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Abstract. In this paper we discuss the analysis of trusted platform communication.
While the trusted platform module itself is considered reasonably tamper resistant,
the communication channel between this module and the rest of the trusted platform
turns out to be comparatively insecure. Passive attacks can be mounted on the com-
munication interface with fairly inexpensive equipment and allow eavesdropping of
critical information. Performing active manipulation on the communication bus could
provide an even stronger attack scenario, resulting in a circumvention of the whole
chain of trust provided by trusted platforms. At this stage, our research has been
limited to passive attacks.

1 Introduction

While many security problems can be resolved by hardened operating systems and appli-
cations, some issues require hardware means – it is, for example, impossible to implement
a trusted boot process in pure software [2, 4]. Also, as some applications depend more and
more on other (remote) platforms, trust relationship between several platforms need to be
established. This too is difficult to achieve in software.

To address these problems, the Trusted Computing Group (TCG) has developed an
industry standard for security hardware usable in a wide range of platforms and applications.
This standard is supposed to serve as a relatively cheap root of trust that the operating
system and higher level applications can build upon, both for hardening the platform and
for establishing remote trust.

To this end, a low performance cryptographic coprocessor, the Trusted Platform Module
(TPM), is added to the corresponding platform. Besides a number of standard cryptographic
operations, the TPM can also be used to make provable statements about the host platform,
such as the properties of certain keys or the boot sequence.

In some applications, such as Grid Computing or Digital Rights Enforcement, this implies
that the platform owner has an interest in lying about some properties. Thus, we face an
attacker that may have access to the hardware itself rather than being restricted to a pure
software attack.

While the TPM itself can be expected to be reasonably secure against standard attacks,
the communication channel between TPM and CPU is mainly unsecured. The TPM is
usually connected using the Low Pin Count (LPC) bus, which can be monitored using
relatively inexpensive equipment.

As the TPM learns all about its environment through this channel, and communicates
critical information (it can, for example, not perform any bulk encryption by itself and
thus needs to transfer keys to the CPU), this gives an interesting point to attack a trusted
computing architecture.

In this paper, we investigate the possibilities to attack the communication channel be-
tween the TPM and the CPU. For the time being, we restrict ourselves to passive attacks,
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i.e., we only monitor the communication. This way, we can get access to some key material,
and analyze an application’s precise usage of the TPM.

The next step would be to perform active attacks, i.e., modify the communication to fool
the TPM about the environment it is operating in. Such an attack may be able to completely
circumvent the remote trust concept, as the TPM itself has no reliable information on
the platform anymore, and may convince a TPM to reveal keys it should normally keep
concealed.

Related work Physical probing attacks are common to smart cards and other tamper resistant
devices; e.g., to probe memories and data busses inside a smart card [1, 5]. The attacks we
describe are far easier to perform, as no special equipment is needed and external access to
a TPM is sufficient, and still can have big implications. Of course, by de-packaging a TPM
and probing it internally, the Endorsement Key, which in the security model of the TCG
should never leave the TPM, could be extracted.

Others have analyzed trusted platform communication, but not as a means of attack. In
order to write a Linux device driver for the Infineon TPM, people of the Reliable Software
Group at UCSB have used a logical analyzer on the LPC bus to adapt the existing Atmel
driver [15].

Organization of this paper The outline of this paper is as follows. In Section 2, we start with a
description of our experiment setup for passive attacks. In Section 3, we discuss all aspects of
the analysis of trusted platform communication. We propose some countermeasures against
passive attacks in Section 4. Section 5 lists our plan for future work, highlighting some ideas
regarding active attacks. Ultimately, we conclude in Section 6.

2 Experiment setup for passive attacks

At the moment various desktop computers and laptops are available on the market with
a TPM; for an extensive list of TPM manufacturers and implementations we refer to [9].
The major vendors are HP/Compaq, IBM and Intel – all founding members of the Trusted
Computing Platform Alliance (TCPA), the predecessor of the TCG – as well as Dell. HP
ships its machines with an Infineon TPM, while Intel sells a number of motherboards that
optionally are available with this same module. IBM on the other hand used an Atmel module
in older models, and currently uses a National Semiconductor TPM integrated into a Super
I/O chip. Finally, Dell utilizes a Broadcom gigabit ethernet controller with integrated TPM.

For our experiment we used an IBM ThinkCentre M50, mainly for two reasons. First,
the Atmel TPM in it is installed on a daughter board, so not on the mainboard or integrated
into another chip. Therefore its communication interface is easily accessible. Furthermore,
IBM machines have good Linux support; the TPM driver written by IBM [6] is included
in the latest mainstream kernel, and IBM’s Linux Technology Center is also developing an
open source TCG Software Stack (TSS), called TrouSerS [7].

An Agilent 16900 Logic Analysis System was used to analyze the communication. As
the daughter board is mounted on the motherboard using a connector and the pins of this
connector are relatively far apart, it is very simple to put probes on the different signals.

In a first phase we used a modified version of the Linux TPM device driver to understand
the transfer protocols involved and identify the meaning of the different signals on the
communication bus; e.g., to determine the assignment of the 4 data bits on the bus. In this
way we were able to log all commands the TCG Software Stack sends to the TPM, and the
responses it gets back.

In a second step we observed the trusted platform communication during startup. How-
ever, during the boot process too much traffic is generated on the communication bus to
store all of it, as the BIOS firmware is loaded over the same bus. The logic analyzer can
trigger on the first packet to the TPM, and fill its memory from that moment in time, but
there is no feature to only log TPM packets – so selectively store datagrams. It is possible
though, but not really practical, to startup the PC many times, and use a different trigger



condition to ultimately capture all LPC traffic during startup; post processing of this data
is required to filter out the TPM communication. We considered two options to efficiently
address the problem:

– Implement a dedicated logging device that only logs communication addressed to the
TPM. Such device has to analyze the packets on the bus, and only store the ones from
and to the TPM. The logged data – latter or simultaneously – has to be sent to a
computer for further analysis.

– Add a filtering device in front of the logic analyzer (i.e., pre processing). This device
will only forward packets to the logic analyzer if they satisfy certain criteria, namely the
TPM as destination.

Boths solution can be implemented in software – on a microcontroller – or in hardware –
on a FPGA. We choose the second solution because of its simplicity, and implemented this
functionality in HDL on a Xilinx Virtex-II Pro.

3 Analysis of trusted platform communication

The trusted platform communication can be analyzed at – what can roughly be called –
three levels (or layers in network stack terminology).

Application level. The TCG has standardized the communication with the trusted plat-
form module: commands, responses, packet format, authentication protocols, etc. The
analysis at this level is generic and not limited to a certain experimental setup.

Transport level. How the packets are transferred is platform and manufacturer dependent.
Most TPM manufacturers use the Low Pin Count bus interface to do so, and therefore
are only suited for the PC client platform. Atmel additionally provides a System Man-
agement Bus (SMBus) interface on its older TPMs, whereas the newer modules no longer
do so. Atmel’s module for embedded devices only uses this second interface, because such
devices typically lack a LPC bus. Therefore the analysis of this layer depends upon the
TPM manufacturer, but is rather similar for all LPC bus based implementations.

Physical level. It is up to the PC manufacturer how to actually install a TPM in its
machines. Some mount it on the motherboard, or use one that is integrated into an
other peripheral, others want it to be a build option and use a daughter board. Here,
the analysis is focussed on a specific TPM installation.

In the next sections we provide an analysis at these different levels, starting from the lowest
level. The installation of the Atmel TPM in our experiment PC is used as an example.

Fig. 1. TPM daughter board in IBM ThinkCentre M50. The chip U2, in the middle of the board,
is a Atmel TPM. Right of it, IC U6 is an Asset Identification EEPROM. All communication to the
motherboard happens over the 30 pin connector at the bottom.



Table 1. Interconnection of Atmel TPM and daughter board connector. To avoid any confusion,
LAD3 is connected to the connector pin 9, LAD2 to pin 22 and so forth. Some signals are connected
to the ground level because their functionality is unused; of course GND originates from connector
pin 1.

TPM Pin Name Function Connector Pin

GND Ground 1
LAD[3:0] LPC Command, Address and Data 9,22,8,23
LFRAME# LPC Frame Indicator 28
LCLK 33 MHz PCI Clock 29

LRESET# System Reset (active low) 5
SIRQ Serialized IRQ 11
VBB Battery Input 16
VCC 3.3V Supply Voltage 18

CLKRUN# Clock Control GND

IOA Input/Output A (SMBCLK) GND

IOB Input/Output B (SMBDAT) unknown
IOC Input/Output C GND

Xtamper External Tamper Detect GND

Xtal1 32.768 kHz Crystal GND

Xtal2 32.768 kHz Crystal unknown

3.1 Trusted platform daughter board

Some reserve engineering effort is needed to determine the electrical specification and func-
tion of all signals on the daughter board. The daughter board inside the IBM ThinkCentre
M50 is a simple circuit board containing 2 chips (see Figure 1):

– Atmel AT97SC3201: Trusted Platform Module, TCG/TCPA version 1.1b compatible.
– Atmel AT24RF08C: Asset Identification EEPROM with dual access (wired serial port

and wireless RFID port). While placed on the same daughter board, this is in fact
unrelated to the trusted computing architecture.

In Table 1 we describe how all pins of the Atmel TPM are wired to the connector of the
daughter board. We start numbering the connector pins (as viewed on Figure 1) from the
left lower corner (this is pin 1), and continue counter clockwise (thus the upper left pin is
30). The interconnection on the PCB was determined using a multimeter.

Some of the features of the Atmel TPM are unused: power management (the bus clock
can normally be stopped using CLKRUN#), SMBus interface, and external tamper detection.
The TPM will still detect if it has been removed from the PC by monitoring the motherboard
battery (VBB). However, we suspect that it is possible to temporally remove the daughter
board by connecting it to an external battery.

For the pin configuration of the Atmel chip we refer to the latest version of the data
sheet [3]; the previous version, which was available when we did most of the reverse engi-
neering work, did not contain this information. The complete documentation is still only
available under a non-disclosure agreement.

3.2 Low Pin Count bus

From the analysis at the physical analysis it is clear that the LPC bus, and not the SMBus,
is used in our experiment machine to transfer TCG packets. This is the case in most other
implementations – especially as other TPM manufacturers only support the LPC bus. The
use of the LPC bus will even be made an obligation by the TCG and is being standardized
in the TCG TPM Interface specification.

The Low Pin Count interface specification [8] was developed by Intel for ISA-less PCs. It
offers a cost-effective and easy bus, with only 7 required (LAD[3:0], LFRAME#, LRESET# and
LCLK) and some optional signals (e.g., CLKRUN#). The bus use the PCI 33 MHz clock, and
allows various transfer protocols (memory, I/O, DMA, firmware memory and bus master).



Fig. 2. Typical LPC bus timing. CT/DIR indicates cycle type and direction, and TAR denotes
turn-around.

Data transfers on the LPC bus are serialized over a 4 bit bus. LFRAME# is used by the
host to start or stop transfers, and by peripherals to determine when to monitor the bus
for a cycle. The LAD[3:0] bus communicates address, control, and data information serially.
The general flow of cycles is visualized in Figure 2 and goes as follows:

1. A cycle is started by the host when it drives LFRAME# active, and puts appropriate
information on the LAD[3:0] signal lines.

2. The host drives information relative to the cycle, such a cycle type (memory, I/O, DMA),
read/write direction, and address.

3. The host optionally drives data, and turns the bus around to monitor the peripheral for
completion of the cycle.

4. The peripheral indicates the completion of the cycle by driving appropriate values on
the LAD[3:0] signal lines, and potentially drives data.

5. The peripheral turns the bus around to the host, ending the cycle.

The use of the LPC bus for trusted platform communication is currently not standard-
ized. In case of the Atmel TPM this is not mentioned in the publicly available data sheet
either, yet the Linux device driver (in combination with the logic analyzer) reveals that port
mapped I/O is used: I/O write cycles are used to send requests to the TPM, and I/O read
to get back the responses. The forthcoming TCG TPM Interface specification, on the other
hand, is said to standardize memory-mapped I/O over the LPC bus.

Table 2 gives the definition of all I/O cycle fields. The exact sequence of the fields for an
I/O read cycle matches the generic timing on Figure 2. For I/O cycles the address field is 16
bits (so 4 clock cycles), and the data returned is 1 byte (thus 2 clocks wide). A write cycle
is very similar: after the address is transferred, a data byte is sent, and the bus is handed
over to the TPM, which will add wait states until it is ready to turn around the bus.

The two I/O addresses in Table 2 are specific to the Atmel TPM, and were found in the
Linux device driver. The procedure to send and receive TCG datagrams over the LPC bus is
documented as well in this open source device driver. The chip does not support interrupts,
so the status of the device must be determined by polling. The transfer process more or less
goes as follows:

1. A TCG request is transferred using multiple I/O Writes to the TPM data port.
2. The device driver will repeatedly check the status (using I/O Reads of the status port)

to see if the TPM is still busy and when data is available.
3. Once data is available, the TCG response can be read byte by byte (using I/O Reads

from the data port). As the driver does not know the size of the response, it will always
check the status of the TPM to determine data is still available, before reading the next
byte.

4. The transfer has completed whenever no data is left.

3.3 TCG communication

At the command level, trusted platform communication is strictly standardized by the
Trusted Computing Group in various specifications. The Trusted Platform Module Main



Table 2. LPC I/O cycle field definitions. The value of LAD[3:0] is given in hexadecimal format, and
the 16 bit I/O address (represented with 4-digit hex code) is transferred with the most significant
nibble first. During the turn-around time LAD[3:0] will be driven to 1111 during the first clock,
and tri-state during the second clock. The TPM needs to assert wait states, and does so by driving
0110 (long SYNC) on LAD[3:0] until it is ready (so n− 1 clock cycles); when ready, it drives 0000

(1 clock).

Field # Clocks Description LAD[3:0]

START 1 Start of Cycle 0x0

Cycle Type/Direction
CT/DIR 1 I/O Read 0x0

I/O Write 0x2

Address
ADDR 4 TPM data port (Atmel specific) 0xE000

TPM status port (Atmel specific) 0xE001

TAR 2 Turn-Around 0xFF

Synchronize
SYNC n Ready 0x0

Long Wait 0x6

Data byte
DATA 2 least significant nibble first Data[3:0]

most significant nibble next Data[7:4]

specification [12] describes the functionality of the TPM: design principles, cryptographic
algorithms and protocols, data structures, commands, etc. In the latest version [14], the
main specification has been broken up in three separate parts again, without significantly
changing the structure.

The PC Specific Implementation specification [13] documents how a trusted platform
module is integrated into the Personal Computer platform, and mainly focusses on the
requirements for the BIOS, which forms the Core Root of Trust for Measurement (CRTM)
in case of the PC platform. The TCG is working on an updated version of this document
for the conventional BIOS, but is also developing a standard for EFI (Extensible Firmware
Interface) based platforms.

For our analysis of the LPC interface, we used a single, fixed command, that queries
the trusted platform module for certain information (e.g., manufacturer, version, algorithm
support): TPM GetCapability. This command is available even for deactivated TPMs and
thus is a natural choice for a first analysis.

In a second phase, we monitored the – not rigidly specified – communication during
startup. First the BIOS checks if the TPM is ready by querying the status port (this is
Atmel specific). As is to be expected, it next performs multiple TPM PcrExtend commands.
This instruction stores a new hash value of some component of the boot process to a named
Platform Configuration Register (PCR) and consequently forms the basis of the integrity
collection process – one of the main features of trusted computing. Later these integrity
metrics can be reported to external parties, in order that they get convinced the platform
is running in an well defined and approved configuration.

In Section 5 we describe some of the future work we plan to do at this level. In particular,
we want to try gaining access to key material and analyze how closed source applications
precisely use the TPM.

4 Countermeasures

There are a number of countermeasures available against attacks such as ours; some of them
have partially been implemented already, though related attacks may not be eliminated in
the foreseeable future.

The latest specification of the TCG (version 1.2) [14] already allows the TPM to build
an encrypted channel to other devices. It is, however, unlikely that the processor itself will



be able to securely communicate with the TPM. Also, while sufficient to protect keys, this
channel does not prevent active attacks, such as fooling the TPM into believing there was a
platform reset.

As already done in newer IBM machines, the TPM can be integrated into other chipsets,
such as the Super I/O chip. This essentially eliminates access to the LPC bus – the BIOS
firmware should of course be embedded into the chipset as well, otherwise the LPC bus can
still be monitored at the BIOS flash memory chip. An attack similar to ours would thus re-
quire measuring and manipulating the PCI bus which, while possible, involves significantly
more effort and cost. It is, however, unclear what practical implications such an integration
has. External validation and certification of a TPM will be significantly more difficult, and
hardening the TPM against chip level attacks may be more difficult. As for encrypted com-
munication, this may not solve all problems either. For example, it still may be possible to
reset the entire Super I/O chip without resetting the platform, though we have not done
this in practice yet.

Finally, and most importantly, protocol designers should be aware of the limitations of
a trusted computing architecture. While it is possible to build highly secure TPMs, and
the TCG concept explicitly allows an application to distinguish between different TPM
implementations, the vast majority of TPMs will offer only a limited protection against
hardware based attacks. As with many security techniques, it is important to be aware of
the protection the technique offers, and not use it for purposes it was never designed for.

5 Future work

It should be rather straightforward to do the same analysis on other TPM implementations,
on the condition that the LPC bus is used to transfer TCG packets. More interesting would
be to look at integrated TPM solutions, namely National Semiconductor’s Super I/O chip
and the Broadcom BCM5752 gigabit ethernet controller with integrated TPM. Do these
provide adequate protection against the described passive attacks? Is there no way to monitor
the communication externally?

For now, our analysis is limited to a controlled environment – sending known commands
in Linux to the TPM and observing them on the communication channel – and to the boot
process. In a next step, we want to really extract key material from applications making use
of trusted computing functionality. Some candidate software includes IBM Client Security
Software and HP ProtectTools; both are Windows implementations of a TCG Software
Stack, and, for instance, can store Encrypted File System keys in a TPM. Future operating
systems will be designed to use TCG features, so trusted platform functionality will no longer
be a third party add-on. Microsoft Longhorn, the next generation of the Windows operating
system, will, for instance, offer secure startup [10] and key storage [11]. There is some
indication that Apple could use a TPM to limit the installation of their operating system
to Intel based Macs alone, when they make the transition from the PowerPC architecture
to Intel IA32 for their CPU.

Finally, actively manipulating the communication between CPU and TPM, rather than
just observing the bus, allows for much stronger attacks. The main target we see is to fool
the TPM about the platform status. The primary goal here is to manipulate the Platform
Configuration Registers, in which the TPM stores hash values of the boot sequence. This
violates one of the main security goals, namely to make provable statements about the
platform configuration. There are several ways to access these values:

– If the TPM can be convinced that the platform is rebooting (i.e., it receives a reset
signal), it will allow to overwrite the PC Registers with the new “boot sequence”.

– If the TPM can be (partially) cut of during boot, it will never enter the original boot
sequence into the PC Registers, which then again can be manipulated by a rogue pro-
gram.

– Finally, it may be possible to manipulate the values entered during the original boot
sequence, leading to a wrong content of the PC Registers.



In addition, the latest version of the TPM specification allows privileged processes to
obtain more rights than normal processes. The identification of such privileged processes
(for example, a microkernel running in a special processor ring) will be done by different
addressing modes on the LPC bus. If these can be copied, any command can be given special
privileges.

6 Conclusion

In this work, we analyzed to which extent a concrete implementation of TGC’s Trusted
Platform Module does satisfy the abstract requirements an application would expect such
a module to have. Concretely, rather than considering an attack on the TPM itself, we
examine the less protected communication channel between the TPM and its host.

We restricted ourselves to passive attacks, i.e., only measured the data sent over the
bus. In a real attack scenario, this would mainly be useful to analyze the way programs use
the TPM and to eavesdrop on keys used for bulk encryption. Additionally, the potential for
an active attack can clearly be seen, and first experiments showed that the TPM does not
seem to detect active manipulation on the LPC bus. Such attacks can go much further, for
example by circumventing the TPM’s integrity reporting mechanism.

It is therefore important to not trust the TPM as it is, but – depending on the applica-
tion – also consider the concrete implementation (as some TPMs do appear to be stronger
protected than others), and to be aware of the limits of the trusted computing concepts
during application design.
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