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Introduction  
Discriminant function analysis is used to determine which continuous variables 
discriminate between two or more naturally occurring groups. For example, a 
researcher may want to investigate which variables discriminate between fruits 
eaten by (1) primates, (2) birds, or (3) squirrels. For that purpose, the researcher 
could collect data on numerous fruit characteristics of those species eaten by 
each of the animal groups. Most fruits will naturally fall into one of the three 
categories. Discriminant analysis could then be used to determine which 
variables are the best predictors of whether a fruit will be eaten by birds, 
primates, or squirrels.  
   
Logistic regression answers the same questions as discriminant analysis.  It is 
often preferred to discriminate analysis as it is more flexible in its assumptions 
and types of data that can be analyzed.  Logistic regression can handle both 
categorical and continuous variables, and the predictors do not have to be 
normally distributed, linearly related, or of equal variance within each group 
(Tabachnick and Fidell 1996).  

Discriminant function analysis is multivariate analysis of variance (MANOVA) 
reversed.  In MANOVA, the independent variables are the groups and the 
dependent variables are the predictors.  In DA, the independent variables are the 
predictors and the dependent variables are the groups.   As previously 
mentioned, DA is usually used to predict membership in naturally occurring 
groups.  It answers the question: can a combination of variables be used to 
predict group membership? Usually, several variables are included in a study to 
see which ones contribute to the discrimination between groups.  

Discriminant function analysis is broken into a 2-step process: (1) testing 
significance of a set of discriminant functions, and; (2) classification.  The first 
step is computationally identical to MANOVA.  There is a matrix of total variances 
and covariances; likewise, there is a matrix of pooled within-group variances and 
covariances. The two matrices are compared via multivariate F tests in order to 
determine whether or not there are any significant differences (with regard to all 
variables) between groups.  One first performs the multivariate test, and, if 
statistically significant, proceeds to see which of the variables have significantly 
different means across the groups.  



Once group means are found to be statistically significant, classification of 
variables is undertaken.  DA automatically determines some optimal combination 
of variables so that the first function provides the most overall discrimination 
between groups, the second provides second most, and so on. Moreover, the 
functions will be independent or orthogonal, that is, their contributions to the 
discrimination between groups will not overlap. The first function picks up the 
most variation; the second function picks up the greatest part of the unexplained 
variation, etc...  Computationally, a canonical correlation analysis is performed 
that will determine the successive functions and canonical roots.  Classification is 
then possible from the canonical functions. Subjects are classified in the groups 
in which they had the highest classification scores.  The maximum number of 
discriminant functions will be equal to the degrees of freedom, or the number of 
variables in the analysis, whichever is smaller.  

Standardized coefficients and the structure matrix  
Discriminant functions are interpreted by means of standardized coefficients and 
the structure matrix. Standardized beta coefficients are given for each variable in 
each discriminant (canonical) function, and the larger the standardized 
coefficient, the greater is the contribution of the respective variable to the 
discrimination between groups. However, these coefficients do not tell us 
between which of the groups the respective functions discriminate. We can 
identify the nature of the discrimination for each discriminant function by looking 
at the means for the functions across groups. Group means are centroids.  
Differences in location of centroids show dimensions along which groups differ.  
We can, thus, visualize how the two functions discriminate between groups by 
plotting the individual scores for the two discriminant functions.  

Another way to determine which variables define a particular discriminant 
function is to look at the factor structure. The factor structure coefficients are the 
correlations between the variables in the model and the discriminant functions.  

The discriminant function coefficients denote the unique contribution of each 
variable to the discriminant function, while the structure coefficients denote the 
simple correlations between the variables and the functions.  

Summary  
To summarize, when interpreting multiple discriminant functions, which arise 
from analyses with more than two groups and more than one continuous 
variable, the different functions are first tested for statistical significance.  If the 
functions are statistically significant, then the groups can be distinguished based 
on predictor variables.  Standardized b coefficients for each variable are 
determined for each significant function. The larger the standardized b 
coefficient, the larger is the respective variable's unique contribution to the 
discrimination specified by the respective discriminant function. In order to 
identify which independent variables help cause the discrimination between 
dependent variables, one can also examine the factor structure matrix with the 



correlations between the variables and the discriminant functions. Finally,  the 
means for the significant discriminant functions are examined in order to 
determine between which groups the respective functions seem to discriminate.  
(For more detail, see Computations below.)  

Assumptions:  

Discriminant function analysis is computationally very similar to MANOVA, and all 
assumptions for MANOVA apply.  

Sample size:  Unequal sample sizes are acceptable.  The sample size of the 
smallest group needs to exceed the number of predictor variables.  As a “rule of 
thumb”, the smallest sample size should be at least 20 for a few (4 or 5) 
predictors.  The maximum number of independent variables is n - 2, where n is 
the sample size.  While this low sample size may work, it is not encouraged, and 
generally it is best to have 4 or 5 times as many observations and independent 
variables..  

Normal distribution: It is assumed that the data (for the variables) represent a 
sample from a multivariate normal distribution. You can examine whether or not 
variables are normally distributed with histograms of frequency distributions. 
However, note that violations of the normality assumption are not "fatal" and the 
resultant significance test are still reliable as long as non-normality is caused by 
skewness and not outliers (Tabachnick and Fidell 1996).  

Homogeneity of variances/covariances: DA is very sensitive to heterogeneity of 
variance-covariance matrices.  Before accepting final conclusions for an 
important study, it is a good idea to review the within-groups variances and 
correlation matrices.  Homoscedasticity is evaluated through scatterplots and 
corrected by transformation of variables..  

Outliers: DA is highly sensitive to the inclusion of outliers.  Run a test for 
univariate and multivariate outliers for each group, and transform or eliminate 
them.  If one group in the study contains extreme outliers that impact the mean, 
they will also increase variability. Overall significance tests are based on pooled 
variances, that is, the average variance across all groups. Thus, the significance 
tests of the relatively larger means (with the large variances) would be based on 
the relatively smaller pooled variances, resulting erroneously in statistical 
significance.  
   
Non-multicollinearity: If one of the independent variables is very highly correlated 
with another, or one is a function (e.g., the sum) of other independents, then the 
tolerance value for that variable will approach 0 and the matrix will not have a 
unique discriminant solution.  There must also be low multicollinearity of the 
independents. To the extent that independents are correlated, the standardized 



discriminant function coefficients will not reliably assess the relative importance 
of the predictor variables.  

Logistic regression may offer an alternative to DA as it usually involves fewer 
violations of assumptions.  

Tests of significance:  

There are several tests of signficance, but we only present Wilks' lambda here.   
Wilks' lambda is used in an ANOVA (F) test of mean differences in DA, such that 
the smaller the lambda for an independent variable, the more that variable 
contributes to the discriminant function. Lambda varies from 0 to 1, with 0 
meaning group means differ (thus the more the variable differentiates the 
groups), and 1 meaning all group means are the same. The F test of Wilks' 
lambda shows which variables' contributions are significant.  

Interpreting the discriminant functions  The structure matrix table in SPSS shows 
the correlations of each variable with each discriminant function. These simple 
Pearsonian correlations are called structure coefficients or correlations or 
discriminant loadings. When the dependent has more than two categories there 
will be more than one discriminant function.  The correlations then serve like 
factor loadings in factor analysis -- that is, by identifying the largest absolute 
correlations associated with each discriminant function the researcher gains 
insight into how to name each function.  
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Computations:  

Fundamental equations for DA are the same as for MANOVA:  

First, create cross-products matrices for between-group differences and within-
groups differences, SStotal = SSbg + SSwg. The determinants are calculated for 
these matrices and used to calculate a test statistic – either Wilks’ Lambda or 
Pillai’s Trace.  

Wilks’ Lambda follows the equation:  

 

   

Next an F ratio is calculated as in MANOVA:  

 

For cases where n is equal in all groups:  

   



   

 

   

For unequal n between groups, this is modified only by changing the dferror to 
equal the number of data points in all groups minus the number of groups (N – 
k). If the experimental F exceeds a critical F, then the experimental groups can 
be distinguished based on the predictor variables. The number of discriminant 
functions used in the analysis is equal to the number of predictor variables or the 
degrees of freedom, whichever is smaller.  

The discriminant function score for the i th function is:  

Di = di1Z1+ di2Z2+...+ dipZp  

Where z = the score on each predictor, and di= discriminant function coefficient. 
The discriminant function score for a case can be produced with raw scores and 
unstandardized discriminant function scores. The discriminant function 
coefficients are, by definition, chosen to maximize differences between groups. 
The mean over all the discriminant function coefficients is zero, with a SD equal 
to one.  

The mean discriminant function coefficient can be calculated for each group – 
these group means are called Centroids, which are created in the reduced space 
created by the discriminant function reduced from the initial predictor variables. 
Differences in the location of these centroids show the dimensions along which 
the groups differ.  

Once the discriminant functions are determined groups are differentiated, the 
utility of these functions can be examined via their ability to correctly classify 
each data point to their a priori groups. Classification functions are derived from 
the linear discriminant functions to achieve this purpose. Different classification 
functions are used and equations exist that are best suited for equal or unequal 
samples in each group.  

For cases with an equal sample size for each group the classification function 
coefficient (Cj) is equal to the sum of:  



Cj = cj0+ cj1x1+ cj2x2+...+ cjpxp  

for the jth group, j = 1...k, x = raw scores of each predictor, cjo = a constant. If W = 
within-group variance-covariance matirix, and M = column matrix of means for 
group j, then the constant   cjo= (-1/2)CjMj.  

For unequal sample size in each group:  

 

nj = size in group j, N = total sample size.  
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