Semantic Integration Research in
the Database Community: A Brief Survey

AnHai Doan
University of Illinois
anhai@cs.uiuc.edu

Semantic integration has been a long-standing chal-
lenge for the database community. It has received
steady attention over the past two decades, and has
now become a prominent area of database research.

In this article, we first review database applications
that require semantic integration, and discuss the dif-
ficulties underlying the integration process. We then
describe recent progress and identify open research is-
sues. We will focus in particular on schema matching, a
topic that has received much attention in the database
community, but will also discuss data matching (e.g.,
tuple deduplication), and open issues beyond the match
discovery context (e.g., reasoning with matches, match
verification and repair, and reconciling inconsistent
data values). For previous surveys of database research
on semantic integration, see (Rahm & Bernstein 2001;
Ouksel & Seth 1999; Batini, Lenzerini, & Navathe
1986).

Applications of Semantic Integration

The key commonalities underlying database applica-
tions that require semantic integration are that they
use structured representations (e.g., relational schemas
and XML DTDs) to encode the data, and that they
employ more than one representation. As such, the
applications must resolve heterogeneities with respect
to the schemas and their data, either to enable their
manipulation (e.g., merging the schemas or comput-
ing the differences (Batini, Lenzerini, & Navathe 1986;
Bernstein 2003)) or to enable the translation of data
and queries across the schemas. Many such applications
have arisen over time and have been studied actively by
the database community.

One of the earliest such applications is schema in-
tegration: merging a set of given schemas into a sin-
gle global schema (Batini, Lenzerini, & Navathe 1986;
Elmagarmid & Pu 1990; Seth & Larson 1990; Parent &
Spaccapietra 1998; Pottinger & Bernstein 2003). This
problem has been studied since the early 1980s. It arises
in building a database system that comprises several
distinct databases, and in designing the schema of a

Copyright (© 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Alon Y. Halevy
University of Washington
alon@cs.washington.edu

Cwrapper (]
Find houses with realestate.com

four bathrooms . ediated scheMa{+— sour ce schermas ~*(wrapper - —)
and price under homeseekers.com
..source schemay]

$500,000 et
[wrapper [~
greathomes.com
Figure 1: A data integration system in the real estate
domain. Such a system uses the semantic correspon-
dences between the mediated schema and the source
schemas (denoted with double-head arrows in the fig-
ure) to reformulate user queries.

database from the local schemas supplied by several
user groups. The integration process requires estab-
lishing semantic correspondences— matches—between
the component schemas, and then using the matches to
merge schema elements (Pottinger & Bernstein 2003;
Batini, Lenzerini, & Navathe 1986).

As databases become widely used, there is a grow-
ing need to translate data between multiple databases.
This problem arises when organizations consolidate
their databases and hence must transfer data from old
databases to the new ones. It forms a critical step in
data warehousing and data mining, two important re-
search and commercial areas since the early 1990s. In
these applications, data coming from multiple sources
must be transformed to data conforming to a single
target schema, to enable further data analysis (Miller,
Haas, & Hernandez 2000; Rahm & Bernstein 2001).

In the recent years, the explosive growth of infor-
mation online has given rise to even more applica-
tion classes that require semantic integration. One
application class builds data integration systems (e.g.,
(Garcia-Molina et al. 1997; Levy, Rajaraman, & Or-
dille 1996; Ives et al. 1999; Lambrecht, Kambham-
pati, & Gnanaprakasam 1999; Friedman & Weld 1997;
Knoblock et al. 1998)). Such a system provides
users with a uniform query interface (called mediated
schema) to a multitude of data sources, thus freeing
them from manually querying each individual source.

Figure 1 illustrates a data integration system that
helps users find houses on the real-estate market. Given
a user query over the mediated schema, the system uses
a set of semantic matches between the mediated schema

Schema S Schema T
HOUSES

[Tocation— T price($) [agent-id LISTINGS

‘ Atlanta, GA | 360,000 | 32 area list-price |agent-addr esslagent-name |

Raleigh, NC | 430,000 | 15 Denver, CO| 550,000 |Boulder, CO LauraSmith
—~ Atlanta, GA| 370,800 |Athens, GA ike Brown

AGENTS —

id | name city state |fee-rate

32| Mike Brown | Athens GA | 003

15| Jean Laup | Raleigh

Figure 2: The schemas of two relational databases S and T
on house listing, and the semantic correspondences between
them. Database S consists of two tables: HOUSES and
AGENTS; database T consists of the single table LISTINGS.

and the local schemas of the data sources to translate it
into queries over the source schemas. Next, it executes
the queries using wrapper programs attached to the
sources (e.g., (Kushmerick, Weld, & Doorenbos 1997)),
then combines and returns the results to the user. A
critical problem in building a data integration system,
therefore, is to supply the semantic matches. Since
in practice data sources often contain duplicate items
(e.g., the same house listing) (Hernandez & Stolfo 1995;
Bilenko & Mooney 2003; Tejada, Knoblock, & Minton
2002), another important problem is to detect and elim-
inate duplicate data tuples from the answers returned
by the sources, before presenting the final answers to
the user query.

Another important application class is peer data
management, which is a natural extension of data inte-
gration (Aberer 2003). A peer data management sys-
tem does away with the notion of mediated schema and
allows peers (i.e., participating data sources) to query
and retrieve data directly from each other. Such query-
ing and data retrieval require the creation of semantic
correspondences among the peers.

Recently there has also been considerable attention
on model management, which creates tools for easily
manipulating models of data (e.g., data representations,
website structures, and ER diagrams). Here semantic
integration plays a central role, as matching and merg-
ing models form core operations in model management
algebras (Bernstein 2003; Rahm & Bernstein 2001).

The data sharing applications described above arise
in numerous current real-world domains. They also
play an important role in emerging domains such as
e-commerce, bioinformatics, and ubiquitous computing.
Some recent developments should dramatically increase
the need for and the deployment of applications that
require semantic integration. The Internet has brought
together millions of data sources and makes possible
data sharing among them. The widespread adoption
of XML as a standard syntax to share data has fur-
ther streamlined and eased the data sharing process.
The growth of the Semantic Web will further fuel data
sharing applications and underscore the key role that
semantic integration plays in their deployment.

Challenges of Semantic Integration

Despite its pervasiveness and importance, semantic
integration remains an extremely difficult problem.
Consider, for example, the challenges that arise dur-
ing a schema matching process, which finds seman-
tic correspondences (called matches) between database
schemas. For example, given the two relational
databases on house listing in Figure 2, the process finds
matches such as “location in schema S matches area in
schema 77 and “name matches agent-name”.

At the core, matching two database schemas S and
T requires deciding if any two elements s of S and t of
T match, that is, if they refer to the same real-world
concept. This problem is challenging for several funda-
mental reasons:

e The semantics of the involved elements can be in-
ferred from only a few information sources, typically
the creators of data, documentation, and associated
schema and data. Extracting semantics information
from data creators and documentation is often ex-
tremely cumbersome. Frequently, the data creators
have long moved, retired, or forgotten about the data.
Documentation tends to be sketchy, incorrect, and
outdated. In many settings such as when building
data integration systems over remote Web sources,
data creators and documentation are simply not ac-
cessible.

e Hence schema elements are typically matched based
on clues in the schema and data. Examples of
such clues include element names, types, data values,
schema structures, and integrity constraints. How-
ever, these clues are often unreliable. For example,
two elements that share the same name (e.g., area)
can refer to different real-world entities (the loca-
tion and square-feet area of the house). The reverse
problem also often holds: two elements with different
names (e.g., area and location) can refer to the same
real-world entity (the location of the house).

e Schema and data clues are also often incomplete. For
example, the name contact-agent only suggests that
the element is related to the agent. It does not pro-
vide sufficient information to determine the exact na-
ture of the relationship (e.g., whether the element is
about the agent’s phone number or her name).

e To decide that element s of schema S matches ele-
ment ¢ of schema T', one must typically examine all
other elements of T' to make sure that there is no
other element that matches s better than ¢. This
global nature of matching adds substantial cost to
the matching process.

e To make matters worse, matching is often subjective,
depending on the application. One application may
decide that house-style matches house-description, an-
other application may decide that it does not. Hence,
the user must often be involved in the matching pro-
cess. Sometimes, the input of a single user may be

considered too subjective, and then a whole commit-
tee must be assembled to decide what the correct
mapping is (Clifton, Housman, & Rosenthal 1997).

Because of the above challenges, the manual creation
of semantic matches has long been known to be ex-
tremely laborious and error-prone. For example, a re-
cent project at the GTE telecommunications company
sought to integrate 40 databases that have a total of
27,000 elements (i.e., attributes of relational tables) (Li
& Clifton 2000). The project planners estimated that,
without the original developers of the databases, just
finding and documenting the matches among the ele-
ments would take more than 12 person years.

The problem of matching data tuples also faces sim-
ilar challenges. In general, the high cost of manually
matching schemas and data has spurred numerous so-
lutions that seek to automate the matching process. Be-
cause the users must often be in the loop, most of these
solutions have been semi-automatic. Research on these
solutions dates back to the early 80s, and has picked up
significant steam in the past decade, due to the need
to manage the astronomical volume of distributed and
heterogeneous data at enterprises and on the Web. In
the next two sections we briefly review this research on
schema and data matching.

Schema Matching

We discuss the accummulated progress in schema
matching with respect to matching techniques, archi-
tectures of matching solutions, and types of semantic
matches.

Matching Techniques

A wealth of techniques has been developed to semi-
automatically find semantic matches. The techniques
fall roughly into two groups: rule-based and learning-
based solutions (though several techniques that lever-
age ideas from the fields of information retrieval and
information theory have also been developed (Clifton,
Housman, & Rosenthal 1997; Kang & Naughton 2003)).

Rule-Based Solutions: Many of the early as
well as current matching solutions employ hand-crafted
rules to match schemas (Milo & Zohar 1998; Palopoli,
Sacca, & Ursino 1998; Castano & Antonellis 1999;
Mitra, Wiederhold, & Jannink ; Madhavan, Bernstein,
& Rahm 2001; Melnik, Molina-Garcia, & Rahm 2002).

In general, hand-crafted rules exploit schema in-
formation such as element names, data types, struc-
tures, number of subelements, and integrity constraints.
A broad variety of rules have been considered. For
example, the TranScm system (Milo & Zohar 1998)
employs rules such as “two elements match if they
have the same name (allowing synonyms) and the
same number of subelements”. The DIKE system
(Palopoli, Sacca, & Ursino 1998; Palopoli et al. 1999;
Palopoli, Terracina, & Ursino 2000) computes the sim-
ilarity between two schema elements based on the

similarity of the characteristics of the elements and
the similarity of related elements. The ARTEMIS
and the related MOMIS (Castano & Antonellis 1999;
Bergamaschi et al. 2001) system compute the similarity
of schema elements as a weighted sum of the similari-
ties of name, data type, and substructure. The CUPID
system (Madhavan, Bernstein, & Rahm 2001) employs
rules that categorize elements based on names, data
types, and domains. Rules therefore tend to be domain-
independent, but can be tailored to fit a certain domain.
Domain-specific rules can also be crafted.

Rule-based techniques provide several benefits. First,
they are relatively inexpensive and do not require train-
ing as in learning-based techniques. Second, they typi-
cally operate only on schemas (not on data instances),
and hence are fairly fast. Third, they can work very well
in certain types of applications and for domain repre-
sentations that are amenable to rules (Noy & Musen
2000).

Finally, rules can provide a quick and concise method
to capture valuable user knowledge about the domain.
For example, the user can write regular expressions that
encode times or phone numbers, or quickly compile a
collection of county names or zip codes that help recog-
nize those types of entities. As another example, in the
domain of academic course listing, the user can write
the following rule: “use regular expressions to recog-
nize elements about times, then match the first time
element with start-time and the second element with
end-time”. Learning techniques, as we discuss shortly,
would have difficulties being applied to these scenar-
ios. They either cannot learn the above rules, or can do
so only with abundant training data or with the right
representations for training examples.

The main drawback of rule-based techniques is that
they cannot exploit data instances effectively, even
though the instances can encode a wealth of information
(e.g., value format, distribution, frequently occurring
words in the attribute values, and so on) that would
greatly aid the matching process. In many cases ef-
fective matching rules are simply too difficult to hand
craft. For example, it is not clear how to hand craft
rules that distinguish between “movie description” and
“user comments on the movies”, both being long tex-
tual paragraphs. In contrast, learning methods such as
Naive Bayes can easily construct “probabilistic rules”
that distinguish the two with high accuracy, based on
the frequency of words in the paragraphs.

Another drawback is that rule-based methods can-
not exploit previous matching efforts to assist in the
current ones. Thus, in a sense, systems that rely solely
on rule-based techniques have difficulties learning from
the past, to improve over time. The above reasons have
motivated the development of learning based matching
solutions.

Learning-Based Solutions: Many such solutions
have been proposed in the past decade, e.g., (Li, Clifton,
& Liu 2000; Clifton, Housman, & Rosenthal 1997;

Berlin & Motro 2001; 2002; Doan, Domingos, & Halevy
2001; Dhamankar et al. 2004; Embley, Jackman, & Xu
2001; Neumann et al. 2002). The solutions have con-
sidered a variety of learning techniques and exploited
both schema and data information. For example, the
Semint system (Li, Clifton, & Liu 2000) uses a neural-
network learning approach. It matches schema elements
based on attribute specifications (e.g, data types, scale,
the existence of constraints) and statistics of data con-
tent (e.g., maximum, minimum, average, and variance).
The LSD system (Doan, Domingos, & Halevy 2001)
employs Naive Bayes over data instances, and devel-
ops a novel learning solution to exploit the hierarchical
nature of XML data. The iMAP system (Dhamankar
et al. 2004) (and also the ILA and HICAL systems
developed in the Al community (Perkowitz & Etzioni
1995; Ryutaro, Hideaki, & Shinichi 2001)) matches the
schemas of two sources by analyzing the description
of objects that are found in both sources. The Au-
toplex and Automatch systems (Berlin & Motro 2001;
2002) use a Naive Bayes learning approach that exploits
data instances to match elements.

In the past five years, there is also a growing real-
ization that schema- and data-related evidence in two
schemas being matched often is inadequate for the
matching process. Hence, several works have advo-
cated learning from the external evidence beyond the
two current schemas. Several types of external evi-
dence have been considered. Some recent works ad-
vocate exploiting past matches (Doan, Domingos, &
Halevy 2001; Do & Rahm 2002; Berlin & Motro 2002;
Rahm & Bernstein 2001; Embley, Jackman, & Xu 2001;
Bernstein et al. 2004). The key idea is that a match-
ing tool must be able to learn from the past matches,
to predict successfully matches for subsequent, unseen
matching scenarios.

The work (Madhavan et al. 2005) goes further
and describes how to exploit a corpus of schemas and
matches in the domain. This scenario arises, for ex-
ample, when we try to exploit the schemas of nu-
merous real-estate sources on the Web, to help in
matching two specific real-estate source schemas. In
a related direction, the works (He & Chang 2003;
Wu et al. 2004) describe settings where one must
match multiple schemas all at once. Here the knowledge
gleaned from each matching pair can help match other
pairs, as a result we can obtain better accuracy than
just matching a pair in isolation. The work (McCann et
al. 2003) discusses how to learn from a corpus of users
to assist schema matching in data integration contexts.
The basic idea is to ask the users of a data integration
system to “pay” for using it by answering relatively sim-
ple questions, then use those answers to further build
the system, including matching the schemas of the data
sources in the system. This way, an enormous burden
of schema matching is lifted from the system builder
and spread “thinly” over a mass of users.

Architecture of Matching Solutions

The complementary nature of rule- and learner-based
techniques suggest that an effective matching solu-
tion should employ both — each on the types of in-
formation that it can effectively exploit. To this
end, several recent works (Bernstein et al. 2004;
Do & Rahm 2002; Doan, Domingos, & Halevy 2001;
Embley, Jackman, & Xu 2001; Rahm, Do, & Mass-
mann 2004; Dhamankar et al. 2004) have described
a system architecture that employs multiple modules
called matchers, each of which exploits well a certain
type of information to predict matches. The system
then combines the predictions of the matchers to ar-
rive at a final prediction for matches. Each matcher
can employ one or a set of matching techniques as de-
scribed earlier (e.g., hand-crafted rules, learning meth-
ods, IR-based ones). Combining the predictions of
matchers can be manually specified (Do & Rahm 2002;
Bernstein et al. 2004) or automated to some extent
using learning techniques (Doan, Domingos, & Halevy
2001).

Besides being able to exploit multiple types of infor-
mation, the multi-matcher architecture has the advan-
tage of being highly modular and can be easily cus-
tomized to a new application domain. It is also exten-
sible in that new, more efficient matchers could be eas-
ily added when they become available. A recent work
(Dhamankar et al. 2004) also shows that the above
solution architecture can be extended successfully to
handle complex matches.

An important current research direction is to eval-
uate the above multi-matcher architecture in real-
world settings. The works (Bernstein et al. 2004;
Rahm, Do, & Massmann 2004) make some initial steps
in this direction. A related direction appears to be
a shift away from developing complex, isolated, and
monolithic matching systems, towards creating robust
and widely useful matcher operators and developing
techniques to quickly and efficiently combine the op-
erators for a particular matching task.

Incorporating Domain Constraints: It was rec-
ognized early on that domain integrity constraints and
heuristics provide valuable information for matching
purposes. Hence, almost all matching solutions exploit
some forms of this type of knowledge.

Most works exploit integrity constraints in match-
ing schema elements locally. For example, many works
match two elements if they participate in similar con-
straints. The main problem with this scheme is that it
cannot exploit “global” constraints and heuristics that
relate the matching of multiple elements (e.g., “at most
one element matches house-address”). To address this
problem, several recent works (Melnik, Molina-Garcia,
& Rahm 2002; Madhavan, Bernstein, & Rahm 2001;
Doan, Domingos, & Halevy 2001; Doan et al. 2003b)
have advocated moving the handling of constraints to
after the matchers. This way, the constraint han-
dling framework can exploit “global” constraints and

is highly extensible to new types of constraints.

While integrity constraints constitute domain-specific
information (e.g., house-id is a key for house listings),
heuristic knowledge makes general statements about
how the matching of elements relate to each other.
A well-known example of a heuristic is “two nodes
match if their neighbors also match”, variations of
which have been exploited in many systems (e.g., (Milo
& Zohar 1998; Madhavan, Bernstein, & Rahm 2001;
Melnik, Molina-Garcia, & Rahm 2002; Noy & Musen
2001)). The common scheme is to iteratively change
the matching of a node based on those of its neighbors.
The iteration is carried out one or twice, or until some
convergence criterion is reached.

Related Work in Knowledge-Intensive Domains:
Schema matching requires making multiple interrelated
inferences, by combining a broad variety of relatively
shallow knowledge types. In recent years, several other
problems that fit the above description have also been
studied in the AI community. Notable problems are
information extraction (e.g., (Freitag 1998)), solving
crossword puzzles (Keim et al. 1999), and identifying
phrase structure in NLP (Punyakanok & Roth 2000).
What is remarkable about these studies is that they
tend to develop similar solution architectures which
combine the prediction of multiple independent mod-
ules and optionally handle domain constraints on top
of the modules. These solution architectures have been
shown empirically to work well. It will be interesting to
see if such studies converge in a definitive blueprint ar-
chitecture for making multiple inferences in knowledge-
intensive domains.

Types of Semantic Matches

Most schema matching solutions have focused on find-
ing 1-1 matches such as “location = address”. How-
ever, relationships between real-world schemas involve
many complex matches, such as “name = concat(first-
name,last-name)” and “listed-price = price * (1 + tax-
rate)”. Hence, the development of techniques to semi-
automatically construct complex matches is crucial to
any practical mapping effort.

Creating complex matches is fundamentally harder
than 1-1 matches for the following reason. While the
number of candidate 1-1 matches between a pair of
schemas is bounded (by the product of the sizes of
the two schemas), the number of candidate complex
matches is not. There are an unbounded number of
functions for combining attributes in a schema, and
each one of these could be a candidate match. Hence,
in addition to the inherent difficulties in generating a
match to start with, the problem is exacerbated by hav-
ing to examine an unbounded number of match candi-
dates.

There have been only a few works on complex
matching. Milo and Zohar (1998)) hard-code complex
matches into rules. The rules are systematically tried
on the given schema pair, and when such a rule fires, the

system returns the complex match encoded in the rule.
Several recent works have developed more general tech-
niques to find complex matches. They rely on a domain
ontology (Xu & Embley 2003), use a combination of
search and learning techniques (Dhamankar et al. 2004;
Doan et al. 2003b), or employ mining techniques (He,
Chang, & Han 2004). Xu and Embley (2003), for ex-
ample, considers finding complex matches between two
schemas by first mapping them into a domain ontol-
ogy, then constructing the matches based on the rela-
tionships inherent in that ontology. The iIMAP system
reformulates schema matching as a search in an often
very large or infinite match space. To search effectively,
it employs a set of searchers, each discovering specific
types of complex matches.

Perhaps the key observation gleaned so far from the
above few works is that we really need domain knowl-
edge (and lots of it!) to perform accurate complex
matching. Such knowledge is crucial in guiding the pro-
cess of searching for likely complex match candidates
(in a vast or often infinite candidate space), in pruning
incorrect candidates early (to maintain an acceptable
runtime), and in evaluating candidates.

Another important observation is that the correct
complex match is often not the top-ranked match, but
somewhere in the top few matches predicted. Since
finding a complex match requires gluing together so
many different components (e.g., the elements involved,
the operations, etc.), perhaps this is inevitable and in-
herent to any complex matching solution. This under-
scores the importance of generating explanations for the
matches, and building effective match design environ-
ment, so that humans can effectively examine the top
ranked matches to select the correct ones.

Data Matching

Besides schema matching, the problem of data match-
ing (e.g., deciding if two different relational tuples from
two sources refer to the same real-world entity) is also
becoming increasingly crucial. Popular examples of
data matching include matching citations of research
papers, authors, and institutions. As another exam-
ple, consider again the databases in Figure 2. Suppose
we have created the mappings, and have used them
to transfer the house listings from database S and an-
other database U (not shown in the figure) to those of
database T'. Databases S and U may contain many du-
plicate house listings. Hence in the next step we would
like to detect and merge such duplicates, to store and
reason with the data at database T

The above tuple matching problem has received much
attention in the database, AI, KDD, and WWW com-
munities, under the names merge/purge, tuple dedupli-
cation, entity matching (or consolidation), and object
matching.

Research on tuple matching has roughly paralleled
that of schema matching, but slightly lagged behind
in certain aspects. Just like in schema matching, a

variety of techniques for tuple matching has been de-
veloped, including both rule-based and learning-based
approaches Early solutions employ manually specified
rules (Hernandez & Stolfo 1995), while many subse-
quent ones learn matching rules from training data (Te-
jada, Knoblock, & Minton 2002; Bilenko & Mooney
2003; Sarawagi & Bhamidipaty 2002). Several solu-
tions focus on efficient techniques to match strings
(Monge & Elkan 1996; Gravano et al. 2003). Oth-
ers also address techniques to scale up to very large
number of tuples (McCallum, Nigam, & Ungar 2000;
Cohen & Richman 2002). Several recent methods
have also heavily used information retrieval (Cohen
1998; Ananthakrishna, Chaudhuri, & Ganti 2002) and
information-theoretic (Andritsos, Miller, & Tsaparas
2004) techniques.

Recently, there has also been some efforts to exploit
external information to aid tuple matching. The ex-
ternal information can come from past matching ef-
forts and domain data (e.g., see the paper by Martin
Michalowski et. al. in this issue). In addition, many
works have considered the settings where there are
many tuples to be matched, and examined how infor-
mation can be moved across different matching pairs, to
improve matching accuracy (Parag & Domingos 2004;
Bhattacharya & Getoor 2004).

At the moment, a definitive solution architecture for
tuple matching has not yet emerged, though the work
(Doan et al. 2003a) proposes a multi-module architec-
ture reminiscent to the multi-matcher architecture of
schema matching. Indeed, given that tuple matching
and schema matching both try to infer semantic rela-
tionships on the basis of limited data, the two problems
appear quite related, and techniques developed in one
area could be transferred to the other. This implication
is significant because so far these two active research
areas have been developed quite independently of each
other.

Finally, we note that some recent works in the
database community have gone beyond the problem
of matching tuples, into matching data fragments in
text and semi-structured data (Dong et al. 2004,
Fang et al. 2004), a topic that has also been receiv-
ing increasing attention in the AT community (e.g., see
the paper by Xin Li et. al. in this special issue).

Open Research Directions

Matching schemas and data usually constitute only the
first step in the semantic integration process. We now
discuss open issues related to this first step, as well as
to some subsequent important steps that have received
little attention.

User Interaction: In many cases, matching tools
must interact with the user to arrive at final correct
matches. We consider efficient user interaction one of
the most important open problems for schema match-
ing. Any practical matching tool must handle this prob-
lem, and anecdotal evidence abounds that deployed

matching tools are quickly being abandoned because
they irritate users with too many questions. Several
recent works have only touched on this problem (e.g.,
(Yan et al. 2001)). An important challenge here is
to minimize user interaction by asking for absolutely
necessary feedback, but maximizing the impact of feed-
back. Another challenge is to generate effective expla-
nations of matches (Dhamankar et al. 2004).

Formal Foundations: In parallel with efforts to
build pratical matching systems, several recent works
have developed formal semantics of matching and at-
tempted to explain formally what matching tools are
doing (e.g., (Larson, Navathe, & Elmasri 1989; Biskup
& Convent 1986; Madhavan et al. 2002; Sheth &
Kashyap 1992; Kashyap & Sheth 1996)). Formalizing
the notion of semantic similarity has also received some
attention (Ryutaro, Hideaki, & Shinichi 2001; Lin 1998;
Manning & Schiitze 1999). Nevertheless, this topic re-
mains underdeveloped. It should deserve more atten-
tion, because such formalizations are important for the
purposes of evaluating, comparing, and further devel-
oping matching solutions.

Industrial Strength Schema Matching: Can
current matching techniques be truly useful in real-
world settings? Are we solving the right schema
matching problems? Partly to answer these ques-
tions, several recent works seek to evaluate the ap-
plicability of schema matching techniques in the real
world. The work (Bernstein et al. 2004) attempts
to build an industrial strength schema matching en-
vironment, while the work (Rahm, Do, & Massmann
2004) focuses on scaling up matching techniques, specif-
ically on matching large XML schemas, which are com-
mon in practice. The works (Seligman et al. 2002;
Rosenthal, Seligman, & Renner 2004) examine the dif-
ficulties of real-world schema matching, and suggest
changes in data management practice that can facili-
tate the matching process. These efforts should help us
understand better the applicability of current research
and suggest future directions.

Mapping Maintenance: In dynamic environments,
sources often undergo changes in their schemas and
data. Hence, it is important to evolve the discovered
semantic mappings. A related problem is to detect
changes at autonomous data sources (e.g., those on the
Internet), verify if the mappings are still correct, and
repair them if necessary. Despite the importance of
this problem, it has received relatively little attention
(Kushmerick 2000; Lerman, Minton, & Knoblock 2003;
Velegrakis, Miller, & Popa 2003).

Reasoning with Imprecise Matches on a Large
Scale: A large-scale data integration or peer-to-peer
systems will inevitably involve thousands or hundreds
of thousands of semantic mappings. At this scale, it will
be impossible for human to verify and maintain all of
them, to ensure the correctness of the system. How can

we use systems where parts of the mappings always re-
main unverified and potentially incorrect? In a related
problem, it is unrealistic to expect that some day our
matching tools will generate only perfect mappings. If
we can generate only reasonably good mappings, on a
large scale, are they good for any purpose? Note that
these problems will be crucial at any large scale data
integration and sharing scenario, such as the Semantic
Web.

Schema Integration: In schema integration, once
matches among a set of schemas have been identified,
the next step uses the matches to merge the schemas
into a global schema (Batini, Lenzerini, & Navathe
1986). A closely related research topic is model man-
agement (Bernstein 2003; Rahm & Bernstein 2001). As
described earlier, model management creates tools for
easily manipulating models of data (e.g., data represen-
tations, website structures, and ER diagrams). Here
matches are used in higher-level operations, such as
merging schemas and computing difference of schemas.
Several recent works have discussed how to carry out
such operations (Pottinger & Bernstein 2003), but they
remain very difficult tasks.

Data Translation: In these applications we often
must elaborate matches into mappings, to enable the
translation of queries and data across schemas. (Note
that here we follow the terminologies of (Rahm & Bern-
stein 2001) and distinguish between match and map-
ping, as described above.) In Figure 2, for example,
suppose the two databases that conform to schemas S
and T both store house listings and are managed by
two different real-estate companies.

Now suppose the companies have decided to merge.
To cut costs, they eliminate database S by transfer-
ring all house listings from S to database T'. Such data
transfer is not possible without knowing the exact se-
mantic mappings between the relational schemas of the
databases, which specify how to create data for T" from
data in S. An example mapping, shown in SQL nota-
tion, is

list-price = SELECT price * (1 + fee-rate)
FROM HOUSES, AGENTS
WHERE agent-id = id
In general, a variety of approaches have been used to
specify semantic mappings (e.g., SQL, XQuery, GAV,
LAV, GLAV (Lenzerini 2002)).

Elaborating a semantic match, such as “list-price =
price * (1 4 fee-rate)”, that has been discovered by a
matching tool, into the above mapping is a difficult
problem, and has been studied by (Yan et al. 2001),
which developed the Clio system. How to combine map-
ping discovery systems such as Clio with schema match-
ing systems to build a unified and effective solution for
finding semantic mappings is an open research problem.

Peer-to-Peer Data Management: An emerging
important application class is peer data management,
which is a natural extension of data integration (Aberer

2003). A peer data management system does away with
the notion of mediated schema and allows peers (i.e.,
participating data sources) to query and retrieve data
directly from each other. Such querying and data re-
trieval require the creation of semantic mappings among
the peers. Peer data management also raises novel se-
mantic integration problems such as composing map-
pings among peers to enable the transfer of data and
queries between two peers with no direct mappings, and
dealing with loss of semantics during the composition
process (Etzioni et al. 2003).

Concluding Remarks

We have briefly surveyed the broad range of semantic
integration research in the database community. The
paper (and the special issue in general) demonstrates
that this research effort is quite related to those in
the AI community. It is also becoming clear that
semantic integration lies at the heart of many database
and Al problems, and that addressing it will require
solutions that blend database and Al techniques.
Developing such solutions can be greatly facilitated
with even more effective collaboration between the
various communities in the future.

Acknowledgment: We thank Natasha Noy for in-
valuable comments on the earlier drafts of this paper.

References

Aberer, K. 2003. Special issue on peer to peer data man-
agement. SIGMOD Record 32(3).

Ananthakrishna, R.; Chaudhuri, S.; and Ganti, V. 2002.
Eliminating fuzzy duplicates in data warehouses. In Proc.
of 28th Int. Conf. on Very Large Databases.

Andritsos, P.; Miller, R. J.; and Tsaparas, P. 2004.
Information-theoretic tools for mining database structure
from large data sets. In Proc. of the ACM SIGMOD Conf.

Batini, C.; Lenzerini, M.; and Navathe, S. 1986. A com-
parative analysis of methodologies for database schema in-
tegration. ACM Computing Survey 18(4):323-364.

Bergamaschi, S.; Castano, S.; Vincini, M.; and Beneven-
tano, D. 2001. Semantic integration of heterogeneous
information sources. Data and Knowledge Engineering
36(3):215-249.

Berlin, J., and Motro, A. 2001. Autoplex: Automated
discovery of content for virtual databases. In Proceedings of
the Conf. on Cooperative Information Systems (CooplS).

Berlin, J., and Motro, A. 2002. Database schema matching
using machine learning with feature selection. In Proceed-
ings of the Conf. on Advanced Information Systems Engi-
neering (CAiISE).

Bernstein, P. A.; Melnik, S.; Petropoulos, M.; and Quix,
C. 2004. Industrial-strength schema matching. SIGMOD
Record, Special Issue in Semantic Integration. To appear.

Bernstein, P. 2003. Applying model management to clas-
sical meta data problems. In Proceedings of the Conf. on
Innovative Database Research (CIDR).

Bhattacharya, I., and Getoor, L. 2004. Iterative record
linkage for cleaning and integration. In Proc. of the 9th

ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery.

Bilenko, M., and Mooney, R. 2003. Adaptive duplicate
detection using learnable string similarity measures. In
KDD Conf.

Biskup, J., and Convent, B. 1986. A formal view integra-
tion method. In Proceedings of the ACM Conf. on Man-
agement of Data (SIGMOD).

Castano, S., and Antonellis, V. D. 1999. A schema anal-
ysis and reconciliation tool environment. In Proceedings
of the Int. Database Engineering and Applications Sympo-
sium (IDEAS).

Clifton, C.; Housman, E.; and Rosenthal, A. 1997. Ex-
perience with a combined approach to attribute-matching
across heterogeneous databases. In Proc. of the IFIP
Working Conference on Data Semantics (DS-7).

Cohen, W., and Richman, J. 2002. Learning to match and
cluster entity names. In Proc. of 8th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining.

Cohen, W. 1998. Integration of heterogeneous databases
without common domains using queries based on textual
similarity. In Procceedings of SIGMOD-98.

Dhamankar, R.; Lee, Y.; Doan, A.; Halevy, A.; and Domin-
gos, P. 2004. iMAP: Discovering complex matches between
database schemas. In Proc. of the ACM SIGMOD Conf.
(SIGMOD,).

Do, H., and Rahm, E. 2002. Coma: A system for flexible
combination of schema matching approaches. In Proceed-
ings of the 28th Conf. on Very Large Databases (VLDB).

Doan, A.; Lu, Y.; Lee, Y.; and Han, J. 2003a. Object
matching for data integration: A profile-based approach.
In IEEE Intelligent Systems, Special Issue on Information
Integration, volume 18.

Doan, A.; Madhavan, J.; Dhamankar, R.; Domingos, P.;
and Halevy, A. 2003b. Learning to match ontologies on
the Semantic Web. VLDB Journal 12:303-319.

Doan, A.; Domingos, P.; and Halevy, A. 2001. Reconciling
schemas of disparate data sources: A machine learning ap-
proach. In Proceedings of the ACM SIGMOD Conference.

Dong, X.; Halevy, A.; Nemes, E.; Sigurdsson, S.; and
Domingos, P. 2004. Semex: Toward on-the-fly personal in-
formation integration. In Proc. of the VLDB IIWeb Work-
shop.

Elmagarmid, A., and Pu, C. 1990. Guest editors’ intro-
duction to the special issue on heterogeneous databases.
ACM Computing Survey 22(3):175-178.

Embley, D.; Jackman, D.; and Xu, L. 2001. Multi-
faceted exploitation of metadata for attribute match dis-
covery in information integration. In Proceedings of the
WIIW Workshop.

Etzioni, O.; Halevy, A.; Doan, A.; Ives, Z.; Madhavan, J.;
McDowell, L.; and Tatarinov, I. 2003. Crossing the struc-
ture chasm. In Conf. on Innovative Database Research.
Fang, H.; Sinha, R.; Wu, W.; Doan, A.; and Zhai, C.
2004. Entity retrieval over structured data. Technical Re-
port UIUC-CS-2414, Dept. of Computer Science, Univ. of
Illinois.

Freitag, D. 1998. Machine learning for information extrac-
tion in informal domains. Ph.D. Thesis. Dept. of Computer
Science, Carnegie Mellon University.

Friedman, M., and Weld, D. 1997. Efficiently execut-
ing information-gathering plans. In Proc. of the Int. Joint
Conf. of AI (IJCAI).

Garcia-Molina, H.; Papakonstantinou, Y.; Quass, D.; Ra-
jaraman, A.; Sagiv, Y.; Ullman, J.; and Widom, J. 1997.
The TSIMMIS project: Integration of heterogeneous infor-
mation sources. Journal of Intelligent Inf. Systems 8(2).

Gravano, L.; Ipeirotis, P.; Koudas, N.; and Srivastava, D.
2003. Text join for data cleansing and integration in an
rdbms. In Proc. of 19th Int. Conf. on Data Engineering.

He, B., and Chang, K. 2003. Statistical schema matching
across web query interfaces. In Proc. of the ACM SIGMOD
Conf. (SIGMOD).

He, B.; Chang, K. C. C.; and Han, J. 2004. Discovering
complex matchings across Web query interfaces: A corre-
lation mining approach. In Proc. of the ACM SIGKDD
Conf. (KDD).

Hernandez, M., and Stolfo, S. 1995. The merge/purge
problem for large databases. In SIGMOD Conference, 127—
138.

Ives, Z.; Florescu, D.; Friedman, M.; Levy, A.; and Weld,
D. 1999. An adaptive query execution system for data
integration. In Proc. of SIGMOD.

Kang, J., and Naughton, J. 2003. On schema matching
with opaque column names and data values. In Proc. of
the ACM SIGMOD Int. Conf. on Management of Data
(SIGMOD-03).

Kashyap, V., and Sheth, A. 1996. Semantic and schematic
similarities between database objects: A context-based ap-
proach. The VLDB Journal 5(4):276-304.

Keim, G.; Shazeer, N.; Littman, M.; Agarwal, S.; Cheves,
C.; Fitzgerald, J.; Grosland, J.; Jiang, F.; Pollard, S.; and
Weinmeister, K. 1999. PROVERB: The probabilistic cru-
civerbalist. In Proc. of the 6th National Conf. on Artificial
Intelligence (AAAI-99), T10-T17.

Knoblock, C.; Minton, S.; Ambite, J.; Ashish, N.; Modi,
P.; Muslea, I.; Philpot, A.; and Tejada, S. 1998. Modeling
web sources for information integration. In Proc. of the
National Conference on Artificial Intelligence (AAAI).

Kushmerick, N.; Weld, D.; and Doorenbos, R. 1997. Wrap-
per Induction for Information Extraction. In Proc. of
1JCAI-97.

Kushmerick, N. 2000. Wrapper verification. World Wide
Web Journal 3(2):79-94.

Lambrecht, E.; Kambhampati, S.; and Gnanaprakasam, S.
1999. Optimizing recursive information gathering plans.
In Proc. of the Int. Joint Conf. on AI (IJCAI).

Larson, J. A.; Navathe, S. B.; and Elmasri, R. 1989. A
theory of attribute equivalence in database with applica-
tion to schema integration. IEEE Transaction on Software
Engineering 15(4):449-463.

Lenzerini, M. 2002. Data integration; a theoretical per-
spective. In Proc. of PODS-02.

Lerman, K.; Minton, S.; and Knoblock, C. A. 2003. Wrap-
per maintenance: a machine learning approach. Journal of
Artificial Intelligence Research. To appear.

Levy, A. Y.; Rajaraman, A.; and Ordille, J. 1996. Querying
heterogeneous information sources using source descrip-
tions. In Proc. of VLDB.

Li, W., and Clifton, C. 2000. SEMINT: A tool for identi-
fying attribute correspondence in heterogeneous databases
using neural networks. Data and Knowledge Engineering
33:49-84.

Li, W.; Clifton, C.; and Liu, S. 2000. Database integra-
tion using neural network: implementation and experience.
Knowledge and Information Systems 2(1):73-96.

Lin, D. 1998. An information-theoretic definition of sim-
ilarity. In Proceedings of the International Conference on
Machine Learning (ICML).

Madhavan, J.; Bernstein, P.; and Rahm, E. 2001. Generic
schema matching with Cupid. In Proceedings of the Inter-
national Conference on Very Large Databases (VLDB).

Madhavan, J.; Halevy, A.; Domingos, P.; and Bernstein,
P. 2002. Representing and reasoning about mappings be-
tween domain models. In Proceedings of the National Al
Conference (AAAI-02).

Madhavan, J.; Bernstein, P.; Doan, A.; and Halevy, A.
2005. Corpus-based schema matching. In Proc. of the 18th
IEEE Int. Conf. on Data Engineering (ICDE).

Manning, C., and Schiitze, H. 1999. Foundations of Sta-
tistical Natural Language Processing. Cambridge, US: The
MIT Press.

McCallum, A.; Nigam, K.; and Ungar, L. 2000. Efficient
clustering of high-dimensional data sets with application
to reference matching. In Proc. 6th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining.

McCann, R.; Doan, A.; Kramnik, A.; and Varadarajan, V.
2003. Building data integration systems via mass collabo-
ration. In Proc. of the SIGMOD-03 Workshop on the Web
and Databases (WebDB-03).

Melnik, S.; Molina-Garcia, H.; and Rahm, E. 2002. Sim-
ilarity flooding: a versatile graph matching algorithm. In
Proceedings of the International Conference on Data En-
gineering (ICDE).

Miller, R.; Haas, L.; and Hernandez, M. 2000. Schema
mapping as query discovery. In Proc. of VLDB.

Milo, T., and Zohar, S. 1998. Using schema matching
to simplify heterogeneous data translation. In Proceedings

of the International Conference on Very Large Databases
(VLDB).

Mitra, P.; Wiederhold, G.; and Jannink, J. Semi-automatic
integration of knowledge sources. In Proceedings of Fu-
sion’99.

Monge, A., and Elkan, C. 1996. The field matching prob-
lem: Algorithms and applications. In Proc. 2nd Int. Conf.
Knowledge Discovery and Data Mining.

Neumann, F.; Ho, C.; Tian, X.; Haas, L.; and Meggido,
N. 2002. Attribute classification using feature analysis. In
Proceedings of the Int. Conf. on Data Engineering (ICDE).

Noy, N., and Musen, M. 2000. PROMPT: Algorithm and
tool for automated ontology merging and alignment. In

Proceedings of the National Conference on Artificial Intel-
ligence (AAAI).

Noy, N., and Musen, M. 2001. Anchor-PROMPT: Using
non-local context for semantic Matching. In Proceedings
of the Workshop on Ontologies and Information Sharing
at the International Joint Conference on Artificial Intelli-
gence (IJCAI).

Ouksel, A., and Seth, A. P. 1999. Special issue on semantic
interoperability in global information systems. SIGMOD
Record 28(1).

Palopoli, L.; Sacca, D.; Terracina, G.; and Ursino, D. 1999.
A unififed graph-based framework for deriving nominal
interscheme properties, type conflicts, and object cluster
similarities. In Proceedings of the Conf. on Cooperative
Information Systems (CooplS).

Palopoli, L.; Sacca, D.; and Ursino, D. 1998. Semi-
automatic, semantic discovery of properties from database
schemes. In Proc. of the Int. Database Engineering and
Applications Symposium (IDEAS-98), 244-253.

Palopoli, L.; Terracina, G.; and Ursino, D. 2000. The
system DIKE: towards the semi-automatic synthesis of co-

operative information systems and data warehouses. In
Proceedings of the ADBIS-DASFAA Conf.

Parag, and Domingos, P. 2004. Multi-relational record
linkage. In Proc. of the KDD Workshop on Multi-relational
Data Mining.

Parent, C., and Spaccapietra, S. 1998. Issues and ap-

proaches of database integration. Communications of the
ACM 41(5):166-178.

Perkowitz, M., and Etzioni, O. 1995. Category translation:
Learning to understand information on the Internet. In
Proc. of Int. Joint Conf. on AI (IJCAI).

Pottinger, R. A., and Bernstein, P. A. 2003. Merging
models based on given correspondences. In Proc. of the
Int. Conf. on Very Large Databases (VLDB).

Punyakanok, V., and Roth, D. 2000. The use of classifiers
in sequential inference. In Proceedings of the Conference
on Neural Information Processing Systems (NIPS-00).

Rahm, E., and Bernstein, P. 2001. On matching schemas
automatically. VLDB Journal 10(4).

Rahm, E.; Do, H.; and Massmann, S. 2004. Matching
large XML schemas. SIGMOD Record, Special Issue in
Semantic Integration. To appear.

Rosenthal, A.; Seligman, L.; and Renner, S. 2004. From
semantic integration to semantics management: case stud-
ies and a way forward. SIGMOD Record, Special Issue in
Semantic Integration. To appear.

Ryutaro, I.; Hideaki, T.; and Shinichi, H. 2001. Rule
induction for concept hierarchy alignment. In Proceedings
of the 2nd Workshop on Ontology Learning at the 17th Int.
Joint Conf. on AI (IJCAI).

Sarawagi, S., and Bhamidipaty, A. 2002. Interactive
deduplication using active learning. In Proc. of 8th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining.

Seligman, L.; Rosenthal, A.; Lehner, P.; and Smith, A.
2002. Data integration: Where does the time go? IEEE
Data Engineering Bulletin.

Seth, A.; and Larson, J. 1990. Federated database systems
for managing distributed, heterogeneous, and autonomous
databases. ACM Computing Survey 22(3):183-236.

Sheth, A. P.; and Kashyap, V. 1992. So far (schemati-
cally) yet so near (semantically). In Proc. of the IFIP WG
2.6 Database Semantics Conf. on Interoperable Database
Systems.

Tejada, S.; Knoblock, C.; and Minton, S. 2002. Learning
domain-independent string transformation weights for high

accuracy object identification. In Proc. of the 8th SIGKDD
Int. Conf. (KDD-2002).

Velegrakis, Y.; Miller, R. J.; and Popa, L. 2003. Mapping
adaptation under evolving schemas. In Proc. of the Conf.
on Very Large Databases (VLDB).

Wu, W.; Yu, C.; Doan, A.; and Meng, W. 2004. An
interactive clustering-based approach to integrating source
query interfaces on the Deep Web. In Proc. of the ACM
SIGMOD Conf.

Xu, L., and Embley, D. 2003. Using domain ontologies to
discover direct and indirect matches for schema elements.
In Proc. of the Semantic Integration Workshop at ISWC-
03, hitp://smi.stanford.edu/si2003.

Yan, L.; Miller, R.; Haas, L.; and Fagin, R. 2001. Data
driven understanding and refinement of schema mappings.
In Proceedings of the ACM SIGMOD.

