
Allocation Search Methods for a Generalized

Class of Location-Allocation Problems

Martin Bischoff ∗, Kerstin Dächert
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We consider a generalized class of location-allocation problems, in which N new
facilities are to be located in the plane with respect to M objects. Each object
is associated with a convex cost function, specifying the expenses for serving the
object from any location in the plane.

For the resulting multi-dimensional mixed-integer optimization problem, we
compare various traditional and new search methods. In particular, we apply
multi-start, (variable) neighborhood search, tabu search, simulated annealing,
an evolutionary algorithm and an ant colony optimization algorithm. They all
have in common that they use the well-known alternate location and allocation
algorithm [Cooper, 1964] as core local search function.

We intend to impart a generalized view on these randomized search methods
and also examine the efficiency of the different search strategies in solving the
multi-connection location-allocation problem, a relatively new instance of the
generalized class of location-allocation problems.

Computational results show that the most crucial feature of the heuristics is
the ability to combine a diversified search over the whole solution space with an
intensified search near the best-known solution.

Keywords: meta-heuristics; location; mixed-integer optimization; location-allocation; ran-
domized search

1 Problem Formulation

In this paper we consider a generalized class of location-allocation problems, denoted as multi
facility location problem with generalized objects (MFLPO) [see Bischoff and Klamroth,
2007b], that can be specified as follows: A set of N new facilities x1, . . . ,xN must be
located in the R

2 plane to minimize the sum of M non-negative convex cost functions,
cm : R

2 → R, m = 1, . . . , M . Each cost function may model the expenses for serving one
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object from one of the new facilities. Note, that an object is not necessarily represented
by a point in the plane like an existing facility, but may model abstract destinations, or as
for example in the multi connection location problem discussed later in this section, flows
between points in the plane that have to be routed through the new facilities.

The allocation of objects to new facilities is established by the binary variables ymn,
m = 1, . . . , M , n = 1, . . . , N , where

ymn =

{
1 if object m is assigned to new facility n,

0 otherwise.

Since every object must be assigned to exactly one new facility, we require that
∑N

n=1 ymn =
1, m = 1, . . . , M . Therefore, the set of all feasible assignments Y ∈ {0, 1}M×N which satisfy
this restriction is given by

Y =
{

Y ∈ {0, 1}M×N : Y = (ymn)m=1,...,M
n=1,...,N

,
N∑

n=1

ymn = 1, m = 1, . . . , M
}

,

and the number of feasible assignments equals |Y| = MN . Since we do not consider addi-
tional constraints like new facilities with limited capacities, every object is simply assigned
to that new facility which minimizes its transportation costs.

The multi facility location problem with generalized objects (MFLPO) can be formulated
as

min

M∑

m=1

N∑

n=1

ymncm(xn)

s. t.
N∑

n=1

ymn = 1, m = 1, . . . , M

ymn ∈ {0, 1}, m = 1, . . . , M, n = 1, . . . , N

xn ∈ R
2, n = 1, . . . , N.

(MFLPO)

Bischoff and Klamroth [2007b] considered this generalized problem class and proposed two
complementary Branch & Bound methods, one branching on the continuous location vari-
ables, the other on the discrete assignment variables.

The well-known (uncapacitated) multi facility location-allocation problem (MFLP), also
denoted as (generalized) multi Weber problem is one instance of (MFLPO). It is obtained
by specifying the cost functions

cm(x) = wmd(am,x), ∀x ∈ R
2, m = 1, . . . , M,

where d : R
2 × R

2 → R is a distance function in R
2 and am ∈ R

2, m = 1, . . . , M are the
so called existing facilities with weights (demand units) wm ∈ R+. This facility location
problem was first formally stated by Cooper [1963], who also showed that it is neither convex
nor concave, but may have a huge number of local minima.

Until nowadays the MFLP has received a reasonable amount of attention. The litera-
ture which is most relevant for the scope and purpose of this paper is summarized in the
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following. For further reading, we refer to Love et al. [1988], Drezner [1995], Francis et al.
[1992] and Drezner and Hamacher [2002]. Due to the NP-hardness of this problem [see
Megiddo and Supowit, 1984], many solution methods have been proposed to determine
at least local optimal or near optimal solutions of large problem instances. The first
heuristics have been proposed by Cooper [1964]. Among other methods, the author for-
mulates the well-known alternate location and allocation algorithm. Love and Juel [1982]
propose five neighborhood search heuristics. For the corresponding neighborhood structure,
tabu search [Brimberg and Mladenović, 1996a] and a variable neighborhood search method
[Brimberg and Mladenović, 1996b] has been developed. Using an approximation result Chen
[1983] eliminates the assignment variables in the objective function and obtains a continu-
ous approximated problem that can be solved with a quasi-Newton method. Bongartz et al.
[1994] present a projection method for the (MFLP). Houck et al. [1996] develop a genetic al-
gorithm for (MFLP) and compare it with several heuristics to obtain a good initial solution
for a given (MFLP). A comparison and improvements of a number of heuristics for (MFLP)
are provided in Brimberg et al. [2000]. Although only applicable for smaller instances, sev-
eral exact solution methods have been developed for the (MFLP). Kuenne and Soland [1972]
present a Branch & Bound algorithm for (MFLP) under Euclidean distance functions that
is based on a partial enumeration of the assignment variables. The solution method by
Love and Morris [1975] for (MFLP) under rectangular distance functions applies set reduc-
tion results and a p-median solution method for the remaining subproblem. Since under
Euclidean distance functions, in an optimal solution of (MFLP) the convex hulls of the
subsets of existing facilities that are allocated to the same new facility are disjoint Rosing
[1992] proposes an enumeration of all combinations of partitions into N disjoined convex
hulls in order to obtain the optimal solution of (MFLP).

In this paper we mainly focus on another instance of (MFLPO), the multi-connection
location-allocation problem (MCLP). This location problem models the transfer of products
between processing facilities. On its transport, every product must pass one connection
location, of which a given number may be freely located in the plane. In order to minimize
the total transportation costs, we are interested in finding optimal connection locations.

More formally, let L existing facilities a1, . . . ,aL ∈ R
2 and M flows fm = (im, jm),

im, jm ∈ {1, . . . , L}, m = 1, . . . , M be given, such that each flow fm, m ∈ {1, . . . , M}
connects two existing facilities aim ,ajm

with an intensity of wm ∈ R+. Since all flows
must be routed through one of the connection locations xn ∈ R

2, n ∈ {1, . . . , N}, the
transportation cost caused by flow fm = (im, jm) is given by

cm(x) = wm

(
d(aim ,x) + d(x,ajm

)
)
, ∀x ∈ R

2,

where d : R
2 × R

2 → R is assumed to be a metric in R
2.

Altogether, the multi connection location problem can be formulated as

min
M∑

m=1

N∑

n=1

ymnwm

(
d(aim ,xn) + d(xn,ajm

)
)

s. t.
N∑

n=1

ymn = 1, m = 1, . . . , M

ymn ∈ {0, 1}, m = 1, . . . , M, n = 1, . . . , N

xn ∈ R
2, n = 1, . . . , N.

(MCLP)
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This location problem has previously been considered by Huang et al. [2005] for both the un-
capacitated and the capacitated case, where it is denoted as (un-)capacitated N -connection
location problem. Huang et al. [2005] show basic properties of (MCLP) and present a
location-allocation heuristic which is based on the alternate location and allocation al-
gorithm developed by Cooper [1963]. Bischoff and Klamroth [2007b] apply two different
Branch & Bound methods to the (MCLP).

The rest of this paper is organized as follows. In the following section, we give an outline
of the subproblem decomposition and the resulting alternate location and allocation algo-
rithm for the (MFLPO) in general, and the (MCLP) in particular. In all heuristics which
are described in Section 3, this procedure is applied as local search procedure. Each search
method, that is the multi-start method, K-neighborhood search, variable neighborhood
search, tabu search, simulated annealing, threshold accepting, the evolutionary algorithm
and the ant colony optimization algorithm, is discussed in a separate subsection. Compu-
tational results obtained with a huge set of randomly generated (MCLP) example problems
to compare the efficiency of the search methods are presented in Section 4.

2 Subproblem Decomposition

Suppose, x1, . . . ,xN ∈ R
2 is a given set of locations for (MFLPO). The remaining subprob-

lem of optimally allocating the objects is

M∑

m=1

min{cm(xn), n = 1, . . . , N}.

That is, the optimal objective value with respect to the given locations is simply obtained
by allocating that new facility to an object which minimizes its costs.

On the other hand, by fixing the assignment variables Y = (ymn)m=1,...,M
n=1,...,N

∈ Y, for the

objective function holds:

M∑

m=1

N∑

n=1

ymncm(xn) =
N∑

n=1

∑

m∈Mn

cm(xn),

where Mn := {m ∈ {1, . . . , M} : ymn = 1}, n = 1, . . . , N is the set of objects to which
the new facility xn is allocated. This subproblem is composed of the sum of N indepen-
dent single-facility problems, in which each new facility xn must be located to minimize∑

m∈Mn

cm(xn), n = 1, . . . , N . Since we restricted the cost functions cm, m = 1, . . . , M to
be convex, we also obtain convex objective functions and the global optimal location can
be found, e.g., by applying a quasi-Newton method.

It is well-known, that for (MFLP) the resulting single facility subproblems are generalized
Weber problems which are typically solved with the Weiszfeld algorithm [Weiszfeld, 1937]
for lp-distances p ∈ (1,∞). In case of the squared Euclidean distance d(x,y) = (y1 −x1)

2 +
(y2−x2)

2, the optimal location of the Weber problem equals the center of gravity of objects
with weights wm, positioned at the existing facility locations am, m = 1, . . . , M . It is given
by

x =

∑M
m=1 wmam∑M

m=1 wm

.
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Also (MCLP) simplifies to N independent generalized Weber problems. By setting

wij =

{
wm if there exists m ∈ {1, . . . , M} such that fm = (i, j),

0 otherwise,

for all i, j = 1, . . . , L, and since d is symmetric, for the (MCLP) objective function holds

L∑

i,j=1

N∑

n=1

yijnwij

(
d(ai,xn) + d(xn,aj)

)
=

N∑

n=1

L∑

i,j=1

(
yijnwij + yjinwij

)
d(ai,xn).

We thus obtain the sum of N independent Weber objective functions,

N∑

n=1

L∑

i=1

wid(ai,xn), where wi =
L∑

j=1

(
yijnwij + yjinwij

)
, i = 1, . . . , L.

Obviously, a solution of (MFLPO) allocating less than N new facilities results in a func-
tion value which is never better than the best function value of a solution, in which all N
new facilities are allocated to some objects. Additionally, since only the partition induced
by the assignment variables but not the order of the new facilities affects the function value,
the indices of the new facilities can be arbitrarily exchanged without changing the quality
of the solution. Based on these results, Cooper [1963] showed for the (MFLP) that for M
objects and N locations, for which the total number of feasible assignments is |Y| = MN ,
it is sufficient to consider a dominating set with a number of

S(M, N) =
1

N !

M−1∑

m=0

(−1)m

(
N

i

)
(N − i)M

assignments only. S(M, N) is the Stirling number of the second kind, it equals the number
of ways of partitioning a set of M elements into N nonempty sets.

One possibility to determine the optimal solution of (MFLPO) is enumerating all alloca-
tions and solving the corresponding single-facility subproblems. However, since the Stirling
number of the second kind increases exponentially with the size of the problem, this method
is applicable for very small problems only.

There are mainly two possibilities of restricting the heuristics to search in the dominating
subset. Whenever a solution is selected which is not in the dominating set, it could either
be modified or replaced. However, both options bias the search process in the sense that
some regions of the solution space are reached easier than others. Therefore, we prefer the
heuristics to search the whole set of feasible assignments Y with a total number of MN

elements. Although solutions may eventually be considered where less than N new facilities
are assigned, the probabilities are not tampered. Consequently, those search strategies
which do not concentrate the search on promising regions on their own are not advantaged,
and the search process of the others is not biased.

Based on the decomposition into N single facility location subproblems and the allocation
subproblem, respectively, Cooper [1963] developed the alternate location and allocation
algorithm for the (MFLP). Note that the alternate location-allocation algorithm (LA) as
outlined here can in fact be applied on any instance of the generalized class (MFLPO).
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Alternate Location-Allocation Algorithm (LA)

Input: Y : initial assignment

Do:
Location Step:

With respect to Y , solve the N single-facility location problems.
Let X denote the optimal locations.
Allocation Step:

With respect to X, solve the assignment problem.
Let Y denote the optimal assignment.

until a stopping criterion is satisfied.

Output: (X, Y ) with objective value F

Since LA is applied as a subroutine in all of the following heuristics, we denote for brevity
by (X, Y, F ) = LA(Y ), that LA is executed with initial assignment Y and returns the local
minimal solution (X, Y ) with objective value F . Further, (X, Y, F ) = LA(Y), where Y ⊆ Y
is a set of assignments, denotes that LA is applied on all assignments Y ∈ Y, and (X, Y )
with objective value F is the best local minimum found in all of the runs.

Obviously, it is also possible to initialize this procedure with location variables X and
exchanging the location and allocation steps, instead of supplying assignment variables Y
in the beginning. The algorithm has converged to a local minimum and terminates, if either
the locations do not change in a location step or the assignments remain the same in an
allocation step, respectively.

3 Heuristics

The search methods described in this section are sorted in an ascending order concerning
the level of complexity. In order to emphasize the specific search strategy, every heuristic
is outlined in a unified scheme, before certain details of the implementation are explained.
The reader is encouraged to compare the schematic descriptions among each other to find
similarities (e.g., the application of (LA) as local search procedure) and differences in the
way, in which the set of assignments is examined.

Remember that (LA) is initialized with an assignment only, and returns a whole local
optimal solution of the problem. All single facility subproblems are exclusively solved within
the LA procedure, not in the heuristics. Thus, all of the following search methods can
be considered as meta-heuristics, learning exclusively of the local optimal subset of the
solution space and providing only assignments that - according to their search strategy -
seem promising to result in a better local optimal solution.

Multi-Start Method

The random restart method, also known as the multi-start version of (LA) [see Cooper,
1964], is the simplest method performing the search concept described above. In order to

6



possibly obtain better local optimal solutions, (LA) is restarted multiple times with random
initial assignments. It can formally be described as follows:

Multi-Start Method

Input: I: number of assignments to evaluate

(X⋆, Y ⋆, F ⋆) = LA({Yi ∈ Y, randomly chosen, i = 1, . . . , I}).

Output: (X⋆, Y ⋆, F ⋆)

Neighborhood Search

Assuming that close to local optimal solutions even better local optimal solutions can be
found, it seems promising to examine the solutions in a specified neighborhood of the best
known local optimal solution. In this paper, we define the K-neighborhood of an assignment
as the set of all assignments which can be obtained by allocating exactly K existing facilities
to different new facilities. The set of assignments in the K-neighborhood of an assignment
Y is denoted by YK(Y ).

Neighborhood search strategies were first realized for (MFLP) in the heuristics H1 to H5
published by Love and Juel [1982]. Evaluating all assignments in the 2-neighborhood was
already classified as too time-consuming due to the exponentially increasing neighborhood
size. Thus, heuristics H4 and H5 search only a subspace of the 2-neighborhood which can
be obtained by allocating exactly two existing facilities to the same new facility, which must
be different to those that they were allocated to in the original solution. Therefore, both
heuristics are also denoted as two-opt switching methods in Houck et al. [1996].

In the schematic description below, a general K-neighborhood search algorithm is pro-
vided. In this version, all assignments in the K-neighborhood are evaluated. If at least one
improving solution has been determined, the neighborhood search is restarted with respect
to the best of them. If no superior solution was found, the neighborhood size is successively
increased up to a given upper bound Kmax. Alternatively it may also be possible to first
evaluate the assignments in all neighborhoods K = 1, . . . , Kmax, before moving to the best
of all improving assignments.

The number of neighboring assignments increases exponentially with the size of the neigh-
borhood, since the number of neighbors in the K-neighborhood is

(
M

K

)
(N − 1)K .

Additionally, most of the LA subroutines starting with an assignment in a close neighbor-
hood quickly return to the original local optimal solution. Altogether, the main drawback
of the K-neighborhood search heuristics is that, on the one hand they easily get stuck in
local optimal solutions if K is small, while on the other hand it is numerically impractical
to choose a large K, due to the exponentially increasing neighborhood size.

Variable Neighborhood Search
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K-Neighborhood Search

Input: Kmax: maximum neighborhood size
Y : initial assignment

(X⋆, Y ⋆, F ⋆) = LA(Y ), set K = 1.
While K ≤ Kmax do:

(X, Y, F ) = LA(YK(Y ⋆))
If F < F ⋆,

(X⋆, Y ⋆, F ⋆) = (X, Y, F ), set K = 1.
Otherwise, set K = K + 1.

Output: (X⋆, Y ⋆, F ⋆)

To intensify the search near local optimal solutions while also examining diversified so-
lutions in distant neighborhoods in reasonable time, variable neighborhood search was sug-
gested by Mladenović and Hansen [1997] as a natural variant of neighborhood search. Here,
instead of an exhaustive search in the given neighborhood, a predefined number of ran-
domly chosen neighbors is evaluated only. If no better solution can be found in the specified
subset of the current neighborhood, the neighborhood size is increased in order to enable
a diversified search. Consequently, this method quickly scans a large region of the solution
space and may even accidentally avoid local traps since not all neighboring solutions are
evaluated.

Variable neighborhood search has previously been proposed for facility location problems,
see Hansen and Mladenovic̀ [1997] and Brimberg and Mladenović [1996a,b] for applications
on the p-median problem and the MFLP, respectively.

In this paper we consider the version as described in Brimberg and Mladenović [1996b]
for (MFLP). It is interesting to note that Brimberg et al. [2000] reported this method to be
the superior search strategy for (MFLP) (in comparison to various other heuristics), which
gave consistently the best results in moderate computation time.

Variable Neighborhood Search

Input: I: number of assignments to evaluate per iteration
Kmax: maximum neighborhood size
Y : initial assignment

(X⋆, Y ⋆, F ⋆) = LA(Y ), set K = 1.
While K ≤ Kmax do:

(X, Y, F ) = LA({Yi ∈ YK(Y ⋆), randomly chosen, i = 1, . . . , I}).
If F < F ⋆,

(X⋆, Y ⋆, F ⋆) = (X, Y, F ), set K = 1.
Otherwise, set K = K + 1.

Output: (X⋆, Y ⋆, F ⋆)
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This algorithm can easily be extended by specifying additional parameters. For example,
a minimum neighborhood size Kmin ∈ Z+ could be specified, instead of starting in the
1-neighborhood only. Also the increase of the neighborhood size may be accelerated by
defining a step size ∆K ∈ Z+, instead of evaluating solutions in every neighborhood K =
1, . . . , Kmax. Additionally, the number of considered neighbors could be varied with the
size of the neighborhood instead of constantly evaluating I neighbors only. For further
extensions of this search method we refer to Brimberg and Mladenović [1996b].

Tabu Search

Both neighborhood search heuristics are greedy in the sense that they only accept a new
solution if it is better than the currently best known solution of the problem. They are
unable to climb out of local traps. To overcome this difficulty, tabu search can be applied,
which moves to the best solution in the specified neighborhood structure even if it is inferior
than the current solution. In order to attain new assignments, previous moves must be saved
in a tabu list of predefined length using the FIFO method. Feasible are only those moves
which are not in the current tabu list. Thereby, the method is able to move to inferior
solutions, expecting to reach a better solution in the end. Typically, the search is stopped
if a maximum number of moves without improvement has been performed.

The original concept of tabu search as an extension for other heuristics in order to enhance
the search strategy has originally been proposed by Glover [1986]. For further information
on tabu search, we refer to Glover and Kochenberger [2003].

Brimberg and Mladenović [1996a] consider a tabu search variant of the 1-neighborhood
search for (MFLP) which can be regarded as an enhanced tabu search version of the H3
heuristic by Love and Juel [1982], with the exception, that no LA local search is applied.
Instead, tabu search is supposed to realize the local search itself. That method, however,
gave poor results in comparison to other search strategies for (MFLP) [see Brimberg et al.,
2000]. For this reason and since we restrict ourselves to methods applying LA, searching the
assignments, and learning from the local optimal solutions of the problem only, we consid-
ered a different version which has previously been considered by Brimberg and Mladenović
[1996b] for (MFLP).

Only the assignment Y is stored in the tabu list. We do not explicitly forbid a whole
subset of the search space Y as it is typically the case in the tabu search method. However,
since Y is a local optimal assignment and all assignments are locally optimized by LA before
verifying its feasibility, we implicitly forbid the whole subset of assignments Y ∈ Y which
yield Y when applying the local search.

This tabu search strategy can be regarded as an adaption of the variable neighborhood
search within the tabu search framework. The inner loop in fact corresponds to the variable
neighborhood algorithm, with the difference that it may also move to inferior neighboring as-
signments if no better solution has been found. Once a maximum number of non-improving
steps has been reached, the search process terminates.

Simulated Annealing and Threshold Accepting Method

Simulated annealing is a different search concept which is also capable of escaping from
local minima. Its first application as a solution method for combinatorial optimization prob-
lems goes back to Kirkpatrick et al. [1983] and Cerny [1985]. Its ease of implementation, its
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Tabu Search

Input: I: number of assignments to evaluate per iteration
Jmax: maximum number of non-improving steps
Kmax: maximum neighborhood size
Y : initial assignment

(X, Y , F ) = LA(Y ), set K = 1, J = 0.
While J ≤ Jmax do:

While K ≤ Kmax do:

(X, Y, F ) = LA({Yi ∈ YK(Y ), randomly chosen, i = 1, . . . , I}).

If Y is not tabu and F < F ,

set (X, Y , F ) = (X, Y, F ), K = 1, J = 0, insert Y in the tabu list,
otherwise,

set K = K + 1.

Let (X̃, Ỹ , F̃ ) denote the best non-tabu solution

found in the K-neighborhoods of Y , K = 1, . . . , Kmax.

Set (X, Y , F ) = (X̃, Ỹ , F̃ ), set K = 1, J = J + 1, insert Y in the tabu list.

Output: (X⋆, Y ⋆, F ⋆), best local optimal solution determined

ability to escape local optima and convergence properties have made it a popular technique
over the last decades. Simulated annealing has also been applied on location problems [see
e.g. Ernst and Krishnamoorthy, 1999]. For an overview of theoretical development and ap-
plication domains of simulated annealing, we refer to the textbook van Laarhoven and Aarts
[1987].

At each iteration of the simulated annealing algorithm, an acceptance condition is verified
in order to decide whether to move to a new solution or to continue the search from the cur-
rent one. Improving solutions are always accepted, while inferior solutions are accepted with
a certain probability, in the hope of moving out of a local trap. Typically, this probability
is non-increasing with the number of iterations.

Simulated annealing has an analogy to the physical annealing of solids, which in general
reaches a lower state of energy if cooled sufficiently slow. The Metropolis acceptance crite-
rion [Metropolis et al., 1953], which models the change of states in thermodynamic systems,
is used to decide whether moving to inferior solutions is feasible. Therefore, the parameter
which controls the probability of accepting non-improving solutions, given by the Boltzmann
factor exp (−∆E/T ), is denoted as temperature T . In terms of thermodynamic systems, ∆E
denotes the change in energy, where in the optimization method it is the difference between
the current objective value F and the objective value of the new solution F .

In order to implement a cooling schedule which does not depend on absolute objective
values, we implemented a slightly different acceptance condition than the one that is typi-
cally used in simulated annealing. Instead of the absolute difference between the objective
values, we selected the relative difference ∆F = (F −F )/F . A new solution is thus accepted
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with the probability

P =

{
1 if F < F ,

exp
(
−∆F

T

)
otherwise.

where T is the current temperature. Starting with an initial temperature Tmax, it is succes-
sively reduced by a constant factor λ ∈ (0, 1) until a lower bound Tmin is reached and the
algorithm terminates.

Simulated Annealing / Threshold Accepting Method

Input: Tmax: initial temperature
Tmin: final temperature
Kmax: maximum neighborhood size
Y : initial assignment
acceptance condition
cooling schedule

(X, Y , F ) = LA(Y ), set T = Tmax.
While T ≥ Tmin do:

(X, Y, F ) = LA(Y ∈ YK(Y ), K ∈ {1, . . . , Kmax}, randomly chosen).
If the acceptance condition is satisfied,

set (X, Y , F ) = (X, Y, F ).
Update T according to the cooling schedule.

Output: (X⋆, Y ⋆, F ⋆), best local optimal solution determined

The threshold accepting method [Moscato and Fontanari, 1990] is a search strategy which
is strongly related to simulated annealing. In fact, both methods only differ in the acceptance
condition. In the threshold accepting method, the current solution with objective value F
is replaced by the new solution with objective value F , if F − F ≤ T , where T also is a
deterministic value which is typically non-increasing with the number of iterations. As in
the simulated annealing method, we replaced F −F by the relative difference ∆F . In terms
of probabilities, our threshold acceptance condition can therefore be specified as follows. A
new solution is accepted with the probability

P =

{
1 if T ≥ ∆F ,

0 otherwise,

where T is the threshold in the current iteration. In comparison to simulated annealing, only
few applications of the threshold accepting method are reported [Glover and Kochenberger,
2003]. We applied both simulated annealing and the threshold accepting method on the
(MCLP), see Section 4 for parameter settings and the results.

Evolutionary Algorithm

In contrast to the previous heuristics, we now consider population-based search strategies.
Here, a whole set of solutions is evaluated and observed simultaneously in order to gather
more information about the solution space.

11



The denotation evolutionary algorithm is an umbrella term for all heuristics which sim-
ulate a neo-Darwinian evolutionary process. Besides the well-known genetic algorithm
[Holland, 1975] there exist other evolutionary algorithms having slightly different features
and key aspects. Among others, there is the memetic algorithm [Moscato, 1989], a hybrid
method which basically is obtained by combining a genetic algorithm with a local search
procedure. Since specific concepts of several subclasses are aggregated in the heuristic ex-
plained below, we decided to use the general naming.

All evolutionary algorithms have in common that they examine a whole set of solutions
in parallel in each iteration. According to their fitness, which typically depends on their
objective values, solutions are selected for recombination, assuming that a composition of
good elements eventually yields even better solutions. In order to successively improve
the quality of the whole set, inferior solutions are rejected and replaced by new, typically
better ones. New solutions can additionally be mutated, that is, with a certain probability,
every element may be changed randomly in order to preserve a reasonable level of diversity
and to escape from sub-optimal regions. Characteristic of the genetic algorithm is that
there is a clear distinction between the genotype and the phenotype of a solution. The
genotype is typically a representation of the solutions in a different alphabet, most frequently
binary values, while the phenotype denotes their original representation. The evolutionary
operators are applied on the genotype, assuming that correlations among the solutions can
be exploited which could not have been identified in the original representation.

Many evolutionary strategies have been applied on location problems. For example,
Jaramillo et al. [2002] evaluates the performance of genetic algorithms for the (un-)capaci-
tated fixed charge problem, the maximum covering problem and the medianoid and centroid
problem. Genetic algorithms have also been developed for location problems in the contin-
uous space. Recently, a genetic algorithm is applied as a subroutine in a solution method
for Weber problems in the presence of barriers [Bischoff and Klamroth, 2007a]. For useful
references on evolutionary algorithms in general, and genetic algorithms in particular, we
refer to Reeves [1997].

Similar to our evolutionary algorithm, the genetic algorithm proposed by Houck et al.
[1996] for the (MFLP) performs LA in order to improve the quality of every solution. The
main difference to our evolutionary algorithm is that, besides the generalized problem class
(MFLPO), Houck et al. [1996] use the coordinates of the new facilities in the continuous
space as a representation of an individual, while we suggest to consider the assignment
variables instead. Note, that both sets of variables are completed to solutions by the LA
procedure, only the order of the location and allocation step must be chosen accordingly.
However, the two different representation schemes entail the application of other recombi-
nation and mutation operators which results in completely different search strategies.

We decided to use integer numbers to represent the assignment variables. For example,
the vector (1, 2, 1, 3, 2) corresponds to the assignment variables

ymn =

{
1 if (m, n) ∈ {(1, 1), (2, 2), (3, 1), (4, 3), (5, 2)},

0 otherwise,

for all m = 1, . . . , 5, n = 1, . . . , 3.
Concerning the selection operator, we applied tournament selection, which is implemented

as follows. A subset of I ≤ I assignments is randomly chosen from the current set of assign-
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Evolutionary Algorithm

Input: I: number of assignments considered simultaneously
J : number of assignments to evaluate per iteration
selection, recombination, mutation operators
reinsertion operator
stopping criterion

(Xi, Yi, Fi) = LA(Yi ∈ Y, randomly chosen), i = 1, . . . , I.
Do:

Apply selection, recombination and mutation operators

to determine a set of new assignments Y 1, . . . , Y J .

(Xj , Y j , F j) = LA(Y j), j = 1, . . . , J .
Apply reinsertion operator to replace some assignments Yi

by new assignments Y j , i ∈ {1, . . . , I}, j ∈ {1, . . . , J}
until the stopping criterion is satisfied.

Output: (X⋆, Y ⋆, F ⋆), best local optimal solution determined

ments, out of which the best assignment is then selected for recombination. Tournament
selection is a rank-based operator, since the actual objective values are neglected. In order
to obtain J (not necessarily different) assignments for recombination J tournaments are
performed per iteration. Note that it is not mandatory to choose J ≤ I.

The selected assignments are pairwise recombined using uniform crossover. Here, for each
pair, a binary crossover mask mcross ∈ {0, 1}M is stochastically generated, using a Bernoulli
distribution with a parameter pcross ∈ (0, 1). All elements m ∈ {1, . . . , M} for which mcross

equals one are exchanged. Other crossover operators, as for example single- and multi-point
crossover exhibit a strong positional bias, meaning that they imply correlations among the
position of a gene and its value. However, since in this type of problem no information can
be drawn from the number of an object for its allocation, we decided to use the uniform
crossover. The same holds for the mutation operator. Also mutation is implemented using
a stochastically generated mask on the basis of a Bernoulli distribution with a parameter
pmutate ∈ (0, 1), the so-called mutation mask mmutate ∈ {0, 1}M . Every element m ∈
{1, . . . , M}, for which mmutate equals one, is set to a random value n ∈ {1, . . . , N}, using
the uniform distribution. Additionally pmutate could be varied during the search process in
order to augment the exploration in the beginning, and to intensify the search near good
solutions in the end of the algorithm.

After applying LA on the new assignments, the J best of them replace the J worst of
the previous set of assignments, J ≤ J . By requiring J < min{I, J}, we ensure an elitist
strategy in the sense that the best-known assignment always remains in the current set.

The algorithm terminates if the best known solution could not be improved within a given
number of ∆T iterations. Additionally, a homogeneity termination condition is verified.
That is, it is examined whether the number of assignments in the current set which have
the same objective value as the best-known solution exceed a given threshold ∆I .
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Ant Colony Optimization Algorithm

While the evolutionary algorithm described above has a pool of solutions with elements
out of which new solutions are constructed, ant colony optimization algorithms select solu-
tions according to explicitly specified probabilities.

Inspired by real ants which use pheromone trails as a medium for communication to de-
termine shortest paths, Dorigo [1992] proposed the first ant-based algorithm, named ant
system for the traveling salesman problem (TSP). Out of this nature-inspired search strat-
egy, a metaheuristic approach for combinatorial optimization problems emerged in the last
decade, the so-called ant colony optimization [Dorigo and Caro, 1999].

The search concept can be described as follows. In the exploration phase, no dominating
pheromone trails exist and ants basically perform random search to find a solution. Its
counterpart is called exploitation phase, where the search is focused to the promising re-
gions of the search space, after good solutions have been determined and the corresponding
pheromone trails have been intensified.

This heuristic approach has been applied on various combinatorial optimization problems,
for an overview we refer to Dorigo and Stützle [2004]. Also for discrete location problems in
graphs, ant-based algorithms have been successfully applied [e.g. Venables and Moscardini,
2006]. A combination of an ant colony optimization heuristic with a local search procedure
is also suggested by Dorigo and Stützle [2004], which in fact gave excellent results in practice
[e.g. Stützle and Hoos, 2000]. The ant colony optimization algorithm presented in this paper
bears most similarities to the ant-based heuristic for the data clustering problem developed
by Kao and Cheng [2006]. To point out the strong interrelation between these two problems,
note that the cluster centers may be regarded as new facilities. While clustering is performed
by the ant-based algorithm, the quality of the clusters is evaluated in a separate procedure.

In order to apply ant colony optimization, the whole solution space, or, in our case,
the whole feasible set for the assignment variables, must be represented in a network. We
selected a representation that contains M decision nodes, each corresponding to one object
m ∈ {1, . . . , M}, having N outgoing arcs specifying to which new facility n ∈ {1, . . . , N}
this object is allocated. For an example, consider the network for M = 5 objects and N = 3
new facilities:

1 1 1 1 1
ր ց ր ց ր ց ր ց ր ց

1 → 2 → 2 → 2 → 3 → 2 → 4 → 2 → 5 → 2 → ©
ց ր ց ր ց ր ց ր ց ր

3 3 3 3 3

All of these ant-based algorithms have in common that they probabilistically construct
solutions by successively moving through the network. Nodes are selected according to tran-
sition probabilities that are computed by pheromone trail values and, optionally, additional
heuristic information. In detail, the transition probability of selecting node n at decision
node m, and thus assigning new facility n to object m, is given by

pmn =
τα
mn · ηβ

mn∑N
n=1 τα

mn · ηβ
mn

, m = 1, . . . , M, n = 1, . . . , N,

where τmn is the pheromone trail value and ηmn is the value containing the heuristic infor-
mation and α, β > 0 are two parameters wich determine the relative influence of each of the
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two factors.
Heuristic information was implemented in the original ant system algorithm for the TSP

[Dorigo, 1992], in order to provide additional information about the problem structure.
There, ηij is set to the distance between city i and city j in order to amplify the selection
of a closer city in each step. In (MFLPO) we can supply similar information about the
geometry of the problem. An estimate of the benefit of allocating a new facility to an object
is provided by setting

ηmn =
(
cm(x⋆

n)
)−1

, m = 1, . . . , M, n = 1, . . . , N,

where x⋆
1, . . . ,x

⋆
N are the local optimal locations corresponding to the best-known solution

determined by the LA local search procedure. We select these best-known locations in
order to intensify the search in the region corresponding to the best-known assignments.
Therefore, ηmn, m = 1, . . . , M , n = 1, . . . , N is updated each time an improving solution is
found.

In the ant colony optimization heuristic of Kao and Cheng [2006] for the clustering prob-
lem, heuristic information is implemented in a similar way. In particular, η is set to the
reciprocal of the Euclidean distance between the data point to the cluster center. In contrast
to our method, Kao and Cheng [2006] compute η in every single construction step of the
assignments with respect to the centers of the clusters defined so far, which increases the
probability to obtain compressed clusters with a lower objective value.

The idea of supplying additional information of the locations when selecting the alloca-
tions is a completely new concept in comparison to all previously described search strategies.
In order to examine the consequences of this extension, we evaluated two versions of our
search strategy, one in which we selected α = β = 1, such that both factors have equal
influence, and one without any heuristic information, i.e. α = 1, β = 0.

Ant Colony Algorithm

Input: J : number of assignments to evaluate per iteration
decision rule
update rule
stopping criterion

Set all assignments equiprobable.
Do:

By means of a decision rule based on the assignment probabilities,

determine a new set of J feasible assignments Y 1, . . . , Y J .

(Xj , Y j , F j) = LA(Y j), j = 1, . . . , J .

According to an update rule and wrt. (Xj , Y j , F j), j = 1, . . . , J ,
update the assignment probabilities

until the stopping criterion is satisfied.

Output: (X⋆, Y ⋆, F ⋆), best local optimal solution determined

Our ant-based algorithm can be further classified as an ant colony system, which is an
improved version of the original ant system [Dorigo and Gambardella, 1997]. The specific
features of this method are explained in the following.
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The decision rule which is used in the original ant system [Dorigo, 1992] is based exclu-
sively on the transition probabilities and is known as random proportional rule. In the ant
colony system, however, the pseudo-random proportional rule is applied. Here, in order to
augment the utilization of the gathered information, the node with the highest transition
probability is selected with probability q0 ∈ [0, 1]. Only with probability (1−q0) the random
proportional rule is applied. Obviously, by setting q0 = 0 the pseudo-random proportional
rule results in the random proportional rule.

Further, in this ant-based algorithm the pheromone trail values are updated according
to a strong elitist strategy. After constructing and evaluating a number of J assignments,
only the values of the currently best-known assignment are increased. Formally, let the
assignment with function value F ⋆ be given by

y⋆
mn =

{
1 if n = nm ∈ {1, . . . , N},

0 otherwise,
m = 1, . . . , M.

In ant colony systems the pheromone trail values are changed as follows:

τmnm
:= (1 − ρ) · τmnm

+ ρ · (F ⋆)−1, m = 1, . . . , M.

The parameter ρ ∈ [0, 1] models the intensification of the trail by the new pheromone with
respect to the existing amount. We decided to intensify the pheromone trail values of the
local optimal assignments obtained after applying the LA procedure. As an alternative, the
values of the original assignments could be intensified which were selected in the network
and used to initialize LA.

In order to augment diversification and to avoid selecting the same assignment multiple
times, the pheromone trail values of every constructed assignment is artificially reduced by
setting

τmnm
:= (1 − ξ) · τmnm

+ ξ · τ0
mnm

, m = 1, . . . , M,

where ξ ∈ (0, 1) is a given parameter value and τ0
mn are the initial pheromone trail values,

n = 1, . . . , N , m = 1, . . . , M . According to this formula, the pheromone trail values always
remain positive. Consequently, every assignment can be constructed with a positive prob-
ability. Note, that this is an analogy to the evolutionary algorithm, where the mutation
operator ensures that theoretically every assignment can be reached.

The search process is stopped if the best known solution could not be improved within a
given number of ∆T iterations.

4 Computational Results

All search strategies have been implemented in Matlab (Release 14) and have been evaluated
on a Sun Fire V20z machine with two AMD Opteron 2.4GHz CPUs and 8GB memory. We
selected (MCLP) as a special case of (MFLPO) for computational testing and chose the
squared Euclidean metric as underlying distance function. Here, the minima of the resulting
single facility Weber problems, i.e. the centers of gravity, can be computed with little effort,
in contrast to other distance functions as, for example the Euclidean metric, where typically
the Weiszfeld algorithm is applied to solve the single facility Weber problems. Therefore,
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larger test problems can be evaluated more quickly and we obtain a better comparison of
the search strategies, since the variations in the computation time for solving the location
subproblems play a minor role as it would be the case, if an iterative procedure had been
applied.

The set of test problems was generated as follows. Each coordinate of the existing facilities
al, l = 1, . . . , L was randomly selected from {0, . . . , 1000}. Between every pair of existing
facilities ai, aj , i, j ∈ {1, . . . , L}, i < j, a flow was defined with an intensity randomly
chosen from {5, . . . , 25}. The number of connection locations was set to ⌈1

2
L⌉. The problem

sizes range from five existing facilities with ten flows to 50 existing facilities with 1225 flows,
respectively. See Table 1 for an overview.

Table 1: Test Problem Sizes

Type M L N

1 10 5 3
2 15 6 3
3 21 7 4
4 28 8 4
5 36 9 5
6 45 10 5
7 55 11 6
8 66 12 6
9 78 13 7

Type M L N

10 91 14 7
11 105 15 8
12 120 16 8
13 136 17 9
14 153 18 9
15 171 19 10
16 190 20 10
17 231 22 11
18 276 24 12

Type M L N

19 325 26 13
20 378 28 14
21 435 30 15
22 595 35 18
23 780 40 20
24 990 45 23
25 1225 50 25

The performance of every method with respect to the problem sizes are presented in
Tables 2, 3, 4 and 5. Since five test problems of each size have been generated and each
of them has been solved ten times with every heuristic, the values in Tables 2, 3 and 5 are
averaged over a total of 50 runs.

In the tables, the methods are abbreviated as follows:

MS : Multi-Start Method
KNS : K-Neighborhood Search
VNS : Variable Neighborhood Search
TS : Tabu Search
SA : Simulated Annealing
TA : Threshold Accepting
EA : Evolutionary Algorithm
ACO : Ant Colony System without Heuristic Information
ACO+: Ant Colony System with Heuristic Information

We tried to select the parameter values in such a way that the computation times and
also the number of LA-calls of all search methods are within the same order of magnitude
in order to better compare their efficiencies. However, due to the different search concepts
and termination conditions, this was only manageable up to a certain degree. For example,
in the K-neighborhood search method the number of LA-calls is predefined and increases
exponentially with the size of the problem, while the evolutionary algorithm and the ant
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colony algorithm stops if no improving solution has been found after a given number of ∆T

iterations. The detailed parameter settings for all heuristics are discussed in the following.
Since the genetic algorithm starts with a whole set of assignments while the ant colony

algorithm and the random restart heuristic require none, the most equitable option is to
provide randomly generated initial assignments. In detail, to initialize the search, an as-
signment Y ∈ Y is given by

Y = (ymn)m=1,...,M
n=1,...,N

, ymn =

{
1 if n = nm,

0 otherwise,
m = 1, . . . , M, n = 1, . . . , N,

where nm ∈ {1, . . . , N}, m = 1, . . . , M are randomly selected.
In the multi-start method, a total number of I = 2M assignments is evaluated, each

assignment is randomly chosen as described above.
Due to the huge problem sizes, only the 1-neighborhood search could be evaluated. Note

that K = 1 already yields a total number of 29400 neighbors per assignment for the test
problems of type 25. For the 2-neighborhood search, the number of neighbors per assignment
increases to 431.8566 · 106. Even heuristic H5 of Love and Juel [1982], searching a subset of
the 2-neighborhood only, is not practicable since a lower bound on the number of assignments
in this subset is 1

2
(M − 1)M · (N − 2), which is 17.243100 · 106 for problems of size 25.

For variable neighborhood search, we selected parameters similar to the setting pro-
posed by Brimberg et al. [2000]. The authors reported variable neighborhood search to
be the superior search strategy for (MFLP) in comparison to the projection method by
Bongartz et al. [1994], the tabu search method by Brimberg and Mladenović [1996b], p-
median plus Weber [Hansen et al., 1998] and the genetic algorithm by Houck et al. [1996].
We set I = 1, such that one solution is evaluated in each neighborhood only and Kmax = M
in order to enable a diversified search.

Also in the tabu search method, only one solution is evaluated in each neighborhood,
i.e. I = 1. We reduced the maximum neighborhood size to Kmax = ⌊1

4
M⌋, and therefore

selected Jmax = 4 such that four consecutive non-improving steps to inferior local optimal
solutions are allowed. The three preceding local optimal solutions are stored in the tabu
list such that dropping back to recently considered local optimal assignments is impossible.

In the simulated annealing method, we selected a maximum neighborhood size of Kmax =
⌈1

3
M⌉. The initial temperature is set to Tmax = 1, and the final temperature to Tmin = 10−8.

Starting with Tmax, the temperature is reduced by the factor

λ = exp

(
log(Tmin) − log(Tmax)

2 · M − 1

)

in each iteration, until Tmin is reached and the termination condition is satisfied. Based on
this cooling schedule, a total number of 2M assignments are evaluated. The same parameter
settings were used for the threshold accepting method.

The number of simultaneously considered assignments in the evolutionary algorithm is
set to I = K. The same number of assignments is selected for recombination, i.e., J = K.
Recall that the tournament selection operator is applied, and therefore good assignments
may be selected multiple times. The number of competitors per tournament is set to
I = ⌈e−1 · K⌉. Further, the number of old assignments replaced by new ones is set to
J = min(⌈ 9

10
K⌉, K − 1), in order to guarantee that the best-known assignment never gets
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lost. Concerning the generation of the recombination and mutation masks, we selected
pcross = 1

3
and pmutate = 2

M
. The maximum number of iterations without improvement is

set to ∆T = 100 iterations. Finally, by specifying ∆I = ⌈19
20

K⌉, the algorithm stops if 95%
of the currently considered assignments have the same objective value as the best-known
solution.

In each iteration of the ant colony system, J = 1
2
K assignments are evaluated. The pa-

rameter for controlling the pseudo-random proportional rule is set to q0 = 1
10

. We selected
the evaporation rate ρ = 9

10
. Further, ξ, the factor for weakening already considered assign-

ments, is set to 1
10

. In the end of the first iteration, the pheromone values are initialized
by setting τ0

mn = MF ⋆, m = 1, . . . , M , n = 1, . . . , N , where F ⋆ is the function value of the
currently best-known local optimal solution. Concerning the exponents α and β, we con-
sidered the two different settings: α = 1, β = 0, ignoring the heuristic information (ACO),
and α = 1 = β = 1 using heuristic information (ACO+). Both versions terminate after
∆T = 100 iterations without improvement.

Table 2: Average Computation Time in Seconds.

MS KNS VNS TS SA TA EA ACS ACS+

1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.08 0.07
2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.09 0.08
3 0.03 0.04 0.02 0.02 0.02 0.02 0.03 0.13 0.11
4 0.05 0.05 0.04 0.03 0.03 0.03 0.04 0.17 0.14
5 0.09 0.11 0.06 0.05 0.05 0.05 0.08 0.30 0.25
6 0.14 0.13 0.09 0.08 0.08 0.08 0.11 0.35 0.29
7 0.25 0.28 0.16 0.12 0.14 0.14 0.27 0.55 0.39
8 0.32 0.36 0.22 0.17 0.18 0.18 0.28 0.61 0.45
9 0.50 0.66 0.38 0.31 0.30 0.30 0.49 1.32 0.88

10 0.69 0.80 0.44 0.39 0.36 0.36 0.55 1.10 0.88
11 0.96 1.36 0.68 0.54 0.51 0.50 0.94 1.45 1.12
12 1.33 1.49 0.77 0.61 0.64 0.64 0.70 1.56 1.11
13 1.78 2.52 1.23 0.94 0.92 0.91 1.51 2.60 1.96
14 2.39 2.80 1.58 1.23 1.16 1.16 2.00 3.15 2.02
15 3.07 4.93 2.06 1.46 1.54 1.52 2.61 3.51 2.56
16 3.77 4.85 2.55 2.18 1.84 1.85 2.99 4.70 3.11
17 6.14 8.29 3.84 2.99 2.87 2.87 4.00 6.91 4.41
18 9.52 12.41 5.96 4.74 4.27 4.27 5.55 9.06 5.26
19 14.77 18.47 9.34 7.77 6.24 6.28 7.35 14.87 9.20
20 20.39 25.62 13.99 9.61 8.76 8.72 9.32 18.78 11.05
21 29.09 39.88 18.23 13.60 12.46 12.31 11.70 22.47 14.80
22 64.31 81.92 41.03 33.06 29.22 29.29 27.06 58.42 32.15
23 129.05 152.29 80.66 61.20 49.29 49.16 35.40 84.78 56.06
24 239.10 333.28 143.45 134.75 91.73 92.32 62.55 171.60 101.35
25 408.72 548.10 262.79 226.75 153.28 153.88 88.20 230.73 148.68

avr 37.46 49.63 23.58 20.10 14.64 14.67 10.55 25.57 15.94
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Table 3: Average Number of LA-Calls.

MS KNS VNS TS SA TA EA ACS ACS+

1 20 25 15 17 21 21 18 207 206
2 30 40 22 21 31 31 14 211 212
3 42 96 32 40 43 43 65 214 214
4 56 115 47 49 57 57 68 248 223
5 72 198 57 68 73 73 117 321 320
6 90 208 66 84 91 91 146 325 322
7 110 356 89 96 111 111 277 354 325
8 132 418 114 120 133 133 268 387 345
9 156 640 144 162 157 157 379 564 491

10 182 732 153 191 183 183 396 471 490
11 210 1064 191 221 211 211 576 507 491
12 240 1093 182 228 241 241 393 502 463
13 272 1582 254 282 273 273 739 637 647
14 306 1615 284 314 307 307 883 686 600
15 342 2564 317 328 343 343 1030 667 641
16 380 2321 357 451 381 381 1077 831 758
17 462 3316 408 486 463 463 1190 950 839
18 552 4263 526 616 553 553 1355 981 796
19 650 5392 639 837 651 651 1569 1312 1159
20 756 6514 800 861 757 757 1637 1430 1163
21 870 8961 845 1015 871 871 1793 1363 1262
22 1190 13173 1132 1472 1191 1191 2903 1996 1797
23 1560 19076 1672 2062 1561 1561 2744 2257 2224
24 1980 32166 1996 3143 1981 1981 3713 3008 2775
25 2450 42861 2823 3869 2451 2451 3931 2912 3039

avr 524 5952 527 681 525 525 1091 934 872

In Table 2 the computation times of all methods with respect to the different problem
sizes are presented. Each value is averaged over the five test problems and the ten runs.
We can see that the 1-neighborhood search has the peak values for all larger problem sizes
and also the multi-start method has a relatively high computation time. The evolutionary
algorithm terminates relative quickly and reaches the lowest average computation time of
10.55 seconds. All other methods took about 150 to 250 seconds for the largest problem
instances on the average and about 15 to 25 seconds on the total average. The relatively
high computation times of the ant colony optimization method (ACO and ACO+) for
the smaller problem sizes can be explained by its termination condition. Although the
best-known solution is found in relatively view iterations, an additional number of 100
iterations without improvement, and the corresponding 100K LA-calls (cf. Table 3) must
be performed before the termination condition is satisfied. The evolutionary algorithm has
little computation times for the smaller scale problems, since besides this stopping criterion
it additionally terminates at a certain degree of homogeneity, which is quickly reached for
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Table 4: Total Number of Times the Best-Known Solution was Found.

MS KNS VNS TS SA TA EA ACS ACS+

1 44 47 43 42 46 45 41 50 50
2 48 28 47 37 45 47 37 50 50
3 47 39 45 38 46 43 39 50 42
4 36 24 33 19 28 30 14 41 34
5 30 43 46 45 48 49 38 50 48
6 36 24 44 44 47 45 31 50 46
7 32 25 40 32 34 34 39 44 37
8 16 14 33 28 22 23 24 38 30
9 7 16 29 22 21 22 16 33 31

10 16 10 36 32 38 40 16 45 34
11 8 6 11 15 16 8 8 17 21
12 9 10 34 34 43 45 18 45 37
13 8 6 36 21 25 26 22 35 20
14 9 17 33 34 32 31 27 35 33
15 2 1 29 19 26 24 11 26 19
16 1 0 11 16 6 6 8 11 15
17 2 13 29 28 29 28 19 27 27
18 3 6 33 29 24 24 13 19 16
19 0 1 5 7 2 5 2 7 12
20 0 1 11 7 6 6 5 8 7
21 0 2 16 21 14 19 7 12 10
22 0 3 3 6 6 0 6 0 1
23 0 3 4 8 2 4 2 2 5
24 0 0 2 3 1 0 1 0 0
25 0 0 3 6 1 1 1 0 1∑

354 339 656 593 608 605 445 695 626

smaller scale problems.
Note that the average number of LA-calls displayed in Table 3 is not always proportional

to the computation times. This is due to the fact that LA quickly terminates if it is ini-
tialized with an assignment near a local minimum, as it is the case in the 1-neighborhood
search, for example, while it typically takes several iteration steps when starting with an ar-
bitrary assignment, like, e.g., in the multi-start method. A high number of LA-calls together
with a relatively low computation time consequently is an indication that the LA-procedure
drops back to the original local optimal solution without gathering new information about
the search space in the corresponding LA-calls. Note that the population-based heuristics
execute the local search relatively often. Especially the evolutionary algorithm executes
LA most frequently (besides the 1-neighborhood search), although it has the lowest average
computation time.

Since we evaluated five different test problems of each size ten times, every method may

21



Table 5: Average Relative Difference in Percent of All Objective Values to the Best-Known
Objective Value.

MS KNS VNS TS SA TA EA ACS ACS+

1 0.035 0.044 0.108 0.508 0.154 0.061 0.233 0.000 0.000
2 0.005 0.622 0.018 0.652 0.104 0.052 0.301 0.000 0.000
3 0.016 0.192 0.020 0.077 0.017 0.074 0.098 0.000 0.039
4 0.032 0.121 0.040 0.200 0.063 0.056 0.182 0.012 0.044
5 0.044 0.221 0.007 0.161 0.011 0.001 0.039 0.000 0.018
6 0.004 0.651 0.003 0.099 0.019 0.054 0.102 0.000 0.071
7 0.045 0.313 0.011 0.107 0.036 0.035 0.053 0.002 0.036
8 0.016 0.342 0.010 0.114 0.095 0.080 0.073 0.035 0.074
9 0.057 0.433 0.040 0.233 0.155 0.177 0.211 0.108 0.156

10 0.049 0.792 0.032 0.209 0.068 0.052 0.114 0.032 0.080
11 0.041 0.340 0.057 0.091 0.054 0.063 0.122 0.045 0.083
12 0.023 0.457 0.001 0.018 0.000 0.001 0.077 0.000 0.061
13 0.108 0.433 0.031 0.165 0.138 0.133 0.164 0.063 0.182
14 0.036 0.345 0.006 0.113 0.027 0.043 0.076 0.003 0.105
15 0.045 0.395 0.024 0.159 0.036 0.038 0.117 0.071 0.098
16 0.111 0.433 0.013 0.090 0.031 0.019 0.126 0.039 0.134
17 0.026 0.221 0.008 0.075 0.013 0.017 0.057 0.014 0.041
18 0.050 0.280 0.009 0.042 0.019 0.019 0.070 0.041 0.065
19 0.040 0.239 0.027 0.088 0.080 0.070 0.070 0.074 0.075
20 0.093 0.294 0.019 0.107 0.054 0.051 0.067 0.083 0.108
21 0.055 0.258 0.008 0.049 0.032 0.028 0.065 0.048 0.082
22 0.048 0.205 0.017 0.053 0.029 0.029 0.044 0.019 0.057
23 0.076 0.207 0.024 0.037 0.040 0.037 0.047 0.030 0.071
24 0.096 0.174 0.023 0.046 0.039 0.031 0.043 0.031 0.066
25 0.068 0.161 0.015 0.037 0.027 0.024 0.035 0.026 0.077

avr 0.049 0.327 0.023 0.141 0.054 0.050 0.104 0.031 0.073

altogether obtain up to 50 times the best-known solution per problem size. Examining
the values Table 4, it is not possible to definitely specify a superior search strategy, that
outperforms all others. Especially the ability of population-based heuristics (EA, ACO,
ACO+) to recombine good solutions has less effect on the solution quality than we expected.
We thus can say that attending a whole set of good solutions simultaneously not necessarily
leads to better solutions for this kind of (MFLPO). In combination with a local search
method, a diversified search starting from one best-known solution may in fact be preferred.
This effect can clearly be recognized by the results of the evolutionary algorithm. Mostly
based on the recombination of good solutions, this method examines many assignments (cf.
Table 3), but most likely quickly drops back to already examined local minimal solutions (cf.
Table 2). It consequently does not reach the best-known solution as often as other methods
that are based on a rather diversified search, as, for example, the variable neighborhood
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search.
On a closer look, we can see that only ACO and ACO+ reached the best-known solution

50 times, although for smaller scale problems, up to size six only. We further note that
ACO reached the best-known solutions most of the times, closely followed by the variable
neighborhood search, which, together with the tabu search method outperformed ACO for
larger problem instances.

The interesting effect that ACO reaches the best-known solutions more often than the
ant colony optimization method with heuristic information can be explained as follows.
Heuristic information guides the search in a greedy way to a good solution, thus, quicker
computation times can be reached (cf. Tables 2 and 3). However, the aspired aim is not
necessarily the global optimum, wherefore in these cases it is harder to find a better solution
than without exterior influence.

In all tables the values of simulated annealing and threshold accepting are extremely
similar. With the given problem data, both acceptance conditions, whether stochastically-
based or deterministic, yield the same results.

In Table 5, the average relative difference to the best known objective values are specified.
These values, given in percent, are computed as follows. Let F i

j be the objective values
obtained by a search method for the test problems j = 1, . . . , 5 of a fixed problem size in
the runs i = 1, . . . , 10. Let F ⋆

j , j = 1, . . . , 5 be the best-known solutions obtained for these
test problems by any of the heuristics. The corresponding value in Table 5 is given by

100 ·
1

5

5∑

j=1

1

10

10∑

i=1

F i
j − F ⋆

j

F ⋆
j

.

Most search methods have the peak values around the problem sizes of ten. Huang et al.
[2005] also noticed a decrease of the average relative difference for larger problem sizes in
the evaluation of the LA local search for (MCLP) We can explain this effect as follows. As
most heuristics determine the best-known solutions of the smaller-scale problems most of
the times, the corresponding relative differences are relative low. These values increase with
the size of the problem, since finding the best-known solution becomes more difficult. At a
certain size however, the objective values of (MCLP) are so huge, that the relative difference
of all determined local optimal solutions becomes lower again.

According to the values in Table 5, we see that all search methods obtained solutions
with function values very close to the best-known values. Even the worst value, obtained
by the 1-neighborhood search with test problems of size ten has, in the average, less than
one percent relative distance to the best-known solutions. At a closer look we can see that
variable neighborhood search, closely followed by ACO, reached the best results on the
average.

5 Conclusions

We have outlined various randomized search methods for a generalized class of location-
allocation problems that we denote as multi-facility location-allocation problem with gen-
eralized objects (MFLPO). Since every instance of this class can be decomposed into an
assignment problem and a set of single-facility location problems, a well-known iterative
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search method, known as alternate location-allocation algorithm can be applied. All consid-
ered heuristics use this local search procedure as a subroutine to complete and to improve
examined solutions. In fact, they only pass arbitrary assignments to the local search sub-
procedure, which in turn delivers a local optimal solution of the problem. We described the
different search strategies in an ascending order concerning the level of complexity. Partic-
ular similarities and distinctive differences are outlined in order to provide a unified view
on these randomized search methods.

A large set of randomly generated instances of the multi-connection location-allocation
problem (MCLP) under squared Euclidean distances is used for evaluation. The results show
that population-based methods do not perform significantly better than other methods, as,
for example variable neighborhood search. We therefore conclude that a well-balanced
mixture of an intensified search in the interesting regions of the search space on the one
hand, and a diversified search over the whole solution space on the other hand is more
important than the plain ability of combining good solutions.

Furthermore, we evaluated two versions of an ant colony optimization algorithm, which
differ solely in attending or neglecting heuristic information, a feature of ant-based algo-
rithms to further intensify the search in promising regions. The ant-based algorithm which
used the heuristic information needed less evaluations and computation time to converge,
but also obtained inferior results than the version neglecting it. Thus can draw the conclu-
sion that even though externally influencing the search by supplying heuristic information
may be useful to guide the search to locally improved solutions, it is an unwanted feature,
if additionally a local search procedure is applied.

Although we only evaluated (MCLP) in this paper, the allocation search methods are
described for (MFLPO) in general, and therefore can be applied on all its instances. Also
a transfer to related problems, as for example, clustering problems, is viable.
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