5: Compute ε(n)
1 according to (12)

6: end for
7: Find n1 such that ε1 = ε

(n1)
1 = maxn ε

(n)
1 ,

Set q1 = q(n1)
1 , c̃1 = yn1

8: Iterations (M ≥ 2)
9: for M = 1, 2, . . . do

10: M =M + 1
11: for n = 1 : N,n 6= n1, . . . , nM−1 do
12: Compute q(n)

M from φn, q1, . . . , qM−1
(Define a permutation matrix Π such that
Φ(Π) = [φn1

, . . . ,φnM−1
, {φi, i /∈ {n1, . . . , nM−1}}])

13: Compute θ(n)
M according to (10)

14: Compute ε(n)
M according to (12)

15: end for
16: Find nM so that εM = ε

(nM )
M = maxn ε

(n)
M ,

Set qM = q(nM )
M , c̃M = ynM

17: end for

Table 1. Center selection algorithm.

where φ̃(y) = [φ̃1(y), . . . , φ̃M (y)]T is the projection of y on
the M centers {c̃m}m=1,...,M and W (Π)

M = [w
(Π)
1 , . . . ,w

(Π)
M ]T .

However, the positivity and sum-to-one constraints are not necessar-
ily ensured when using (13) (even if these constraints can be satis-
fied for the training data). To satisfy these constraints, we propose
to consider the following constrained optimization problem

min
a

∥∥∥φ̃(y)−W (Π)T†
M a

∥∥∥2
2

subject to (2) (14)

where W (Π)T†
M is the pseudo-inverse of W (Π)T

M and ‖.‖2 is the
standard `2 norm. The minimization problem (14) has been ex-
plicitly addressed in [8] where the FCLS algorithm was introduced.
The FCLS algorithm includes the sum-to-one constraint of the abun-
dances as an additional observation equation in the criterion to be
minimized. The following optimization problem is then obtained

min
a

∥∥∥∥[φ̃(y)
δ

]
−
[
W

(Π)T†
M

δ1T
R

]
a
∥∥∥∥2
2

(15)

subject to the non-negativity constraints for the abundance vector,
where δ ∈ R controls the impact of the sum-to-one constraint and
1R ∈ RR is a vector of ones. Note that a high value of δ will enforce
the sum-to-one constraint (see [8] for more details). All simulations
have been conducted in this study with δ = 105.

5. SIMULATIONS

5.1. Synthetic data

The performance of the proposed RBFN is investigated by unmix-
ing three synthetic images. The R = 3 endmembers associated with
these images have been extracted from the spectral libraries provided
with the ENVI software (i.e., green grass, olive green paint and gal-
vanized steel metal). The first synthetic image I1 has been generated
using the standard linear mixing model (LMM). A second image
I2 has been generated according to the bilinear mixing model intro-
duced in [3], referred to as “Fan model” (FM), whereas a third image

I3 has been generated according to the bilinear mixing model pre-
sented in [2], referred to as “Nascimento model” (NM). In each case,
the learning procedure has been achieved using training sets of 2500
synthetic pixels (denoted as T1, T2 and T3) generated according to
the corresponding mixing models. For each image, the abundance
vectors an, (for n = 1, . . . , 2500) have been uniformly generated
in the simplex defined by the positivity and sum-to-one constraints.
All images have been corrupted by an additive white Gaussian noise
with signal-to-noise ratio SNR = L−1σ−2 ‖fM (a)‖2 ' 15dB.
The threshold of the OLS procedure has been fixed to ρ = 10−4.

Table 2 shows the number of selected centers and the corre-
sponding error reduction ratio (εM ). Fig. 1 shows the evolution
of δM versus M . From these results, we can notice that less than
20 centers (out of the initial 2500) are sufficient to describe the three
model mixtures. Note that the NM requires more centers than the
LMM and FM to describe the mixture since the number of parame-
ters involved the NM is equal to R(R + 1)/2 as opposed to R for
the LMM and FM (see [2] for more details). In order to illustrate
the center selection procedure, Fig. 2 shows the M = 13 centers se-
lected by the OLS algorithm applied to FM (right), out of the initial
centers (left). It is important to note that the selected centers corre-
spond to both pure and mixed pixels that are useful to describe the
mixing model.

I1 I2 I3
M 11 13 17

1− εM 9.8× 10−4 1.3× 10−3 9.0× 10−3

Table 2. Number of centers after OLS.

(a) I1 (LMM)

(b) I2 (FM) (c) I3 (NM)

Fig. 1. Evolution of δM versus M for the three images I1, I2 and I3
(blue lines) and corresponding threshold ρ (red lines).

The quality of the unmixing procedure can be measured by com-
paring the estimated and actual abundances using the root mean

square error RMSE =
√∑N

n=1 ‖ãn − an‖2/NR where an and ãn

are the actual and estimated abundance vectors for the nth pixel of



Fig. 2. Left: Initial 2500 centers. Right: M = 13 selected centers.

the image. Table 2 shows the RMSEs associated with the test im-
ages I1, I2, I3 using the training sets T1, T2, T3. In each case, the
standard RBFN algorithm and its constrained version (denoted as
CRBFN) have been considered. The unmixing performance in terms
of RMSE does not change significantly when the OLS procedure is
used. However, the proposed OLS algorithm allows the computa-
tional complexity of the learning step to be significantly reduced.

RMSE (×10−1)
without OLS with OLS

RBFN CRBFN RBFN CRBFN
I1 0.409 0.407 0.411 0.403
I2 0.391 0.378 0.376 0.393
I3 0.541 0.532 0.547 0.544

Table 3. RMSEs for the synthetic training data.

5.2. Real data
The real image considered in this section is composed of L = 189
spectral bands and was acquired in 1997 by the airborne visible
infrared imaging spectrometer (AVIRIS) over Moffett Field (CA,
USA). A sub-image of size 50 × 50 pixels has been chosen here
to evaluate the proposed unmixing procedure. The scene is mainly
composed of water, vegetation and soil. The endmembers have been
extracted by the VCA algorithm [9] with R = 3. These endmem-
bers have been used to generate 2500 training pixels according to
the 3 mixing models investigated in the previous section. The abun-
dance vectors an, n = 1, . . . , 2500, have been uniformly generated
in the simplex defined by the positivity and sum-to-one constraints.
All generated images have been corrupted by an additive Gaussian
noise with SNR ' 15dB. Fig. 3 shows typical abundance maps esti-
mated by the CRBFN whose centers have been determined using the
OLS procedure (the learning step has been conducted with data gen-
erated using the FM). The resulting maps are very encouraging and
are close to maps obtained via the optimization method introduced
in [3], which assumes a known mixing model. Thus demonstrat-
ing that the CRBFN has the capacity to invert the relation between
abundance vectors and the observed pixels for this example.

6. CONCLUSION

A new nonlinear unmixing algorithm based on a radial basis function
network was presented for hyperspectral imagery. This algorithm
selected a limited number of relevant network centers from training
data using orthogonal least squares. The orthogonal least squares al-
gorithm allowed the complexity of the network to be reduced with-
out significant degradation of the unmixing quality. A modification
of the algorithm was also proposed to enforce positivity and sum-to-
one constraints for the abundance vectors. This algorithm provided

(a) Abundance of vegetation

(b) Abundance of soil (c) Abundance of water

Fig. 3. Estimated abundance maps (CRBFN applied to FM).

promising results. Future works include the adaptive update of the
weights and centers for unsupervised spectral unmixing. Dictionary
learning algorithms [10] could also be investigated for center selec-
tion in radial basis function networks.
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