
Real-Time Syst (2010) 46: 160–188
DOI 10.1007/s11241-010-9104-7

Schedulability analysis in hard real-time systems
under thermal constraints

Shengquan Wang · Youngwoo Ahn ·
Riccardo Bettati

Published online: 3 August 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper, we study thermal-constrained hard real-time systems, where
real-time guarantees must be met without exceeding safe temperature levels within
the processor. Dynamic speed scaling is one of the major techniques to manage power
so as to maintain safe temperature levels. As example, we adopt a reactive speed con-
trol technique in our work. We design an extended busy-period analysis methodology
to perform schedulability analysis for general task arrivals under reactive speed con-
trol with First-In-First-Out (FIFO), Static-Priority (SP), and Earliest-Deadline-First
(EDF) scheduling. As a special case, we obtain a closed-form formula for the worst-
case response time of jobs under the leaky-bucket task arrival model. Our data show
how reactive speed control can decrease the worst-case response time of tasks in
comparison with any constant-speed scheme.

Keywords Thermal · Dynamic speed scaling · Real-time · Scheduling ·
Schedulability analysis

S. Wang (�)
Department of Computer and Information Science, University of Michigan-Dearborn, Dearborn,
MI 48128, USA
e-mail: shqwang@umd.umich.edu

Y. Ahn · R. Bettati
Department of Computer Science and Engineering, Texas A&M University, College Station,
TX 77843, USA

Y. Ahn
e-mail: ayw@ece.tamu.edu

R. Bettati
e-mail: bettati@cs.tamu.edu

mailto:shqwang@umd.umich.edu
mailto:ayw@ece.tamu.edu
mailto:bettati@cs.tamu.edu

Real-Time Syst (2010) 46: 160–188 161

1 Introduction

With the rapidly increasing power density in processors the problem of thermal man-
agement in systems is becoming acute. Methods to manage heat to control its dissipa-
tion have been gaining much attention by researchers and practitioners. Techniques
are being investigated for thermal control both at design time through appropriate
packaging and active heat dissipation mechanisms, and at run time through various
forms of dynamic thermal management (DTM) (e.g., Brooks and Martonosi 2001).

Thermal management through packaging (that improves airflow, for example) and
active heat dissipation is very expensive. Tiwari et al. (1998) for example show how
the incremental packaging cost per additional Watt becomes very high for processors
above 35–40 W power dissipation. A recent technology roadmap of the Semiconduc-
tor Industry Association (ITRS05 2005) predicts that packaging will become increas-
ingly challenging in the near future, due to the high levels of peak power involved and
the extremely high power density in emerging systems-in-package. In addition, for
many high-performance embedded systems the packaging requirements and operat-
ing environments render expensive and bulky packaging solutions inappropriate.

A number of DTM approaches to control the temperature at run time have been
proposed, ranging from clock throttling to dynamic voltage scaling (DVS) to in-chip
load balancing:

– Many processors use Clock Throttling (e.g., Rotem et al. 2004) or Clock Gating
(Skadron et al. 2003) to stall the clock and so allow the processor to cool during
thermal overload.

– DVS (Brooks and Martonosi 2001) is used in a variety of modern processor tech-
nologies and allows to switch between different frequency and voltage operating
points at run time in response to the current thermal situation. In the Enhanced In-
tel SpeedStep mechanism in the Pentium M processor, for example, a low-power
operating point is reached in response to a thermal trigger by first reducing the
frequency (within a few microseconds) and then reducing the voltage (at a rate of
one mV per microsecond; Rotem et al. 2004).

– A number of architecture-level mechanisms for thermal control have been pro-
posed that turn off components inside the processor in response to thermal over-
load. Skadron et al. (2003) for example argue that the microarchitecture should
distribute the workload in response to the thermal situation by taking advantage of
instruction-level parallelism. The performance penalty caused by this “local gat-
ing” would not be excessive. On a coarser level, the Pentium Core Duo Architec-
ture allows the OS or the BIOS to disable one of the cores by putting it into sleep
mode (Gochman et al. 2006).

As high-performance embedded systems become increasingly thermally-con-
strained, the question of how the thermal behavior of the system and the thermal
control mechanisms affect real-time guarantees must be addressed. In this paper we
describe schedulability analysis techniques in thermally-constrained hard real-time
systems, where deadline constraints for tasks have to be balanced against tempera-
ture constraints of the system.

162 Real-Time Syst (2010) 46: 160–188

Both in research and practice, dynamic speed control1 is one of the major tech-
niques to control the temperature. Dynamic speed scaling allows for a trade-off be-
tween these two performance metrics: To meet the deadline constraint, we run the
processor at a higher speed; To maintain the safe temperature levels, we run the
process at a lower speed.

There is some recent work on dynamic speed scaling techniques to control tem-
perature. For example, in Srinivasan and Adve (2003), a predictive DTM algorithm
was designed to improve the performance of multimedia applications. In Cohen et
al. (2003), Rao et al. (2006), optimal speed profiles were derived to achieve high re-
source utilization. This work focuses on improving resource utilization rather than on
providing real-time guarantees, which is the focus of this paper. Zhang and Chatha
(2007) address the knapsack problem for a given execution sequence of jobs by as-
signing discrete frequency/voltage states. They prove that the problem is NP-hard and
proceed to formulate a pseudo-polynomial optimal speed assignment algorithm and
a polynomial time approximation algorithm.

The work on dynamic speed scaling techniques to control temperature in real-
time systems was initiated in Bansal et al. (2004) and further investigated in Bansal
and Pruhs (2005). Both Bansal et al. (2004) and Bansal and Pruhs (2005) focus on
online algorithms in real-time systems, where the scheduler learns about a task only
at its release time. In contrast, in our work we assume a predictive task model (e.g.,
periodic tasks) and so allow for design-time schedulability analysis. In Ferreira et al.
(2006), a thermal model is presented that is capable of modeling cooling faults such
as CPU fan or case fan failures and load-balancing algorithms were design based on
this model. This work is complementary to ours.

We distinguish between proactive and reactive speed scaling schemes. When-
ever the temperature model is known, the scheduler could in principle use a proac-
tive speed-scaling approach, where—similarly to a non-work-conserving scheduler—
resources are preserved for future use. In this paper, we limit ourselves to re-
active schemes, and propose a simple reactive speed scaling technique for the
processor, which will be discussed in Sect. 2. We focus on reactive schemes pri-
marily because they are simple to integrate with current processor capabilities
through existing power control frameworks such as the Advanced Configuration and
Power Interface (ACPI) power control framework (ACPI 2010; Sanchez et al. 1997;
Rotem et al. 2004).

In order to provide timing guaranteed services for real-time tasks, schedulability
analysis is needed. Unfortunately, traditional schedulability analysis will not work
under thermal-aware design. In traditional schedulability analysis, we could target
on jobs only in a busy period (before and after that the processor is idle) because
the behavior of jobs in different busy periods do not affect each other (Liu 2000).
However, in thermal-aware design, it becomes difficult to separate the execution of
jobs in a busy period from the interference by the execution of jobs in an earlier
busy period because the speed of the processor is triggered by the thermal behavior
and varies over time under the DTM scheme. To tackle this issue, we introduce an

1At the risk of overly generalizing, we use the term “dynamic speed control” to subsume dynamic voltage
scaling or dynamic frequency scaling.

Real-Time Syst (2010) 46: 160–188 163

extended busy-period analysis methodology. In Wang and Bettati (2008), we perform
schedulability analysis under reactive speed scaling for identical-period tasks. In this
paper, we extend it to general task arrivals with First-In-First-Out (FIFO), Static-
Priority (SP), and Earliest-Deadline-First (EDF) scheduling.

The rest of the paper is organized as follows. In Sect. 2, we introduce the thermal
model, the speed scaling schemes, and the task model and the scheduling algorithms.
After discussing the thermal interference on schedulability analysis in Sect. 3, we de-
sign the extended busy-period analysis methodology to perform schedulability analy-
sis for FIFO, SP, and EDF scheduling algorithms in Sects. 4, 5, and 6 respectively. We
measure the response time performance for tasks under each scheduling algorithm in
Sect. 7. Finally, we conclude our work with final remarks and give an outlook on
future work in Sect. 8.

2 Models

2.1 Power model

The power consumption P is contributed by the following two main sources:

– The dynamic power consumption PD mainly resulting from the charging and dis-
charging of gates on the circuits. The dynamic power consumption could be mod-
elled as a convex function of the processor speed such as the dynamic power con-
sumption in CMOS processors (Rabaey and Chandrakasan 2002): PD = Cef V 2

dds,

where s = κv
(Vdd−Vt)

2

Vdd
is defined as the processor speed.2 We can further sim-

plify the formula of the dynamic power consumption as PD = β0s
α , where β0

and α ≤ 3 are constants. Usually, it is assumed that α = 3 (Bansal et al. 2004;
Bansal and Pruhs 2005).

– The leakage power consumption PL mainly resulting from leakage current. The
leakage power consumption function of the system could be modelled as a non-
negative constant when leakage power consumption is irrelevant to the tempera-
ture (Xu et al. 2005; Jian-Jia et al. 2007). When the leakage power consumption is
related to the temperature, it could be approximately modelled by a linear function
of the temperature (Chantem et al. 2008). Hence, the leakage power consumption
is as follows: PL = β1T + β2, where T is the temperature and β1 and β2 are con-
stants.

In this paper, we use the following formula as the overall power consumption

P = PD + PL = β0s
α + β1T + β2. (1)

The power consumption P = P(t), the speed s = s(t) and the temperature T = T (t)

are all functions of time t .

2Cef ,Vt ,Vdd , and κv denote the effective switch capacitance, the threshold voltage, the supply voltage,
and a hardware-design-specific constant, respectively. Vdd ≥ Vt ≥ 0; κv,Cef > 0.

164 Real-Time Syst (2010) 46: 160–188

2.2 Thermal model

A wide range of increasingly sophisticated thermal models for integrated circuits
have been proposed in the last few years. Some are comparatively simple, chip-wide
models, such as developed by Dhodapkar et al. (2000) in TEMPEST. Other models,
such as used in HotSpot (Skadron et al. 2003), describe the thermal behavior at the
granularity of architecture-level blocks or below, and so more accurately capture the
effects of hotspots.

In this paper we will be using a very simple chip-wide thermal model previously
used in Bansal et al. (2004), Bansal and Pruhs (2005), Dhodapkar et al. (2000), Co-
hen et al. (2003). While this model does not capture fine-granularity thermal effects,
the authors in Skadron et al. (2003) for example agree that it is somewhat appropri-
ate for the investigation of chip-level techniques, such as speed-scaling. In addition,
existing processors typically have well-defined hotspots, and accurate placement of
sensors alleviates the need for fine-granularity temperature modeling. The Intel Core
Duo processor, for example, has a highly accurate digital thermometer placed at the
single hotspot of each die, in addition to a single legacy thermal diode for both cores
(Gochman et al. 2006). More accurate thermal models can be derived from this sim-
ple one by more closely modeling the power dissipation (such as the use of active
dissipation devices) or by augmenting the input power by a stochastic component,
etc.

We assume that the ambient has a fixed temperature Ta . We adopt Fourier’s Law
as shown in the following formula (Bansal et al. 2004; Bansal and Pruhs 2005; Cohen
et al. 2006):

T ′(t) = P(t)

Cth

− T (t) − Ta

RthCth

, (2)

where Rth is the thermal resistance and Cth is the thermal capacitance of the chip.
Applying (1) into (2), we have

T ′(t) = asα(t) − bT (t), (3)

where a and b are positive constants and defined as follows:

a = β0

Cth

, b = 1

RthCth

− β1

Cth

, (4)

and T (t) is also scaled to be T (t) − Rthβ2 − Ta . Equation (3) is a classic linear
differential equation. If we assume that the temperature at time t0 is T0, i.e., T (t0) =
T0, (3) can be solved as

T (t) =
∫ t

t0

asα(τ)e−b(t−τ) dτ + T0e
−b(t−t0). (5)

We observe that we can always appropriately scale the speed to control the tempera-
ture:

Real-Time Syst (2010) 46: 160–188 165

– If we want to keep the temperature constant at a value TC during a time interval
[t0, t1], then for any t ∈ [t0, t1], we can set

s(t) =
(

bTC

a

) 1
α

. (6)

– If, on the other hand, we keep the speed constant at s(t) = sC during the same
interval, then the temperature develops as follows:

T (t) = asα
C

b
+

(
T (t0) − asα

C

b

)
e−b(t−t0). (7)

This relation between processor speed and temperature is the basis for many speed
scaling schemes.

2.3 Speed scaling

The effect of many dynamic thermal management schemes (most prominently DVS
and clock throttling) can be described by the speed/temperature relation depicted in
(6) and (7). The goal of dynamic thermal management is to maintain the processor
temperature within a safe operating range, and not exceed what we call the highest-
temperature threshold TH , which in turn should be at a safe margin from the maxi-
mum junction temperature of the chip. Temperature control must ensure that

T (t) ≤ TH . (8)

On the other hand, we can freely set the processor speed, up to some maximum speed
sH , i.e.,

0 ≤ s(t) ≤ sH . (9)

In the absence of dynamic speed scaling we have to set a constant value of the
processing speed so that the temperature will never exceed TH . Assuming that the
initial temperature is less than TH , we can define equilibrium speed sE as

sE =
(

b

a
TH

) 1
α

. (10)

For any constant processor speed not exceeding sE , the processor does not exceed
temperature TH , which can be easily proved by (7) and (10). Note that the equilib-
rium speed sE is the maximum constant speed that we can set to maintain the safe
temperature level.

A dynamic speed scaling scheme would take advantage of the power dissipation
during idle times. It would make use of periods where the processor is “cool”, typi-
cally after idle periods, to dynamically scale the speed and temporarily execute tasks
at speeds higher than sE . As a result, dynamic speed scaling would be used to im-
prove the overall processor utilization.

In defining the dynamic speed scaling algorithm we must keep in mind the follow-
ing important criteria:

166 Real-Time Syst (2010) 46: 160–188

Fig. 1 Illustration of reactive speed scaling

– It must be supported by existing power control frameworks such as ACPI (ACPI
2010; Sanchez et al. 1997; Rotem et al. 2004). The ACPl specification was de-
veloped to provide a configuring the hardware, systems, and software necessary
for power and thermal management within the PC. For the thermal management,
the ACPI specification describes the threshold temperature spectrum and includes
guidelines on how to use thermal monitor and CPU frequency(i.e., speed) scaling
to make thermal management decisions.

– It must lead to tractable design–time delay analysis. We can provide a theoretical
performance evaluation of the proposed scheme.

We therefore use the following very simple reactive speed scaling algorithm:

The processor will run at maximum speed sH when there is backlogged work-
load and the temperature is below the threshold TH . Whenever the temperature
hits TH , the processor will run at the equilibrium speed sE , which is defined in
(10). Whenever the backlogged workload is empty, the processor idles (runs at
the zero speed).

If we define W(t) as the backlogged workload at time t , the speed scaling scheme
described before can be expressed using the following formula:

s(t) =
{

sH , (W(t) > 0) ∧ (T (t) < TH)

sE, (W(t) > 0) ∧ (T (t) = TH)

0, W(t) = 0
(11)

Figure 1 shows an example of how temperature changes under reactive speed scaling.
It is easy to show that in any case the temperature never exceeds the threshold

TH . By using the full speed sometime, we aim to improve the processor utilization
compared with the constant-speed scaling. The reactive speed scaling is very simple:
whenever the temperature reaches the threshold, an event is triggered by the thermal
monitor, and the system throttles the processor speed. We will also see in the rest
of this paper that reactive speed scaling will lead to tractable design—time delay
analysis.

2.4 Task model and scheduling algorithms

The workload consists of a set of tasks {Γi : i = 1,2, . . . , n}. Each task Γi is com-
posed of a sequence of jobs. For a job, the time elapsed from the release time tr to the

Real-Time Syst (2010) 46: 160–188 167

completion time tf is called the response time of the job, and the worst-case response
time of all jobs in Task Γi is denoted by di . Jobs within a task are executed in a first-in
first-out order.

We characterize the workload of Task Γi by the workload function fi(t), the ac-
cumulated requested processor cycles of all the jobs from Γi released during [0, t].
Similarly, to characterize the actual executed processor cycles received by Γi , we de-
fine gi(t), the service function for Γi , as the total executed processor cycles rendered
to jobs of Γi during [0, t].

In reality, the time-dependent workload function is hard to obtain. Furthermore,
even if it were available, it would be intractable to perform schedulability analysis.
A well-known alternative to the workload function is the time-independent workload
constraint function Fi(I), which is defined as follows.

Definition 1 (Workload constraint function) Fi(I) is a workload constraint function
for the workload function fi(t), if for any 0 ≤ I ≤ t ,

fi(t) − fi(t − I) ≤ Fi(I). (12)

For I < 0, we define Fi(I) = 0.

For example, if a task Γi is constrained by a leaky bucket with a bucket size σi

and an average rate ρi , then its workload constraint function can be written as

Fi(I) = σi + ρiI. (13)

Once tasks arrive in our system, a scheduling algorithm will be used to schedule
the service order of jobs from different tasks. Both the workload and the scheduling
algorithm will determine the response time experienced by jobs. In this paper, we
consider three scheduling algorithms: First-in First-out (FIFO), Static Priority (SP),
and Earliest-Deadline-First (EDF) scheduling.

3 Thermal interference on schedulability analysis

The interference of job execution in thermal-aware design expands to a very wide
temporal domain beyond single busy period in traditional schedulability analysis.
In traditional schedulability analysis, we could target on jobs only in a single busy
period because the behavior of jobs in different busy periods do not affect each other
(Liu 2000). However, in thermal-aware design, it becomes difficult to separate the
execution of jobs in a busy period from the interference by the execution of jobs in an
earlier busy period because the speed of the processor can be triggered by the thermal
behavior and varies over time under the thermal management.

The following two lemmas (Wang and Bettati 2008) show how the change of tem-
perature, job arrival, or job execution affect the temperature at a later time or the
response time of a later job.

168 Real-Time Syst (2010) 46: 160–188

Fig. 2 Temperature effect

Fig. 3 Response time effect

Lemma 1 In a system with reactive speed scaling, given a time instance t , we con-
sider a job with a release time tr and a completion time tf such that tr < t and tf < t .
We assume that the processor is idle during [tf , t]. If we take either of the following
actions as shown in Fig. 2:

– Action A: Increasing the temperature at time t0 (t0 ≤ tr) such that the job has the
same release time tr but a new completion time t∗f satisfying t∗f < t ;

– Action B: Increasing the processor cycles for this job such that the job has the same
release time tr but a new completion time t∗f satisfying t∗f < t ;

– Action C: Shifting the job such that the job has a new release time t∗r and a new
completion time t∗r satisfying tr < t∗r < t and tf < t∗f < t ,

then we have Tt ≤ T ∗
t , where Tt and T ∗

t are the temperatures at time t in the original
and the modified scenarios respectively.

Lemma 2 In a system with reactive speed scaling, we consider two jobs Jk’s (k =
1,2), each of which has a release time tk,r and the completion time tk,f . We assume
t1,f < t2,f . If we take either of the following actions as shown in Fig. 3:

Real-Time Syst (2010) 46: 160–188 169

– Action A: Increasing the temperature at t0 (t0 ≤ t2,r) such that Job J2 has the same
release time t2,r but a new completion time t∗2,f ;

– Action B: Increasing the processor cycles of Job J1 such that Job Jk (k = 1,2) has
the same release time tk,r but a new completion time t∗k,f ;

– Action C: Shifting Job J1 such that Job J1 has a new release time t∗1,r and a new
completion time t∗1,f , and Job J2 has the same release time t2,r and a new comple-
tion time t∗2,f satisfying t1,r ≤ t∗1,r and t∗1,f ≤ t∗2,f ,

then t2,f ≤ t∗2,f . If we define d2 and d∗
2 as the response time of Job J2 in the original

and the modified scenarios respectively, then d2 ≤ d∗
2 .

The proofs of Lemmas 1 and 2 can be found in Wang and Bettati (2008).
Here we summarize the three actions defined in the above two lemmas as

follows:

– Action A: Increasing the temperature at some time instances;
– Action B: Increasing the processor cycles of some jobs;
– Action C: Shifting the execution of some jobs to a later time.

By the lemmas, with either of the above three actions, we can increase the temperature
at a later time and the response time of some later jobs.

The above lemmas show the thermal interference on schedulability analysis be-
yond single busy period. Therefore, a new schedulability analysis approach has to be
designed. In the following section, we will present our new schedulability analysis
approach: Extended busy-period analysis.

4 Schedulability analysis for FIFO scheduling

Recall that the speed of the processor is triggered by the thermal behavior and varies
over time under reactive speed scaling. Simple busy-period analysis will not work in
this environment. In simple busy-period analysis, the jobs arriving before the busy
period will not affect the response time of jobs arriving during the busy period. How-
ever, under reactive speed scaling, the execution of a job arriving earlier will heat
up the processor and so affect the response time of a job arriving later as shown in
Lemma 2. Therefore, in the busy-period analysis under reactive speed scaling, we
have to take this effect into consideration. We start our schedulability analysis in the
system with FIFO scheduling.

4.1 Single busy-period analysis

Under FIFO scheduling, all tasks experience the same worst-case response time as the
aggregated task does. Therefore, we consider the aggregated task, whose workload
constraint function can be written as

F(I) =
n∑

i=1

Fi(I). (14)

170 Real-Time Syst (2010) 46: 160–188

Fig. 4 Job executions

We consider a busy period [t1, t0] with length δ1 during which a job will experi-
ence the longest response time and immediately before which the processor is idle.
The processor runs at high speed sH in Interval [t1, t1,h] with length δ1,h and at equi-
librium speed sE in Interval [t1,h, t0] with length δ1,e as shown in the right side of
Fig. 4(a).

We define d as the worst-case response time experienced by a job in the busy
period [t1, t0]. Then, by the definition of worst-case response time (Wu et al. 2005),
we have

d = sup
t≥t1

{inf{τ : f (t) ≤ g(t + τ)}}, (15)

where f (t) and g(t) are the workload function and the service function of the ag-
gregated task respectively, as defined in Sect. 2. In other words, if by time t + τ , the
service received by the task is no less than its workload function f (t), then all jobs
of the task arriving before time t should have been served, with a response time no
more than τ .

Since the processor is idle at time t1, we have f (t1) = g(t1). Therefore, f (t) ≤
g(t + τ) in (15) can be written as

f (t) − f (t1) ≤ g(t + τ) − g(t1). (16)

First, we study the right side of (16). Recall that the processor runs at high speed sH
in Interval [t1, t1,h] with length δ1,h and at equilibrium speed sE in Interval [t1,h, t0]
with length δ1,e . If we define I = t − t1, then we have

g(t + τ) − g(t1) = G(I + τ), (17)

where G(I), which we call service constraint function of g(t), is defined as

G(I) = min{(sH − sE)δ1,h + sEI, sH I }. (18)

Next, we study the left side of (16). With Action B, a job will experience a longer
response time with more workload released and completed before its completion.

Real-Time Syst (2010) 46: 160–188 171

Fig. 5 Response time constraint

Therefore, if we set

f (t) − f (t1) = F(t − t1) = F(I), (19)

then together with (17) the worst-case response time in (16) can be written as

d = sup
I≥0

{inf{τ : F(I) ≤ G(I + τ)}}. (20)

The above formula is illustrated in Fig. 5.

4.2 Extended busy-period analysis

The above single busy-period is not enough for thermal-constrained schedulability
analysis. As we can see, the undetermined service constraint function G(I) is the key
in the worst-case response time formula (20). As defined in (18), G(I) is a function
of δ1,h, which obviously depends on the temperature at time t1. As we mentioned
in previous section, the temperature at time t1 will also be affected by earlier job
executions. In the following, we will present our extended busy-period schedulability
analysis to address this issue.

The exact temperature at t1 is hard to obtain. Instead, we aim to obtain a tight
upper-bound of the temperature at t1, which will result in an upper-bound of the
worst-case response time according to Lemma 2.

To achieve this, we introduce extra intervals [tk+1, tk]’s (k = 1, . . . ,m − 1), as
shown in Fig. 4(a). By Lemma 1, we can use the three actions mentioned earlier to
upper-bound the temperature at t1. With Action A, we upper-bound the temperature
at tm by TH . With Action C, for each Interval δk (k = 2, . . . ,m), we shift all parts
of job execution to the end of this interval, such that the beginning part is idle with
length δk,0 and the ending part is busy with length δk,h, as shown in Fig. 4(b). We
assume that the temperature will not hit TH during [tm, t1],3 then the processor will
run at high speed sH during each interval [tk+1,0, tk].

In the following, we investigate the service and the thermal interference in the
extended busy period.

3If there is an interval [tk0+1, tk0] during which the temperature hits TH , then the temperature at tk0 is
TH . In this case, we can set m = k0 and remove all intervals on the left.

172 Real-Time Syst (2010) 46: 160–188

4.2.1 Service in extended busy period

We consider the service received in each interval [tk, t0], k = 1, . . . ,m. As shown in
Fig. 4(b), the executed processor cycles in [tk, t0] can be written as

g(t0) − g(tk) = sH

k∑
j=1

δj,h + sEδ1,e. (21)

For k = 1, we have g(t0) − g(t1) = G(t0 − t1) = f (t0) − f (t1). Following the
schedulability analysis in the above response time constraint, we consider the worst-
case workload f (t0) − f (t1) = F(t0 − t1). Therefore, by (21) we have

sH δ1,h + sEδ1,e = F(δ1,h + δ1,e). (22)

For k = 2, . . . ,m, by the definition of the worst-case response time in (15), we
have f (tk − d) ≤ g(tk). Then together with g(t0) ≤ f (t0) the number of processor
cycles in Interval [tk, t0] is bounded as

g(t0) − g(tk) ≤ f (t0) − f (tk − d). (23)

By Lemma 2, the response time will become longer when g(t0)− g(tk) = f (t0)−
f (tk − d) = F(t0 − tk + d) by either shifting the job execution or increasing the
processor cycles of jobs. Therefore, by (21) we have

sH

k∑
j=1

δj,h + sEδ1,e = F

(
k∑

j=1

δj,h + δ1,e + d

)
. (24)

Note that the service received by jobs depends on the processing speed, which
changes with the thermal behavior. Next we want to see how the temperature changes
in each interval.

4.2.2 Thermal interference in extended busy period

First, we consider each interval [tk+1, tk], k = 1, . . . ,m− 1, which is composed of an
idle period with length δk+1,0 and a busy period with length δk+1,h. Define Tk as the
temperature at tk , then following the temperature formula (7), we have

Tk = asα
H

b
+

(
Tk+1e

−bδk+1,0 − asα
H

b

)
e−bδk+1,h . (25)

Together with the assumption that Tk ≤ TH and Tm = TH , we have

Tk

TH

=
(

sH

sE

)α m∑
r=k+1

e−b
∑r−1

l=k+1 δl (1 − e−bδr,h) + e−b
∑m

l=k+1 δl ≤ 1. (26)

Next, considering Interval [t1, t1,h], we have

T1

TH

=
(

sH

sE

)α

−
((

sH

sE

)α

− 1

)
ebδ1,h . (27)

Real-Time Syst (2010) 46: 160–188 173

In summary, the above schedulability analysis results in several important concrete
constraint conditions represented by expressions: (20), (22), (24), (26), and (27). With
these constraint conditions, we are able to obtain a tight upper-bound of the worst-
case response time.

Specifically, for any given values of δ1,h, δ1,e , δk,0, and δk,h, k = 2, . . . ,m,
which are constrained by (20), (22), (24), (26), and (27), we can obtain an
upper-bound of the worst-case response time, which we denote as d(δ1,h, δ1,e ,
δ2,0, δ2,h, . . . , δm,0, δm,h). Note that, with any combination of δ1,h, δ1,e , δ2,0, δ2,h, . . . ,

δm,0, and δm,h, d(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h) can always bound the worst-
case response time. In order to find a tight upper-bound of the worst-case response
time, we can choose a set of δk,0’s and δk,h’s to minimize d(δ1,h, δ1,e, δ2,0, δ2,h, . . . ,

δm,0, δm,h) as summarized in the following theorem:

Theorem 1 In a system with FIFO scheduling under reactive speed scaling, a tight
bound of the worst-case response time d can be obtained by the following formula

d = min{d(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h)}
subject to (20), (22), (24), (26), and (27). (28)

As we can see, in Theorem 1, if we know the aggregate workload function F(I),
then we can obtain d(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h). Furthermore, through opti-
mization techniques, we can obtain the work-case response time d . As a case study,
in the following, we consider a leaky-bucket task workload and have the following
corollary for the worst-case response time under FIFO scheduling:

Corollary 1 In a system with FIFO scheduling under reactive speed scaling, we
consider tasks whose aggregated-task workload is F(I) = σ + ρI . Define χ1 = sE

sH

and χ2 = ρ
sH

. A tight bound of the worst-case response time d is expressed as follows:

d =
{

V (X − Y), χ2 ≤ χα
1

V (X − Y − Z), otherwise
(29)

where V = (1−χ1)(1−χ2)
χ1−χ2

, X = χ1
1−χ1

dE , Y = 1
b

ln 1−χ2
1−χα

1
, and Z = 1

b
χ2

1−χ2
ln χ2

χα
1

. If we

define dH and dE as the response time when the processor always runs at sH and sE
respectively, i.e., dH = σ

sH
and dE = σ

sE
, then the worst-case response time d is also

constrained by

dH ≤ d ≤ dE. (30)

The proof is given in Appendix A.

5 Schedulability analysis for SP scheduling

Under SP scheduling, jobs from different tasks are assigned different priorities. Low-
priority jobs are preempted by high-priority jobs. We assume all jobs from Task Γi

are assigned Priority i. A smaller index indicates a higher priority.

174 Real-Time Syst (2010) 46: 160–188

In order to perform schedulability analysis in the system with SP scheduling, we
introduce the following lemma:

Lemma 3 For any work-conserving scheduling algorithm in a system under reactive
speed scaling as defined in (11), the service function g(t) of the aggregated task is
uniquely determined by the workload function f (t) of the aggregated task, not by the
scheduling algorithm.

Proof The service function g(t) can be written as

g(t) =
∫ t

0
s(τ) dτ, (31)

where s(·) is the processing speed. According to (11), s(t) is determined by W(t) and
T (t) under reactive speed scaling, where W(t) is the backlogged workload at time t ,
i.e., W(t) = f (t) − g(t), and T (t) is determined by s(t) according to (5). Therefore,
the service function g(t) will be uniquely determined by the workload function f (t)

of the aggregated task. We have no assumption of the scheduling algorithm. Hence
the lemma is proved. �

Based on Lemma 3, we are able to obtain the worst-case response time under SP
scheduling as shown in the following theorem:

Theorem 2 In a system with SP scheduling under reactive speed scaling, a tight
bound of the worst-case response time di for Task Γi can be obtained by the following
formula

di = sup
I≥0

{
inf

{
τ :

i−1∑
j=1

Fj (I + τ) + Fi(I) ≤ G(I + τ)

}}
, (32)

where G(I) is defined in (18) and δ1,h in G(I) can be obtained by minimizing
d(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h) in Theorem 1.

Proof We consider a busy interval [t1, t0], during which at least one job from Tasks
Γj (j ≤ i) is running, and immediately before which no jobs from Tasks Γj (j ≤ i)
are running. We know that the response time of a job J of Task Γi is introduced by
two arrival stages of jobs in the queue: all queued jobs at J ’s release time and the
higher-priority ones coming between J ’s release time and completion time. Then we
have the worst-case response time for a job of Task Γi as follows:

di = sup
t≥t1

{
inf

{
τ :

i−1∑
j=1

fj (t + τ) + fi(t) ≤
i∑

j=1

gj (t + τ)

}}
, (33)

where fi(t) and gi(t) are the workload function and the service function of Task Γi ,
respectively.

Real-Time Syst (2010) 46: 160–188 175

By our assumption about Interval [t1, t0], we have fj (t1) = gj (t1), j = 1, . . . , i,
and gj (t) = gj (t1), j = i + 1, . . . , n. Therefore,

∑i−1
j=1 fj (t + τ) + fi(t) ≤∑i

j=1 gj (t + τ) in the above formula can be written as
∑i−1

j=1(fj (t + τ) − fj (t1)) +
(fi(t) − fi(t1)) ≤ ∑n

j=1(gj (t + τ) − gj (t1)). With the similar analysis for FIFO

scheduling, the worst-case response time happens when
∑i−1

j=1(fj (t + τ)−fj (t1))+
(fi(t) − fi(t1)) = ∑i−1

j=1 Fj (I + τ) + Fi(I), where I = t − t1. Then (32) holds. In
(32), G(I) is defined in (18). By Lemma 3, the service function under SP scheduling
is same as the one under FIFO scheduling. Then δ1,h in G(I) can be obtained by
minimizing d(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h) in Theorem 1. �

Similarly, in the following we consider the leaky-bucket task workload as a case
study. We have the following corollary on the worst-case response time for SP
scheduling:

Corollary 2 In a system with SP scheduling under reactive speed scaling, we assume
that Task Γi has a workload constraint function Fi(I) = σi + ρiI . A tight bound of
the worst-case response time di for Task Γi can be written as

di = max{dE,i − Δ,dH,i}, (34)

where

dE,i =
∑i

j=1 σj

sE − ∑i−1
j=1 ρj

, (35)

dH,i =
∑i

j=1 σj

sH − ∑i−1
j=1 ρj

, (36)

Δ =
∑n

j=1 σj − sEd

sE − ∑i−1
j=1 ρj

, (37)

and d in (37) can be obtained by Corollary 1. dE,i and dE,i are the worst-case re-
sponse times under constant speed scaling with speeds sE and sH , respectively.

The proof is given in Appendix B.

6 Schedulability analysis for EDF scheduling

Under EDF scheduling, jobs from a task are assigned priorities on the basis of their
deadline. The earlier the deadline, the higher the priority. We assume any job in Task
Γi is associated with a deadline Di .

Similar to the schedulability analysis for SP scheduling, we rely on Lemma 3 to
obtain the worst-case response time under EDF scheduling as shown in the following
theorem:

176 Real-Time Syst (2010) 46: 160–188

Theorem 3 In a system with EDF scheduling under reactive speed scaling, assume
Task Γi is associated with a deadline Di , then a tight bound of the worst-case re-
sponse time di for Task Γi can be obtained by the following formula

di = sup
I≥0

{
inf

{
τ :

n∑
j=1

Fj (I − Dj + Di) ≤ G(I + τ)

}}
, (38)

where G(I) is defined in (18) and δ1,h in G(I) can be obtained by minimizing
d(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h) in Theorem 1.

Proof We consider a busy interval [t1, t0], during which at least one job is running,
and immediately before which no jobs are running. We know that the response time
of a job J of Task Γi is introduced by two kinds of jobs in the queue: all queued jobs
from Γi at J ’s release time and all jobs from Γj (j �= i) with earlier deadline already
queued or arriving between J ’s release time and its completion time. Then we have
the worst-case response time for a job of Task Γi as follows:

di = sup
t≥t1

{
inf

{
τ :

n∑
j=1

fj (t − Dj + Di) ≤
n∑

j=1

gj (t + τ)

}}
, (39)

where fi(t) and gi(t) are the workload function and the service function of Task Γi ,
respectively.

By our assumption about Interval [t1, t0], we have fj (t1) = gj (t1), j = 1, . . . , n.
Therefore,

∑n
j=1 fj (t − Dj + Di) ≤ ∑n

j=1 gj (t + τ) in the above formula can be
written as

∑n
j=1(fj (t − Dj + Di) − fj (t1)) ≤ ∑n

j=1(gj (t + τ) − gj (t1)). With
the similar analysis for SP scheduling, the worst-case response time happens when∑n

j=1(fj (t −Dj +Di)−fj (t1)) = ∑n
j=1 Fj (I −Dj +Di), where I = t − t1. Then

(38) holds. In (32), G(I) is defined in (18). By Lemma 3, the service function un-
der EDF scheduling is same as the one under FIFO scheduling. As a result δ1,h in
G(I) can be obtained by minimizing d(δ1,h, δ1,e, δ2,0, δ2,h, . . . , δm,0, δm,h) in Theo-
rem 1. �

For the case of leaky-bucket task workload, we have the following corollary on
the worst-case response time for EDF scheduling:

Corollary 3 In a system with EDF scheduling under reactive speed scaling, we as-
sume that Task Γi has a workload constraint function Fi(I) = σi +ρiI and is associ-
ated with a deadline Di . A tight bound of the worst-case response time di for Task Γi

can be written as

di = max{dE,i − Δ,dH,i}, (40)

where

dE,i =
∑n

j=1(σj + ρj (Di − Dj))

sE
, (41)

Real-Time Syst (2010) 46: 160–188 177

Fig. 6 Transformation of a non-EDF schedule into an EDF schedule

dH,i =
∑n

j=1(σj + ρj (Di − Dj))

sH
, (42)

Δ =
∑n

j=1 σj

sE
− d, (43)

and d in (43) can be obtained by Corollary 1. The expressions for dE,i and dH,i are
the worst-case response time under constant speed scaling with speeds sE and sH ,
respectively.

The proof is given in Appendix C.
As we know, EDF scheduling is optimal under constant speed scaling (Liu 2000).

Fortunately, we find out that EDF remains optimal under reactive speed scaling as
shown in the following theorem:

Theorem 4 EDF scheduling is optimal under reactive speed scaling.

Proof We use the same approach used in the proof of the optimality of EDF under
constant speed scaling (Liu 2000): Any feasible schedule under reactive speed scaling
can be systematically transformed into an EDF schedule.

Suppose that in a schedule, we consider two jobs J1 and J2 as shown in the top
figures in Fig. 6 (a) and (b). We assume each job is scheduled as a whole. Otherwise,
we will only consider a successive part of each job. We assume that the deadlines D2
of J2 is later than the deadline D1 of J1. If the release time r2 of J2 is later than the

178 Real-Time Syst (2010) 46: 160–188

completion time f1 of J1 (r2 is not shown in the figures), J2 cannot be scheduled
before f1, and the two jobs are already scheduled on the EDF basis. Therefore, in the
following, we assume that r2 is no later than f1.

Without loss of generality, we assume that r2 is no later than the beginning exe-
cution time of J1. To transform the given schedule, we swap J1 and J2 as shown in
the figure. Specifically, if the number of processor cycles of J1 is smaller than the
one of J2 as shown in Fig. 6(a), we move the portion of J2 that fits in the original
J1 and move the entire portion of J1 backward to J2 and place it after J2. The swap
is always possible because the following fact: By Lemma 3, the service function is
uniquely determined by the workload function and not by the scheduling algorithm
such as FIFO, SP, or EDF. And so are the temperature and speed profiles. If the num-
ber of processor cycles of J1 is larger than the one of J2 as shown in Fig. 6(b), we
can do a similar swap. We repeat this transformation for every pair of jobs that are
not scheduled on the EDF basis until no such pair exists.

Since both reactive speed scaling and the considered scheduling algorithms are
work-conserving, there will not exist a case that some interval is left idle while there
are jobs ready for execution but scheduled in a later interval.

The above analysis shows that we can always transform a feasible schedule under
reactive speed scaling into an EDF schedule. Therefore, EDF scheduling is optimal
under reactive speed scaling. �

7 Performance evaluation

In this section we quantify the benefit of using simple reactive speed scaling by com-
paring the worst-case response time with that of a system without speed scaling. We
adopt as the baseline a constant-speed processor that runs at equilibrium speed sE .

We choose the same setting as Skadron et al. (2003) for a silicon chip. The thermal
conductivity of the silicon material per unit volume is kth = 100 W/m K and the ther-
mal capacitance per unit volume is cth = 1.75e+6 J/m3 K. The chip is tth = 0.55 mm
thick. Therefore, the thermal RC time constant RC = cth

kth
t2
th = 5.3 ms (Skadron et

al. 2003). We choose β0 = 1, β1 = 0.001, and β2 = 0.1. Hence by (4) a = 5.7e−7
and b ≈ 188.9 s−1. The ambient temperature is 45◦C and the maximum temperature
threshold is 85◦C, hence TH = 40◦C. The equilibrium speed sE is fixed by the system
with (10) and we choose sH = 10

7 sE and assume α = 3.
We consider three tasks Γi ’s (i = 1,2,3). Each task Γi has a leaky bucket arrival

with Fi(I) = σi + ρiI . The aggregate task has an arrival with F(I) = σ + ρI , where
σ = ∑3

i=1 σi and ρ = ∑3
i=1 ρi . In our evaluation, we vary σ/sE and ρ/sE in the

ranges of [0,0.005] and [0,0.5] respectively. We compare the worst-case response
time of jobs in the system under reactive speed scaling and the baseline one in the
systems the processor always run at the equilibrium speed.

First we consider FIFO scheduling. We evaluate the worst-case response time de-
crease ratio (dE − d)/dE for the aggregated task.4 Figure 7 shows a contour plot of

4The alert reader has noticed that we did not define a value for parameter a. This is because a appears only
in the computation of sE , which cancels out in the response time decrease ratio.

Real-Time Syst (2010) 46: 160–188 179

Fig. 7 A contour plot of response time decrease ratio (dE − d)/dE for the aggregated task under reactive
speed scaling for FIFO scheduling

(dE − d)/dE in terms of σ/sE and ρ/sE . Based on (29) and Fig. 7, we observe that
the response time decrease ratio changes from a minimum 0 (as d = dE) to a maxi-
mum of 1 − sE

sH
= 0.300 (as d = dH). The response time decrease ratio will decrease

as either σ or ρ increases.
Next we consider SP scheduling. We assume that σ1 : σ2 : σ3 = ρ1 : ρ2 : ρ3 = 1 :

2 : 3. We evaluate the worst-case response time decrease ratio (dE,i − di)/dE,i for
Task Γi . Each individual picture in Fig. 8 shows contour plots of (dE,i − di)/dE,i in
terms of σ/sE and ρ/sE , for the three tasks separately. Based on (34) and Fig. 8, we
observe that the response time decrease ratio changes from a minimum of 0 (as di =
dE,i) to a maximum of 1 − sE

sH
= 0.300 for Task Γ1, to a maximum of (1 − sE

sH
)/(1 −

1
6

sE
sH

) = 0.316 for Task Γ2, and to a maximum of (1 − sE
sH

)/(1 − 1
2

sE
sH

) = 0.353 for

Task Γ3 (as di = dE,i).
As long as the response time decrease ratio is not larger than 0.300, the ratio will

decrease as either σ or ρ increases for any task. Whenever it exceeds 0.300, we have
different observation results for the lower-priority tasks. In particular, considering
the lower-priority task Γ3, once di reaches dH,i , the response time decrease ratio can
be written as (1 − sE

sH
)/(1 − 1

sH

∑i−1
j=1 ρj) = 0.300/(1 − 1

sH

∑i−1
j=1 ρj). Therefore, as

shown at the left-bottom corner of the last two contour plots in Fig. 8, the response
time decrease ratio will keep constant as σ increases and ρ keeps constant, but in-
crease beyond 0.300 as ρ increases and σ keeps constant.

Finally, we consider EDF scheduling. We consider the same assumption that σ1 :
σ2 : σ3 = ρ1 : ρ2 : ρ3 = 1 : 2 : 3 and the deadlines are D1 = 0.004,D2 = 0.006,D3 =
0.008. We evaluate the worst-case response time decrease ratio (dE,i − di)/dE,i for
Task Γi . Each individual picture in Fig. 9 shows contour plots of (dE,i − di)/dE,i

in terms of σ/sE and ρ/sE , for the three tasks separately. Based on (40) and Fig. 9,
we observe that the response time decrease ratio changes from a minimum of 0 (as
di = dE,i) to a maximum of 1 − sE

sH
= 0.300 for all tasks. And the response time

decrease ratio decreases with the increase of either σ or ρ, except for the case of

180 Real-Time Syst (2010) 46: 160–188

Fig. 8 Contour plots of response time decrease ratio (dE,i − di)/dE,i for Task Γi under reactive speed
scaling for SP scheduling

Real-Time Syst (2010) 46: 160–188 181

Fig. 9 Contour plots of response time decrease ratio (dE,i − di)/dE,i for Task Γi under reactive speed
scaling for EDF scheduling

182 Real-Time Syst (2010) 46: 160–188

Γ3. In this exception, once d3 < dE,3 (i.e., the response time decrease ratio is below
1 − sE

sH
= 0.300), by (40), we have (dE,3 − d3)/dE,3 = 1

1+ζ3
(dE − d)/dE , where

ζ3 = 1
σ

∑3
j=1 ρj (D3 − Dj) ≥ 0 and (dE − d)/dE is the response time decrease ratio

for FIFO as shown in Fig. 7. We consider the following two cases:

– Case (dE − d)/dE < 0.300: In this case, ζ3 ≈ 0, then we have (dE,3 − d3)/dE,3 ≈
(dE − d)/dE and the curve will be similar to Fig. 7.

– Case (dE − d)/dE = 0.300: In this case, then we have (dE,3 − d3)/dE,3 = 0.300
1+ζ3

:
as σ increases, ζ3 decreases, then (dE,3 − d3)/dE,3 increases; as ρ increases, ζ3

increases, then (dE,3 − d3)/dE,3 decreases.

8 Conclusion and future work

Schedulability analysis in systems with thermal-constrained speed scaling is difficult,
as the traditional definition of “busy period” does not apply, and it becomes difficult to
separate the execution of jobs from the interference by ones arriving earlier or having
low priorities because of dynamic speed scaling triggered by the thermal behavior. In
this paper we have shown how to compute bounds on the worst-case response time
for tasks with arbitrary job arrivals for FIFO, SP, and EDF scheduling algorithms
in a system with reactive speed scaling algorithm, which simply runs at maximum
speed until the CPU becomes idle or reaches a critical temperature. In the latter case
the processing speed is reduced (through DVS or appropriate clock throttling) to an
equilibrium speed that keeps the temperature constant. We have shown that such a
scheme reduces worst-case response time.

In order to further improve the performance of speed scaling, one would have to
find ways to partially isolate jobs from the thermal effects of ones arriving earlier or
having low priorities. One weakness of the proposed speed-scaling algorithm is its
inability to pro-actively process low-priority tasks at lower-than-equilibrium speeds.

Acknowledgements An earlier version of this work was published in the Proceedings of IEEE Real-
Time Systems Symposium, December 2006 (Wang and Bettati 2006). This work was funded by NSF Grant
No. CNS-0509483 and Rackham Faculty Research Grant at the University of Michigan and NSF CAREER
Grant No. CNS-0746906.

Appendix A: Proof of Corollary 1

We follow the analysis in Sect. 4 with the leaky bucket workload.

A.1 Single busy-period analysis

Since F(I) = σ + ρI , by (20) we can obtain the response time d as

d = max

{
σ

sH
,

σ

sE
−

(
sH

sE
− 1

)
δ1,h

}
. (44)

Real-Time Syst (2010) 46: 160–188 183

Therefore, we have

δ1,h =
σ
sE

− d

sH
sE

− 1
, (45)

as

d ≥ σ

sH
. (46)

A.2 Service in extended busy period

To simplify the service analysis, we consider equal intervals and assume δk = δ

for k = 3, . . . ,m. We investigate the service received in each interval [tk, t0], k =
1, . . . ,m.

As k = 1, by (22) we have

sH δ1,h + sEδ1,e = σ + ρ(δ1,h + δ1,e). (47)

Hence,

(sH − ρ)δ1,h + (sE − ρ)δ1,e = σ. (48)

As k = 2, . . . ,m, by (24), we have

sH

k∑
j=1

δj,h + sEδ1,e = σ + ρ((k − 2)δ + (δ2 + δ1) + d). (49)

If k = 2, together with (48), we have

δ2,h = δ2,0 + d
sH
ρ

− 1
. (50)

If k ≥ 3, we have

δk,h = ρ

sH
δ. (51)

A.3 Thermal interference in extended busy period

By (45) and (51), we can rewrite the thermal constraint condition (26).
As k = 2, . . . ,m − 1,

Tk

TH

= e−b(m−k)δ(1 − ξ) + ξ, (52)

where

ξ =
(

sH

sE

)α 1 − e
−b

ρ
sH

δ

1 − e−bδ
. (53)

184 Real-Time Syst (2010) 46: 160–188

By (52), T2 is a function of δ and m. It is easy to show that the smaller T2 is, the
shorter the response time d . Therefore, we want to find δ and m to minimize T2 so
that we have a tight upper-bound d of the original worst-case response time.

If ξ ≤ 1, then Tk/TH ≤ 1. By (52), T2 is a decreasing function in terms of (m−2)δ,
then T2/TH ≥ lim(m−2)δ→∞ T2/TH = ξ .5 Furthermore, ξ is an increasing function
of δ, then T2/TH ≥ limδ→0 ξ = (sH

sE
)α

ρ
sH

. Therefore, we choose the minimum and
set T2/TH = (sH

sE
)α

ρ
sH

as (sH
sE

)α
ρ
sH

≤ 1.
If ξ > 1, then T2/TH is the maximum among all Tk/TH ’s. Therefore, we only

need to consider bound T2/TH ≤ 1. By (52), T2/TH is an increasing function in
terms of m, then T2/TH will be minimized at m = 2. Hence, we set T2/TH = 1 in
this case.

Therefore, with the analysis above, we can set

T2

TH

= min

{(
sH

sE

)α
ρ

sH
,1

}
. (54)

At the same time, by (25) and (27), we have

δ1,h + δ2,h = 1

b
ln

(sH
sE

)α − T2
TH

e−bδ2,0

(sH
sE

)α − 1
. (55)

Therefore, by (45), (50), (54), and (55), we can obtain the worst-case response
time d as follows:

d = (1 − χ1)(1 − χ2)

χ1 − χ2

(
χ1

1 − χ1

σ

sE
+ χ2

1 − χ2
δ2,0 − 1

b
ln

1 − min{χ2, χ
α
1 }e−bδ2,0

1 − χα
1

)
,

(56)
where χ1 = sE

sH
, and χ2 = ρ

sH
.

Equation (56) shows that d is a function of δ2,0. Since the above analysis works
for any chosen δ2,0, we want to obtain a minimum d in terms of δ2,0. There are two
cases:

– χ2 ≤ χα
1 : d will be minimized at δ2,0 = 0, therefore

d = V (X − Y), (57)

– χ2 > χα
1 : d will be minimized at δ2,0 = 1

b
ln χ2

χα
1

, therefore

d = V (X − Y − Z), (58)

where V,X,Y,Z are defined in Corollary 1.
On the other hand, in the thermal constraint, as k = 1, by (27) and the constraint

that T1/TH ≤ 1, we have

δ1,h ≥ 0. (59)

5We assume that at time zero the system is at lowest temperature. Therefore, we can pick the intervals with
overall length up to infinity.

Real-Time Syst (2010) 46: 160–188 185

Therefore, by (45), we have

d ≤ σ

sE
. (60)

Recall that dH = σ
sH

and dE = σ
sE

, then by (46) and (60), the worst-case response
time is also constrained by

dH ≤ d ≤ dE. (61)

Appendix B: Proof of Corollary 2

By Theorem 2, G(I) = min{(sH − sE)δ1,h + sE(I +di), sH (I +di)} depends on δ1,h.
For the leaky bucket task workload, by (45) we have δ1,h = (σ

sE
−d)/(sH

sE
−1), where

d can be obtained by Corollary 1.
By (32), the response time formula can be written as

di = sup
I≥0

{
inf

{
τ :

i−1∑
j=1

(σj + ρj (I + τ)) + σi + ρiI

≤ min{(sH − sE)δ1,h + sE(I + τ), sH (I + τ)}
}}

. (62)

Then, as di > δ1,h, with δ1,h = (σ
sE

− d)/(sH
sE

− 1), we have

di =
∑i−1

j=1(σj + ρjdi) + σi

sE
−

(
sH

sE
− 1

)
δ1,h

=
∑i−1

j=1(σj + ρjdi) + σi

sE
−

(
σ

sE
− d

)
(63)

otherwise

di =
∑i−1

j=1(σj + ρjdi) + σi

sH
. (64)

Therefore, by (63) and (64), we have

di = max{dE,i − Δ,dH,i}, (65)

where dE,i , dH,i , and Δ are defined in Corollary 2, and d can be obtained by Corol-
lary 1. The worst-case response time di is constrained by

dH,i ≤ di ≤ dE,i . (66)

186 Real-Time Syst (2010) 46: 160–188

Appendix C: Proof of Corollary 3

By Theorem 3, G(I) = min{(sH − sE)δ1,h + sE(I +di), sH (I +di)} depends on δ1,h.
For the leaky bucket task workload, by (45) we have δ1,h = (σ

sE
−d)/(sH

sE
−1), where

d can be obtained by Corollary 1.
By (38), the response time formula can be written as

di = sup
I≥0

{
inf

{
τ :

n∑
j=1

(σj + ρj (I − Dj + Di))

≤ min{(sH − sE)δ1,h + sE(I + τ), sH (I + τ)}
}}

. (67)

Then, as di > δ1,h, with δ1,h = (σ
sE

− d)/(sH
sE

− 1), we have

di =
∑n

j=1(σj + ρj (Di − Dj))

sE
−

(
sH

sE
− 1

)
δ1,h

=
∑n

j=1 ρj (Di − Dj)

sE
+ d, (68)

otherwise

di =
∑n

j=1(σj + ρj (Di − Dj))

sH
. (69)

Therefore, by (68) and (69), we have

di = max{dE,i − Δ,dH,i}, (70)

where dE,i , dH,i , and Δ are defined in Corollary 3, and d can be obtained by Corol-
lary 1. The worst-case response time di is constrained by

dH,i ≤ di ≤ dE,i . (71)

References

Advanced configuration and power interface specification (2010) http://www.acpi.info/spec.htm. The last
access time is July 2010

Semiconductor Industry Association (2005) 2005 international technology roadmap for semiconductors.
http://public.itrs.net. The last access time is July 2010

Bansal N, Kimbrel T, Pruhs K (2005) Dynamic speed scaling to manage energy and temperature. In: IEEE
symposium on foundations of computer science

Bansal N, Pruhs K (2005) Speed scaling to manage temperature. In: Symposium on theoretical aspects of
computer science

Brooks D, Martonosi M (2001) Dynamic thermal management for high-performance microprocessors. In:
The 7th international symposium on high-performance computer architecture, pp 171–182

Chantem T, Dick RP, Hu XS (2008) Temperature-aware scheduling and assignment for hard real-time
applications on MPSoCs. In: Design, automation and test in Europe

http://www.acpi.info/spec.htm
http://public.itrs.net

Real-Time Syst (2010) 46: 160–188 187

Chen J-J, Hung C-M, Kuo T-W (2007) On the minimization of the instantaneous temperature for periodic
real-time tasks. In: IEEE real-time and embedded technology and applications symposium

Cohen A, Finkelstein L, Mendelson A, Ronen R, Rudoy D (2003) On estimating optimal performance of
CPU dynamic thermal management. In: Computer architecture letters

Cohen A, Finkelstein L, Mendelson A, Ronen R, Rudoy D (2006) On estimating optimal performance of
CPU dynamic thermal management. In: Computer architecture letters

Dhodapkar A, Lim CH, Cai G, Daasch WR (2000) TEMPEST: a thermal enabled multi-model power/
performance estimator. In: Workshop on power-aware computer systems, ASPLOS-IX

Ferreira AP, Oh J, Moss D (2006) Toward thermal-aware load-distribution for real-time server. In: IEEE
real-time systems symposium work-in-progress session

Gochman S, Mendelson A, Naveh A, Rotem E (2006) Introduction to Intel Core Duo processor architec-
ture. Intel Technol J 10(2):89–97

Liu J (2000) Real-time systems. Prentice Hall, New York
Rabaey JM, Chandrakasan A, Nikolic B (2002) Digital integrated circuits, 2nd edn. Prentice Hall, New

York
Rao R, Vrudhula S, Chakrabarti C, Chang N (2006) An optimal analytical solution for processor speed

control with thermal constraints. In: International symposium on low power electronics and design.
ACM Press, New York

Rotem E, Naveh A, Moffie M, Mendelson A (2004) Analysis of thermal monitor features of the Intel
Pentium M processor. In: Workshop on temperature-aware computer systems

Sanchez H, Kuttanna B, Olson T, Alexander M, Gerosa G, Philip R, Alvarez J (1997) Thermal management
system for high performance powerpc microprocessors. In: IEEE international computer conference

Skadron K, Stan M, Huang W, Velusamy S, Sankaranarayanan K, Tarjan D (2003) Temperature-aware mi-
croarchitecture: extended discussion and results. Technical report CS-2003-08, Department of Com-
puter Science, University of Virginia

Srinivasan J, Adve SV (2003) Predictive dynamic thermal management for multimedia applications. In:
International conference on supercomputing

Tiwari V, Singh D, Rajgopal S, Mehta G, Patel R, Baez F (1998) Reducing power in high-performance
microprocessors. In: Design automation conference, pp 732–737

Wang S, Bettati R (2006) Delay analysis in temperature-constrained hard real-time systems with general
task arrivals. In: IEEE real-time systems symposium

Wang S, Bettati R (2008) Reactive speed control in temperature-constrained real-time systems. Real-Time
Syst J 39(1–3), 658–671

Wu J, Liu J, Zhao W (2005) On schedulability bounds of static priority schedulers. In: IEEE real-time and
embedded technology and applications symposium

Xu R, Zhu D, Rusu C, Melhem R, Moss D (2005) Energy efficient policies for embedded clusters. In:
ACM SIGPLAN/SIGBED conference on languages, compilers, and tools for embedded systems

Zhang S, Chatha KS (2007) Approximation algorithm for the temperature-aware scheduling problem. In:
IEEE/ACM international conference on computer-aided design

Shengquan Wang received his B.S. degree in Mathematics from An-
hui Normal University, China, in 1995, and his M.S. degree in Applied
Mathematics from the Shanghai Jiao Tong University, China. He also
received M.S. degree in Mathematics in 2000 and Ph.D. in Computer
Science from Texas A& M University. He is currently Assistant Profes-
sor in the Department of Computer and Information Science at the Uni-
versity of Michigan-Dearborn. He is a recipient of the US National Sci-
ence Foundation (NSF) Faculty Early Career Development (CAREER)
Award. His research interests are in real-time systems, networking and
distributed systems, and security and privacy.

188 Real-Time Syst (2010) 46: 160–188

Youngwoo Ahn received his B.S. degree in electrical engineering
from Seoul National University, Korea, in 1997 and his M.S. degree
from Seoul National University, Korea, in 1999. During 1999–2004,
he worked as a research engineer at LG Electronics in Korea. Also he
worked at electronics and Telecommunication Research Institute in Ko-
rea from 2004 to 2005 as a researcher. He graduated with the Ph.D. in
electrical and computer engineering from Texas A& M University in
August 2010. His research interests lie primarily in real-time operating
systems, especially in designing and analyzing task scheduling under
resource constraints.

Riccardo Bettati received the diploma in informatics from the Swiss
Federal Institute of Technology (ETH), Zurich, Switzerland, in 1988
and the PhD degree from the University of Illinois, Urbana-Champaign,
in 1994. He is currently a professor in the Department of Computer Sci-
ence and Engineering, Texas A& M University. His research interests
are in traffic analysis and privacy, realtime distributed systems, real-
time communication, and network support for resilient distributed ap-
plications. From 1993 to 1995, he held a postdoctoral position at the
International Computer Science Institute, Berkeley, and at the Univer-
sity of California, Berkeley. He is a member of the IEEE Computer
Society.

	Schedulability analysis in hard real-time systems under thermal constraints
	Abstract
	Introduction
	Models
	Power model
	Thermal model
	Speed scaling
	Task model and scheduling algorithms

	Thermal interference on schedulability analysis
	Schedulability analysis for FIFO scheduling
	Single busy-period analysis
	Extended busy-period analysis
	Service in extended busy period
	Thermal interference in extended busy period

	Schedulability analysis for SP scheduling
	Schedulability analysis for EDF scheduling
	Performance evaluation
	Conclusion and future work
	Acknowledgements
	Appendix A: Proof of Corollary 1
	Single busy-period analysis
	Service in extended busy period
	Thermal interference in extended busy period

	Appendix B: Proof of Corollary 2
	Appendix C: Proof of Corollary 3
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

