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1
Review of thermodynamics

1.1 Thermodynamic variables

The purpose of thermodynamics is to describe the properties of various macroscopic
systems at, or near, equilibrium. This is done with the help of several state variables,
such as the internal energy E, the volume V , the pressure P , the number of particles
N , the temperature T , the entropy S, the chemical potential µ, and others.

These state variables depend only on what the state of the system is, and not on
how the system was brought to that state. The variables are not all independent, and
thermodynamics provides general relations among them. Some of these relations
are not specific to particular systems, but are valid for all macroscopic systems.

1.2 Equilibrium

A system is in equilibrium if its physical properties do not change with time. The
state variables must therefore be constant in time. More precisely, a system is in
equilibrium if there are no

• macroscopic motions (mechanical equilibrium)

• macroscopic energy fluxes (thermal equilibrium)

• unbalanced phase transitions or chemical reactions (chemical equilibrium)

occurring within the system.
We will see in Sec. 10 that the requirement for mechanical equilibrium is that

P must be constant in time and uniform throughout the system. This is easily
understood: a pressure gradient produces an unbalanced macroscopic force which,
in turn, produces bulk motion within the system; such a situation does not represent
equilibrium.

The requirement for thermal equilibrium is that T must be constant in time and
uniform throughout the system. This also is easily understood: If one part of the
system is hotter than the other, energy (in the form of heat) will flow from that
part to the other; again such a situation does not represent equilibrium.

Finally, the requirement for chemical equilibrium is that µ must be constant
in time and uniform throughout the system. The chemical potential is not a very
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2 Review of thermodynamics

familiar quantity, and this requirement can perhaps not be understood easily. But
at least it is clear that unbalanced chemical reactions (we take this to include nuclear
reactions as well) cannot occur in a system at equilibrium. Consider for example
the reaction of β-decay:

n→ p+ e− + ν.

If this reaction is unbalanced (the reversed reaction can occur at sufficiently high
densities), the number of neutrons in the system will keep on decreasing, while the
number of protons, electrons, and anti-neutrinos will keep on increasing. Such a
situation does not represent equilibrium.

A system which is at once in mechanical, thermal, and chemical equilibrium is
said to be in thermodynamic equilibrium.

1.3 Equation of state

The equation of state of a thermodynamic system expresses the fact that not all of
its state variables are independent.

Consider a system described by two state variables X and Y , apart from the
temperature T . (For example, an ideal gas is described by the variables X ≡ V ,
Y ≡ P .) We suppose that the system is initially in equilibrium at temperature T .

We ask the question: Can X and Y be varied independently, so that the sys-
tem remains in equilibrium after the transformation? The answer, which must be
determined empirically, is: No! For the system to remain in equilibrium, a given
variation of X must be accompanied by a specific variation in Y . If Y is not varied
by this amount, the system goes out of equilibrium.

There must therefore exist an equation of state,

f(X,Y, T ) = 0 , (1.1)

relating X , Y , and T for all equilibrium configurations. For non-equilibrium states,
f 6= 0. [For example, the equation of state of an ideal gas is f(V, P, T ) = PV −
NkT = 0.]

The equation of state cannot be derived within the framework of thermodynam-
ics. (This is one of the goals of statistical mechanics.) It must be provided as input,
and determined empirically.

Suppose the system goes from one equilibrium configuration (X,Y, T ) to a neigh-
bouring one (X + δX, Y + δY, T ). The temperature is kept constant for simplicity;
it could also be varied. We can use the equation of state to calculate δY in terms
of δX . We have f(X,Y, T ) = 0 and f(X + δX, Y + δY, T ) = 0, since both these
configurations are at equilibrium. So

f(X + δX, Y + δY, T ) − f(X,Y, T ) = 0.

Expressing the first term as a Taylor series about (X,Y, T ), up to first order in the
displacements δX and δY , gives

(

∂f

∂X

)

Y,T

δX +

(

∂f

∂Y

)

X,T

δY = 0.

Here, the subscript after each partial derivative indicates which quantities are to
be held fixed when differentiating. This equation clearly shows that X and Y
cannot be varied independently if the system is to remain in equilibrium during the
transformation. (For an ideal gas, the previous equation reduces to PδV + V δP =
0.)
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1.4 Quasi-static transformations

In general, changing the state of a thermodynamic system, initially in equilibrium,
by a finite amount (X → X + ∆X) brings the system out of equilibrium. The free
expansion of a gas, resulting from removing a partition in a partially filled container,
is a good example.

However, if the change occurs sufficiently slowly, the system will always stay
arbitrarily close to equilibrium. The transformation will follow a sequence of equi-
librium configurations, along which the equation of state is everywhere satisfied.
A good example of such a transformation is the very slow expansion of a gas in a
chamber, resulting from the slow displacement of a piston.

Such transformations, which do not take the system away from equilibrium, are
called quasi-static. We will consider only quasi-static transformations in this course.

1.5 First law of thermodynamics

1.5.1 Formulation

The first law of thermodynamics is a statement of conservation of energy:

The internal energy E of a system can be increased by either letting the
system absorb heat (denoted by Q), or doing work (denoted by W )
on the system.

Mathematically,

dE = δ−Q+ δ−W . (1.2)

In this equation, δ−Q and δ−W are inexact differentials. This means that the

integrals
∫ B

A
δ−Q and

∫ B

A
δ−W (where A and B represent the initial and final states of

a transformation, respectively) depend not only on the endpoints A and B, but also
on the path taken to go from A to B. (The path represents the precise way by which
the system was taken from state A to state B.) In other words, there are no state

variables Q and W such that
∫ B

A
δ−Q = Q(B)−Q(A) and

∫ B

A
δ−W = W (B)−W (A),

independently of the path of integration. On the other hand, since E is a state

variable, the equation
∫ B

A
dE = E(B) − E(A) is always true, independently of the

path.

1.5.2 Work

There are many ways of doing work on a system. One way is to compress (or
decompress) the system. A good example of this is the compression of a gas in
a chamber, resulting from the very slow (inward) displacement of a piston. The
piston moves because of the application of a force F , which is counter-acted by the
gas’ pressure: F = −PA, where A is the piston’s area. The work done during a
displacement dx is then δ−W = Fdx = −PAdx. Since Adx = dV , this gives

δ−Wcompression = −P dV . (1.3)

The work done on the system is positive during a compression; it is negative during
an expansion.

Another way of doing work is to inject new particles into the system. In this case
it must be that δ−W ∝ dN . The constant of proportionality defines the chemical

potential µ, introduced earlier:

δ−Winjection = µdN . (1.4)
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The chemical potential is just the injection energy per particle.
There are many other forms of work (electric, magnetic, gravitational, shear,

etc.). In general, a work term always take the form fdX , where X is one of the
physical variables describing the system (such as volume and number of particles),
and f is the associated generalized force (such as pressure and chemical potential).
Work is always associated with a change in one of the system’s physical variables.
(For example, the work done when stretching a rubber band is given by δ−W = Tdℓ,
where T is the tension and ℓ the length.)

1.5.3 Work depends on path

Consider the quasi-static expansion of an ideal gas, initially in equilibrium. We
want to calculate the work done on the system while it is brought from the initial
state A to the final state B. Equation (1.3) implies

W = −
∫ B

A

P dV.

But this cannot be integrated until the function P (V ) — the path — is specified.
We shall consider two different transformations linking the same initial and final
states.

P

V

constant

B

A

T = 
In the first transformation, the gas is expanded at constant temperature TA.

Since the equation of state is always satisfied during a quasi-static transformation,
we have P (V ) = NkTA/V . Integration yields

W1 = −NkTA ln
VB

VA
.

AP

V

B

In the second transformation, the gas is first expanded at constant pressure PA,
and then its pressure is decreased at constant volume VB . No work is done during
the second part of the transformation. In the first part, P (V ) = PA = NkTA/VA.
Integration yields

W2 = −NkTA

(

VB

VA
− 1

)

.

We see that the two answers are different, and that the work done on a system
does indeed depend on the path.

1.5.4 Heat

By definition, adding heat to a system corresponds to increasing its internal energy
without doing work, that is, without changing any of its physical variables (such as
volume, number of particles, etc.). Heat is usually added by putting the system in
thermal contact with another system at a higher temperature.

Heat also depends on the path, since work does, but internal energy does not.

1.5.5 Heat capacities

Adding heat to a system usually increases its temperature. A quantitative measure
of this is provided by the heat capacities, which are defined according to which
quantity is held fixed while heat is added.

The heat capacity at constant volume is defined as

CV =

(

δ−Q

dT

)

V,N

. (1.5)
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The heat capacity at constant pressure is defined as

CP =

(

δ−Q

dT

)

P,N

. (1.6)

In the framework of thermodynamics, the heat capacities of a given system must
be empirically determined (as functions of temperature), and given as input; they
cannot be derived. (To theoretically predict the value of the heat capacities is
another goal of statistical mechanics.)

However, a general relationship between the heat capacities can be derived
within thermodynamics, without any need for statistical mechanics. We simply
quote the result here:

CP − CV = −T
[(

∂V

∂T

)

P

]2(
∂P

∂V

)

T

.

The derivation of this result can be found in Sec. 5.7 of Reif’s book.
Now, it is true for all substances that (∂P/∂V )T < 0: pressure must increase

as volume is decreased at constant temperature. (The opposite sign would imply
instability.) Since the first factor is evidently positive, we conclude that CP >
CV . This is a very general result, which illustrates the power and usefulness of
thermodynamics. For an ideal gas, it is easy to use the equation of state PV = NkT
to show that CP − CV = Nk. (Once we have mastered the tools of statistical
mechanics, we will be able to calculate that for an ideal gas, CP = 5

2Nk and
CV = 3

2Nk.)

1.5.6 Heat reservoir

In the sequel we will frequently make use of the idealization of a reservoir.
We define a heat reservoir (or heat bath) to be a system (in thermal equilib-

rium) that is so large that to extract any amount of heat from it never affects its
temperature. (This works also if heat is delivered to the reservoir.) In other words,
a heat reservoir is a system with virtually infinite heat capacity.

We define a volume reservoir to be a system (in mechanical equilibrium) that is
so large that to vary its volume never affects its pressure.

Finally, we define a particle reservoir to be a system (in chemical equilibrium)
that is so large that to extract particles from it never affects its chemical potential.

These three idealizations can be combined into a single one, the (unqualified)
reservoir. This is defined to be a system (in thermodynamic equilibrium) that is so
large that interactions with other systems never affect its temperature T , its pressure
P , nor its chemical potential µ. It is of course implied that these interactions never
take the reservoir away from thermodynamic equilibrium.

1.6 Second law of thermodynamics

1.6.1 Two statements

The second law of thermodynamics is typically formulated in two different ways.
The Kelvin statement is:

There exists no thermodynamic transformation whose sole effect is to
extract a quantity of heat from a system and to convert it entirely
into work.

The Clausius statement is:



6 Review of thermodynamics

There exists no thermodynamic transformation whose sole effect is to
extract a quantity of heat from a colder system and to deliver it to
a hotter system.

These two statements have been shown to be completely equivalent.

1.6.2 Reversible, irreversible, and cyclic transformations

A reversible transformation from state A to state B is one which can be performed
equally well in the opposite direction (from state B to state A), without introducing

any other changes in the thermodynamic system or its surroundings. As an example
of a reversible transformation, consider the quasi-static compression of a gas. The
work done on during the compression can be extracted again by letting the gas
expand back to its original volume. Since both the gas and the agent responsible for
the compression then return to their original states, the transformation is reversible.

An irreversible transformation from state A to state B is one which can be
performed only in this direction; the reversed transformation would introduce ad-
ditional changes in the system or its surroundings. As an example of an irreversible
transformation, consider the free expansion of a gas caused by the removal of a
partition. This transformation is clearly irreversible: replacing the partition once
the gas has completely filled the chamber does not make the gas return back to its
original volume.

The transfer of heat generally occurs irreversibly. Consider two systems, ini-
tially well separated and at different temperatures. The systems are put in thermal
contact, and heat flows from the hotter body to the colder one, until they achieve
a common temperature. At this point the systems are separated again; this is the
final state. The transformation from the initial state to the final state is clearly
irreversible: even if the two systems are again put in thermal contact, they have
the same temperature, and they can never restore themselves to their initial tem-
peratures. (This would imply a violation of the Clausius statement of the second
law.)

In the discussion of the last paragraph, the two systems are completely arbitrary.
If one of them turns out to be a heat reservoir, the conclusion would be unaltered.
If, however, the reservoir has a temperature that differs by an infinitesimal amount
from the temperature of the other system, then the transformation would be re-

versible. (We shall prove this in subsection f.) It is therefore possible to add a
finite amount of heat to a system in a reversible manner: the system must be put
in thermal contact with a succession of heat reservoirs, each at an infinitesimally
larger temperature than the previous one. (We show, also in subsection f, that such
a procedure is indeed reversible.)

A cyclic transformation is one which brings the system back to its original state,
irrespective of what may happen to the system’s surroundings. In other words, the
system’s final and initial states are one and the same. Cyclic transformations can
be both reversible and irreversible. An example of a reversible cyclic transformation
is the quasi-static compression, and then re-expansion, of a gas. An example of an
irreversible cyclic transformation is the free expansion of a gas, followed by a slow
compression back to its original volume.

1.6.3 Clausius’ theorem

This theorem by Clausius follows from the second law:

The inequality
∮

δ−Q

T
≤ 0 (1.7)
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holds for any cyclic transformation; equality holds if and only if the
transformation is reversible.

We will not prove the theorem here, but we will use it to introduce a new state
variable, the entropy.

1.6.4 Entropy
A

B

Consider any cyclic, reversible path, taking some thermodynamic system from an
initial state A to some state B, and then back to state A. The Clausius theorem

implies 0 =
∮

δ−Q/T =
∫ B

A δ−Q/T +
∫ A

B δ−Q/T , or

0 =

∫ B

A

δ−Q

T
−
∫ B

A

δ−Q

T
.

Here, the two integrals are evaluated along two different paths. If we denote these
paths C1 and C2, we have

∫

C1

δ−Q

T
=

∫

C2

δ−Q

T
.

The integral is therefore independent of the path taken to go from state A to state
B, so long as it is reversible.

B2

A

C 1

C

There must therefore exist a state variable S such that
∫ B

A
δ−Q/T = S(B)−S(A),

independently of the (reversible) path of integration. This state variable is called
the entropy, and is such that along any reversible path, dS = δ−Q/T is an exact
differential.

The entropy is always defined with respect to some reference state, which we
denote O. In terms of this state, the entropy of any other state A is given by

S(A) = S(O) +

∫

R

δ−Q

T
, (1.8)

where the path R is any reversible path connecting the states O and A.

1.6.5 Properties of the entropy

For arbitrary transformations, bringing a thermodynamic system from state A to
state B, the change in entropy is related to the integral of δ−Q/T by

S(B) − S(A) ≥
∫ B

A

δ−Q

T
; (1.9)

equality holds for reversible transformations.

R
B

A

I
The proof of this statement involves Clausius’ theorem, with the following cyclic

path: the system is first brought from state A to state B along an arbitrary path
I, and then brought back to A along a reversible path R. The theorem implies
0 ≥

∮

δ−Q/T =
∫

I
δ−Q/T +

∫

R
δ−Q/T . But since δ−Q/T = dS along R, we have

0 ≥
∫

I δ
−Q/T +

∫

R dS =
∫

I δ
−Q/T + S(A) − S(B). This is the same statement as

Eq. (1.9).
A special case of this statement holds for an isolated system, that is, a system

that does not exchange heat with its surroundings. For such a system, Eq. (1.9)
implies S(B) − S(A) ≥ 0, since δ−Q ≡ 0. In other words,

The entropy of an isolated system never decreases. (1.10)
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This is often taken as the statement of the second law. As we can see, however,
the Kelvin and Clausius statements lead to the more general result (1.9). We note
that for reversible transformations involving isolated systems, S(B) = S(A). In
other words, the entropy of an isolated system stays constant during a reversible

transformation.

1.6.6 Example: system interacting with a heat reservoir

Consider a system A, which initially is in equilibrium at a temperature TA, but
is then put in thermal contact with a heat reservoir B at a higher temperature
TB. As a result of the interaction, heat flows into A from B, and A’s temperature
eventually increases to TB. This transformation is clearly irreversible, and since the
combined system A+ B is isolated, the change in the total entropy SA + SB must
be strictly positive.

It is easy to show (this is a homework problem) that for this transformation, the
change in total entropy is given by

∆S = C(x − 1 − lnx),

where C is A’s heat capacity, and x ≡ TA/TB. It is also easy to prove that x− 1−
lnx > 0 for x < 1, which establishes that ∆S is strictly positive, as claimed.

Let’s consider the special case for which TB differs from TA by a very small
amount: TB = TA +δT . In this limit, we have x = 1−δT/TB and lnx = −δT/TB−
1
2 (δT/TB)2 + · · · . This gives

∆S ≃ C

2

(

δT

TB

)2

,

which is second order in the small quantity δT . This proves the statement made
earlier, in subsection b, that a system in thermal contact with a heat reservoir at a
slightly higher temperature receives heat in a virtually reversible manner.

Any system can be brought reversibly from a lower temperature T1 to a higher
temperature T2. The produce to follow is to first put the system in thermal contact
with a slightly hotter reservoir (T = T1+δT ), then with another one, slightly hotter
than the previous one (T = T1 + 2δT ), and so on, until the final temperature is
reached. At the end of the process, the overall change in total entropy is given by
the immediate generalization of the previous result:

∆S ≃ CδT

2

[

δT

(T1 + δT )2
+

δT

(T1 + 2δT )2
+ · · · + δT

T2
2

]

.

The sum within the square brackets is obviously equal to the integral

∫ T2

T1

dT

T 2
=

1

T1
− 1

T2

when δT is sufficiently small. We finally obtain

∆S ≃ CδT

2

(

1

T1
− 1

T2

)

.

By choosing δT sufficiently small, ∆S can be made as small as desired. In the limit
δT → 0, the transformation is reversible.
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1.6.7 Third law of thermodynamics

Another property of the entropy, which must derived empirically within the frame-
work of thermodynamics, but can be proven using the tools of statistical mechanics,
is known as the third law of thermodynamics. It states:

The entropy of a thermodynamic system at zero temperature is zero.

We will get back to this later on in the course.

1.7 Thermodynamic potentials

In this and the remaining sections we will consider reversible transformations only.
For such transformations, it is always true that δ−Q = TdS.

1.7.1 Energy

For reversible transformations, the first law if thermodynamics reads

dE = T dS − P dV + µdN . (1.11)

When looked at from a purely mathematical point of view, this equation tells us
that E can be expressed as a function of S, V , and N : E = E(S, V,N). Indeed, if
such a function exists, then purely mathematically,

dE =

(

∂E

∂S

)

V,N

dS +

(

∂E

∂V

)

S,N

dV +

(

∂E

∂N

)

S,V

dN.

This has the same form as Eq. (1.11), and it gives us formal definitions for T , P ,
and µ:

T ≡
(

∂E

∂S

)

V,N

, P ≡ −
(

∂E

∂V

)

S,N

, µ ≡
(

∂E

∂N

)

S,V

.

Thus, if E is known as a function of S, V , and N , then the related quantities T , P ,
and µ can be calculated.

The interpretation of the equation E = E(S, V,N) is that S, V , and N can be
considered to be the independent state variables, and that E is a dependent quantity;
T , P , and µ are also dependent quantities. For fixedN , an equilibrium configuration
is fully specified by giving the values of S and V . Alternatively, E = E(S, V,N)
could be inverted to give S = S(E, V,N), which would make E an independent
variable, and S a dependent one. The point is that the four quantities E, S, V , and
N are not all independent, and that T , P , and µ can be derived from the equation
relating them.

The function E(S, V,N) is the first instance of a thermodynamic potential, a
function that generates other thermodynamic variables (such as T , P , and µ) by
partial differentiation. Other instances are obtained by considering other choices of
independent variables. The usefulness of all this will become apparent below.

1.7.2 Enthalpy

We define the enthalpy as

H = E + PV . (1.12)

This equation, when combined with Eq. (1.11), implies

dH = T dS + V dP + µdN,
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which states that H = H(S, P,N). We also obtain formal definitions for T , V , and
µ:

T ≡
(

∂H

∂S

)

P,N

, V ≡
(

∂H

∂P

)

S,N

, µ ≡
(

∂H

∂N

)

S,P

.

1.7.3 Helmholtz free energy

We define the Helmholtz free energy as

F = E − TS . (1.13)

This equation, when combined with Eq. (1.11), implies

dF = −S dT − P dV + µdN,

which states that F = F (T, V,N). We also obtain formal definitions for S, P , and
µ:

S ≡ −
(

∂F

∂T

)

V,N

, P ≡ −
(

∂F

∂V

)

T,N

, µ ≡
(

∂F

∂N

)

T,V

.

This choice of independent variables, (T, V,N), seems more natural than (S, V,N)
or (S, P,N). We will see in Sec. 11 that the Helmholtz free energy has an important
physical meaning; we will encounter it again later.

1.7.4 Gibbs free energy

We define the Gibbs free energy as

G = E − TS + PV . (1.14)

This equation, when combined with Eq. (1.11), implies

dG = −S dT + V dP + µdN,

which states that G = G(T, P,N). We also obtain formal definitions for S, V , and
µ:

S ≡ −
(

∂G

∂T

)

P,N

, V ≡
(

∂G

∂P

)

T,N

, µ ≡
(

∂G

∂N

)

T,P

.

This choice of independent variables also seems quite natural, and the Gibbs free
energy also has an important physical meaning. This will be described in Sec. 11.

1.7.5 Landau potential

As a final example, we consider the Landau potential, which is defined as

Ω = E − TS − µN . (1.15)

This equation, when combined with Eq. (1.11), implies

dΩ = −S dT − P dV −N dµ,

which states that Ω = Ω(T, V, µ). We also obtain formal definitions for S, P , and
N :

S ≡ −
(

∂Ω

∂T

)

V,µ

, P ≡ −
(

∂Ω

∂V

)

T,µ

, N ≡ −
(

∂Ω

∂µ

)

T,V

.

We will put the Landau potential to good use in a later portion of this course.
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1.8 Maxwell relations

The formal definitions for T , S, V , P , µ, and N in terms of the potentials E, H , F ,
G, and Ω can be used to generate many relations between the various derivatives
of these quantities.

For example, Eq. (1.11) implies that T = ∂E/∂S and P = −∂E/∂V . This, in
turn, gives ∂T/∂V = ∂2E/∂V ∂S. But since the order in which we take the partial
derivatives does not matter, we obtain ∂T/∂V = ∂2E/∂S∂V = −∂P/∂S. In other
words,

(

∂T

∂V

)

S,N

= −
(

∂P

∂S

)

V,N

.

This is the first instance of what is known as a Maxwell relation.

Other relations follow just as easily from the other thermodynamic potentials.
For example, you may derive these:

(

∂T

∂P

)

S,N

=

(

∂V

∂S

)

P,N

,

(

∂S

∂V

)

T,µ

=

(

∂P

∂T

)

V,µ

,

and
(

∂S

∂P

)

T,N

= −
(

∂V

∂T

)

P,N

.

The Maxwell relations are extremely general, they hold for any thermodynamic
system. This is another illustration of the power of thermodynamics.

1.9 Scaling properties

Consider two systems in thermodynamic equilibrium. Both systems are identical
in every way, except that one is a factor λ larger than the other. We say that the
second system is scaled by a factor λ with respect to the first system. We ask: How
are the state variables of the two systems related? Or, in other words, how do the
state variables of a thermodynamic system scale under a scaling of the system?

Clearly, if the system is scaled by a factor λ, it must mean that E, V , and N
are all scaled by such a factor: E → λE, V → λV , and N → λN . On the other
hand, if the scaled system is otherwise identical to the original system, it must be
true that T stays the same: T → T . How about S, P , and µ? The answer comes
from the first law: dE = T dS − P dV + µdN . If E scales but T does not, it must
be true that S scales: S → λS. Similarly, if both E and V scale, it must be true
that P does not: P → P . And finally, if both E and N scale, it must be true that
µ does not: µ→ µ.

We can therefore separate the thermodynamic variables into two groups. The
first group contains the variables that scale under a scaling of the system; such
variables are called extensive. The second group contains the variables that do not
scale under a scaling of the system; such variables are called intensive. We have
found that E, S, V , and N are extensive variables, and that T , P , and µ are
intensive variables.

These scaling properties lead to an interesting consequence when we recall that
E = E(S, V,N). Upon scaling, this equation implies

E(λS, λV, λN) = λE(S, V,N);

whatever the function E(S, V,N) happens to be, it must satisfy this scaling equa-
tion. Let λ = 1+ǫ, where ǫ≪ 1. Then E(S+ǫS, V +ǫV,N+ǫN) = (1+ǫ)E(S, V,N).
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Expanding the left-hand side of this equation in powers of ǫ, up to first order, we
arrive at

(

∂E

∂S

)

V,N

S +

(

∂E

∂V

)

S,N

V +

(

∂E

∂N

)

V,N

N = E.

Or, recalling the formal definitions for T , P , and µ,

E = TS − PV + µN . (1.16)

Now for another interesting result. If we differentiate Eq. (1.16) and substitute
Eq. (1.11), we quickly obtain

N dµ = −S dT + V dP . (1.17)

This states that the intensive variables are not all independent: µ = µ(T, P ). Equa-
tion (1.17) is known as the Gibbs-Duhen relation.

1.10 Equilibrium conditions for isolated,

composite systems

We now turn from formal considerations to more physical ones. In this section we
consider two thermodynamic systems, A and B, which initially are separated and
in equilibrium. The systems are then brought together to form a composite system
C, and are allowed to interact. In general, C is not initially in equilibrium. For
example, if A and B are at a different temperature, heat will flow from the hotter
part of C to the colder part, and this cannot represent an equilibrium situation.
However, interactions between the two subsystems will give rise to an irreversible
transformation from C’s original state to a final, equilibrium state. In our example,
A and B will eventually reach a common temperature, at which point equilibrium
will be re-established.

We wish to derive the conditions under which a composite system will be in
equilibrium. We proceed as follows:

BecauseC is an isolated system and the transformation is irreversible, its entropy
must be increasing during the transformation:

dSC = dSA + dSB ≥ 0;

the equality sign takes over when equilibrium is established. Now, the change
in entropy in subsystem A, dSA, can be computed by considering any reversible
transformation that relates the same initial and final states as the actual, irreversible
transformation: we just apply Eq. (1.8). Along such a path, TA dSA = δ−QA = dEA−
δ−WA = dEA + PA dVA − µA dNA. Similarly, TB dSB = dEB + PB dVB − µB dNB.
The final step of the derivation is to notice that since C is an isolated system, its
total energy must be conserved: 0 = dEC = dEA + dEB. Similarly, dVA + dVB = 0,
and dNA + dNB = 0. Combining these results, we easily obtain the fundamental
equation

(

1

TA
− 1

TB

)

dEA +

(

PA

TA
− PB

TB

)

dVA −
(

µA

TA
− µB

TB

)

dNA ≥ 0 . (1.18)

As before, equality holds at equilibrium.
To extract the equilibrium conditions from Eq. (1.18), we consider some special

cases.
We first consider a purely thermal interaction between the subsystems A and

B. This means that the partition separating A and B allows for the exchange
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of heat, but it cannot move, and it does not allow particles to pass through. In
other words, the interaction leaves VA and NA fixed. Equation (1.18) then implies
(1/TA − 1/TB)dEA ≥ 0. During the approach to equilibrium, the inequality sign
applies. We therefore find that dEA > 0 if TA < TB, while dEA < 0 if TA > TB.
This certainly conforms to our physical intuition. On the other hand,

TA = TB

at equilibrium. This also conforms to physical intuition.
We next consider a purely mechanical interaction between A and B, now imag-

ined to have equal temperatures. This means that the partition separating A and
B is now able to move, so that VA might change during the interaction. In other
words, the interaction leaves only NA fixed, and TA = TB. For such a situation,
Eq. (1.18) implies (PA − PB)dVA ≥ 0. The inequality sign holds during the ap-
proach to equilibrium, and we find that dVA > 0 if PA > PB , while dVA < 0 if
PA < PB. This makes sense: the subsystem with the larger pressure pushes the
partition outward. We also find that

PA = PB

at equilibrium, which also makes good physical sense.
Finally, we consider a purely chemical interaction between A and B, now imag-

ined to have identical temperatures and pressures (TA = TB and PA = PB). This
means that particles can now pass through the partition separating A from B.
Equation (1.18) now gives (µA − µB)dNA ≤ 0. This means that a difference in the
chemical potentials gives rise to a flux of particles from one subsystem to the other.
This also implies that

µA = µB

at equilibrium.
To summarize, we have found that the composite system achieves equilibrium

when, as a result of the interaction between the subsystems, the temperatures, pres-
sures, and chemical potentials have all equalized. This means that at equilibrium,
the temperature, pressure, and chemical potential must be uniform throughout the
system. This conclusion holds for any composite system in isolation; the number
of parts is irrelevant. This conclusion also holds for any isolated system, since such
a system can always be partitioned into two or more parts (this partitioning can
be real or fictitious). We therefore have derived the equilibrium conditions first
introduced in Sec. 2.

1.11 Equilibrium for interacting systems

The equilibrium conditions derived in the preceding section are appropriate for
isolated systems. Here we wish to derive equilibrium conditions that are appropriate
for systems interacting with a reservoir. We recall from Sec. 5f that a reservoir is
a system so large that interactions with other systems never affect its intensive

variables (temperature, pressure, and chemical potential).
We consider a system A, initially isolated and in equilibrium, but then made

to interact with a reservoir R at temperature TR, pressure PR, and chemical po-
tential µR. The combined system C = A + R, which is isolated, is initially not
in equilibrium. However, interactions between A and R give rise to an irreversible
transformation from C’s original state to its final, equilibrium state. We seek the
conditions that hold when equilibrium is established.

The derivation proceeds much as before. We first use the fact that the combined
system is isolated to write dEA + dER = dVA + dVR = dNA + dNR = 0. Next, we
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calculate that the change in the reservoir’s entropy is given by

TR dSR = dER + PR dVR − µR dNR

= −dEA − PR dVA + µR dNA.

Next, we write TR(dSA+dSR) = TR dSA−dEA−PR dVA+µR dNA, and notice that
the left-hand side must be non-negative. This gives us our fundamental equation:

dEA − TR dSA + PR dVA − µR dNA ≤ 0 . (1.19)

This equation holds for any kind of interaction between a system A and a reservoir
R; equality holds at equilibrium.

We now consider a few special cases.

First, we consider an isolated system. An isolated system can always be con-
sidered to be interacting, though the “interaction” involves no change in energy,
volume, or number of particles. In other words, we consider an “interaction” that
keeps EA, VA, and NA fixed. For such a case Eq. (1.19) implies dSA ≥ 0, which is
nothing but the compact mathematical statement of the second law of thermody-
namics. In other words:

For interactions that leave E, V , and N fixed — that is, for isolated
systems — the entropy S is maximized at equilibrium.

Second, we consider a purely thermal interaction, which keeps VA and NA fixed.
For such a case Eq. (1.19) implies d(EA − TRSA) ≤ 0, which states that at equi-
librium, the quantity EA − TRSA is minimized. But since we already know that
temperature must be uniform at equilibrium (TA = TR), we obtain the following
statement:

For interactions that leave V and N fixed — that is, for thermal inter-
actions — the Helmholtz free energy F = E − TS is minimized at
equilibrium.

Third, we consider a thermo-mechanical interaction, during which only NA is
kept fixed. For such a case Eq. (1.19) implies d(EA − TRSA + PRVA) ≤ 0, which
states that at equilibrium, the quantity EA − TRSA + PRVA is minimized. But
since we know that temperature and pressure must both be uniform at equilibrium
(TA = TR, PA = PR), we obtain the following statement:

For interactions that leave N fixed — that is, for thermo-mechanical
interactions — the Gibbs free energy G = E−TS+PV is minimized
at equilibrium.

Fourth, and last, we consider a thermo-chemical interaction, during which only
VA is kept fixed. For this case Eq. (1.19) implies d(EA −TRSA−µRNA) ≤ 0, which
states that at equilibrium, the quantity EA − TRSA − µRNA is minimized. But
since we know that temperature and chemical potential must both be uniform at
equilibrium (TA = TR, µA = µR), we obtain the following statement:

For interactions that leave V fixed — that is, for thermo-chemical in-
teractions — the Landau potential Ω = E − TS − µN is minimized
at equilibrium.

These various equilibrium conditions give physical meaning to the thermody-
namic potentials introduced in Sec. 7.
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1.12 Limitations of thermodynamics

The laws of thermodynamics can be used to derive very general relations among
the various state variables and their derivatives. These relations are not specific to
particular systems, but hold for all macroscopic systems at equilibrium.

However, because thermodynamics makes no contact with the microphysics of
the systems it studies, it cannot give a complete picture. For example, thermo-
dynamics alone cannot provide an expression for a system’s equation of state, nor
can it provide the function S(E, V,N), and it cannot provide values for the heat
capacities.

The role of statistical mechanics is to make contact with the microphysics. Its
role is not to derive the laws of thermodynamics. In fact, thermodynamics stands
very well on its own. The role of statistical mechanics is to extend and complement

the framework of thermodynamics. It also makes the language of thermodynamics
much more concrete, by providing a way of computing the equation of state, the
function S(E, V,N), and the heat capacities.

1.13 Brief summary of thermodynamics

• The first law of thermodynamics states that the internal energy E of a system
can be increased by either adding heat or doing work. Mathematically,

dE = δ−Q+ δ−W.

Here, δ−Q and δ−W are inexact differentials, meaning that the integrals
∫ B

A
δ−Q

and
∫ B

A
δ−W depend not only on the endpoints, but also on the path taken to

go from state A to state B. On the other hand, because E is a state function,
∫ B

A
dE = E(B) − E(A), independently of the path.

• The second law of thermodynamics states that there exists a state function S,
called the entropy, which satisfies the inequality

dS ≥ δ−Q

T
;

equality holds for reversible transformations. For thermally isolated systems
(such that δ−Q ≡ 0), the entropy satisfies dS ≥ 0: The entropy of an isolated
system can never decrease, and stays constant during reversible transforma-
tions.

• When heat is applied to a system, its temperature generally increases. A
quantitative measure of this is given by the heat capacities:

CV =

(

δ−Q

dT

)

V,N

, CP =

(

δ−Q

dT

)

P,N

.

It is true for all thermodynamic systems that CP > CV .

• During reversible transformations (δ−Q = TdS), the first law of thermodynam-
ics reads

dE = T dS − P dV + µdN.

This shows that E can be regarded as a function of S, V , and N . If the
function E(S, V,N) is known, then it can be used to define T , P , and µ:

T =

(

∂E

∂S

)

V,N

, P = −
(

∂E

∂V

)

S,N

, µ =

(

∂E

∂N

)

S,V

.
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The internal energy is one of the thermodynamic potentials. The others are
the enthalpy H , the Helmhotz free energy F , the Gibbs free energy G, and
the Landau potential Ω. They are defined by

H = E + PV dH = TdS + V dP + µdN
F = E − TS dF = −SdT − PdV + µdN
G = E − TS + PV dG = −SdT + V dP + µdN
Ω = E − TS − µN dΩ = −SdT − PdV −Ndµ

The thermodynamic potentials can be used to derive the Maxwell relations.

• Thermodynamic variables can be divided into two groups, depending on their
behaviour under a scaling of the system. Extensive variables scale with the
system; E, S, V , and N are extensive variables. Intensive variables stay
invariant; T , P , and µ are intensive variables.

• An isolated system is in thermal equilibrium (no macroscopic energy fluxes)
if T is uniform throughout the system. It is in mechanical equilibrium (no
macroscopic motions) if P is uniform. And it is chemical equilibrium (no
unbalanced phase transitions or chemical reactions) if µ is uniform. If a system
is at once in thermal, mechanical, and chemical equilibrium, then it is said to
be in thermodynamic equilibrium.

• A reservoir is a system in thermodynamic equilibrium that is so large that
interactions with other systems never produce any change in its intensive
variables T , P , and µ. Its extensive variables, however, may change during
the interaction.

• During the interaction of a system [with variables (E, T, S, P, V, µ,N)] with a
reservoir [with variables (T0, P0, µ0)], the inequality

dE − T0dS + P0dV − µ0dN ≤ 0

always hold; equality holds when equilibrium is established. This inequality
can be used to prove that: (i) for isolated systems, equilibrium is achieved
when S reaches a maximum; (ii) for interactions that keep V and N fixed,
equilibrium is achieved when T = T0 and F = E − TS reaches a minimum;
(iii) for interactions that keep N fixed, equilibrium is achieved when T = T0,
P = P0, and G = E −TS+PV reaches a minimum; and (iv) for interactions
that keep V fixed, equilibrium is achieved when T = T0, µ = µ0, and Ω =
E − TS − µN reaches a minimum.

1.14 Problems

1. (Adapted from Reif 2.5 and 2.6) The purpose of this problem is to look at the
differences between exact and inexact differentials from a purely mathematical
point of view.

a) Consider the infinitesimal quantity Adx + Bdy, where A and B are func-
tions of x and y. If this quantity is to be an exact differential, then
there must exist a function F (x, y) whose total derivative is given by
dF = Adx + Bdy. Show that in this case, A and B must satisfy the
condition

∂A

∂y
=
∂B

∂x
.

If, on the other hand, Adx + Bdy is an inexact differential, then there
exists no such function F (x, y), and this condition need not hold. So this
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equation provides a useful way of testing whether or not some infinitesi-
mal quantity is an exact differential.

b) Let δ−F = (x2 − y)dx+ xdy. Is δ−F an exact differential?

c) Let δ−G = δ−F/x2, with δ−F as given in part b). Is δ−G an exact differential?

d) Prove that if Adx + Bdy is an exact differential, in the sense of part a),
then its integral from (x1, y1) to (x2, y2) depends on the endpoints only,
and not on the path taken to go from one point to the other.

2. (Reif 2.10) The pressure of a thermally insulated amount of gas varies with
its volume according to the relation PV γ = K, where γ and K are constants.
Find the work done on this gas during a quasi-static process from an initial
state (Pi, Vi) to a final state (Pf , Vf ). Express your result in terms of Pi, Pf ,
Vi, Vf , and γ.

c)

P

V

B

A

adiab

a)b)

3. (Reif 2.11) In a quasi-static process A → B (see diagram) during which no
heat is exchanged with the environment (this is called an adiabatic process),
the pressure of a certain amount of gas is found to change with its volume V
according to the relation P = αV −5/3, where α is a constant.

Find the work done on the system, and the net amount of heat absorbed by
the system, in each of the following three processes, all of which takes the
system from state A to state B. Express the results in terms of PA, PB , VA,
and VB .

a) The system is expanded from its original volume to its final volume, heat
being added to maintain the pressure constant. The volume is then kept
constant, and heat is extracted to reduce the pressure to its final value.

b) The volume is increased and heat is supplied to cause the pressure to
decrease linearly with the volume.

c) The steps of process a) are carried out in the opposite order.

4. (Reif 4.1) To do this problem you need to know that the heat capacity C of
a kilogram of water is equal to 4.18× 103 J/K. The heat capacity is assumed
not to vary with temperature.

a) One kilogram of water at 0◦C is brought into contact with a large heat
reservoir at 100◦C. When the water has reached 100◦C, what has been
the change in entropy of the water? Of the reservoir? Of the entire
system consisting of both the water and the reservoir?

b) If the water had been heated from 0◦C to 100◦C by first bringing it in
contact with a reservoir at 50◦C and then with a reservoir at 100◦C,
what would have been the change in entropy of the entire system?

c) Show how the water might be heated from 0◦C to 100◦C with no change
in the entropy of the entire system.

5. (Reif 4.3) The heat absorbed by a certain amount of ideal gas during a quasi-
static process in which its temperature T changes by dT and its volume V by
dV is given by δ−Q = CdT + PdV , where C is its constant heat capacity at
constant volume, and P = NkT/V is the pressure.

Find an expression for the change in entropy of this gas, during a process
which takes it from initial values of temperature Ti and volume Vi to final
values Tf and Vf . Does the answer depend on the kind of process involved in
going from the initial state to the final state? (Explain.)
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6. A thermodynamic system A contains n times as many particles as system B,
so that their heat capacities (at constant volume) are related by CA = nCB.
Initially, both systems are isolated from each other, and at temperatures TA

and TB (TA > TB), respectively. The systems are then brought into thermal
contact; their respective volumes do not change during the interaction. After
equilibrium is re-established, the systems are separated again, and are found
to be at a common temperature TF .

a) Calculate TF .

b) Calculate ∆S, the amount by which the total entropy has increased during
the interaction.

c) Consider the case n ≫ 1. Show that in this case, your expressions for TF

and ∆S reduce to

TF ≃ TA

[

1 − 1

n
(1 − x)

]

,

∆S ≃ CB(x− 1 − lnx),

where x = TB/TA. [Hint: Use the approximation ln(1 + ǫ) ≃ ǫ, valid for
ǫ≪ 1.]



2
Statistical mechanics of

isolated systems

2.1 Review of probabilities

Not surprisingly, statistical mechanics makes rather heavy use of probability theory.
Fortunately, however, only the most primitive concepts are required. We review
these concepts here.

2.1.1 Probabilities

Consider a random process that returns any one of the following numbers: {x1, x2, · · · , xM}.
We assume that the numbers are ordered (x1 < x2 < · · · < xM ). We also assume
that the process can be repeated any number of times, and that each result is
independent of the previous one.

After N applications of the process, it is found that the particular number xr

is returned Nr times. Clearly, N = N1 + N2 + · · · + Nm. The probability that the
number xr will be returned is defined by

pr = lim
N→∞

Nr

N
,

M
∑

r=1

pr = 1.

Probabilities obey the following basic rules:

The “and” rule: After two applications of the random process, the probability
that both xr and xr′ are returned is equal to pr × pr′ . This generalizes to an
arbitrary number of applications:

P (xr and xr′ and · · · ) = pr × pr′ × · · · .

The “or” rule: After a single application of the random process, the probability
that either xr or xr′ are returned is equal to pr + pr′ . This generalizes to

P (xr or xr′ or · · · ) = pr + pr′ + · · · .

19
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2.1.2 Averages

AfterN applications of the random process, the average value of the random variable
is given by x = (x1N1 + x2N2 + · · · + xMNM )/N . In the limit N → ∞, we obtain

x =

M
∑

r=1

xr pr.

This result generalizes to any function f(xr) of the random variable:

f(x) =

M
∑

r=1

f(xr) pr.

In particular, x2 =
∑M

r=1 xr
2 pr. Notice that x2 6= x2. The difference between these

two quantities is the square of the standard deviation σ:

σ2 = (x− x)2 =

M
∑

r=1

(xr − x)2 pr.

It is indeed easy to show that σ2 = x2 − x2.

2.1.3 Continuous variables

Up to this point we have considered a random variable that takes only a discrete
set of values. We now generalize to a continuous random variable. As a guide for
taking the continuum limit, consider, for a discrete variable,

P (xr′ ≤ x ≤ xr′′) = probability that the random variable is found

in the interval between xr′ and xr′′

= P (xr′ or xr′+1 or · · · or xr′′)

= pr′ + pr′+1 + · · · + pr′′

=

r′′

∑

r=r′

pr.

In the continuous limit, we would like to replace this by an integral between the
two values xr′ and xr′′ . However, the sum appearing above is a sum over the index
r, and not a sum over the variable itself. It is easy to remedy this:

r′′

∑

r=r′

pr =

xr′′
∑

x=xr′

pr

∆xr
∆xr ,

where ∆xr ≡ xr+1 − xr is the increment in x when r is increased by one unit.
(∆xr may be different for each value of r; the values of the random variable are not
necessarily equally spaced.)

Passage to the continuous limit is now obvious. Setting x1 ≡ xr′ , x2 ≡ xr′′ , and
defining the function p(x) as the continuous limit of pr/∆xr, we arrive at

P (x1 ≤ x ≤ x2) =

∫ x2

x1

p(x)dx.

The function p(x) is called the probability distribution function of the random vari-
able x. Its meaning is obtained by considering a special case of the previous equa-

tion: P (x0 ≤ x ≤ x0 + δx0) =
∫ x0+δx0

x0

p(x) dx, where δx0 is an infinitesimal quan-

tity. The integral is obviously equal to p(x0)δx0. Changing the notation slightly,
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this gives us the following interpretation:

p(x)dx = probability that the random variable is found

in the interval between x and x+ dx.

Probabilities are normalized also for continuous variables:
∫

p(x)dx = 1.

Here, the integral extends over all possible values of the random variable. Averages
are also computed in the obvious way:

f(x) =

∫

f(x) p(x)dx.

This concludes our review of probability theory.

2.2 Macrostate and microstates

We now begin our formulation of statistical mechanics for systems in isolation.
The first order of business is to introduce two very different ways of looking at a
thermodynamic system. The first way is macroscopic, and employs classical ideas.
The second way is microscopic, and employs quantum ideas.

The macroscopic description of a system is made by specifying what we shall
call its macrostate. The macrostate of an isolated system is specified by giving the
values of just three quantities: E, V , and N . As we saw in part A of this course, all
other thermodynamic variables can be determined, at least in principle, from these
three fundamental quantities.

Actually, it is usually more appropriate (and also mathematically more conve-
nient) to specify the system’s energy within a narrow range, E < energy < E+ δE,
where δE ≪ E. The quantity δE represents the unavoidable uncertainty in measur-
ing the energy of the system. This uncertainty can be associated with experimental
limitations, or with the Heisenberg uncertainty principle.

The microscopic description of a system is made by specifying what we shall
call its microstate. The microstate of an isolated system is specified by giving the
quantum mechanical wave function which describes the system. The wave function
depends on all of the system’s generalized coordinates; we write this dependence
as ψ = ψ(q1, q2, . . . , qf ), where f denotes the system’s total number of degrees of
freedom. Equivalently, the microstate can be specified by giving the values of all of
the f quantum numbers which characterize the system’s quantum state. We will
label the possible microstates of a system by the abstract index r; in effect,

r = {f quantum numbers}.

(In words, this reads “r is the set of all f quantum numbers”.) The corresponding
wave function will be denoted ψr.

It should be clear that the microstate gives a very detailed description of the
system. A typical macroscopic system possesses a number N of particles of the
order of 1023. Since each particle possesses at least three degrees of freedom (and
more if the particle has spin), the total number of quantum numbers that must be
specified in order to fully characterize this system’s microstate is at least 3N , which
also is of order 1023. To give such a detailed description of a macroscopic system is
clearly impractical, and this is why we must resort to statistical methods. On the
other hand, the system’s macrostate is fully determined once three quantities (E,
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V , and N) are specified. This is a very coarse description, but one which is much
more practical to give.

A simple example of a quantum mechanical system is the simple harmonic oscil-
lator (SHO). The quantum states of this system are fully characterized by a single
quantum number n, which takes nonnegative integer values (n = 0 corresponds to
the ground state). The energy eigenvalues are En = (n + 1

2 )~ω, where ω is the
characteristic frequency of the oscillator. The corresponding eigenfunctions can be
written in terms of Hermite polynomials.

A more complicated example of a quantum system is one which contains N
identical SHOs. The quantum state is now specified by giving the value of each one
of the N quantum numbers. We write r = {n1, n2, . . . , nN}, the set of all individual
quantum numbers. The energy of such a state r is

Er = (n1 + 1
2 )~ω + (n1 + 1

2 )~ω + · · · + (nN + 1
2 )~ω,

and the wave function for the entire system is obtained by taking the product of all
individual wave functions.

Another example of a quantum system is that of a free particle confined to a box
of volume V . Here, three quantum numbers are necessary to specify the system’s
quantum state; these take positive integer values. We thus write r = {nx, ny, nz},
and

Er =
(2π~)2

8mV 2/3

(

nx
2 + ny

2 + nz
2
)

are the energy eigenvalues (m is the mass of the particle).
The generalization to N identical (noninteracting) particles is obvious. Here,

3N quantum numbers must be specified in order to fully characterize the system’s
microstate. We therefore write r = {ni}, the set of all quantum numbers ni, where
i = 1, 2, . . . , 3N labels all of the system’s 3N degrees of freedom. The energy
eigenvalues are

Er =
(2π~)2

8mV 2/3

3N
∑

i=1

ni
2 . (2.1)

This quantum system will form our physical model for an ideal gas.

2.3 Statistical weight

2.3.1 Definition

An isolated system in a specified macrostate (E, V,N) can be found to be in many

different microstates. As a very simple example, consider a system consisting of 2
SHOs whose total energy is known to be equal to 10~ω (hardly a macroscopic value!).
We want to find the number of microstates accessible to this system. Clearly, the
sum n1 +n2 must then be equal to 9, and it is easy to see that there are 10 different
ways of choosing n1 and n2 such that n1 + n2 = 9. So the number of accessible
microstates is equal to 10.

The number of microstates accessible to a thermodynamic system in a macrostate
(E, V,N) is called the statistical weight of this system, and is denoted Ω(E, V,N).
We shall see that calculation of the statistical weight gives access to all of the
thermodynamic properties of a system. Strictly speaking, the statistical weight de-
pends also on δE, the energy uncertainty; a better notation for it would therefore be
Ω(E, V,N ; δE). We shall see that typically (but not always!), the statistical weight
is proportional to δE: When δE ≪ E,

Ω(E, V,N ; δE) = ω(E, V,N) δE . (2.2)
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The quantity ω(E, V,N) is called the density of states, and it is independent of δE.

2.3.2 Example: single particle in a box

Before we can relate the statistical weight to thermodynamics, we must first learn
how to compute it. We first do so for a system consisting of a single particle of
mass m in a box of volume V . The system will be in the macrostate (E, V, 1) if its
energy eigenvalue satisfies the condition E < Er < E + δE. (An expression for the
eigenvalues was worked out in Sec. 2.) If we define the quantities

R =
2
√

2mE V 1/3

2π~
, δR =

RδE

2E
,

then a little algebra shows that this condition can be written as

R <
√

nx
2 + ny

2 + nz
2 < R+ δR.

This has a nice geometric interpretation. If we imagine a fictitious three-dimensional
space spanned by the directions nx, ny, and nz, then the square root represents a
distance in this space. The inequality therefore states that this distance must be
bounded by two values, R and R + δR. Geometrically, this condition describes a
spherical shell of radius R and thickness δR. To compute Ω amounts to counting
the number of points within the shell.

n

 R

 n

n

z

y

x

R+δR

The situation is made complicated by two different factors. First, we must recall
that nx, ny, and nz take positive values only. So our fictitious space is not quite
like ordinary 3D space, which is infinite in all directions, positive and negative.
Instead, it is semi-infinite, that is, infinite only in the positive directions. We are
therefore dealing with the first octant of ordinary 3D space. The geometric figure
described by the inequality is therefore not that of a complete spherical shell, but
only one octant thereof. The second complication is that our fictitious space is not
a continuum, like ordinary 3D space, but a discrete space. This makes counting
the points within the spherical shell a bit difficult. To remove this difficulty, we
will assume that the system’s energy E is truly macroscopic, so that the quantum
numbers nx, ny, and nz must all be very large. In this limit, the discrete nature of
the space becomes irrelevant: as we move from one point to the next, the increment
in nx (say) is much smaller than nx itself, ∆nx/nx ≪ 1. In this limit, therefore, we
can treat our discrete space as one octant of ordinary three-dimensional space, and
to count the number of points within the shell amounts to computing its volume.

This is easy. The volume of a three-dimensional sphere of radius R is V3(R) =
4
3πR

3, and the volume of a shell of radius R and thickness δR must then be δV3 =
V3(R + δR) − V3(R) = (dV3/dR)δR = 4πR2δR. We must still account for the fact
that only one octant of the shell is actually there; this we do by simply dividing the
result by 23 = 8, a factor of two for each dimension. Finally, we arrive at

Ω(E, V, 1; δE) =
1

23
4πR2δR =

2πV

(2π~)3
(2mE)3/2 δE

E
.

We see that the statistical weight is indeed of the form (2.2), with the density of
states given by everything that multiplies δE.

2.3.3 Example: N particles in a box

It is not too hard to generalize the previous discussion to the case of N nonin-
teracting particles. The energy eigenvalues for this system are given by Eq. (2.1).
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It is easy to show that in terms of R and δR as defined above, the inequality
E < Er < E + δE becomes

R <

(

3N
∑

i=1

ni
2

)1/2

< R+ δR.

Geometrically, this has the same meaning as before, except that now, our fictitious
space is 3N -dimensional. Nevertheless, it is clear that Ω must be equal to the
“volume” of a 3N -dimensional shell of radius R and thickness δR, divided by a
factor 23N to account for the fact that this space is semi-infinite.

We must therefore work out an expression for the “volume” of a 3N -dimensional
sphere. Surprisingly, this is not at all difficult, and it will be left as a homework
problem. The desired expression is

V3N (R) =
π3N/2

Γ
(

3N
2 + 1

) R3N ,

where Γ(x) is the Gamma function, whose properties are explored in the same
homework problem.

The volume of a 3N -dimensional shell of radius R and thickness δR is then given
by δV3N = V3N (R + δR) − V3N (R) = (dV3N/dR)δR, and we find Ω = 2−3NδV3N .
A few lines of algebra finally give

Ω(E, V,N ; δE) =
3N

2

π3N/2

Γ
(

3N
2 + 1

)

V N

(2π~)3N
(2mE)3N/2 δE

E
. (2.3)

Again, we find the same sort of expression as in Eq. (2.2).
Don’t despair if you think that this calculation was just too much; this was

probably the most challenging calculation of this entire course!

2.4 Statistical weight in classical mechanics

Our previous calculation of the statistical weight of an ideal gas was very much
based upon quantum mechanics: the language of quantum mechanics was used
to introduce the notion of a microstate, and the laws of quantum mechanics were
used to count the number of microstates compatible with the given macroscopic
description. However, the calculation also used the approximation of large quantum
numbers, which allowed us to treat them as continuous variables, and to treat our
fictitious 3N -dimensional space as a continuum. But in this approximation, the
energy eigenvalues are no longer quantized, but are continuous. Are we then not
dealing with the classical world? According to Bohr’s principle of correspondence,
which states that a quantum system behaves classically when its quantum numbers
are all very large, we are indeed. The question then arises as to whether we can
derive Eq. (2.3) solely on the basis of classical mechanics.

The purpose of this section is to formulate the classical language of statistical
mechanics, and to show how the classical rules provide another way of deriving
Eq. (2.3).

2.4.1 Single particle in one dimension

We begin with the simplest example of a classical system, a single particle moving
in one dimension. In classical mechanics, the microstate of the particle is specified
by giving, at one particular time t, the value of both the particle’s generalized
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coordinate q and its conjugate momentum p. The microstate at any other time
can be obtained by integrating Hamilton’s equations for the variables q and p.
The q-p plane is called the phase space of the particle. A given microstate then
corresponds to a particular point in phase space, and the motion of the particle
traces a trajectory in phase space.

As a concrete example, consider a simple harmonic oscillator (SHO). Such a
system is described by the Hamiltonian

H(p, q) =
p2

2m
+ 1

2mω
2q2,

where m is the oscillator’s mass, and ω its frequency. If the oscillator has energy
E, then the trajectory it traces in phase space is the ellipse H(p, q) = E, or

1 =
p2

2mE
+

q2

2E/mω2
.

This ellipse has semi-axes
√

2mE and
√

2E/mω2.

q

p

The macrostate of a classical system is specified in exactly the same way as for
a quantum system, by giving the values of E, V , N , and δE. For our single one-
dimensional particle, the macrostate is specified by giving the length of the “box”
confining the particle, and by stating that the particle’s Hamiltonian is restricted
by

E < H(p, q) < E + δE.

This inequality defines a certain region of phase space; we call it the allowed region.
For the SHO, this region is confined between the two ellipses at H(p, q) = E and
H(p, q) = E + δE.

p

q

E

E + δ E

In classical mechanics, the statistical weight is defined exactly as in quantum
mechanics: It is the number of microstates compatible with the macroscopic de-
scription. Since microstates are here represented by points in phase space, what
we must do is to count the number of phase-space points contained in the allowed
region. In other words, we must calculate the area of the allowed region of phase
space. This, however, cannot be our final result for Ω. This is because the area of
phase space, unlike Ω, is not dimensionless: it carries the same dimension as p× q,
which has the dimension of an action, kgm2/s. To get a dimensionless number,
we must divide the phase-space area by some constant h0 which also carries that
dimension. And if this theory is to have any kind of predictive power, this constant
should be universal, that is, the same for all classical systems.

We therefore have the following prescription. In classical mechanics, the statis-
tical weight is equal to the area of the allowed region of phase space, divided by the
new universal constant h0:

Ω = (h0)
−1

∫

R

dp dq.

Here, R designates the allowed region of phase space, which is defined by the con-
dition E < H(p, q) < E + δE.

This prescription comes with a nice interpretation: We can imagine partitioning
phase space into fundamental cells of area h0; Ω is then just the total number of
cells contained in the allowed region. The counting therefore introduces a fuzziness
in phase space: two microstates are not distinguished if they are contained within
the same cell. More precisely, for the purpose of computing the statistical weight,
the microstates (p, q) and (p+∆p, q+∆q) are considered to be different if and only
if ∆p∆q > h0. This is highly reminiscent of the Heisenberg uncertainty principle,
and indeed, we will see presently that h0 has a lot to do with Planck’s constant.
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To elucidate the connection between h0 and ~, we now compute Ω for a system
consisting of a single SHO. We shall do this in two different ways: first classi-
cally, then quantum mechanically. In the classical calculation we must compute
the area δA of the phase-space region between the two ellipses H(p, q) = E and
H(p, q) = E + δE. If we denote the area of the first ellipse by A(E), and the area
of the second ellipse by A(E + δE), then δA = A(E + δE) − A(E) = (dA/dE)δE.
Because the first ellipse has semi-axes

√
2mE and

√

2E/mω2, we have that A(E) =

π
√

2mE
√

2E/mω2 = 2πE/ω. It follows that δA = 2πδE/ω. Finally, we obtain

Ω =
2π

h0

δE

ω
.

In the quantum calculation we must compute the number of eigenvalues En =
(n+ 1

2 )~ω ≃ n~ω contained in the interval between E and E+ δE. (Recall that we
work in the limit n ≫ 1.) The condition for this is E/~ω < n < E/~ω + δE/~ω.
Clearly, then,

Ω =
δE

~ω
.

Both these expressions for Ω must be correct. It must therefore be that

h0 ≡ 2π~.

Because h0 is a universal constant, this result is valid for every classical system.

2.4.2 General systems

It is easy to generalize this preceding prescription to systems possessing f degrees of
freedom. Typically, f = 3N ≫ 1. The general rules of classical statistical mechanics
are as follows.

The microstate of an isolated, classical system is specified by giving, at some
instant of time t, the value of the system’s f generalized coordinates qi, together
with their conjugate momenta pi. The 2f -dimensional space of all qi’s and pi’s is
called phase space.

The macrostate of the system is specified by giving the values of E, V , N , and
δE. The condition

E < H(pi, qi) < E + δE

defines R, the allowed region of phase space. The statistical weight is then propor-
tional to the “volume” of the allowed region:

Ω(E, V,N ; δE) = (2π~)−f

∫

R

dp1 dp2 · · · dpf dq1 dq2 · · · dqf . (2.4)

It is of course difficult to visualize the phase space when f is larger than 1. This,
however, will not prevent us from doing calculations on the basis of Eq. (B.4).

2.4.3 Example: N particles in a box

We now show how to derive Eq. (2.3) using the classical definition of the statistical
weight.

The Hamiltonian for a system of N noninteracting particles is

H(pi, qi) =

3N
∑

i=1

pi
2

2m
.

Since H is actually independent of the coordinates, the condition E < H(pi, qi) <
E + δE constrains only the momenta. The coordinates, however, are constrained
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by the fact that the particles must all be confined to a box of volume V . This
immediately gives us

∫

dq1 dq2 · · · dq3N = V N .

This follows because q1, q2, and q3 can be chosen to be the x, y, and z coordinates
of the first particle, and integrating over these clearly gives V .

The integral over the momenta is evaluated as follows. If we introduce new
integration variables ξi = pi/

√
2m, then

∫

dp1 dp2 · · · dp3N = (2m)3N/2

∫

dξ1 dξ2 · · · dξ3N .

The domain of integration is defined by the inequality E < H(pi, qi) < E + δE, or

E <
3N
∑

i=1

ξi
2 < E + δE.

Geometrically, this represents a 3N -dimensional spherical shell of radius
√
E and

thickness
√
E + δE −

√
E ≃ δE/2

√
E. The integral over the ξi’s is therefore equal

to the “volume” of this spherical shell. (Since the ξi’s can be negative as well as
positive, there is no division by 23N .) But we know, from the work of Sec. 3, how
to compute such a volume. After a bit of algebra, we obtain

∫

dp1 dp2 · · · dp3N =
3N

2

π3N/2

Γ
(

3N
2 + 1

) (2mE)3N/2 δE

E
.

Finally, combining the results, we arrive at

Ω(E, V,N ; δE) =
3N

2

π3N/2

Γ
(

3N
2 + 1

)

V N

(2π~)3N
(2mE)3N/2 δE

E
,

which is exactly the same expression as in Eq. (2.3).

2.5 Fundamental postulates

Now that we have learned how to compute the statistical weight, both in quantum
and classical mechanics, we may proceed with the formulation of the postulates of
statistical mechanics for isolated systems.

An isolated system in a macrostate (E, V,N) can be in many different mi-
crostates, the number of which is given by the statistical weight Ω. What then
can we say about the probability of finding the system in a particular quantum state
ψr? Not much, in fact, and our first task in formulating the postulates of statisti-
cal mechanics is to admit our complete ignorance in this matter. There is just no
way of knowing which set of quantum numbers will turn up when the microstate of
the system is measured, and there would be no justification in assuming that some
quantum states are preferred over others. This leads us to the first postulate:

In equilibrium, an isolated system is equally likely to be found in any of
its accessible microstates.

As a consequence of this postulate, we can immediately state that pr, the probability
of finding the system in the particular microstate ψr, must be given by

pr =
1

Ω(E, V,N)
. (2.5)
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Since the number of accessible microstates is Ω, the probabilities properly add up
to one.
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�� That the system must be in equilibrium for the first postulate to be true is ex-

tremely important: A system out of equilibrium is not equally likely to be found in
any of its accessible microstates. To see this, consider the following situation. A gas
is confined to one side (say the left side) of a box with the help of a removable parti-
tion. Before the partition is removed, the gas is in equilibrium, and all microstates
are equally likely. We now imagine that the partition is suddenly removed. This
clearly destroys the equilibrium, and the gas now starts filling the entire box, until
a new equilibrium is established. But immediately after the partition is removed,
the gas is still found on the left side, even though the entire box is now accessible
to it. This is just the statement that some microstates are more likely than others:
Microstates corresponding to finding the gas on the left side are much more likely
than those corresponding to finding the gas on the right side. This is sufficient to
conclude that equilibrium is required for the microstates to be equally likely. Out
of equilibrium, some microstates are more likely than others.

We may take these ideas a step further. It should be clear that when it is out of
equilibrium, the system is always found in a subset of all its accessible microstates.
(Immediately after the partition is removed, the gas will be found on the left side, a
subset of the entire box.) It should also be clear that the number of microstates in
this subset is smaller than the total number of microstates accessible to the system.
Now, as the system proceeds toward equilibrium, the subset becomes larger and
larger, until it eventually becomes the entire set of accessible microstates; at this
point the system has found a new equilibrium. It is therefore at equilibrium that the
system can be found in the largest number of microstates. Just like the entropy, this
number never decreases, and is maximum at equilibrium. This strongly suggests
that S must be closely related to Ω.

To determine what this relation is, we consider a composite system C consisting
of two parts, A and B. We assume that this system is isolated and in equilibrium.
We want to express ΩC , the number of microstates accessible to C, in terms of ΩA

and ΩB. We denote by ψr(A) the quantum states accessible to A, and by ψs(B)
those accessible to B. The states accessible to C can then be written as the product
ψr(A)ψs(B). How many of these states are there? Well, since r takes a number
ΩA of values, while s takes a number ΩB of values, and since any value of r can be
combined with any value of s to form one of C’s microstates, the answer is clearly

ΩC = ΩAΩB.

The statistical weights multiply. The entropies, on the other hand, add:

SC = SA + SB.

So if S is a function of Ω, this function must be such that when two statistical
weights are multiplied, the resulting entropies add. There is only one such function:
the logarithm. So it must be that S ∝ ln Ω, and the constant of proportionality is
defined to be Boltzmann’s constant k.

We have obtained our second postulate:

The entropy of an isolated system in equilibrium is related to its statis-
tical weight by the relation

S(E, V,N) = k ln Ω(E, V,N) , (2.6)

where k is Boltzmann’s constant.

This definition of the entropy automatically provides a proof of the third law of
thermodynamics, which states that a system at zero temperature must have zero
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entropy. Indeed, a system at zero temperature must necessarily be in its ground
state, because thermal excitations to other states are impossible. So the number of
accessible states is exactly one, and Eq. (2.6) implies that the entropy vanishes.

The usefulness of the second postulate resides mostly in the fact that it permits
the computation of all of the system’s thermodynamic quantities. To see this, we
only need write the first law of thermodynamics in the form

dS =
1

T
dE +

P

T
dV − µ

T
dN,

and recall that this equation implies the following definitions for T , P , and µ:

1

T
=

(

∂S

∂E

)

V,N

,
P

T
=

(

∂S

∂V

)

E,N

,
µ

T
= −

(

∂S

∂N

)

E,V

. (2.7)

When we first encountered such relations, in part A of this course, they were just
formal relations: The equation for dS implied the existence of a function S(E, V,N),
but it gave us no way of actually computing this function; and although T , P , and
µ could be calculated from this function, this could not be done in practice because
the function was not known.

Things are different now, because the second postulate gives us a way of actually
computing the function S(E, V,N). All we have to do is first calculate Ω(E, V,N),
and then take a logarithm. And once the function S(E, V,N) is known, the system’s
thermodynamics can be determined from the relations (2.7).

2.6 Application: ideal gas

2.6.1 Entropy

In Sec. 3 (and also in Sec. 4), we worked out an expression for the statistical weight
of a system of N noninteracting particles, which is precisely what we mean by an
“ideal gas”. The result is Eq. (2.3), above. To compute the entropy we must take
the natural logarithm of Ω, which is

ln Ω = ln

(

3N

2

)

− ln

[

Γ

(

3N

2
+ 1

)]

+N ln

[

V

(2π~)3
(2πmE)3/2

]

+ ln

(

δE

E

)

.

To simplify the second term on the right-hand side, we make use of the Stirling
approximation, which states that for large numbers n,

ln
[

Γ(n+ 1)
]

= ln(n!) ≃ n lnn− n.

The number 3N/2 is certainly very large, and our expression for ln Ω becomes

ln Ω = N ln

[

V

(2π~)3

(

4πmE

3N

)3/2
]

+
3N

2
+ ln

(

3N

2

)

+ ln

(

δE

E

)

.

This can be simplified further, because ln(3N/2) can be neglected in front of 3N/2;
and since ln(δE/E) is now the only term that is not proportional to N , it too can
be neglected.

We finally arrive at the expression

S = Nk ln

[

V

(2π~)3

(

4πmE

3N

)3/2
]

+
3Nk

2

for the entropy of an ideal gas. This, however, is obviously a wrong result!



30 Statistical mechanics of isolated systems

2.6.2 Gibbs’ paradox

Why is this obviously wrong? The answer is that S should be an extensive variable.
If N → λN , V → λV , and E → λE, then it should also be that S → λS. But this
is not what we find here. Instead, we find S → λS + λNk lnλ, which is not the
correct scaling behaviour. This puzzling result is known as Gibbs’ paradox.

We have made a mistake in our calculation. What went wrong? The problem
is that when computing Ω in Sec. 3, we have actually over-counted the number
of microstates by implicitly assuming that the particles were distinguishable. This
was wrong: in quantum mechanics, identical particles are indistinguishable; we must
account for this in our calculation.

When did we wrongly assume that the particles were distinguishable? This we
did in the very way we set up the problem. We imagined that each of the N particles
carried three quantum numbers (nx, ny, and nz) that it could call its own. If we
group these numbers into a vector n = (nx, ny, nz), then we can say that particle
a has quantum numbers na, while particle b has quantum numbers nb. However,
we must ask: Is the state obtained by interchanging the particles a and b actually
distinct from the original state? [For concreteness, suppose that na = (2, 9, 4) and
nb = (5, 2, 7); is this state distinct from the state na = (5, 2, 7) and nb = (2, 9, 4)?]
We have treated them as distinct in our calculation. But according to the postulates
of quantum mechanics, these states are not distinct; they are one and the same, as
would also be the states obtained by the interchange of any number of particles.
Identical particles are not distinguishable in quantum mechanics, and it is just
wrong to think of them as carrying their own individual quantum numbers.

Fortunately, it is not too difficult to take care of the over-counting, and thus
correct our previous expression for Ω. Clearly, what we must do is divide Ω by
the total number of possible interchanges among the N particles. In other words,
we must divide Ω by the total number of permutations of the N particles among
themselves. This number is equal to N !, and

Ωcorrect =
Ωwrong

N !
. (2.8)

We can immediately use this to correct our previous result for the entropy. We
have Scorrect = Swrong − k ln(N !) = Swrong − kN lnN + kN , after using the Stirling
approximation. Our final result is therefore

S = Nk ln

[

V

(2π~)3N

(

4πmE

3N

)3/2
]

+
5Nk

2
. (2.9)

The entropy is now properly extensive.

2.6.3 Thermodynamic quantities

Now that we have the correct expression for the entropy of an ideal gas, it is a
simple matter to use Eqs. (2.7) to derive expressions for the other thermodynamic
variables.

The temperature is defined by 1/T = ∂S/∂E. Since S = 3
2Nk lnE plus terms

that don’t involve E, we obtain 1/T = 3
2Nk/E, or

E =
3

2
NkT . (2.10)

This equation tells us that the mean energy per particle is 3
2kT , or 1

2kT for each
degrees of freedom.
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On the other hand, the pressure is defined by P/T = ∂S/∂V . Since S = Nk lnV
plus terms that don’t involve V , we obtain P/T = Nk/V , or

PV = NkT . (2.11)

This is the familiar equation of state for an ideal gas, which was used many times in
part A of this course. The distinction between the two contexts should be clear: In
thermodynamics, the equation of state must be provided as input, and cannot be
derived; in statistical mechanics, however, the equation of state can be derived from

first principles. This derivation involves first the formulation of a physical model
for the system (an ideal gas consists of noninteracting particles), and then the cal-
culation of the statistical weight. Everything else follows with simple manipulations
(taking a logarithm, and evaluating a few partial derivatives).

We shall leave the evaluation of µ, the chemical potential, as a homework prob-
lem.

2.7 Problems

1. (Reif 1.24)

a) A particle is equally likely to lie anywhere on the circumference of a circle.
Consider as the z axis any straight line in the plane of the circle and
passing through its centre. Denote by θ the angle between this z axis
and the straight line connecting the centre to the particle. What is the
probability that this angle lies between θ and θ + dθ?

b) A particle is equally likely to lie anywhere on the surface of a sphere.
Consider any line through the centre of this sphere as the z axis. Denote
by θ the angle between this z axis and the straight line connecting the
centre of the sphere to the particle. What is the probability that this
angle lies between θ and θ + dθ?

2. The Gaussian probability distribution function is given by

p(x) =
1√
2π σ

exp

[

−1

2

(x− µ

σ

)2
]

.

a) Show that p(x) is correctly normalized.

b) Show that

(x− µ)n =
2

n
2

√
π

Γ
(n+ 1

2

)

σn

if n is even, while (x− µ)n = 0 if n is odd. Then use the properties of
the Γ function to show that for n even, the previous equation reduces to

(x − µ)n = (n− 1)!!σn,

where (n − 1)!! ≡ (n − 1) · (n − 3) · (n − 5) · · · 3 · 1. What are x and
(x− x)2?

3. This problem is an exercise in pure mathematics. We intend to show that the
volume of an n-dimensional “sphere” of radius R is given by

Vn =
π

n
2

Γ(n
2 + 1)

Rn, (2.12)
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where Γ(x) denotes the Gamma function. This result is used in text. To
derive this we will need the integral

In ≡
∫ ∞

−∞

∫ ∞

−∞

· · ·
∫ ∞

−∞

exp

[

−
n
∑

i=1

xi
2

]

dx1dx2 · · ·dxn. (2.13)

a) The first step is to get familiar with the Gamma function, if you are not
already. For any real number x > 0, the Gamma function is defined by

Γ(x) =

∫ ∞

0

e−ttx−1 dt.

By integrating by parts, show that Γ(x + 1) = xΓ(x). Show also that
Γ(1) = 1. Use these results to show that Γ(m+1) = m! if m is an integer.

b) Argue that Vn must take the form Vn = CnR
n, where Cn is a constant to

be determined, and R2 =
∑n

i=1 xi
2 is the n-dimensional squared radius.

Then argue that In can be written as In =
∫

e−R2

dVn, which is a simple
integration over the single variable R. (This step is trickier than it seems.
Don’t be fooled by notation: dVn is the difference in the volumes of two
concentric spheres, one of radius R, the other of radius R+dR; dVn is not

equal to dx1 · · · dxn.) Combining all this, show that In = CnΓ(n
2 + 1).

c) Now go back to Eq. (2.13). Show that In = (I1)
n. Of all these inte-

grals, I2 =
∫∞

−∞
e−(x2+y2) dxdy is easiest to evaluate. By going to polar

coordinates, show that I2 = π. So In = π
n
2 .

d) Combining the results of parts b) and c), show that Cn = π
n
2 /Γ(n

2 + 1).
This then proves Eq. (2.12).

e) Show that Γ(1
2 ) = I1 =

√
π. Use this and Eq. (2.12) to show that V3 =

4πR3/3, a familiar result.

4. In this problem we study a system consisting of N elements (let’s call them
spins), each capable of having the values ±ε for its energy. Each spin is
imagined to be located on a particular site on a lattice. Denoting by n the
number of spins with energy +ε, we have that the total energy E is given by
E = nε+ (N − n)(−ε), or

E = (2n−N)ε.

a) Calculate Ω(E), the number of ways the system can be prepared so that
its energy will have the value E. (Hint: to have energy E the system
must have n spins with energy ε and N −n spins with energy −ε. These
spins can be put on the lattice in any order order whatsoever.) Express
your result in terms of E, N , and ε.

b) Calculate the entropy of the system. To simplify the expressions, assume
that N , N + E/ε, and N − E/ε are all very large, and use the Stirling
approximation ln(M !) = M lnM −M for large M .

c) Calculate the temperature. When can the temperature become negative?
(The physical meaning of negative temperatures will be discussed later
on in the course.)

d) Show that the energy can be expressed as

E = −Nε tanh(ε/kT ).

How does the energy behave at low (positive) temperatures? Give a
physical explanation for the result. How does the energy behave at high
(positive) temperatures? Again give a physical explanation for the result.
Can the energy ever be positive?
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5. (Reif 3.5) A system consists of N1 molecules of type 1 and N2 molecules of
type 2 confined within a box of volume V . The molecules are supposed to
interact very weakly so that they constitute an ideal gas mixture.

a) How does the total number Ω(E, V,N1, N2) of microstates in the range
between E and E + δE depend on V ? You may treat the problem
classically.

b) Use this result to find the equation of state of this system, i.e., to find its
pressure P as a function of V , T , N1, and N2.

6. We have seen that the statistical weight Ω(E, V,N), as calculated using clas-
sical mechanics, is proportional to the “volume” of the region of phase space
accessible to the system:

Ω(E, V,N) ∝
∫

dp1 · · ·dpf dq1 · · ·dqf .

For this to make sense, it must be true that Ω(E, V,N) is the same no
matter what coordinate system is used to describe the system; we must
be able to use any set of generalized coordinates qi, together with the cor-
responding momenta pi. It must then be true that the “volume element”
dp1 · · ·dpf dq1 · · ·dqf is invariant under a coordinate transformation qi → q′i,
together with the corresponding transformation on the momenta, pi → p′i.
That this indeed the case is known as Liouville’s theorem. (This theorem also
holds for the wider class of transformations known as canonical transforma-

tions.)

Let us consider an example in order to convince ourselves that Liouville’s
theorem really holds. Consider a particle moving in the xy plane. Using
Cartesian coordinates, the Lagrangian is

L = 1
2m(ẋ2 + ẏ2) − V (x, y),

so that the momenta are px = mẋ and py = mẏ.

a) The motion of the particle can equally well be described using polar coor-
dinates. Show that in this case the Lagrangian is

L = 1
2m(ṙ2 + r2θ̇2) − V (r, θ),

and that the momenta are pr = mṙ and pθ = mr2θ̇.

b) Write down the transformation of the phase space coordinates when one
goes from Cartesian to polar coordinates. In other words, express px, py,
x, and y in terms of pr, pθ, r, and θ.

c) Now show that the volume elements dpxdpydxdy and dprdpθdrdθ are equal.
(Hint: What is the Jacobian associated with the above transformation
of phase-space coordinates?)

d) What would happen if the state of a system were specified by the coor-
dinates qi and the velocities q̇i, instead of the coordinates and the mo-
menta? (Hint: compare the volume elements dẋdẏdxdy and dṙdθ̇drdθ.)

7. We have seen that the entropy of an isolated ideal gas is given by

S = Nk ln

[

V

(2π~)3N

(

4πmE

3N

)3/2
]

+
5Nk

2
.
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a) Calculate the chemical potential µ. Express your result in terms of T , V ,
and N .

b) Give the numerical value of α ≡ −µ/kT for a Helium gas at room tem-
perature and at atmospheric pressure.

c) In the light of the definition

µ =

(

∂E

∂N

)

S,V

,

explain how µ can be negative.

8. Calculate the statistical weight of a classical system consisting of N one-
dimensional simple harmonic oscillators. The system is assumed to be in
isolation, with an energy in the interval between E andE+δE, where δE ≪ E.
The system’s Hamiltonian is

H(pi, qi) =

N
∑

i=1

(

pi
2

2m
+

1

2
mω2 qi

2

)

.

You may assume that the oscillators are distinguishable, so that the statistical
weight is given by

Ω(E,N ; δE) = (2π~)−N

∫

R

dp1 · · · dpN dq1 · · · dqN ,

where R is the allowed region of phase space.



3
Statistical mechanics of

interacting systems

3.1 System in contact with a reservoir

In part B of this course, the rules of statistical mechanics were formulated for the
restricted case of a system in complete isolation. Here we generalize the formulation
to the more common situation in which the system is interacting with a reservoir.
During this interaction, the system’s energy is allowed to change, and so is its
number of particles; its volume, however, will be assumed to be fixed at all times.

3.1.1 Probability distributions

The first thing we would like to calculate is pr, the probability of finding the inter-
acting system in the particular microstate ψr. For isolated systems we found that
the probabilities were all equal to 1/Ω, the inverse of the statistical weight; this is
not true for interacting systems.

To find pr, we consider a system A in contact with a reservoir R at temperature
T , pressure P , and chemical potential µ. (Actually, because we keep the volumes
of A and R fixed, P will not be a relevant quantity in this analysis.) The combined
system C = A + R is assumed to be isolated and in equilibrium; the previous
postulates of statistical mechanics therefore apply to it. In a general interaction
between A and R, both heat and particles are allowed to flow back and forth, but
as was already stated, the respective volumes are kept fixed.

At any moment of time the system A has energy EA, number of particles NA,
statistical weight ΩA, and entropy SA = k ln ΩA. Similarly, at any moment of time
the reservoir R has energy ER, number of particles NR, statistical weight ΩR, and
entropy SR = k ln ΩR. These quantities are all susceptible to change during the
interaction. However, since the combined system is isolated and in equilibrium, the
quantities EC = EA + EB, NC = NA +NB, ΩC = ΩAΩB, and SC = SA + SB are
all constant. We assume that the reservoir R is much larger than the system A, so
that

EA ≪ EC , NA ≪ NC .

35
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At any moment of time the system A can be in any one of its accessible mi-
crostates ψr(A), but these states are not all equally likely. Similarly, at any moment
of time the reservoir R can be in any one of its accessible microstates ψs(R), but
these states are also not all equally likely. The states of the combined system C will
be denoted ψ(C) = ψr(A)ψs(R); because C is isolated, these states are all equally
likely.

To make these ideas more concrete, we consider the following example: We
suppose that both A and R are a single simple harmonic oscillator. The state of A
is specified by giving the value of nA, its quantum number, and similarly, the state
of R is specified by giving the value of nR. The state of the combined system C is
then specified by giving the values of both nA and nR. The states accessible to C
can therefore be represented by points in the nA-nR plane.

R
n

n
2 3 4 5 6

3

6

4

1 

2

5

1 A

We want to find pr∗ , the probability that A will be found in the particular
microstate ψr∗(A). [Here, r∗ denotes a particular value of the index r, which labels
all the microstates accessible to A. In other words, the microstate ψr∗(A) is just
one of all the microstates accessible to A.] This calculation requires several steps.

First, we suppose that A actually is in the particular state ψr∗ . This implies
that EA = Er∗ , where Er∗ is the energy eigenvalue of this state, and NA = Nr∗ ,
where Nr∗ is the number of particles contained in the state ψr∗ . It follows that for
the reservoir R, we must have ER = EC − Er∗ and NR = NC −Nr∗ .

Second, we notice that choosing the particular state ψr∗ for A automatically
divides the states accessible to C into two separate groups. The first group consists
of all states ψ(C) such that A is in the state ψr∗ ; these states can be denoted
ψr=r∗(C), and are of the form ψr∗(A)ψs(B). The second group consists of all states
ψ(C) such that A is not in the state ψr∗ ; these can be denoted ψr 6=r∗(C), and are
of the form ψr(A)ψs(B), where r is any number other than r∗. In our example
above, the first group consists of those states for which nA has a specific value, say
nA = 4; this group can be represented by a vertical line in the nA-nR plane. The
second group consists of all other states.

R
n

n
2 3 4 5 6

3

6

4

1 

2

5

1 A Third, we calculate Ωr=r∗

C , the number of states contained in the first group. To
do this, we use the identity ΩC = ΩAΩR. Since the number of states accessible to
A is equal to one when ψ(C) belongs to the first group, we have that ΩC = ΩR, or

Ωr=r∗

C = ΩR

(

EC − Er∗ , NC −Nr∗

)

,

where we have indicated the dependence of ΩR on ER and NR. The number of

states contained in the second group is then obviously Ωr 6=r∗

C = ΩC − Ωr=r∗

C .
Fourth, we calculate the probability that the combined system C will be found

in a state ψ(C) belonging to the first group. This step is easy. Since the states
accessible to C are all equally likely, this probability must be equal to the ratio
Ωr=r∗

C /ΩC . (This is a consequence of the “or” rule.) Similarly, the probability that

C will be found in a state belonging to the second group is Ωr 6=r∗

C /ΩC , and the
probabilities correctly add up to one. We therefore have

P
[

ψr=r∗(C)
]

=
ΩR(EC − Er∗ , NC −Nr∗)

ΩC
.

Fifth, and finally, we relate this to pr∗ , the probability of finding A in the state
ψr∗ . This step is also easy. Of all the states accessible to C, the probability of
selecting a member of the first group is P [ψr=r∗(C)], which we have just calculated.
But once we have selected such a state, the probability of finding A in the state
ψr∗ is unity, because all states in the first group are of the form ψr∗(A)ψs(B). The
overall probability of finding A in the state r = r∗ is therefore precisely equal to
P [ψr=r∗(C)]. The desired result is therefore

pr∗ =
ΩR(EC − Er∗ , NC −Nr∗)

ΩC
.
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This result holds irrespective of what the state ψr∗ is chosen to be, since this was left
arbitrary from the beginning. The result must therefore hold for any of the states
accessible to A. And since the statistical weights can be related to the entropies,
we shall express our probabilities as

pr = exp

(

SR(EC − Er, NC −Nr) − SC

k

)

. (3.1)

Thus far this discussion has been quite general, and we have not yet used the
assumption that the reservoir R is much larger than the system A. But now we use
the relations Er ≪ EC and Nr ≪ NC in order to simplify our expression (3.1) for
the probabilities. To do so, we simply expand SR(ER, NR) in a Taylor series about
(EC , NC), which yields

SR(EC − Er, NC −Nr) ≃ SR(EC , NC) +
∂SR

∂ER
(−Er) +

∂SR

∂NR
(−Nr).

Using the definitions 1/T = ∂SR/∂ER and µ/T = −∂SR/∂NR, and the fact that
EC , NC , and SC are just constants, Eq. (3.1) becomes

pr ∝ exp
[

−(Er − µNr)/kT
]

.

The constant of proportionality is simply determined by the requirement that the
probabilities must all add up to one:

∑

r pr = 1. This gives our final result,

pr =
1

Z e−(Er−µNr)/kT , Z =
∑

r

e−(Er−µNr)/kT . (3.2)

This distribution of probabilities is known as the Gibbs distribution, and the quantity
Z is called the grand partition function; it is obtained by summing the Gibbs factor
exp[−(Er − µNr

)

/kT ] over all states accessible to the system A. Because of the
interaction between A and the reservoir, these states are not restricted to all have
the same value for the energy and the number of particles, as is the case for isolated
systems.

For the special case where the interaction does not allow an exchange of particles,
Eq. (3.2) simplifies. Since the number of particles is now the same for all states,
Nr = N = constant, and we have

pr =
eµN/kT

Z e−Er/kT .

In other words,

pr =
1

Z
e−Er/kT , Z =

∑

r

e−Er/kT . (3.3)

This is the Boltzmann distribution, and Z, the partition function, is obtained by
summing the Boltzmann factor exp(−Er/kT ) over all states accessible to the sys-
tem.

3.1.2 Entropy

Now that we have the probability distributions, what can we say about the system’s
entropy? We recall from Eq. (3.1) that

−k ln pr = SC − SR(EC − Er, NC −Nr) = SA(Er, Nr),
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and it seems that we have our answer: −k ln pr is the system’s entropy if it happens
to be in the microstate ψr. But if A is known to be in this state, then pr = 1, and
the entropy is zero. So this equation is not quite what we want!

Of course, the whole purpose of statistical mechanics is to provide a way of
describing the macroscopic properties of a system whose microstate is not only
unknown, but also susceptible to change because of the interaction with the reser-
voir. Since the microstate is unknown, and because we want the entropy to be a
macroscopic quantity, it makes sense to average the microscopic entropy −k ln pr

over all the microstates that are accessible to the system. We therefore define the
macroscopic entropy to be

S = S(Er, Nr) = −k ln pr.

The entropy of an interacting system is therefore given by

S = −k
∑

r

pr ln pr . (3.4)

This expression holds both for the Gibbs and the Boltzmann distributions.
In fact, since an isolated system is just a special case of an interacting one,

Eq. (3.4) should apply for this case as well. It is easy to see that this is indeed true:
For isolated systems, pr = 1/Ω, and S = −k

∑

r(1/Ω) ln(1/Ω) = k ln Ω
∑

r(1/Ω).
Since the sum contains a number Ω of equal terms, we arrive at

S = k ln Ω,

which is the correct answer. We therefore conclude that Eq. (3.4) is universally
valid.

3.2 Boltzmann distribution

In this section we consider a system in thermal contact with a heat reservoir at tem-
perature T , whose statistical mechanics is governed by the Boltzmann distribution
(3.3). It is convenient to introduce the inverse-temperature parameter

β =
1

kT
. (3.5)

In terms of this, the Boltzmann distribution reads

pr =
1

Z
e−βEr , Z =

∑

r

e−βEr . (3.6)

We ask: how do we calculate the system’s various thermodynamic quantities, such
as internal energy, entropy, pressure, and chemical potential?

3.2.1 Thermodynamic quantities

Since the system is not in a state of definite energy, because of its interaction with
the reservoir, the macroscopic quantity E must represent the system’s mean internal

energy, just as the macroscopic quantity S was earlier defined to be the system’s
mean entropy. So we define

E ≡ Er =
∑

r

prEr =
1

Z

∑

r

Ere
−βEr .
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However,

−∂Z
∂β

= −
∑

r

(−Er)e
−βEr = ZE,

and we obtain the useful result

E = −∂ lnZ

∂β
. (3.7)

So, if the partition function can be evaluated as a function of β, then the system’s
mean energy can be obtained immediately by partial differentiation. This will be a
recurring theme in what follows.

The system’s macroscopic entropy is defined by Eq. (3.4). To compute it effi-
ciently, we express ln pr as −(lnZ + βEr), so that

S = k
∑

r

pr(lnZ + βEr).

The first term on the right-hand side is equal to k lnZ
∑

r pr = k lnZ, since the
probabilities are normalized. The second term, on the other hand, is equal to kβE.
This gives

S = k(lnZ + βE) (3.8)

for the entropy of a system interacting with a heat reservoir.
Equation (3.8) is extremely important, for it implies that the Helmholtz free

energy F = E−TS is directly related to the partition function. Indeed, a few steps
of algebra yield

F (T, V,N) = −kT lnZ(T, V,N) . (3.9)

That F , and therefore also Z, depend on the quantities T , V , and N follows from
the relation

dF = −S dT − P dV + µdN,

derived in part A of this course (Sec. A7). This relation also gives definitions for S,
P , and µ in terms of partial derivatives of F :

S = −
(

∂F

∂T

)

V,N

P = −
(

∂F

∂V

)

T,N

µ =

(

∂F

∂N

)

T,V

. (3.10)

Notice that the equation S = −∂F/∂T is exactly the same equation as Eq. (3.8).
So, if the partition function is known as a function of T , V , and N , then the

Helmholtz free energy is known, and all other thermodynamic quantities can be
obtained by partial differentiation. In other words:

For a system in thermal contact with a heat reservoir at a temperature
T , every thermodynamic quantity can be calculated directly from
the partition function Z(T, V,N).

This is highly analogous to the situation holding for isolated systems, where every
thermodynamic quantity can be calculated from the statistical weight Ω(E, V,N).

The key to the thermodynamic quantities is therefore the evaluation of the
partition function. That this quantity must depend on T is obvious, because β =
1/kT appears explicitly in the Boltzmann factor. The origin of the V and N
dependence is more subtle. The partition function depends on V because Er, the
energy eigenvalues, usually depend on V . (As an example, the energy eigenvalues
of a system of noninteracting particles are proportional to V −2/3.) The partition
function also depends on N because

∑

r, the sum over states, depends on N : the
larger the number of particles, the larger the number of states accessible to the
system.
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3.2.2 Energy distribution

We have associated E, the thermodynamic energy, with the averaged value of
the system’s energy. However, when the energy is actually measured, the laws
of quantum mechanics guarantee that one of the energy eigenvalues will be re-
turned. (Which eigenvalue it will be cannot be predicted with certainty, because
the system’s quantum state keeps on changing as a result of the interaction with
the reservoir.) In general, E is not equal to any one of the energy eigenvalues. The
question therefore arises as to how strongly the mean value E candeviate, at any
given time, from the actual energy of the system. The answer, as we shall see, is
not very much. For all practical purposes, at any given time the mean energy is
identical to the system’s actual energy.

To analyze this question, we consider the quantity p(E) dE , the probability that
the system’s energy will be measured to be in the interval between E and E + dE .
This quantity is computed as follows. By using the “or” rule, we can immediately
write that p(E) dE =

∑′
r pr, where the sum extends to all microstates whose energy

eigenvalues are in the specified range. Since these states have (more or less) the same
energy, this gives p(E) dE = Z−1 exp(−βE)(

∑′
r 1). Now, the number of terms in the

sum is equal to the number of states whose energy eigenvalues are in the specified
range. But this is just the definition of the statistical weight, Ω(E ; dE) = ω(E)dE .
We therefore obtain

p(E) dE =
1

Z
ω(E)e−βE dE , Z =

∫

ω(E)e−βE dE , (3.11)

where ω(E) is the density of states. Once again the partition function has been
defined so as to make the probabilities add up to one.

The probability distribution function for the energy can now be used to answer
our question. This function is the product of two functions of E , the density of states
ω(E) and the Boltzmann factor exp(−βE). Typically, the density of states increases
very rapidly with the energy. (As an example, we may recall our result for the ideal
gas, ω ∝ E3N/2. For N ∼ 1023, this really does increase rapidly!) The Boltzmann
factor, on the other hand, decreases very rapidly (exponentially!). It follows that
the product of these two functions will be almost zero almost everywhere, except

for a very narrow region near E = E, the mean value. In other words, p(E) is very
sharply peaked about E, and has a very small standard deviation.

We now put this on a quantitative basis by computing ∆E, the energy’s root-
mean-square fluctuation. This is defined by

(∆E)2 = (E − E)2 , (3.12)

where E ≡ E . To calculate ∆E, we first notice that Eq. (3.12) implies

(∆E)2 = E2 − E2
.

Next, we use the following expression for the mean energy,

E =

∫

Ep(E) dE =

∫

Eω(E)e−βE dE
∫

ω(E)e−βE dE ,

and compute

−∂E
∂β

=

∫

E2ω(E)e−βE dE
∫

ω(E)e−βE dE −
(

∫

Eω(E)e−βE dE
∫

ω(E)e−βE dE

)2

.
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Finally, we recognize in the first term of the right-hand side the definition for E2,

while the second term gives E2
. We therefore have obtained

(∆E)2 = −
(

∂E

∂β

)

V,N

, (3.13)

which tells us that the energy fluctuation can be computed directly from the energy
itself, by taking a partial derivative.

As a concrete example, let us consider the ideal gas, for which E = 3
2NkT =

3
2N/β. We immediately obtain (∆E)2 = 3

2N/β
2. To express this in a meaningful

way, we should compare ∆E to E itself. A few steps of algebra yield

∆E

E
=

√

2

3N
.

In this equation, the factor of 2/3 is specific to the system considered, an ideal
gas. However, that ∆E/E ∼ 1/

√
N is quite typical. We therefore see that for a

macroscopic system, the fluctuations in energy are indeed very small: ∆E/E ∼
10−12. For all practical purposes, therefore, there is very little difference between a
system interacting with a heat bath and one which is isolated.

This conclusion is one of the most useful results of statistical mechanics. Since
the physical predictions will turn out to be identical, it is up to us to decide whether
we will consider the system to be isolated or interacting with a heat reservoir. For
most systems, it is easier to compute the partition function than the statistical
weight. For this reason, it is usually more convenient to imagine the system to be
interacting with a reservoir, instead of being isolated.

3.2.3 Application: N simple harmonic oscillators

We consider a system consisting of N identical SHO’s interacting with a heat reser-
voir at a temperature T . To compute the system’s thermodynamic quantities we
must first evaluate the partition function,

Z =
∑

r

e−βEr .

The first order of business is to figure out how the microstates of the entire
system are specified. Since the quantum state of each oscillator is determined
by a quantum number n = 0, 1, 2, . . ., the quantum state of the whole system is
determined by all the quantum numbers associated with all the oscillators. In other
words,

r = {n1, n2, . . . , nN}.
The energy eigenvalue associated with this quantum state is then

Er = (n1 + 1
2 )~ω + (n2 + 1

2 )~ω + · · · + (nN + 1
2 )~ω.

How do we sum over all these quantum states? To do this we must sum over
the set of all quantum numbers, that is, sum over all the possible values of each
quantum number. To see this clearly, let us consider a simple system consisting of
2 SHO’s. In this case the quantum states of the entire system are given by the set

{(n1, n2)} = {(0, 0), (0, 1), . . . , (0,∞),

(1, 0), (1, 1), . . . , (1,∞),

. . .

(∞, 0), (∞, 1), . . . , (∞,∞)}.
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To sum over all these states, we just proceed from left to right, and from top to
bottom:

sum =

∞
∑

n2=0

(0, n2) +

∞
∑

n2=0

(1, n2) + · · · +
∞
∑

n2=0

(∞, n2)

=

∞
∑

n1=0

( ∞
∑

n2=0

(n1, n2)

)

.

In other words,
∑

r

=

∞
∑

n1=0

∞
∑

n2=0

.

This is the answer for 2 oscillators; for N oscillators we have

∑

r

=

∞
∑

n1=0

∞
∑

n2=0

· · ·
∞
∑

nN =0

.

The partition function, therefore, is given by

Z =

∞
∑

n1=0

∞
∑

n2=0

· · ·
∞
∑

nN =0

e−β[(n1+
1

2
)~ω+(n2+

1

2
)~ω+···+(nN+ 1

2
)~ω]

=

∞
∑

n1=0

∞
∑

n2=0

· · ·
∞
∑

nN =0

e−β~ω(n1+
1

2
)e−β~ω(n2+

1

2
) · · · e−β~ω(nN+ 1

2
).

Now, how do we evaluate this horrible multiple sum? To find out, let us once
again consider our simple example, N = 2. Denoting f(n) = exp[−β~ω(n+ 1

2 )], we
have

Z =
∞
∑

n1=0

∞
∑

n2=0

f(n1)f(n2)

=

∞
∑

n1=0

[

f(n1)f(0) + f(n1)f(1) + · · · + f(n1)f(∞)
]

=

∞
∑

n1=0

f(n1)
[

f(0) + f(1) + · · · + f(∞)
]

=
[

f(0) + f(1) + · · · + f(∞)
]

∞
∑

n1=0

f(n1)

=
[

f(0) + f(1) + · · · + f(∞)
][

f(0) + f(1) + · · · + f(∞)
]

=

(

∞
∑

n=0

f(n)

)2

.

For N oscillators there are N sums, and this result generalizes to

Z =

(

∞
∑

n1=0

e−β~ω(n1+
1

2
)

)(

∞
∑

n2=0

e−β~ω(n2+
1

2
)

)

· · ·
(

∞
∑

nN =0

e−β~ω(nN+ 1

2
)

)

=

(

∞
∑

n=0

e−β~ω(n+ 1

2
)

)N

,

because the sums are all identical.
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All that is left to do is to evaluate the single sum

∞
∑

n=0

e−β~ω(n+ 1

2
) = e−

1

2
β~ω

∞
∑

n=0

(

e−β~ω
)n
.

This is easy, because we can use the identity

1

1 − x
= 1 + x+ x2 + · · · =

∞
∑

n=0

xn,

which is proved by just multiplying both sides by 1 − x. We obtain

∞
∑

n=0

e−β~ω(n+ 1

2
) =

e−
1

2
β~ω

1 − e−β~ω
.

Finally, collecting the results, we arrive at the partition function

Z =
e−

N
2

β~ω

(

1 − e−β~ω
)N

. (3.14)

From this we can compute every thermodynamic quantity of interest. This requires
us to first take a log:

lnZ = − 1
2Nβ~ω −N ln

(

1 − e−β~ω
)

.

Then, the thermodynamic energy is calculated as E = −∂ lnZ/∂β, or

E = N~ω

(

1

2
+

1

eβ~ω − 1

)

. (3.15)

The entropy is then obtained as S = k(lnZ + βE), or

S = Nk

[

β~ω

eβ~ω − 1
− ln

(

1 − e−β~ω
)

]

. (3.16)

Finally, the chemical potential is obtained from µ = −kT∂ lnZ/∂N , and the result
is

µ = 1
2~ω + kT ln

(

1 − e−β~ω
)

. (3.17)

It is instructive to look at these results in the limit of low temperatures (kT ≪
~ω). For example,

E ≃ 1
2N~ω +N~ωe−~ω/kT .

The energy is therefore dominated by the zero-point energy (1
2~ω) of each oscillator.

This makes sense, because at low temperatures, the vast majority of the oscillators
are in the ground state n = 0. Similarly,

S = Nk
~ω

kT
e−~ω/kT

and
µ ≃ 1

2~ω − kTe−~ω/kT

at low temperatures. It is a good idea to carefully think about the physical meaning
of these results; this will be left to the student.

In the limit of high temperatures (kT ≫ ~ω), our results reduce to

E ≃ NkT, S ≃ Nk

[

ln

(

kT

~ω

)

+ 1

]

, µ ≃ −kT ln

(

kT

~ω

)

.

Here also, the student is invited to think about the physical meaning of these results.
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3.3 Gibbs distribution

The Gibbs distribution applies to a system interacting with a reservoir, when the
interaction allows for an exchange of both heat and particles. Here it is convenient
to introduce, apart from β ≡ 1/kT , the parameter

α = − µ

kT
, (3.18)

where µ is the chemical potential of the reservoir. The Gibbs distribution of prob-
abilities is then given by

pr =
1

Z e−(βEr+αNr), Z =
∑

r

e−(βEr+αNr) . (3.19)

The quantity Z is called the grand partition function, and it plays essentially the
same role that the partition function plays in the Boltzmann distribution. In partic-
ular, we will see that all thermodynamic quantities can be computed directly from
the grand partition function.

3.3.1 Thermodynamic quantities

We define the thermodynamic energy E exactly as before, as the system’s mean
energy. The only difference is that now, the average is computed with the Gibbs
distribution. So

E ≡ Er =
∑

r

prEr =
1

Z
∑

r

Ere
−(βEr+αNr).

It is easy to show, as we have done before for the Boltzmann distribution, that E
can be conveniently expressed as

E = −∂ lnZ
∂β

. (3.20)

The first law of thermodynamics contains the term µdN , whereN is the system’s
macroscopic number of particles. Since our system does not have a fixed number of
particles, we must also define N as an averaged quantity. More precisely, we define
N as

N = Nr =
∑

r

prNr =
1

Z
∑

r

Nre
−(βEr+αNr).

The same steps that lead to Eq. (3.20) can be applied here, and we find

N ≡ −∂ lnZ
∂α

. (3.21)

We now calculate the entropy from the defining relation (3.4). Expressing ln pr

as −(lnZ + βEr + αNr), we obtain

S = k
∑

r

pr(lnZ + βEr + αNr),

or

S = k(lnZ + βE + αN) . (3.22)



3.3 Gibbs distribution 45

This implies that the Landau potential Ω = E−TS−µN is very closely related to
the grand partition function. Indeed, a few steps of algebra yield

Ω(T, V, µ) = −kT lnZ(T, V, µ) . (3.23)

That Ω, and therefore also Z, depend on the quantities T , V , and µ follows from
the relation

dΩ = −S dT − P dV −N dµ,

derived in part A of this course (Sec. A7). This relation also gives definitions for S,
P , and N in terms of partial derivatives of Ω:

S = −
(

∂Ω

∂T

)

V,µ

P = −
(

∂Ω

∂V

)

T,µ

N =

(

∂Ω

∂µ

)

T,V

. (3.24)

Notice that the equations S = −∂Ω/∂T and N = −∂Ω/∂µ are entirely equivalent
to Eqs. (3.22) and (3.21), respectively.

So, if the grand partition function is known as a function of T , V , and µ, then
the Landau potential is known, and all other thermodynamic quantities can be
obtained by partial differentiation. In other words:

For a system in thermo-chemical contact with a reservoir at temperature
T and chemical potential µ, every thermodynamic quantity can be
calculated directly from the grand partition function Z(T, V, µ).

This is highly analogous to the situations encountered before.

3.3.2 Fluctuations

A system described by the Gibbs distribution interacts with a reservoir, and the
interaction allows for an exchange of both energy and particles. We ask: how
strongly can the mean values E and N deviate, at some instant of time, from the
actual values for the energy and the number of particles? In other words, how large
are the fluctuations? In the case of the Boltzmann distribution we saw that the
fluctuations in energy are very small. Here we will show that the fluctuations are
small also in the case of the Gibbs distribution.

We define ∆E and ∆N by

(∆E)2 = (Er − E)2, (∆N)2 = (Nr −N)2 . (3.25)

We saw in Sec. 2 that in the case of the Boltzmann distribution,

(∆E)2 = −
(

∂E

∂β

)

α,V

. (3.26)

This result is valid also for the Gibbs distribution. Instead of proving this explicitly,
we will derive the analogous result for ∆N ; the steps are virtually identical and will
be left as an exercise for the student. We first express N as

N =

∑

r Nre
−(βEr+αNr)

∑

r e
−(βEr+αNr)

,

and compute its partial derivative with respect to α:

−∂N
∂α

=

∑

r Nr
2e−(βEr+αNr)

∑

r e
−(βEr+αNr)

−
(

∑

r Nre
−(βEr+αNr)

∑

r e
−(βEr+αNr)

)2

.
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We may now identify the first term of the right-hand side with Nr
2, and the second

term with Nr
2
. Since

(Nr −N)2 = Nr
2 −Nr

2
,

we have established that

(∆N)2 = −
(

∂N

∂α

)

β,V

. (3.27)

To demonstrate that the fluctuations are typically very small, we evaluate Eq. (3.27)
for the specific case of an ideal gas. We must first express N in terms of α and β;
otherwise, we might get confused when taking the partial derivative. We recall that
for an ideal gas,

α = − µ

kT
= ln

[

V

(2π~)3N

(

2πm

β

)3/2
]

,

which implies

N =
V

(2π~)3

(

2πm

β

)3/2

e−α.

This immediately gives us ∂N/∂α = −N , and

∆N

N
=

1√
N
.

We see that the fluctuation in the number of particles is indeed very small.

We shall now work out an expression for the energy fluctuation. To evaluate
Eq. (3.26) we express E = 3

2NkT as

E =
3

2

V

(2π~)3
(2πm)3/2

β5/2
e−α,

which implies that ∂E/∂β = − 5
2E/β. Finally, we arrive at

∆E

E
=

√

5

3N
.

This is slightly different from the result of Sec. 2, ∆E/E =
√

2/3N . The difference
is due to the fact that the fluctuations in the number of particles induce additional
fluctuations in the energy, so that (∆E)Gibbs > (∆E)Boltzmann.

We conclude that for all practical purposes, the physical predictions obtained
using the Gibbs distribution are virtually identical to those obtained using the Boltz-
mann distribution. Even though the number of particles is subject to fluctuations,
these are so small that they can be safely ignored.

3.4 Classical statistics

We now carry on with our formulation of classical statistical mechanics, which we
began in Sec. B4. We shall consider two topics. First, we will describe how to
compute the partition function in the classical limit. Second, we will formulate and
prove the very powerful equipartition theorem of classical statistics.
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3.4.1 Partition function

Our goal here is to find an expression for the partition function which applies in
the classical limit. We start with Eq. (3.11),

Z =

∫

e−βEω(E) dE ,

where ω(E) dE = Ω(E ; dE) is the number of microstates accessible to the classical
system if its energy is in the interval between E and E + dE . An expression for this
was found in Sec. B4:

ω(E) dE =
1

(2π~)f

∫

R

dp1 · · · dpfdq1 · · · dqf ,

where f denotes the number of degrees of freedom. (This expression for the density
of states does not account for the possible indistinguishability of the particles. If
the system is composed of indistinguishable particles, then this ω must be divided
by N !, where N is the number of particles.) In this expression, the domain R of
integration is determined by the fact that H(p1, . . . , qf ), the system’s Hamiltonian,
must be bounded by E < H < E + dE . Since the computation of Z involves
integrating over all values of the energy, it is clear that Z can be written in terms
of an integral extending over all of phase space. As a matter of fact, combining the
last two equations gives

Z =
1

(2π~)f

∫

e−βH(p1,...,qf ) dp1 · · · dpfdq1 · · · dqf , (3.28)

where, as was just stated, the domain of integration extends over the entire phase
space of the classical system. Equation (3.28) is the desired expression for the
classical partition function. (Again, if the system is composed of indistinguishable
particles, then this Z must be divided by N !, where N is the number of particles.)

3.4.2 The ideal gas — again

As an example of how to use Eq. (3.28), we now compute the classical partition
function for an ideal gas. As we shall see, this calculation is far less laborious
than the calculation of the statistical weight (no need for the “volume” of a 3N -
dimensional spherical shell!).

The Hamiltonian for an ideal gas is

H =
1

2m

(

p1
2 + · · · + p3N

2
)

.

Since H does not depend on the coordinates, the integrations over the dq’s can be
factored out, and they give

∫

dq1 · · · dq3N =

(
∫

dq1dq2dq3

)N

= V N .

Now, because the Boltzmann factor factorizes into

exp

(

−βp1
2

2m

)

· · · exp

(

−βp3N
2

2m

)

,

the momentum integrations evaluate to

∫

e−βH dp1 · · · dp3N =

(
∫ ∞

−∞

e−βp2/2m dp

)3N

=

(

2πm

β

)3N/2

,
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where we have used
∫∞

−∞ e−x2

dx =
√
π. Finally, gathering the results yields

Z =
1

N !

[

V

(2π~)3

(

2πm

β

)3/2
]N

, (3.29)

where the factor 1/N ! was inserted to account for the indistinguishability of the
particles. Using the Stirling approximation, we also obtain

lnZ = N ln

[

V

(2π~)3N

(

2πm

β

)3/2
]

+N.

The thermodynamic relations for an ideal gas can be derived, in the usual way,
from the partition function. The mean energy is given by E = −∂ lnZ/∂β. Since
lnZ = − 3

2N lnβ plus terms not involving β, this gives

E =
3

2
NkT.

The entropy is given by S = k(lnZ + βE), which evaluates to

S = Nk ln

[

V

(2π~)3N
(2πmkT )3/2

]

+ 5
2Nk.

The pressure is obtained from P = kT∂ lnZ/∂V . Since lnZ = N lnV plus terms
not involving V , this gives

PV = NkT.

And finally, the chemical potential is given by µ = −kT∂ lnZ/∂N , which implies

µ = −kT ln

[

V

(2π~)3N
(2πmkT )3/2

]

.

These results are all idential to the ones obtained in part B of this course, on the
basis of the statistical weight. However, the calculations presented here were much
more straightforward.

3.4.3 Equipartition theorem

As we have seen repeatedly, the macroscopic energy of an ideal gas is given, in the
classical limit, by E = 3

2NkT . On the other hand, in Sec. 2c above we obtained
the expression E = NkT for the energy of a system of simple harmonic oscillators
(also in the classical limit). These results suggest that in the classical limit, the
total energy of a system is always distributed in such a way that the mean energy
per particle is of order kT . The precise version of this statement is known as the
equipartition theorem, which we now formulate and prove.

Suppose that the Hamiltonian of a classical system can be written as

H(p1, . . . , pf , q1, . . . , qf ) = h(ξ) +H ′(p1, . . . , pf , q1, . . . , qf ),

where h depends only on ξ, while H ′ does not at all depend on ξ. Here, ξ is any

one of the phase-space coordinates; it can equally well be any one of the p’s or any
one of the q’s. Suppose also that h is quadratic in ξ:

h(ξ) = aξ2,
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where a is a constant. Then the equipartition theorem states that the mean value
of h, with respect to the Boltzmann distribution, is always given by

h̄ = 1
2kT , (3.30)

irrespective of the form of H ′.
The equipartition theorem implies that each quadratic term in the Hamiltonian

contributes 1
2kT to the mean total energy. Because the Hamiltonian of an ideal gas

contains quadratic terms only, and a number 3N of them, the theorem implies that
E = 3

2NkT . Similarly, the Hamiltonian of a system of simple harmonic oscillators
contains 2N quadratic terms, which gives E = NkT . It also follows from the
equipartition theorem that the mean kinetic energy of a classical system is always
equal to 1

2fkT , where f is the number of degrees of freedom.
We now proceed with the proof of the theorem. By definition, the mean value

of h is given by

h̄ =

∫

e−βHh dp1 · · · dqf
∫

e−βH dp1 · · · dqf
.

If we express H as h+H ′, this becomes

h̄ =

∫

e−βhh dξ
∫

e−βH′

dp1 · · ·dqf
∫

e−βh dξ
∫

e−βH′ dp1 · · ·dqf
,

where it is understood that dξ is excluded from dp1 · · ·dqf . The integrals not
involving ξ cancel out, and we obtain

h̄ =

∫

e−βhh dξ
∫

e−βh dξ
= − ∂

∂β
ln

∫

e−βh dξ.

We now use the fact that h = aξ2, and define a new integration variable u =
√
βξ.

A few steps of algebra then give

h̄ = − ∂

∂β

(

− 1
2 lnβ + ln

∫

e−au2

du

)

=
1

2β
,

which proves the theorem. Notice that we did not have to evaluate a single integral
in order to establish this beautiful result!

3.5 The meaning of probability

We now have at our disposal the fundamental tools of statistical mechanics, and
the rest of the course will focus on various applications. In this section we examine
the following conceptual question: What does it mean to say that a thermodynamic
system has a probability pr of being found in a microstate ψr? We shall give two
answers, and then argue that these two answers must be equivalent.

For the first answer, we suppose that the microstate of our system is measured
at many different times t1, t2, . . . , tn, where n is very large. (We assume that the
time intervals are sufficiently long that the system has time to return to equilibrium
between successive measurements.) Then we can define the probability of finding
the system in the microstate ψr as

pr =
number of times the system is measured to be in ψr

total number of measurements
.

This definition is obviously very close to what would be an experimental determi-
nation of the probabilities. Averages constructed with these probabilities are called
“time averages”, for obvious reasons.
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The second answer is quite different. Here we imagine that we have in our
possession n identical copies of our thermodynamic system, and that we measure
the microstate of each of these at a single moment of time. Because these systems
are all identical, they are all in the same macrostate. However, there is no reason
to assume that the systems are all in the same microstate. Instead, we may define
the probability of finding our original system in the microstate ψr as

pr =
number of copies found in microstate ψr

total number of copies
.

This obviously is a less practical definition, but it has proven to be an extremely
fruitful one for the development of the theory of statistical mechanics. It is usual to
refer to the n copies of the original system as an ensemble of systems, and averages
constructed in this way are called “ensemble averages”.

It is intuitively clear that those two ways of defining probabilities are equivalent:
making measurements at many different times on the same system is pretty much
the same thing as making simultaneous measurements on many identical systems.
The hypothesis according to which this is true is known as the ergotic hypothesis,
and again, the validity of this hypothesis is intuitively clear. However, the proof of
its validity could never be obtained within the framework of statistical mechanics. In
fact, counterexamples can be formulated in certain special situations. Nevertheless,
the validity of the ergotic hypothesis is widely accepted, and it can be introduced
as an additional postulate of statistical mechanics.

In the remainder of this course it will be helpful to use the language of ensembles.
We have so far encountered three types of ensembles. The microcanonical ensem-

ble designates a large number of identical, isolated systems; in the microcanonical
ensemble, probabilities are given by

pr =
1

Ω
,

where Ω is the statistical weight. The canonical ensemble designates a large number
of identical systems in thermal interaction (V and N fixed) with a reservoir; in the
canonical ensemble, probabilities are given by the Boltzmann distribution,

pr =
1

Z
exp
(

−Er/kT
)

.

Finally, the grand canonical ensemble designates a large number of identical sys-
tems in thermo-chemical interaction (only V fixed) with a reservoir; in the grand
canonical ensemble, probabilities are given by the Gibbs distribution,

pr =
1

Z exp
[

−
(

Er − µNr

)

/kT
]

.

3.6 Brief summary of statistical mechanics

We use the following symbols: α ≡ −µ/kT , β ≡ 1/kT . The index r labels the
microstates accessible to the system; these have energy eigenvalues Er and particle
numbers Nr. The sum

∑

r is over all these microstates.

3.6.1 Boltzmann distribution

Valid for systems in thermal interaction (V and N fixed) with a reservoir.

• Boltzmann distribution:

pr =
1

Z
e−βEr
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• Partition function:

Z(β, V,N) =
∑

r

e−βEr =

∫

ω(E)e−βE dE

• Helmholtz free energy:
F = −kT lnZ

• Mean energy:

E = −∂ lnZ

∂β

• Entropy:
S = k(lnZ + βE)

• Pressure:

P = kT
∂ lnZ

∂V

• Chemical potential:

µ = −kT ∂ lnZ

∂N

• Energy fluctuation:

(∆E)2 = −∂E
∂β

3.6.2 Gibbs distribution

Valid for systems in thermo-chemical interaction (only V fixed) with a reservoir.

• Gibbs distribution:

pr =
1

Z e−(βEr+αNr)

• Grand partition function:

Z(α, β, V ) =
∑

r

e−(βEr+αNr)

• Landau potential:
Ω = −kT lnZ

• Mean number of particles:

N = −∂ lnZ
∂α

• Mean energy:

E = −∂ lnZ
∂β

• Entropy:
S = k(lnZ + βE + αN)

• Pressure:

P = kT
∂ lnZ
∂V

• Fluctuations:

(∆N)2 = −∂N
∂α

, (∆E)2 = −∂E
∂β
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3.7 Problems

1. We continue our study of a system consisting of N spins, each capable of
having the values ±ε for its energy. We now imagine that the system is in
contact with a heat reservoir at temperature T .

The state of the nth spin is specified by the quantum number mn = ±1, so
that its energy is mnε. Correspondingly, the microstate of the entire system
is specified by the set {mn} of all N quantum numbers. We denote this set
by r. If the system is in a specified microstate r, then its total energy is

Er =

N
∑

n=1

mnε.

a) Show that the partition function is given by

Z =
[

2cosh(βε)
]N
,

where β = 1/kT .

b) Calculate the mean energy E of the system. How does your answer com-
pare with your result from last week?

c) Calculate ∆E, the energy fluctuation. Compare ∆E with E itself. Do the
fluctuations ever become large?

2. (Reif 7.2) An ideal monatomic gas ofN particles, each of massm, is in thermal
equilibrium at absolute temperature T . The gas is contained in a cubical box
of side L, whose top and bottom are parallel to the earth’s surface. The effect
of the earth’s uniform gravitational field on the particles should be considered.
You may assume that the gravitational potential is zero at the bottom of the
box, so that a particle at a distance y from the bottom has potential energy
mgy, where g is the gravitational acceleration.

a) Calculate the partition function for this gas, starting from the classical
result

Z =
1

N !(2π~)3N

∫

e−βHd~p1 · · · d~pN d~r1 · · ·d~rN ,

where H is the Hamiltonian, and where ~p1 and ~r1 are respectively the
momentum vector and position vector of the first particle; d~p1 stands for
dp1xdp1ydp1z.

b) Obtain the equation of state for this gas (pressure as a function of L and
T ). Check that your answer reduces to the familiar result PV = NkT
in the case of zero gravity.

3. The virial theorem of classical mechanics states that if a body moves under
the influence of a central potential V (r) ∝ rn, where r is the distance from
the centre to the body, then K̄, its mean kinetic energy, and V̄ , its mean
potential energy, are related by

K̄ =
n

2
V̄ .

Consider a system consisting of N moving bodies, all under the influence of
this potential, in thermal equilibrium at a temperature T .

a) What is Ē, the system’s mean total energy? (Express your result in terms
of N and T .)
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b) What is Ē for the specific case of a gravitational interaction? Why is Ē
negative?

4. In this problem we consider a system consisting of N simple harmonic os-
cillators in thermal equilibrium at a temperature T . We assume that the
oscillators are all identical (so that they all have the same frequency ω), dis-
tinguishable, and one dimensional (so that they each possess a single degree
of freedom).

a) How high must the temperature be for the system to behave classically?
(Give a precise criterion.)

b) In the classical limit, calculate the partition function for this system.

c) In the classical limit, calculate E, the system’s mean energy.

d) In the classical limit, calculate S, the system’s entropy.

e) In the classical limit, calculate µ, the system’s chemical potential.

5. A rotor is a quantum mechanical system with Hamiltonian

H =
J2

2I
,

where J is the angular momentum operator, and I a constant (the rotor’s
moment of inertia). The rotor’s eigenstates are |j,m〉, such that

J2 |j,m〉 = j(j + 1)~2 |j,m〉, Jz |j,m〉 = m~ |j,m〉,

where j = 0, 1, 2, . . ., and m = −j,−j + 1, . . . , j − 1, j.

Calculate the partition function for a system consisting of a single rotor in
thermal equilibrium with a heat bath at a temperature T . You may assume
that T is sufficiently high that the discrete sum over j can be turned into an
integral.
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4
Information theory

Information theory is a reformulation of statistical mechanics in terms of the miss-

ing information associated with a thermodynamic system whose microstate is not
known. This alternative approach provides a completely different derivation of the
Boltzmann and Gibbs distributions. Although it is much more formal than what
was presented in parts B and C, this formulation of statistical mechanics sheds new
light on the fundamental meaning of the entropy.

4.1 Missing information

How do we quantify the amount of missing information associated with a system
whose microstate is not known? We answer this question in two steps.

4.1.1 Uniform probabilities

Consider a problem of choice: n possibilities are given, of which only one is true;
which one it is is not known. (For example, a thermodynamic system can be in any
one of its n accessible microstates.)

What is I, the missing information, if the n possibilities are all equally likely?
(For example, the thermodynamic system could be isolated.) To answer this, let us
be guided by a number of properties that the missing information should possess.
First, I should depend on n, and I should increase as the number of possibilities is
increased:

I(n2) > I(n1) if n2 > n1.

Second, when the number of possibilities is equal to one, there should be no missing
information:

I(1) = 0.

The third property requires more discussion. Consider two independent problems
of choice, one with n1 possibilities, the other with n2 possibilities. (For example,
a first thermodynamic system has n1 accessible states, while a second system, not
interacting with the first, has n2 accessible states.) Clearly, the total number of
possibilities for the combined problem of choice is n1n2. The third property of the
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missing information is that it should be additive:

I(n1n2) = I(n1) + I(n2).

There is a unique choice of function I(n) that satisfies all three properties. It is

I(n) = k ln(n) , (4.1)

where k, for now, is an arbitrary constant.

4.1.2 Assigned probabilities

We now generalize the discussion to the case of unequal probabilities. In our problem
of choice, we now label the various possibilities with the index r, and we assign a
probability pr to each possibility. (For example, a system has a probability pr of
being found in the quantum state ψr.) We assume nothing regarding the probability
distribution, except that it must be properly normalized,

∑

r

pr = 1.

In particular, we do not assume that the probabilities are given by the Boltzmann
or Gibbs distributions.

The meaning of these probabilities is taken to be the following. Suppose that we
have a large number N of identical problems of choice — an ensemble of problems.
(For example, an ensemble of thermodynamic systems consists of N identical copies
of the original system.) Then the probabilities are defined so that when N → ∞,

pr =
Nr

N
,

where Nr is the number of times that possibility r turns out to be true. So if the
probability distribution is known, then we know that among the N problems of
choice, possibility r will be true in Nr cases.

However, what we do not know is which of the N problems are the ones for
which possibility r is true. This represents missing information, and to evaluate
I(m), we need to first calculate m, the number of ways our ensemble of problems
can be prepared so that possibility r will be true for Nr of them. A few moments
of deep thought will convince one that m is equal to the number of ways in which
N1 + N2 + · · · = N objects, of which N1 are indistinguishably of type 1, and of
which N2 are indistinguishably of type 2, . . . , can be allocated to N slots.

If we were dealing with distinguishable objects, m would be equal to

N × (N − 1) × · · · × 1 = N !,

since N is the number of ways the first object can be chosen among the N objects
to fill the first slot, while N − 1 is the number of ways the second object can be
chosen among the remaining N − 1 objects to fill the second slot, and so on. In
other words, m = N ! for distinguishable objects. But since the N1 objects of type
1 are indistinguishable, we must divide this by N1!, the number of permutations
of these objects among themselves. And since the N2 objects of type 2 are also
indistinguishable, we must also divide this by N2!, the number of permutations of
these objects among themselves. Continuing in this vein, we arrive at

m =
N !

N1!N2! · · ·
.
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The missing information is therefore

I(m) = k ln

(

N !

N1!N2! · · ·

)

= k
[

ln(N !) − ln(N1!) − ln(N2!) − · · ·
]

= k

[

ln(N !) −
∑

r

ln(Nr!)

]

.

Since we eventually take the limit N → ∞ (which implies Nr → ∞), we may use
the Stirling approximation k ln(N !) = N lnN −N . This gives

I(m) = k

(

N lnN −
∑

r

Nr lnNr

)

,

where the relation N =
∑

r Nr was used. We now write Nr = Npr, and after
simplification, I(m) becomes

I(m) = −Nk
∑

r

pr ln pr.

This is the missing information associated with our ensemble ofN identical problems
of choice. The missing information per problem is then

I = −k
∑

r

pr ln pr . (4.2)

This result holds for arbitrarily assigned probabilities. It also holds for uniform
probabilities (a special case), in which case Eq. (4.2) reduces to Eq. (4.1), as a few
steps of algebra confirm.

4.2 Entropy

The discussion of the previous section was quite general: it did not matter what
the problem of choice was, and we were able to derive an explicit expression for
the missing information. Now we consider the specific application in which the
problem of choice is a thermodynamic system. The various possibilities are then
the various microstates accessible to the system. We assume that probabilities can
be assigned to these microstates, but we do not yet assume that these are given by
the Boltzmann or Gibbs distributions. In fact, we will derive these distributions
below.

The first postulate of the information-theory formulation of statistical mechanics
is that the thermodynamic entropy is precisely the missing information associated
with the system, whose microstate in not known. Mathematically, therefore,

S = I = −k
∑

r

pr ln pr , (4.3)

where k is now defined to be Boltzmann’s constant.
This identification of the entropy with the missing information is quite com-

pelling. We have seen that the microscopic description of a thermodynamic system
typically involves the specification of 3N quantum numbers, one for each degrees
of freedom. We have also seen that the macroscopic description of the same system
involves the specification of only a very small number of quantities. (For example:
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energy, volume, and number of particles.) The reduction from a microscopic de-
scription, which would be utterly impractical, to a macroscopic one, which is much
more useful, necessarily implies a loss of (a lot of) information. This lost informa-
tion is precisely what the entropy is. This truly is a beautiful realization, which
endows the entropy with a very concrete physical meaning.

4.3 Boltzmann and Gibbs distributions

We have encountered Eq. (4.3) before, in part C of this course. There is an im-
portant difference, however. It is that in part C, the probabilities were specifically
given by the Boltzmann and Gibbs distributions, whereas no such assumption was
made here. In this section we use Eq. (4.3) to derive the Boltzmann and Gibbs
distributions.

4.3.1 Maximum missing information

The second postulate of the information-theory formulation of statistical mechanics
is that a system in equilibrium has a probability distribution which is such that the
missing information is maximized. The distribution is further constrained by the
following relations:

∑

r

pr = 1,
∑

r

Erpr = E,
∑

r

Nrpr = N.

The mean energy E and the mean number of particles N are therefore assumed
to be known. This represents the only information available about the system.
Maximizing the missing information therefore amounts to assuming that we really
do not have any other information about the system.

The probability distribution is therefore determined by the condition

δI = −k
∑

r

(ln pr + 1) δpr = 0 , (4.4)

where the variations δpr are subject to the constraints

∑

r

δpr = 0,
∑

r

Er δpr = 0,
∑

r

Nr δpr = 0 . (4.5)

These constraints imply that the δpr’s are not all independent. (If they were,
we would have to conclude that ln pr = −1, which clearly is impossible.) The
maximization must be carried out using the method of Lagrange multipliers.

4.3.2 Lagrange multipliers

Before we return to the problem of maximizing I subject to the constraints (4.5),
we first describe how to use the method of Lagrange multipliers.

Suppose we want to extremize the function f(x, y, z) when the coordinates x,
y, and z are subject to the constraint g(x, y, z) = 0. (Geometrically, the equation
g = 0 describes a two-dimensional surface in three-dimensional space.) If f is to be
an extremum, then

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = 0.

If the displacements were all independent, then we would conclude that all the par-
tial derivatives must be zero: ∂f/∂x = ∂f/∂y = ∂f/∂z = 0. But the displacements
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are not independent, because g = 0 implies

dg =
∂g

∂x
dx+

∂g

∂y
dy +

∂g

∂z
dz = 0.

(The displacements must lie on the surface g = 0.) This means that dz can be
expressed in terms of dx and dy, which are the truly independent displacements.

Consider the linear combination df+λdg, where λ is some number (the Lagrange
multiplier). This combination must obviously vanish, because df = dg = 0. So

(

∂f

∂x
+ λ

∂g

∂x

)

dx+

(

∂f

∂y
+ λ

∂g

∂y

)

dy +

(

∂f

∂z
+ λ

∂g

∂z

)

dz = 0.

The clever trick associated with the method of Lagrange multipliers is that we can
choose λ in such a way that

∂f

∂z
+ λ

∂g

∂z
= 0.

Having made this choice, the preceding equation becomes
(

∂f

∂x
+ λ

∂g

∂x

)

dx+

(

∂f

∂y
+ λ

∂g

∂y

)

dy = 0.

But since the displacements dx and dy are independent, we must have

∂f

∂x
+ λ

∂g

∂x
= 0,

∂f

∂y
+ λ

∂g

∂y
= 0.

Maximization has been achieved. Notice that all three equations are of the same
form, even though the first defines λ, while the second and third take care of the
maximization.

The method therefore gives a very convenient way of maximizing a function f
when the displacements are subject to the constraint g = 0: By taking the linear
combination df + λdg, one can pretend that the displacements are all independent,
and set all coefficients to zero in the usual way. The value of the Lagrange multiplier
is then determined from any one of the resulting equations.

4.3.3 Probability distributions

Going back to Eqs. (4.4) and (4.5), we see that in our variation of I, the displace-
ments δpr are subject to three constraints. This means that we must introduce
three Lagrange multipliers, which we denote λ − 1, α, and β, respectively. The
method instructs us to take the linear combination

∑

r

(ln pr + 1) δpr + (λ− 1)
∑

r

δpr + β
∑

r

Er δpr + α
∑

r

Nr δpr = 0,

or
∑

r

(

ln pr + λ+ βEr + αNr

)

δpr = 0.

We can now pretend that the δpr’s are all independent, which means that every
term in the sum must vanish separately. Thus, ln pr = −(λ+ βEr + αNr), or

pr = e−λe−(βEr+αNr) . (4.6)

This is the Gibbs distribution! The Gibbs distribution reduces to the Boltzmann
distribution when Nr is the same for all quantum states, that is, if the system has
a fixed number of particles.
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4.3.4 Evaluation of the Lagrange multipliers

We still have to evaluate the Lagrange multipliers. The first one, λ, is determined
by making sure that the probabilities are properly normalized. This gives

eλ =
∑

r

e−(βEr+αNr) = Z , (4.7)

where Z is the grand partition function. The second multiplier, β, is determined
by making sure that the mean energy is properly given by the known value E. This
gives

E =
1

Z
∑

r

Ere
−(βEr+αNr) = −∂ lnZ

∂β
. (4.8)

Finally, α is determined by making sure that the mean number of particles is prop-
erly given by the known value N :

N =
1

Z
∑

r

Nre
−(βEr+αNr) = −∂ lnZ

∂α
. (4.9)

These are all the usual relations, which were derived in a completely different way
in part C.

4.3.5 The first law

It is quite clear that the β and α multipliers are related to the system’s temperature
and chemical potential. In fact, we know the precise relations from part C. It is,
however, not at all difficult to derive these relations from scratch, on the basis of
what we have learned in this section.

We start from Eq. (4.8). Recalling that the energy eigenvalues may depend on
the system’s volume, this equation implies

dE = −P dV +
∑

r

Er dpr,

where P , for now, is merely short-hand for the quantity

−
∑

r

∂Er

∂V
pr.

Similarly, Eq. (4.9) implies

dN =
∑

r

Nr dpr.

Next, we go back to Eq. (4.3), the definition of the entropy. Differentiation yields

dS = −k
∑

r

(ln pr + 1) dpr = −k
∑

r

ln pr dpr,

because
∑

r dpr = 0. Substituting Eq. (4.6), this becomes

dS = kβ
∑

r

Er dpr + kα
∑

r

Nr dpr.

Finally, combining the results, we arrive at

T dS = kTβ(dE + P dV ) + kTαdN.
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This has exactly the same form as the first law, T dS = dE+P dV −µdN , provided
that

β =
1

kT
, α = − µ

kT
. (4.10)

These are the usual relations. We also see that the quantity P introduced above is
really the thermodynamic pressure.

4.4 Conclusion

We see that all the standard results of statistical mechanics can be derived from
an information-theory approach, which is based upon two fundamental postulates.
The first postulate states that the entropy of a thermodynamic system is precisely
equal to the missing information associated with the fact the system’s microstate
is not known. The second postulate states that the probability distribution that
characterizes a system in equilibrium is the one which maximizes the missing in-
formation. (The maximization is subject to the constraint that the mean energy
and the mean number of particles must be kept fixed during the variation.) This
probability distribution turns out to be the Gibbs distribution, or its special case,
the Boltzmann distribution.

Information theory provides a remarkably elegant, but formal, formulation of
statistical mechanics. But more important, it highlights the direct physical meaning
of the entropy.
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5
Paramagnetism

We now have at hand the basic tools of statistical mechanics, and it is time to apply
these tools to the thermodynamic description of various physical systems. We begin
with a rather interesting application: magnetism, or more precisely, paramagnetism.

5.1 Magnetism

Magnetism in matter is caused by electric currents generated by moving electrons
inside atoms and molecules. We shall now review the basic notions.

5.1.1 Magnetic moment

Any loop of current produces a magnetic field. Far from the loop, the magnetic
vector potential A is given by

A(r) =
µ0

4π

µ × r

r3
,

where r is the position at which the magnetic field B = ∇ × A is measured, and
r = |r|. The vectorial quantity µ is called the magnetic moment of the loop, and it
is given by

µ = (current)(area inside loop)n,

where n is a unit vector pointing in the direction normal to the loop, in accordance
with the right-hand rule. Thus, the magnetic moment is the fundamental quantity
which characterizes the strength of the magnetic field.

5.1.2 Potential energy

We consider a loop with magnetic moment µ immersed in a uniform external mag-
netic field Bext. We assume that the external field is much stronger than the
magnetic field produced by the loop itself.

In such a situation, the loop experiences a torque which tends to align µ in the
direction of Bext. (This means that the loop tends to align itself perpendicular to
the field lines.) This torque is given by τ = µ × Bext.
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To rotate the loop in the external field therefore requires work, which increases
the magnetic potential energy of the loop. This potential energy can be shown to
be given by

U = −µ · Bext.

The potential energy is minimum when µ points in the same direction as the applied
field. It is maximum when µ points in the opposite direction.

5.1.3 Magnetic moments of atoms and molecules

Most atoms and molecules possess a magnetic moment, which we now calculate.
Let us start with a simple classical model: a single electron moves on a circular
orbit around a nucleus. The orbit represents a loop of current. The current is
−e/P , where −e is the electron’s charge (so that e > 0), and P the orbital period.
In terms of the orbital radius r and the orbital velocity v, we have P = 2πr/v, and
the electron’s angular momentum is L = mevr, where me is the electron mass. The
area enclosed by the loop is πr2, so that

µ =

(

− ev

2πr

)

(πr2)n = −evr
2

n = − e

2me
Ln = − e

2me
L.

In this classical model, the molecular magnetic moment is proportional to the elec-
tron’s orbital angular momentum.

In a multi-electron system, the contributions from each electron add vectorially,
and µ = −eL/2me, where L is now the total orbital angular momentum. This
result would also be valid quantum mechanically, were it not for the electron’s spin.
Instead, the quantum mechanical result is

µ = − e

2me
(L + 2S),

where L (total orbital angular momentum) and S (total spin angular momentum)
are now quantum operators. These act as follows on their respective eigenstates:

L2|ℓ,mℓ〉 = ℓ(ℓ+ 1)~2|ℓ,mℓ〉, ℓ = 0, 1, 2, · · ·
Lz|ℓ,mℓ〉 = mℓ~|ℓ,mℓ〉, mℓ = −ℓ, · · · , ℓ
S2|s,ms〉 = s(s+ 1)~2|s,ms〉, s = 0, 1

2 , 1, · · ·
Sz|s,ms〉 = ms~|s,ms〉, ms = −s, · · · , s

The total angular momentum, J = L + S, operates in a similar way:

J2|j,mj〉 = j(j + 1)~2|j,mj〉, j = |l − s|, · · · , l+ s
Jz |j,mj〉 = mj~|j,mj〉, mj = −j, · · · , j

It can be shown that L + 2S = gJ , where

g =
3

2
+
s(s+ 1) − ℓ(ℓ+ 1)

2j(j + 1)

is known as the Landé factor; it describes how a molecule’s total angular momentum
can be decomposed into orbital and spin parts. The molecular magnetic moment
can therefore be expressed as

µ = −gµB

(

J

~

)

. (5.1)

The quantity

µB =
e~

2me
(5.2)

is called the Bohr magneton; it represents the quantum unit of molecular magnetic
moments. Different molecules have different total angular momenta, and different
Landé factors; they therefore have different magnetic moments.
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5.1.4 Forms of magnetism

A solid is immersed in an external magnetic field Bext. If the solid is magnetic,
then the total field Bin inside the solid is different from Bext:

Bin = Bext + µ0M(T ) , (5.3)

where M(T ) is the solid’s magnetization, which depends on temperature. The
magnetic response of a solid can also be described by its susceptibility,

χ(T,Bext) =

(

∂M

∂Bext

)

T

,

where M ≡ |M | is the magnitude of the magnetization vector.
The different forms of magnetism have to do with how M and χ behave for

different solids:

• Diamagnetism: In a diamagnetic solid, M points in the direction opposite
to Bext, so that Bin < Bext. Diamagnetic solids are made of molecules
with vanishing total angular momentum, and therefore, vanishing magnetic
moments. Diamagnetism is caused by atomic currents generated by magnetic
induction; it is a very weak effect. Examples of diamagnetic materials are
H2O, Cu, Pb, and NaCl.

• Paramagnetism: In a paramagnetic solid, M points in the same direction
as Bext, so that Bin > Bext. Paramagnetic solids are made of molecules
with nonzero total angular momentum, and therefore, nonzero magnetic mo-
ments. Paramagnetism is caused by the individual magnetic moments of all
the molecules. For a unit volume containing N molecules, the magnetization
is given by

M(T ) =

〈 N
∑

n=1

µn

〉

, (5.4)

where µn is the magnetic moment of the nth molecule. (The average 〈 〉 will
be defined precisely below; it involves both quantum and thermal averaging.)
In the absence of an applied field, the magnetic moments are randomly ori-
ented, and M = 0. In the presence of an applied field, however, the magnetic
moments align themselves with Bext, and M therefore points in the direc-
tion of Bext. Only the interactions between the magnetic moments and the
external field, through the Hamiltonian Hn = −µn · Bext, are important in
paramagnetic solids; mutual interactions among the magnetic moments are
negligible. Paramagnetism is a stronger effect than diamagnetism. Examples
of paramagnetic materials are Na, Al, CuCl2, NiSO4, and O2.

• Ferromagnetism: Ferromagnetism is essentially like paramagnetism, except
that mutual interactions among the magnetic moments are very important and
cannot be neglected. These interactions can cause the magnetization to be
permanent. Ferromagnetism is a much stronger effect than paramagnetism.
Examples of ferromagnetic materials are Fe and Fe3O4.

5.2 General theory of paramagnetism

While ferromagnetism is the most interesting form of magnetism (that associated
with permanent magnets), the importance of the mutual interactions among the
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magnetic moments makes it quite difficult to model and analyze. On the other
hand, because these interactions are negligible in the case of paramagnetism, this
weaker form of magnetism lends itself much more easily to modeling and analysis.
In this section, we formulate the general theory of paramagnetism.

5.2.1 The model

We imagine that a paramagnetic solid of unit volume containsN molecules which are
located at specific sites on a lattice, so that they can be treated as distinguishable.
We assume that the solid is immersed in a heat reservoir at a temperature T , so
that it follows the Boltzmann distribution of probabilities. (We say that the system
is in a canonical ensemble.)

We denote the total angular momentum of the n-th molecule by Jn, and its
magnetic moment is given by

µn = −gµB(Jn/~),

where g is the Landé factor, and µB the Bohr magneton. We assume that g and j
are the same for each molecule.

The molecules are assumed to interact only with an external magnetic field B,
and not with each other. The kinetic energy of the molecules is also neglected. The
Hamiltonian describing the system is therefore

H = −
N
∑

n=1

µn · B . (5.5)

Finally, the magnetization is in the direction of B, which we choose to be
the z-direction. The magnetization is therefore given by M = M ẑ, where M =
〈∑N

n=1 µnz〉, or

M = −gµB

〈 N
∑

n=1

Jnz

~

〉

. (5.6)

The magnetization will be the thermodynamic quantity of prime interest in the
following. To calculate it we need to spell out how

∑N
n=1 Jnz is to be averaged.

5.2.2 Quantum and thermal averages

The magnetization of a paramagnetic solid is a macroscopic quantity, and the pur-
pose of the averaging 〈 〉 is to go from the microscopic quantities Jnz to something
which does not depend on the detailed properties of the solid. (This rejection of the
microscopic details to define macroscopic quantities is of course the central theme of
statistical mechanics.) The magnetization, therefore, is a classical quantity, which
means that unlike Jnz, it cannot be a quantum operator. To produce such a clas-
sical quantity, the averaging 〈 〉 must therefore incorporate a quantum averaging,
which we now describe.

Let |r〉 denote one of the possible quantum states of the entire system, which
consists ofN distinguishable molecules. To characterize this quantum state, we note
that the nth molecule must be in a simultaneous eigenstate of J2

n and Jnz , which we
denote |j,mn〉 or simply |mn〉, because j is the same for all the molecules. To know
the individual state of every molecule is to know the state of the entire system, and
therefore, this state is fully determined once all N values of the quantum numbers
mn are specified. Mathematically,

r = {m1,m2, · · · ,mN} ≡ {mn},
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and we may express |r〉 as the tensor product of all the individual states |mn〉:

|r〉 = |m1〉|m2〉 · · · |mN〉.

The quantum average of some operator O consists in taking its expectation value
in the quantum state |r〉:

〈r|O|r〉 ≡ quantum average of operator O.

Unlike O, 〈r|O|r〉 is not a quantum operator, and it is therefore suitable to represent
a classical object.

Part of the averaging 〈 〉 therefore consists in performing a quantum average.
Now, if we knew the exact quantum state of the solid, then this would be the only
form of averaging that would need to be considered. But this is only part of the
story, because in reality, the quantum state is not only unknown, it is subject to
fluctuations due to the solid’s interaction with the heat reservoir. The averaging 〈 〉
must therefore also incorporate a thermal averaging over the Boltzmann distribution
of probabilities.

The (quantum-thermal) average 〈O〉 of the operator O is therefore defined by

〈O〉 = 〈r|O|r〉 =
∑

r

〈r|O|r〉 pr =
1

Z

∑

r

〈r|O|r〉 e−βEr , (5.7)

where Z is the partition function, β = 1/kT , and Er is the energy eigenvalue of the
quantum state |r〉.

To calculate M we must therefore determine the energy eigenvalues, evaluate
the partition function, and then carry out the sum over states that appears at the
right of Eq. (5.7). We will consider each of these steps in turn.

5.2.3 Energy eigenvalues

The energy eigenvalue of the quantum state |r〉 is obtained by acting on |r〉 with
the Hamiltonian operator of Eq. (5.5). Since B = Bẑ, we have

H = −B
N
∑

n=1

µnz = gµBB(J1z/~ + J2z/~ + · · · + JNz/~).

How does this operate on |r〉 = |m1〉|m2〉 · · · |mN 〉? The answer is that when J1z

acts on |r〉, it notices only the presence of |m1〉 and leaves the rest of |r〉 untouched.
Since J1z|m1〉 = m1~|m1〉, we find that J1z|r〉 = m1~|r〉. Proceeding similarly with
the other molecules, we obtain

H |r〉 = gµBB(m1 +m2 + · · ·mN )|r〉.

This is clearly of the formH |r〉 = Er|r〉, and we conclude that the energy eigenvalues
are given by

Er = gµBB

N
∑

n=1

mn . (5.8)

5.2.4 Partition function

The partition function is obtained by summing the Boltzmann factor e−βEr over all
the quantum states |r〉. More concretely, this means that we must sum e−βEr over
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all the values that each individual quantum number mn can take. In other words,

Z =
∑

m1

∑

m2

· · ·
∑

mN

exp
[

−βgµBB(m1 +m2 + · · · +mN )
]

=

[

∑

m1

exp(−βgµBBm1)

][

∑

m2

exp(−βgµBBm2)

]

· · ·
[

∑

mN

exp(−βgµBBmN )

]

Since the sums are all identical, this simplifies to

Z =

[

j
∑

m=−j

exp
(

−βgµBBm
)

]N

, (5.9)

where we have indicated that each mn varies from −j to +j in integral steps. We
will evaluate this sum explicitly below.

5.2.5 Magnetization

We may now calculate the magnetization. We start by combining Eqs. (5.6) and
(5.7), and we proceed by going through some of the same steps as for the calculation
of the energy eigenvalues. After a short computation, we find that the magnetization
is given by

M = −gµB

Z

∑

r

(

N
∑

n=1

mn

)

e−βEr

= −gµB

Z

∑

m1

· · ·
∑

mN

(m1 + · · · +mN) exp
[

−βgµBB(m1 + · · · +mN )
]

.

We now employ the familiar trick of expressing a thermodynamic quantity of
interest — in this case the magnetization — directly in terms of the partition
function. It should be clear that our expression for M differs from

Z =
∑

m1

· · ·
∑

mN

exp
[

−βgµBB(m1 + · · · +mN)
]

only by the presence of the factor −gµB/Z in front of the sums, and the factor
(m1+ · · ·+mN) inside the sums. This last factor can be generated by differentiating
Z with respect to B, say. Since this also produces the factor −βgµB, we are not
far from the desired result, which is

M =
1

β

∂ lnZ

∂B
. (5.10)

The magnetization of a paramagnetic solid is therefore calculated in two steps.
First, the partition function is computed from Eq. (5.9). Second, M is obtained
from Eq. (5.10). By themselves, these two equations encapsulate the theory of
paramagnetism.

5.3 Molecules with j =
1
2

To illustrate how the general theory is applied, we consider in this section the
simple (but unrealistic) case of molecules with spin 1/2. We therefore set the
orbital angular momentum to zero, so that J = S, with s = 1/2. This gives us a
Landé factor g = 2.
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Because m can take the values ± 1
2 only, Eq. (5.9) gives Z = [exp(βµBB) +

exp(−βµBB)]N , or

Z =
[

2cosh(βµBB)
]N

.

This implies that lnZ = N ln[2cosh(βµBB)], and the magnetization follows by
partial differentiation with respect to B. We easily obtain

M = NµB tanh(βµBB).

We see that the magnetization is equal to NµB times a function of βµBB =
µBB/kT , the ratio of the magnetic unit of energy to the thermal unit of energy.

It is interesting to ask how the magnetization behaves at low temperatures, when
the thermal unit of energy is much smaller than the magnetic unit of energy. In
this limit, the argument of the hyperbolic tangent is very large, and since tanh(x≪
1) ∼ 1, we have that

M ∼ NµB, kT ≪ µBB.

This result means that in the absence of thermal agitations, the magnetic moments
are all aligned with the external magnetic field, thus minimizing the magnetic po-
tential energy. Since the individual moments are all of magnitude µB, by virtue of
Eq. (5.1), and since they all point in the same direction, the magnetization must
clearly be equal to NµB, which is indeed what we find.

In the limit of high temperatures, when the thermal unit of energy is much larger
than the magnetic unit of energy, the situation is completely different. Here, the
thermal agitations are so important that the magnetic moments are prevented from
aligning themselves with the external magnetic field. Instead, the moments point
in more or less random directions, and as a result, the magnetization is very small.
Quantitatively, we may use the result tanh(x≪ 1) ∼ x to derive

M ∼ NµB
µBB

kT
, kT ≫ µBB.

The statement that M ∝ 1/T at large temperatures is known as Curie’s law.

5.4 Molecules with arbitrary j

It is not too difficult to calculate the magnetization when j is arbitrary. Although
the mathematics are slightly harder than in the simplest case j = 1/2, the basic
physics is exactly the same.

We must first evaluate the sum Z1 =
∑j

m=−j e
−2ηm, which gives the partition

function for a single molecule. For convenience, we have defined the quantity

η =
gµBB

2kT
, (5.11)

the ratio of magnetic and thermal units of energy. How do we evaluate this sum
over m? To answer this, consider instead the quantity (1 − e2η)Z1, which is given
by

(1 − e2η)Z1 = e2ηj + e2η(j−1) + · · · + e−2η(j−1) + e−2ηj

− e2η(j+1) − e2ηj − e2η(j−1) − · · · − e−2η(j−1).

We see that most of the terms cancel out, leaving

Z1 =
e−2ηj − e2η(j+1)

1 − e2η
.
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Multiplying above and below by e−η yields

Z1 =
sinh

[

(2j + 1)η
]

sinh(η)
.

Finally, raising this to the Nth power gives the full partition function:

Z =

{

sinh
[

(2j + 1)η
]

sinh(η)

}N

. (5.12)

It is a good exercise to check that this reduces to the previous result when j = 1/2.
The magnetization is now obtained by partial differentiation, using Eq. (5.10).

The algebraic steps are easy, and we obtain

M = jgNµB Bj(η) , (5.13)

where Bj(η), the Brillouin function, is given by

Bj(η) =
1

2j

{

(2j + 1)coth
[

(2j + 1)η
]

− coth(η)
}

. (5.14)

A plot of the Brillouin function, for j = { 1
2 , 1,

3
2 , 2,

5
2}, appears on the side of this

page. It may easily be shown that Bj(η ≪ 1) ∼ 2
3 (j + 1)η, while Bj(η ≫ 1) ∼ 1.
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These limiting expressions for the Brillouin function can be used to derive the
following results. First, at low temperatures (η ≫ 1), the magnetization is given by

M ∼ jgNµB, kT ≪ µBB . (5.15)

The physical picture is the same as before: at low temperatures, the magnetic
moments are all aligned with the external magnetic field, the potential energy is
minimized, and the magnetization is maximized. Second, at high temperatures
(η ≪ 1), the magnetization is now given by

M ∼ 1
3j(j + 1)g2NµB

µBB

kT
, kT ≫ µBB . (5.16)

Again the interpretation is as before: at high temperatures the magnetic moments
are randomly oriented, and the magnetization is very small. Equation (5.16) is the
most general form of Curie’s law.

Equations (5.13) and (5.14) are our theoretical predictions for the magnetization
of a paramagnetic solid. The natural question, of course, is how well do these predic-
tions compare with experimental data? The answer is very well indeed, as a quick
glance at p. 262 of Reif’s book will confirm. This agreement is quite remarkable,
given the extreme simplicity of our model.

5.5 Paramagnetic solid in isolation

In Sec. 2 we have formulated the general theory of paramagnetism under the as-
sumption that the paramagnetic solid was immersed in a heat bath at a temperature
T . In this section we reconsider this problem, this time under the assumption that
the paramagnetic solid is isolated. The reason for this is twofold. First, this will
provide a nice illustration of the fact that the predictions of statistical mechanics
do not typically depend on whether the system is assumed to be isolated or in in-
teraction with a heat bath. Second, and more important, we will be led toward the
striking conclusion that the temperature of an isolated system can sometimes be
negative! Throughout this section, to simplify the discussion as much as possible, it
will be assumed that the paramagnetic solid is composed of molecules with j = 1

2 .
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5.5.1 Statistical weight and entropy

We consider an isolated system consisting ofN molecules, each of which is located on
a specific site on a lattice. The nth molecule has a magnetic moment µn = −2µBmn,
where mn is capable of taking the values ± 1

2 . The energy of this molecule is given
by εn = 2µBBmn. We want to study the thermodynamic properties of this isolated
system. From what we’ve learned in part B of this course, we know that we must
first compute Ω(E), the statistical weight, for this system.

If we denote by n the number of molecules with mn = + 1
2 , so that their magnetic

moments are negative and their energies positive, then the magnetization of the solid
will be given by M = n(−µB) + (N − n)(+µB), or

M = (N − 2n)µB.

Similarly, the total energy of the solid will be

E = (2n−N)µBB = −MB.

Of course, we do not know which, among the N molecules, are those with a negative
magnetic moment. We therefore want to calculate the number of ways the system
can be prepared so that a number n of molecules will have a negative magnetic
moment. Because E varies with n and nothing else (because N , µB, and B are all
constants), this is the same as Ω(E), the number of ways the system can be prepared
so that it will have an energy E. The hard work of calculating this quantity was
done in a homework problem, where it was found that

Ω(E) =
N !

n!(N − n)!
.

Here, n is given in terms of E by

n =
1

2
(N + E/ε),

where we have defined the quantity ε ≡ µBB for convenience. Notice that n < N/2
if the energy is negative, while n > N/2 if the energy is positive. Notice also that
Ω = 1 if either n = 0 or n = N . This means that the entropy is zero whenever the
energy reaches the limiting values ±Nε.

An explicit expression for the entropy follows from the relation S = k ln Ω.
Assuming that N , n, and N −n are all large, and using the Stirling approximation
ln(M !) ≃M lnM −M for large M , we find

S(E) = k
[

N lnN − n lnn− (N − n) ln(N − n)
]

.

This expression confirms that S = 0 when E = ±Nε.

5.5.2 Temperature

The temperature of an isolated system is defined by recalling the first law of ther-
modynamics, dE = T dS + · · · , from which it follows that

β ≡ 1

kT
=

1

k

(

∂S

∂E

)

V,N

.

Taking into account that S depends on E through the variable n, the partial deriva-
tive is easily evaluated, and we find

β =
1

2ε
ln

(

Nε− E

Nε+ E

)

.
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The function β(E) is plotted on the side of the page. Let us now analyze the
behaviour of this function.
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In the limit E → −Nε, which corresponds to the magnetic moments all pointing
in the direction of the external magnetic field, β → +∞, which corresponds to
T → 0+. This makes good sense: the temperature must be very small if the
magnetic moments can all align themselves with the external field.

As the energy increases from −Nε, β decreases, and the temperature increases.
When E → 0−, which corresponds to an equal number of aligned and anti-aligned
magnetic moments, β → 0+, which means that T → +∞. This also makes sense:
the temperature must be very large for the magnetic moments to be randomly
oriented.

Now for the big surprise. The system’s energy is not required to be smaller than
zero. If a larger number of magnetic moments are pointing in the direction opposite
to the magnetic field, then n > N/2, and E > 0. Now, β is perfectly well behaved
in the neighbourhood of E = 0. As E goes from 0− to 0+, β simply goes from 0+

to 0−. As E is increased further, β grows more negative. Finally, as E reaches the
upper limit +Nε, which corresponds to the magnetic moments all anti-aligned with
the external field, β → −∞.

Of course, this innocuous behaviour of β translates into a rather strange be-
haviour for the temperature itself. As β gently moves from 0+ to 0−, T jumps
wildly from +∞ to −∞! And as β grows more negative as the energy is further
increased, T increases from −∞ until it reaches 0−! Strange behaviour indeed.
Strange also is the following conclusion: Because a body containing more energy
must be hotter than the same body with less energy, a body at a negative temper-
ature must be hotter than a body at a positive temperature!

5.5.3 Negative temperatures?

Do negative temperatures really make physical sense? To answer this question,
let us first ask why the temperature can go negative in a system of noninteracting
magnetic moments. The answer, as we shall explain in the following two paragraphs,
is this: The key point with this system is that its energy has an upper bound, given
here by +Nε. This is a very uncommon situation, because the existence of such
an upper bound is clearly impossible if the system has kinetic energy. In fact, the
prediction of negative temperatures in isolated paramagnetic solids has a lot to do
with the fact that we have ignored, all along, the kinetic energy of the molecules
within the solid. This is not a bad approximation at sufficiently small (positive)
temperatures, but the kinetic energy would have to be taken into account at large
temperatures. Doing so would then reveal that negative temperatures do not occur.

How does the existence of an upper bound in the system’s energy imply the
occurrence of negative temperatures? To answer this, consider a system who’s
energy is bounded below by Emin, and above by Emax. When E = Emin, the
system is in a very special state, the ground state. (For example, in a paramagnetic
solid, every molecule must have its magnetic moment aligned with the external
magnetic field.) Because the ground state is unique, the statistical weight is equal
to unity when E = Emin, and it increases as E increases away from Emin. On the
other hand, the system must also be in a very special state when E = Emax. (For
example, in a paramagnetic solid, every molecule must have its magnetic moment
anti-aligned with the external magnetic field.) Because this state is just as unique as
the ground state, the statistical weight must also be equal to unity when E = Emax.
After having increased for a while, the statistical weight must eventually decrease
back to unity as E approaches Emax. The entropy must therefore have the following
behaviour: it increases from zero when E is increased from Emin, and it eventually
decreases to zero when E approaches Emax; somewhere in between, S(E) must
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reach a maximum.
The occurrence of negative temperatures follows immediately from the last state-

ment. For isolated systems, 1/T is defined to be ∂S/∂E, the slope of the entropy
function. This slope is clearly positive when E is near Emin, but it is clearly nega-
tive when E approaches Emax. At the point where S(E) reaches its maximum, the
slope goes to zero, and 1/T changes sign.

Although negative temperatures do not naturally occur, they can nonetheless
be simulated in the laboratory. In 1951, Purcell and Pound prepared a system of
nuclear spins in such a way that initially, most of the spins were aligned with an
external magnetic field. By suddenly reversing the direction of the field, they were
able to momentarily create a system of anti-aligned spins, to which a negative tem-
perature must be assigned. This system is short lived, because the spins eventually
re-align themselves with the external field. However, the timescale for this to oc-
cur is sufficiently long that for good while, the system can be considered to be in
equilibrium at a negative temperature.

5.5.4 Correspondence with the canonical ensemble

We conclude this section by showing how the results obtained here (for positive
temperatures!) agree with those of Sec. 3. Our previous relation for β can easily
be inverted to give

E = −Nε tanh(βε).

Using the fact that M = −E/B and replacing ε by µBB, we arrive at

M = NµB tanh(βµBB),

which is exactly as in Sec. 3. This provides a nice illustration of the general idea
that the physical predictions of statistical mechanics do not typically depend on
the choice of probability distribution. In this case, the predictions based upon the
uniform distribution (appropriate for an isolated system) turn out to be identical to
those based upon the Boltzmann distribution (appropriate for a system interacting
with a heat reservoir).

5.6 Problems

1. Using the general theory, show that the mean energy E and the magnetization
M of a paramagnetic solid are related by

E = −MB,

where B is the applied magnetic field.

2. (Rief 7.14) Consider a unit volume containing N magnetic atoms at a temper-
ature T , and describe the situation classically. Then each magnetic moment ~µ
can make any angle θ with respect to a given direction (call it the z direction).

In the absence of an applied magnetic field, the probability that this angle lies
between θ and θ+ dθ is proportional to the solid angle 2π sin θ dθ enclosed in
this range. In the presence of an applied magnetic field B in the z direction,
this probability must further be proportional to the Boltzmann factor e−U/kT ,
where U is the potential energy of the moment ~µ making this angle θ with
the z direction.

a) Use this result to calculate the classical expression for the mean value of
µz, the magnetic moment of a single atom along the z direction. This
is the mean magnetic moment of a single atom. Multiplying this by N
then gives the classical expression for the magnetization of the material.
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b) This classical analysis should be valid for high temperatures, that is, for
temperatures T such kT ≫ µB. Show that in this limit, your expression
for part a) reduces to

M =
Nµ2B

3kT
.

This is yet another form of Curie’s law.

3. Atoms with total angular momentum j = 1
2 and Landé factor g = 2 at

temperature T align themselves either parallel or antiparallel to the direction
of an applied magnetic field. Determine the respective fractions of atoms
aligned parallel and antiparallel to a field of 10.0 Tesla at a temperature of
10.0 K. (You must treat this problem quantum mechanically.)

4. (Mandl 3.4) The magnetic moment µ of an atomic nucleus is of order

Ze~

2Amp
,

where mp is the proton mass, Z the atomic number, and A the mass number.
Most nuclei have A ≃ 2Z. Estimate the magnetic field required at a temper-
ature of 0.01 K to produce an appreciable alignment of the nuclei along the
direction of the field.
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Quantum statistics of ideal

gases

In this section we return to a familiar system: the ideal gas. But while our previous
considerations were limited to the classical limit, in this section we will study the
ideal gas at a much more fundamental level that includes in full the effects of
quantum mechanics. New phenomena will thus be brought to light.

Before getting on with our discussion of the quantum statistics of ideal gases,
however, it will be necessary to sharpen our statistical-mechanics tools so as to
make them easier to use. We will thus be led toward a new formulation of statistical
mechanics, one which is entirely equivalent to the one encountered before. A major
advantage of this new formulation will be the removal of any danger of over-counting
the number of states by not taking into account the indistinguishability of the
particles. You may recall that this problem was overcome in Sec. B 6 by the ad hoc

procedure of dividing the statistical weight by N !, the total number of permutations
among the N particles. In our new formulation, the indistinguishability of identical
particles in quantum mechanics will be taken into account from the very start.

This reformulation will take a while to get accomplished, and during this time,
our considerations will be largely formal. We will derive results that will appear to
be very abstract, and the advantages of doing all this will not be clear immediately.
Please bear with it! The payoff will come.

6.1 Quantum statistics

We want to formulate, in a very precise manner, the statistical mechanics of a system
of N identical, noninteracting particles confined to a volume V and in thermal
contact with a heat bath at a temperature T . The relevant statistical ensemble
for this problem is the canonical ensemble, whose most important quantity is the
partition function Z(β, V,N), where β = 1/kT . To compute this we must sum
the Boltzmann factor e−βE over all states accessible to the entire system. The
major difficulty in doing this is to specify what these states are, in a way that takes
into account the fact that the particles are indistinguishable. This is where our
reformulation of statistical mechanics comes in.

75
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6.1.1 Microstates

Instead of thinking about the states of the entire system, focus for the time being on
the states accessible to a single particle. These will be called single-particle states,
and they are extremely easy to characterize: We already know that these states are
labeled by three integer-valued quantum numbers, nx, ny, and nz. This, however,
is only a partial description, because it ignores the internal states that arise because
of particle spin. For example, an electron has a spin s = 1

2 , which can have either
one of the two projections ms = ± 1

2 . The full characterization of the single-particle
states therefore requires the specification of four quantum numbers, nx, ny, nz, and
ms.

We may introduce the abstract index r to label the single-particle states. The
index r stands for the set of all four quantum numbers that are necessary to com-
pletely specify the states:

r = {nx, ny, nz,ms}.
There is obviously an infinite number of single-particle states, because nx, ny,
and nz can all take an infinite number of values. The quantum number ms, on
the other hand, ranges from −s to +s with integral steps. The zero-energy state
(nx, ny, nz,ms) = (0, 0, 0,−s) will be symbolically represented by r = 0. Similarly,
r = 1 stands for (0, 0, 0,−s+ 1), and so on.

The energy eigenvalue corresponding to the single-particle state r is denoted εr.
We know that this is given by

εr =
(2π~)2

8mV 2/3

(

nx
2 + ny

2 + nz
2
)

,

which shows that εr is independent of ms.
How do we go from the single-particle states to the states of the entire system?

The key is to introduce the quantity nr, called the occupation number of the single-
particle state r. By definition, this is the total number of particles which happen
to occupy the particular single-particle state r. Notice that we do not care which

particles among the N particles happen to occupy the specific state r. All we are
asking is how many particles do, and the answer is provided by the occupation
number nr. (This is where the indistinguishability of the particles is taken into
account.) Once we have the complete list of all the occupation numbers, we know
precisely how many particles occupy each and everyone of the single-particle states
r. Since this is all that can be known about the system without violating the
indistinguishability postulate of quantum mechanics, the state of the entire system
is now completely determined. If we use the abstract index R to label the states of
the entire system, then R stands for the complete set of all the occupation numbers,
one for each of the single-particle states r. In mathematical notation,

R = {n0, n1, n2, . . .} = {nr}.

We now have a way of characterizing the states of the entire system in terms of the
single-particle states.

The total energy of the system is given by ǫ0(= 0) times n0, the number of
particles in the state r = 0, plus ǫ1 times n1, the number of particles in the state
r = 1, plus all other contributions. If we denote the total energy of the state R by
ER, then

ER =
∑

r

nr εr,

where the sum is over all single-particle states. Similarly, the total number of
particles in the state R is given by the sum of all the occupation numbers:

NR =
∑

r

nr.
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In our case, the number of particles is fixed, so NR = N for all states R. This
shows that the occupation numbers are not all independent, because their sum
must always reproduce the total number of particles.

6.1.2 Bosons and fermions

It is one of the most fundamental facts of nature that elementary particles, atoms,
and molecules are divided into two groups called bosons and fermions. Bosons are
particles possessing integer spin (s = 0, 1, 2, · · · ). For the purpose of this section,
the most important property of bosons is that an arbitrary number of them can
exist in the same single-particle state r. In other words, their occupation numbers
can take any value between 0 and N :

nr = 0, 1, 2, · · · , N (bosons).

Fermions, on the other hand, are particles possessing half-integer spin (s = 1
2 ,

3
2 , · · · ).

The most important property of fermions is that two or more fermions cannot oc-
cupy the same single-particle state r. Their occupation numbers, therefore, can
only take the values 0 and 1:

nr = 0, 1 (fermions).

For both bosons and fermions, the occupation numbers are further restricted by the
condition

∑

r nr = N .

6.1.3 Partition function

Let us now attempt to calculate the partition function of an ideal gas consisting of
bosons. Using our previous results, the partition function is given by

Z =
∑

R

e−βER =
∑

{nr}

exp
(

−β
∑

r

nrεr

)

,

where the sum is over all the individual occupation numbers nr. Because of the
restriction on

∑

r nr, this becomes

Z =

N
∑

n0=0

e−βn0ε0

N−n0
∑

n1=0

e−βn1ε1

N−n0−n1
∑

n2=0

e−βn2ε2 × · · · .

These sums are very difficult to evaluate, because of the explicit dependence of the
upper limits on the occupation numbers. There seems to be little hope that this
calculation could be pushed forward.

Evaluation of the partition function is made difficult by the constraint
∑

r nr =
N , which enforces the condition that we are dealing with a fixed number of particles.
If, however, this condition were to be removed, then the constraint would disappear,
and the sums could presumably be evaluated much more easily. Could we possibly
do this and get away with it?

6.1.4 Grand partition function

The answer is yes. Let us pretend that the number of particles is not fixed, and
that the system’s interaction with the reservoir allows for an exchange of particles.
In effect, we are switching from a canonical (Boltzmann) description to a grand
canonical (Gibbs) description. This switch should not produce any changes in our
physical predictions: As we have seen in Sec. C 3, the fluctuation ∆N/N in the
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number of particles in a system described by the Gibbs distribution is extremely
small, of the order of N−1/2. So, although we shall no longer formally impose
that the number of particles be fixed, this number will still be fixed for all practical
purposes. The advantages associated with the removal of the constraint

∑

r nr = N
will thus be obtained at virtually no cost at all.

The physical picture is now the following. We have a system of identical, non-
interacting particles confined to a volume V and in contact with a reservoir at a
temperature T and with a chemical potential µ. As a result of the interaction
between the system and the reservoir, energy and particles are exchanged, but
only in microscopic amounts, as the fluctuations are extremely small. The most
important quantity of this description is Z(α, β, V ), the grand partition function,
where α = −µ/kT , β = 1/kT . This is given by

Z =
∑

R

e−(αNR+βER) =
∑

{nr}

exp

[

−
(

α
∑

r

nr + β
∑

r

nrεr

)

]

,

and becomes, after a few lines of algebra,

Z =
∑

n0

e−(α+βε0)n0

∑

n1

e−(α+βε1)n1

∑

n2

e−(α+βε2)n2 × · · · . (6.1)

We shall leave the grand partition function in this form for the time being. The
main advantage of this expression over what we had previously obtained for Z is
that the occupation numbers are now all independent. For this reason, the sums
will be easy to evaluate.

This alternative description of our problem has introduced a new quantity, α,
which is related to the chemical potential µ by α = −µ/kT . At the same time, the
quantity N seems to have disappeared from the description. However, because of
the fact that the fluctuations are small, we can identify N with NR, the system’s
mean number of particles. This is related to α through the relation (3.21), NR =
−∂ lnZ/∂α. The parameter α is therefore determined implicitly in terms of N by
the relation

N = −∂ lnZ
∂α

. (6.2)

6.1.5 Mean occupation numbers

We have seen in Sec. C 3 that once the grand partition function has been obtained,
the thermodynamic quantities of the system follow immediately by straightforward
manipulations. In the following it will be convenient to deal not with Z directly, but
with the quantities n̄r, the mean occupation numbers of the single-particle states
r. The reason is that these quantities are much simpler than the grand partition
function itself. From the mean occupation numbers we will be able to directly
compute the thermodynamic variables, without the need to compute Z explicitly.

The mean occupation number of a particular single-particle state r∗ is obtained
by averaging nr∗ over the Gibbs distribution:

n̄r∗ =
1

Z
∑

R

nr∗e−(αNR+βER),

where the sum is over all states accessible to the entire system. Writing this out
more explicitly, we have

n̄r∗ =
1

Z
∑

{nr}

nr∗ exp
{

−
[

α(n0 + · · · + nr∗ + · · · ) + β(n0ε0 + · · · + nr∗εr∗ + · · · )
]

}

.
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But we see that the sum on the right-hand side is equal to −β−1∂Z/∂εr∗. We
therefore have

n̄r = − 1

β

∂ lnZ
∂εr

(6.3)

for any single-particle state r. This equation shows that the mean occupation
numbers can all be obtained from the grand partition function. We will show the
converse below.

6.1.6 Thermodynamic quantities

We now show how such thermodynamic quantities as the mean number of particles
N , the mean energy E, and the pressure P can all be obtained directly in terms of
the mean occupation numbers, without the need to first compute Z.

Summing over all the mean occupation numbers should obviously return N , the
mean number of particles. This is easily verified if we rewrite Eq. (6.2) in the form

N = − 1

Z
∂

∂α

∑

{nr}

exp
{

−
[

α(n0 + n1 + · · · ) + β(n0ε0 + n1ε1 + · · · )
]

}

.

Taking the derivative over α brings down the factor −(n0 +n1 + · · · ), and we obtain
N = n̄0 + n̄1 + · · · . In other words,

N =
∑

r

n̄r , (6.4)

which confirms our initial expectation.

A similar calculation reveals that the mean energy E is obtained by summing
n̄r εr over all possible single-particle states:

E =
∑

r

n̄r εr . (6.5)

This result also appears quite reasonable.

The pressure follows easily. We recall from Eq. (3.24) that P = kT∂ lnZ/∂V .
Since the grand partition function depends on V only through the energy eigenval-
ues, εr ∝ V −2/3, we have that

P = kT
∑

r

∂ lnZ
∂εr

∂εr

∂V
,

where we have applied the chain rule of differential calculus. Now, the first factor
within the sum is equal to −βn̄r. The second factor is equal to −2εr/3V , and the
previous equation becomes P = (2kTβ/3V )

∑

r n̄rεr. Using Eq. (6.5), we arrive at
our final result,

P =
2E

3V
. (6.6)

Equations (6.1)–(6.6) are quite general: they are valid for any system of nonin-
teracting particles, whether they are bosons or fermions. These equations, however,
are still rather formal, and we cannot yet use them in practical calculations. To get
there is the purpose of the following two sections.
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6.2 Bose-Einstein statistics

6.2.1 Grand partition function

We now specialize to an ideal gas consisting of boson particles, and we want to
calculate the grand partition function for this gas. We therefore return to Eq. (6.1),
and observe that Z is given by an infinite product of factors of the form

∑

nr

e−(α+βεr)nr =

∞
∑

nr=0

[

e−(α+βεr)
]nr

,

where we have indicated that for bosons, there is no restriction on the value of
the occupation numbers. This sum is easily evaluated, if we recall that for x < 1,
∑∞

n=0 x
n = 1/(1 − x). For x > 1, on the other hand, the sum does not converge.

The grand partition function is therefore defined if and only if exp[−(α+βεr)] < 1,
which implies −α < βεr. This condition must be valid for all single-particle states
r, and since ε0 = 0 is the smallest energy eigenvalue, we conclude that Z is defined
if and only if −α ≡ µ/kT < 0. This means that the chemical potential of an ideal

boson gas is necessarily negative.

Evaluating the sums, we find

Z =
1

1 − e−(α+βε0)

1

1 − e−(α+βε1)

1

1 − e−(α+βε2)
× · · · ,

or

lnZ = − ln
[

1 − e−(α+βε0)
]

− ln
[

1 − e−(α+βε1)
]

− ln
[

1 − e−(α+βε2)
]

+ · · · .

In other words,

lnZ = −
∑

r

ln
[

1 − e−(α+βεr)
]

.

We will express lnZ in a tidier form in a moment.

6.2.2 Mean occupation numbers

As Eq. (6.3) shows, the mean occupation number of the single-particle state r∗ is
obtained by differentiating lnZ with respect to the corresponding eigenvalue εr∗ .
From our previous expression for lnZ, we see that the only term involving this
eigenvalue is

− ln
[

1 − e−(α+βεr∗ )
]

,

and differentiating yields

− βe−(α+βεr∗ )

1 − e−(α+βεr∗ )
.

According to Eq. (6.3), we must now multiply by −1/β. Rearranging slightly, we
arrive at the following result: For an ideal gas of bosons, the mean occupation
number of the single-particle state r is given by

n̄r =
1

eα+βεr − 1
. (6.7)

This distribution of mean occupation numbers is called the Bose-Einstein distribu-
tion, and bosons are therefore said to obey the Bose-Einstein statistics. Contrary
to our previous results which were quite formal, Eq. (6.7) provides a very concrete
relation between n̄r and εr, for given values of α and β.
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Equation (6.7) can be inverted to give

e−(α+βεr) =
n̄r

1 + n̄r
.

This means that we can express the logarithm of the grand partition function as

lnZ =
∑

r

ln(1 + n̄r) . (6.8)

This proves a statement made earlier: the grand partition function can be expressed
in terms of the mean occupation numbers, as can the mean number of particles, the
mean energy, and the pressure.

6.3 Fermi-Dirac statistics

6.3.1 Grand partition function

We now turn to the case of an ideal gas consisting of fermion particles. Our first
task is to evaluate the grand partition function, which is given by an infinite product
of factors of the form

∑

nr

e−(α+βεr)nr =

1
∑

nr=0

[

e−(α+βεr)
]nr

,

where we have indicated that for fermions, the occupation numbers can take the
values 0 and 1 only. This sum is trivial, and we find that the grand partition
function is given by

Z =
[

1 + e−(α+βε0)
] [

1 + e−(α+βε1)
] [

1 + e−(α+βε2)
]

× · · ·

or

lnZ = ln
[

1 + e−(α+βε0)
]

+ ln
[

1 + e−(α+βε1)
]

+ ln
[

1 + e−(α+βε2)
]

+ · · · .

In other words,

lnZ =
∑

r

ln
[

1 + e−(α+βεr)
]

.

We will rewrite this in terms of the mean occupation numbers in a moment.

6.3.2 Mean occupation numbers

Calculation of the mean occupation numbers proceeds exactly as in the previous
section, starting from Eq. (6.3). The end result is the following: For an ideal gas of
fermions, the mean occupation number of the single-particle state r is given by

n̄r =
1

eα+βεr + 1
. (6.9)

This distribution of mean occupation numbers is called the Fermi-Dirac distribu-
tion, and fermions are therefore said to obey the Fermi-Dirac statistics. Again,
Eq. (6.9) provides an explicit relation between n̄r and εr, for given values of α and
β.

Equation (6.9) can be inverted to give

e−(α+βεr) =
n̄r

1 − n̄r
.
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This means that we can express the logarithm of the grand partition function as

lnZ = −
∑

r

ln(1 − n̄r) . (6.10)

It is worth spending of moment to appreciate the similarities and differences between
Eqs. (6.7) and (6.9), and between Eqs. (6.8) and (6.10).

6.4 Summary

We have now completed our reformulation of the statistical mechanics of ideal gases,
and it is time to summarize the major ideas and results.

In this formulation, the focus shifts from the states of the entire system, which
are difficult to characterize, to the single-particle states r, which can be fully charac-
terized with just four quantum numbers. The link between these two very different
sets of states is provided by the set of all occupation numbers, {nr}. Indeed, be-
cause identical particles are indistinguishable in quantum mechanics, all that can
be said about the state of the entire system is how many particles occupy each and
everyone of the single-particle states; this information is provided by the occupa-
tion numbers. We recall that nr is equal to the number of particles that occupy the
single-particle state r.

Our ideal gas is not isolated. Instead, it interacts with a reservoir, in such
a way that both energy and particles can be exchanged. (Our system therefore
adopts the Gibbs distribution of probabilities.) Because of this interaction, the
number of particles occupying a specific state r does not stay constant, but keeps
on fluctuating. We are therefore lead to consider the average value of the occupation
numbers, which is given by

n̄r =
1

eα+βεr ∓ 1
, (6.11)

where the upper sign applies to bosons, while the lower sign applies to fermions.
Here, α and β are parameters related to the temperature T and the chemical poten-
tial µ of the reservoir: α = −µ/kT and β = 1/kT . As we have shown, α is always
positive for bosons, but there is no such restriction for fermions.

From the mean occupation numbers we may calculate all thermodynamic quan-
tities of interest. Using the same sign convention as above, the logarithm of the
grand partition function is given by

lnZ = ±
∑

r

ln(1 ± n̄r) . (6.12)

The mean total number of particles is

N =
∑

r

n̄r , (6.13)

and the mean total energy is given by

E =
∑

r

n̄r εr . (6.14)

In these expressions, the sums are over all the single-particle states r, and εr denotes
the corresponding energy eigenvalues. It is precisely this property — that the sums
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are over the single-particle states and not the states of the entire system — that
makes this reformulation so useful.

The preceding four equations are the fundamental equations of quantum statis-
tics. From these we can derive the following expression for the entropy:

S = k
∑

r

[

±(1 ± n̄r) ln(1 ± n̄r) − n̄r ln n̄r

]

. (6.15)

This derivation is the subject of a homework problem. We also recall that the
pressure can be obtained directly from the general relation

PV =
2

3
E , (6.16)

which holds both for bosons and fermions.
The present formulation of quantum statistics therefore has the virtue of being

very economical. Its other important virtue, that it is easy to use in practical
computations, will reveal itself in the following sections.

6.5 Classical limit

As our first application of the methods of quantum statistics, it is perhaps a good
idea to make sure that we can at least reproduce the familiar results pertaining
to the classical limit. After taking this tentative first step, we will be in a good
position to generalize our discussion to more interesting situations.

6.5.1 Classical approximation

We must first specify what we mean by the classical limit. The classical picture of
an ideal gas is that of little billiard balls moving around in a box. In this classical
picture, there is no difficulty of principle in specifying the position of each particle
with arbitrary accuracy. The quantum picture, of course, is drastically different.
Here, the position of each particle cannot be specified with arbitrary accuracy,
because of the Heisenberg uncertainty principle. The best we can do is to picture
our particles as fuzzy wave packets moving around in the box. The uncertainty
∆x in the position of a given wave packet is related to ∆p, the uncertainty in its
momentum, by the Heisenberg relation

∆x∆p ∼ ~.

The fuzzy nature of the gas particles never disappears completely, even in the classi-
cal limit. What happens, however, is that as we approach the classical description,
the wave packets become increasingly localized. In other words, the wave-packet
extension ∆x becomes very small compared with the mean distance between gas
particles. Because the mean volume per particle is V/N , we have that the condition

∆x≪ (V/N)1/3

describes the classical limit.
We now want to convert this condition into something more useful. For this

purpose, we use the Heisenberg relation to convert ∆x into ~/∆p. Now, ∆p is at
most of the order of p itself, which is approximately equal to

√

2m(E/N), where
E/N is the mean energy per particle, which is of the order of kT . Gathering the
results, and discarding meaningless numerical coefficients, we obtain

∆x ≤ ~√
mkT

.
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Substituting this into the preceding equation, we find that the classical limit corre-
sponds to the mathematical statement

λ3 ≪ V/N,

where λ ≡ ∆x is the length scale associated with the fuzziness of our particles:

λ =
2π~√

2πmkT
. (6.17)

For convenience, numerical factors have been inserted in this expression for λ.
We now express the condition λ3 ≪ V/N in a different and more useful form.

For this purpose, we recall from a previous homework problem that the chemical
potential of a classical gas is given by

µ = −kT ln

[

V/N

λ3

]

.

This tells us immediately that the condition for the classical limit can be written
as

eα ≫ 1 ↔ classical limit . (6.18)

This is the form that we will use in our calculations. In fact, we know already
that this condition is true: a helium gas at atmospheric pressure and at room
temperature has α = −µ/kT ≃ 13, which yields eα ≃ 105. This is indeed much
larger than 1!

Notice that we have cheated a little. We have used a previously derived ex-
pression for the chemical potential to give a precise formulation of the classical
approximation, which we will now use to calculate the thermodynamic quantities
of a classical gas, including the chemical potential! This is not as bad as it seems.
We may now forget that the chemical potential is given by the expression above.
All we shall need is Eq. (6.18), which merely tells us that in our calculations, we
can treat eα as a very large quantity. This is far less information than the detailed
knowledge of how µ varies with temperature T and number density N/V .

6.5.2 Evaluation of α

What better proof of this statement than a rederivation our previous expression for
the chemical potential, directly from the equations listed in Sec. 4?

In the classical limit, where eα, and therefore also eα+βεr , are much larger than
one, Eq. (6.11) reduces to

n̄r = e−(α+βεr) , (6.19)

which implies that the mean occupation numbers are all very small. This means
that in the classical limit, the particles are distributed over an extremely large
number of single-particle states. Equation (6.19) also shows that in the classical
limit, there is no distinction between bosons and fermions.

We now use Eq. (6.19) to calculate N , the mean number of particles within the
gas:

N =
∑

r

n̄r = e−α
∑

r

e−βεr .

By inverting this relation, we will be able to express the chemical potential µ =
−kTα in terms N , which is exactly what we want. But we must first evaluate
the sum

∑

r e
−βεr , which is nothing but the partition function of a single particle

confined to a box of volume V .
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To evaluate this, we first observe that a number Ω(εr) 6= 1 of single-particle
states r will share the same energy eigenvalue εr. The quantity Ω(εr) is of course
the statistical weight for a single particle in a box. The sum over single-particle
states can therefore be written as

∑

r

=
∑

εr

Ω(εr),

where we are now summing over the distinct energy eigenvalues. Because these
eigenvalues are quantized, this is a discrete sum. But because the vast majority of
the energy eigenvalues are so extremely close to each other, we may in fact treat εr

as a continuous variable. We shall therefore replace the discrete sum by an integral,

∑

r

→
∫ ∞

0

ω(ε) dε , (6.20)

by re-introducing the density of states ω(ε). This, we recall, is defined so that
ω(ε) dε is the number of single-particle states with energy eigenvalues in the interval
between ε and ε+ dε. The density of states has already been calculated in Sec. B
3:

ω(ε) = g
2πV

(2π~)3
(2m)3/2 ε1/2 =

2gV√
πλ3

β3/2 ε1/2 , (6.21)

where Eq. (6.17) was used to obtain the second expression. The factor g is new.
We need to insert it to account for the number of internal states associated with
the particle’s spin, something which we had neglected to do before. The number g
is equal to the number of values that ms can take between the bounds −s and s.
Clearly, this is

g = 2s+ 1 , (6.22)

where s is the particle’s spin.
We are now ready to calculate the chemical potential. Gathering our previous

results, we have

N = e−α

∫ ∞

0

e−βεω(ε) dε

=
2gV√
πλ3

e−α β3/2

∫ ∞

0

e−βεε1/2 dε

=
2gV√
πλ3

e−α

∫ ∞

0

e−xx1/2 dx,

where, in the last line, we have put x ≡ βε. We have encountered integrals of this
sort before, and in fact, this integral is Γ(3

2 ) = 1
2

√
π. We have therefore obtained

the simple result N = gV e−α/λ3, or

e−α =
Nλ3

gV
. (6.23)

This means that µ = −kT ln(gV/Nλ3), and apart from the new factor g, this is
exactly what we had written in subsection a.

6.5.3 Other thermodynamic quantities

The same method can be used to calculate other quantities of interest. Let us start
with the mean energy, which according to Eqs. (6.14), (6.19), and (6.20), is given
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by

E =
∑

r

n̄r εr = e−α
∑

r

εr e
−βεr = e−α

∫ ∞

0

εe−βεω(ε) dε.

Substituting Eqs. (6.21) and (6.23), this becomes

E =
2N√
πβ

∫ ∞

0

e−xx3/2 dx,

where x ≡ βε. The integral evaluates to Γ(5
2 ) = 3

4

√
π, and we arrive at the familiar

result

E =
3

2
NkT . (6.24)

From this and Eq. (6.16) we immediately obtain the classical limit for the equation
of state of an ideal gas:

PV = NkT . (6.25)

Let us see if we can also compute the entropy. From Eq. (6.15) and the fact that
the occupation numbers are all much smaller than unity — we use the approximation
ln(1 + ǫ) ≃ ǫ when ǫ is small — we obtain

S = k
∑

r

(n̄r − n̄r ln n̄r).

But Eq. (6.19) also gives ln n̄r = −α − βεr, so the entropy becomes S = k(N +
αN + βE) = Nk(α+ 5

2 ). Substituting Eq. (6.23), we arrive at

S = Nk ln

(

gV

Nλ3

)

+
5Nk

2
. (6.26)

This result differs from Eq. (2.9) only by the inclusion of the factor g.

6.5.4 Conclusion

We see that we are able to reproduce all of the familiar classical results. It should be
appreciated that calculations were handled quite easily and efficiently in our current
formulation of quantum statistics. The major advantage of this new formulation is
that it will allow us to go beyond the classical limit. We will be able to predict how
quantum effects affect such relations as E = 3

2NkT and PV = NkT , and this will
bring to light interesting new phenomena.

It will be useful, for what comes next, to introduce a terminology to characterize
the importance of quantum effects in an ideal gas. We shall term nondegenerate

gases which behave essentially classically. The criterion for this was derived in
subsection a: it is λ≪ (V/N)1/3, or eα ≫ 1. We shall term slightly degenerate gases
for which quantum effects are still quite small, but not negligible. The criterion
for this is λ < (V/N)1/3, or eα > 1. Finally, we shall term highly degenerate

gases for which quantum effects are extremely important. The criterion for this is
λ ≥ (V/N)1/3, or eα ≤ 1.

6.6 Slightly degenerate ideal gases

We now generalize the discussion of the preceding section to ideal gases for which
quantum effects are becoming important. As was mentioned before, we refer to this
situation as the slightly degenerate limit, in which eα is still larger than one, but
only moderately so. Thus, we want to compute the leading order corrections to the
classical results derived in the preceding section.
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6.6.1 Evaluation of α

We first recall that for bosons (upper sign) and fermions (lower sign), the mean
occupation numbers are given by

n̄r =
1

eα+βεr ∓ 1
.

This is an exact result. But if eα is fairly large, then the mean occupation numbers
are given approximately by

n̄r = e−(α+βεr) ± e−2(α+βεr) + · · · , (6.27)

where the dots represent terms of order e−3α and smaller. These will be neglected
throughout the calculation. We will first use Eq. (6.27) to express e−α in terms of
N , the mean number of particles.

We start with the relation N =
∑

r n̄r, in which we substitute Eq. (6.27). After
converting the discrete sums into integrals, we obtain

N = e−α

∫ ∞

0

e−βεω(ε) dε± e−2α

∫ ∞

0

e−2βεω(ε) dε+ · · · .

We already know from Sec. 5 that the first integral gives gV/λ3. To evaluate the
second integral, we substitute Eq. (6.21) and find

∫ ∞

0

e−2βεω(ε) dε =
2gV√
πλ3

β3/2(2β)−3/2

∫ ∞

0

e−xx1/2 dx,

where x ≡ 2βε. The integral gives Γ(3
2 ) = 1

2

√
π, and gathering the results, we arrive

at

N =
gV

λ3
e−α

(

1 ± 2−3/2e−α + · · ·
)

.

It is not difficult to invert this relation between N and e−α, especially if we keep in
mind that all terms of order e−3α and smaller must be neglected. We obtain

e−α =
Nλ3

gV

(

1 ∓ 2−3/2Nλ
3

gV
+ · · ·

)

. (6.28)

This gives the chemical potential of a slightly degenerate ideal gas. Equation (6.28)
shows that for bosons, quantum effects produce a slight decrease in e−α with respect
to the classical result. For fermions, quantum effects produce a slight increase. The
physical interpretation of this result will come more easily when we consider the
other thermodynamic quantities.

6.6.2 Energy and pressure

The mean energy of the gas is calculated as in the previous section. After substi-
tuting Eq. (6.27) into E =

∑

r n̄r εr and converting into integrals, we obtain

E = e−α

∫ ∞

0

εe−βεω(ε) dε± e−2α

∫ ∞

0

εe−2βεω(ε) dε+ · · · .

After using Eq. (6.21), the first integral gives 3gV/2λ3β as before, while the second
integral is

∫ ∞

0

εe−2βεω(ε) dε =
2gV√
πλ3

β3/2(2β)−5/2

∫ ∞

0

e−xx3/2 dx,
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where x ≡ 2β. The integral gives Γ(5
2 ) = 3

4

√
π, and gathering the results, we obtain

E =
3

2
kT

gV

λ3
e−α

(

1 ± 2−5/2e−α + · · ·
)

.

Although this is a perfectly valid expression for the energy, we would prefer to
express E in terms of N . Using Eq. (6.28) gives

E =
3

2
kT N

(

1 ∓ 2−3/2Nλ
3

gV
+ · · ·

)[

1 ± 2−5/2Nλ
3

gV

(

1 ∓ · · ·
)

]

.

Recalling that we must neglect all correction terms beyond Nλ3/gV , this simplifies
to

E =
3

2
NkT

(

1 ∓ 2−5/2Nλ
3

gV
+ · · ·

)

. (6.29)

This result shows that the classical relation E = 3
2NkT is modified when quantum

effects are taken into account. Equation (6.29) further shows that the energy is
slightly decreased for bosons, while it is slightly increased for fermions.

Equations (6.16) and (6.29) give the equation of state for a slightly degenerate
ideal gas:

PV = NkT

(

1 ∓ 2−5/2Nλ
3

gV
+ · · ·

)

. (6.30)

This result is quite interesting, because it shows that the classical relation PV =
NkT is modified by the quantum nature of the gas. We see that the pressure is
lower for bosons, and higher for fermions.

It is worth spending some time trying to understand this result. Why is the
pressure higher for fermions? The answer comes from the fact that fermions do not
like to occupy the same state, so that they will resist compression more vigourously
than classical particles. The extra pressure provided by quantum effects can there-
fore be understood as being there to help enforce Pauli’s exclusion principle. This
effect is most dramatic in the highly degenerate limit, to which we turn in the next
three sections.

Why is the pressure lower for bosons? This is not as easy to understand. Bosons,
of course, do not obey an exclusion principle, and this explains why the pressure
of a boson gas must be lower than that of a fermion gas. This, however, does
not explain why the pressure must be lower than the classical result. The answer
lies with the fact that unlike fermions and classical particles, bosons prefer to be
close together, so that they will resist compression less vigourously than fermions
and classical particles. This effect is most dramatic in the highly degenerate limit,
which will be the topic of Secs. 10, 11, and 12.

6.6.3 Higher-order corrections

Higher-order corrections to the equation of state can be calculated in the same way,
by simply keeping more terms in our expansions in powers of e−α, or in powers of
Nλ3/gV . We will not go through this exercise, but it should at least be clear that
the end result will be an expansion of the form

PV = NkT

[

1 + a1

(

Nλ3

gV

)

+ a2

(

Nλ3

gV

)2

+ · · ·
]

= NkT

∞
∑

n=0

an

(

Nλ3

gV

)n

.
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Such an expression for the equation of state of a gas is called a virial expansion, and
the coefficients an are called virial coefficients. The first few are given by a0 = 1,
a1 = ∓2−5/2 ≃ ∓0.17678, a2 ≃ −0.00330, and a3 ≃ ∓0.00011. In this section we
have calculated only the first-order correction. Wouldn’t it be a wonderful challenge
to calculate the next term?

6.7 Highly degenerate Fermi gas. I: Zero

temperature

We have seen in the preceding section that quantum effects modify the behaviour
of the thermodynamic quantities of an ideal gas, with respect to their classical be-
haviour. For example, the pressure of a slightly degenerate Fermi gas was found to
be slightly larger than NkT/V , while it was found to be smaller than this for a Bose
gas. In this and the following sections we will explore the depths of quantum statis-
tics by going to the highly degenerate limit, where quantum effects truly dominate.
By doing so we will encounter drastic deviations from the classical predictions, and
interesting new phenomena will be discovered.

We recall from Sec. 5d that the highly degenerate limit corresponds to a sit-
uation in which the quantum wave packets representing the gas particles are no
longer well separated from each other. (The opposite situation, in which the wave
packets are well separated, is the classical limit.) We also recall from Sec. 5a that
the typical extension of the wave packets is given by λ, as defined by Eq. (6.17).
What is noteworthy here is that λ is inversely proportional to the square root of
the temperature: λ ∝ T−1/2. The wave packets therefore increase in size as the
temperature decreases, and there comes a point where λ becomes comparable with
(V/N)1/3, the mean distance between wave packets. At this point the gas can no
longer be pictured in terms of individual particles: the wave packets all overlap with
each other. In this situation, clearly, quantum effects play a very important role.

We shall begin our discussion of the highly degenerate limit by examining a
fermion gas at zero temperature, where things are quite extreme.

6.7.1 Fermi gas at T = 0

It should be quite clear that at T = 0, a system of fermions will be found in its state
of lowest energy, or ground state. This, however, does not mean that each particle
will be found in a single-particle state of zero energy. Indeed, Pauli’s exclusion
principle prevents this from happening: Once the first g particles have been put
in the single-particle states of zero energy, additional particles must be put in the
excited states, until all N particles are accounted for. Obviously then, the state of
the entire system will not be a state of zero energy, although it is still the state of
lowest energy.

 r

1

n

r
N-1

Following these considerations, it is easy to predict what values the occupation
numbers will take at zero temperature. Because the first particle is placed in the
state r = 0, we automatically have n0 = 1. The second particle, on the other hand,
is placed in the state r = 1, so we have n1 = 1. Proceeding similarly for all N
particles, we find that every occupation number up to nN−1 is equal to 1. Because
we now have accounted for all the particles, all other occupation numbers must be
zero. So we have

nr =

{

1 r ≤ N − 1
0 r ≥ N

.

The occupation numbers behave as a step function. The energy of the last occupied
single-particle state (r = N − 1) is called the Fermi energy, and is denoted εF .
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This step-function behaviour should also be apparent in the mean occupation
numbers, which for a Fermi gas are given by

n̄r =
1

e(εr−µ)/kT + 1
.

In the limit T → 0, we have to pay close attention to the sign of εr − µ. Suppose
first that εr < µ. In this case e(εr−µ)/kT is an extremely small number, and we find
that n̄r = 1. Suppose now that εr > µ. In this case e(εr−µ)/kT is an extremely
large number, and we find that n̄r = 0. Thus, the mean occupation numbers jump
abruptly from 1 to 0 as εr reaches the value µ. This is clearly the same behaviour
as what we have found for the occupation numbers themselves, and we may identify
the Fermi energy with the chemical potential at zero temperature:

εF = lim
T→0

µ(T ) . (6.31)

We then observe that e−α = eεF /kT ≫ 1 when T → 0. Recall that the classical
limit corresponds to the opposite situation, e−α ≪ 1.

1

r

ε

n
_

µ r

6.7.2 Evaluation of the Fermi energy

It is not difficult to express the Fermi energy in terms of other properties of the
gas, most importantly, its density. We start from the basic expression for the mean
number of particles,

N =
∑

r

1

e(εr−µ)/kT + 1
,

which we convert into the integral

N =

∫ ∞

0

ω(ε) dε

e(ε−µ)/kT + 1
.

Such an integral would be difficult to evaluate in general. But we know that the
function 1/(e(ε−µ)/kT + 1) behaves as a step function in the limit T → 0, so the
integral becomes simply

N =

∫ εF

0

ω(ε) dε.

This is quite easy to evaluate if we substitute Eq. (6.21). A few lines of algebra
yield

εF =
(2π~)2

2m

(

3N

4πgV

)2/3

. (6.32)

This result shows that the Fermi energy increases when N/V , the density of the
gas, increases. In the sequel we will find it useful to rewrite Eq. (6.21) in the form

ω(ε) =
3N

2εF
3/2

ε1/2.

6.7.3 Energy and pressure

The mean energy of the gas is calculated in a similar way. We shall leave this as a
homework problem. You should find that the mean energy of a Fermi gas at zero
temperature is equal to

E =
3

5
NεF . (6.33)
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From this it follows that the gas also has a pressure given by

PV =
2

5
NεF . (6.34)

A Fermi gas at zero temperature has pressure! Clearly, this pressure is not created
by the thermal agitation of the gas particles. This could not happen at T = 0.
Instead, the pressure is kindly provided by professor Pauli: the fermions fight hard
not to occupy the same single-particle state, and it is this fight that is responsible for
the pressure. In other words, Pauli’s exclusion principle provides all the pressure
in a Fermi gas at zero temperature. We shall see in Sec. 9 that this degeneracy

pressure is put to good use in nature.

6.7.4 Entropy

Because our Fermi gas is at zero temperature, its entropy is automatically zero:

S = 0 . (6.35)

This explains why the chemical potential at zero temperature is the Fermi energy.
Recall the fundamental definition of the chemical potential as an injection energy:

µ =

(

∂E

∂N

)

S,V

.

In words, the chemical potential is equal to the change in energy when new particles
are added to the system, keeping the entropy constant. Now, at zero temperature, a
particle can be added to the system if and only if its energy is larger than, or equal
to, the Fermi energy. If it is larger than εF , then the system’s temperature will
increase, and so also will its entropy. This does not correspond to the operational
definition of the chemical potential. If, on the other hand, the particle’s energy is
equal to the Fermi energy, then the system will stay at T = 0, and its entropy will
not increase from S = 0. This does correspond to the operational definition of the
chemical potential. We may then conclude that the Fermi energy must be equal to
the chemical potential at T = 0.

6.8 Highly degenerate Fermi gas. II: Low

temperature

We now move away from T = 0, and ask how our previous results are affected
by finite-temperature effects. For simplicity, we shall demand that kT be much
smaller than the Fermi energy εF . By so doing, we will still be dealing with a
highly degenerate Fermi gas.

6.8.1 Fermi-Dirac integrals

In the following calculations we will encounter integrals of the form

I[f ] =

∫ ∞

0

f(ε) dε

e(ε−µ)/kT + 1
,

where f(ε) is some function. We have already recognized the fact that such integrals
are difficult to evaluate in general, but that they simplify drastically when T = 0.
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When T is different from zero but small, I[f ] can be evaluated approximately. The
result, which is derived in Sec. 9.17 of Reif’s book, is

I[f ] =

∫ µ

0

f(ε) dε+
π2

6
f ′(µ) (kT )2 + · · · , (6.36)

where f ′ ≡ df/dε. The derivation of this result is not particularly difficult, but it
is quite long and tedious. This is why we have chosen to omit it.

6.8.2 Chemical potential

We first compute the finite-temperature corrections to the chemical potential µ. We
start once again with the following expression for the mean number of particles:

N =

∫ ∞

0

ω(ε) dε

e(ε−µ)/kT + 1
=

3N

2εF
3/2

∫ ∞

0

ε1/2 dε

e(ε−µ)/kT + 1
.

The integral is I[ε1/2], and substitution of Eq. (6.36) yields

N =
3N

2εF
3/2

[

2

3
µ3/2 +

π2

12
µ−1/2(kT )2 + · · ·

]

.

A little cleaning up then gives

εF
3/2 = µ3/2

[

1 +
π2

8

(

kT

µ

)2

+ · · ·
]

,

or

εF = µ

[

1 +
π2

12

(

kT

µ

)2

+ · · ·
]

.

Finally, by inverting this series we obtain the desired expression for the chemical
potential:

µ(T ) = εF

[

1 − π2

12

(

kT

εF

)2

+ · · ·
]

. (6.37)

We see that finite-temperature effects decrease the chemical potential from its value
at T = 0.

6.8.3 Energy and pressure

The mean energy is calculated in a similar way. We start from

E =

∫ ∞

0

ε ω(ε) dε

e(ε−µ)/kT + 1
=

3N

2εF
3/2

∫ ∞

0

ε3/2 dε

e(ε−µ)/kT + 1
,

and we identify the second integral as I[ε3/2]. Proceeding as before, we obtain

E =
3N

5εF
3/2

µ5/2

[

1 +
5π2

8

(

kT

µ

)2

+ · · ·
]

.

If we now substitute Eq. (6.37) raised to the 5/2 power, this becomes

E =
3N

5εF
3/2

εF
5/2

[

1 − 5π2

24

(

kT

εF

)2

+ · · ·
][

1 +
5π2

8

(

kT

εF

)2

+ · · ·
]

.
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After multiplication, we obtain

E =
3

5
NεF

[

1 +
5π2

12

(

kT

εF

)2

+ · · ·
]

. (6.38)

We see that finite-temperature effects increase the mean energy of the gas. Not a
surprising result!

From Eq. (6.38) we immediately obtain the finite-temperature correction to the
pressure,

PV =
2

5
NεF

[

1 +
5π2

12

(

kT

εF

)2

+ · · ·
]

, (6.39)

which is also increased with respect to the zero-temperature result.

6.8.4 Heat capacity

1.5

C  /Nk

kT/εF

V

1

We conclude this section by computing CV , the heat capacity at constant volume.
This is defined by (δ−Q/dT )V , which is clearly equal to ∂E/∂T . Differentiating
Eq. (6.38) with respect to T yields

CV =
π2

2
Nk

(

kT

εF

)

. (6.40)

The heat capacity of a Fermi gas is therefore proportional to T in the highly de-
generate limit kT ≪ εF . At high temperatures, on the other hand, the gas behaves
classically, and the heat capacity saturates at the constant value

CV =
3

2
Nk.

6.9 Highly degenerate Fermi gas. III:

Applications

Highly degenerate Fermi gases occur quite commonly in nature. We describe a few
examples in this section.

6.9.1 Conduction electrons in metals

Consider a typical metal, copper. When copper atoms combine to form a solid, each
atom loses one or two electrons. The lost electrons move (more or less) freely within
the metal, and therefore form a gas. It is this electron gas which is responsible for the
thermal and electrical properties of the metal (heat conduction, current conduction,
etc.).

We may model the electron gas as an ideal Fermi gas, thereby neglecting all
interactions with the copper ions, and all mutual interactions. We first calculate
the Fermi temperature of this gas,

TF ≡ εF

k
=

(2π~)2

2km

(

3N

4πgV

)2/3

.

Since we are dealing with an electron gas, g = 2 and m = 9.1×10−28 g. The density
of copper is N/V = 8.4 × 1022 electrons/cm3. This gives

TF ≃ 80 000 K,
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which is much higher than room temperature! In fact, the Fermi temperature is
also much higher than copper’s melting point, which is approximately 1 000 K. The
conclusion is therefore that conduction electrons in metals form a highly degenerate

Fermi gas.

The heat capacity of metals has long been measured to grow linearly with tem-
perature. This experimental fact was at first very puzzling, because before the
advent of quantum mechanics, CV was expected to behave classically, CV = 3

2Nk.
This would indeed be the correct behaviour if all the conduction electrons were
contributing to the thermal properties of the metal. But this is not the case: Only
those electrons which lie above the Fermi level actually contribute, and this consti-
tutes only a very small fraction of all the electrons. This fraction is of the order of
kT/εF , and therefore,

CV ∼ Nk
kT

εF
.

Apart from the numerical factor of π2/2, this is exactly the result derived in the
preceding section.

6.9.2 White dwarfs

During their normal lives, stars are supported against gravity by radiation pressure,
which is provided by the nuclear reactions occurring in the core. When these reac-
tions cease, the pressure drops, and the core collapses. (The outer layers are then
blown away and form what is known as a planetary nebula.) If the core mass is less
than a few solar masses, then the endpoint of the collapse is a white dwarf.

The density inside a white dwarf is so high that the electrons form a highly
degenerate Fermi gas. (Because the electrons move with relativistic speeds, the
laws of relativistic statistical mechanics must be used to work out the details. This
lies somewhat beyond the scope of this course.) It is now the degeneracy pressure,
provided by Pauli’s exclusion principle, which supports the dead star against gravity.

The first white dwarf ever discovered was Sirius B, an invisible companion to the
normal star Sirius A. Sirius B has a mass approximately equal to the solar mass,
but its radius is comparable to that of the Earth: it is only 4 800 km.

6.9.3 Neutron stars

White dwarfs can exist only if their mass is less than the Chandrasekhar limit of 1.4
solar masses. For masses larger that this, the density becomes so high that inverse
beta decay occurs,

p+ e→ n+ ν;

the white dwarf becomes neutron rich. Because the lost electrons are no longer
there to provide pressure, the dwarf collapses further to form a neutron star.

Neutron stars are supported against gravity by the neutrons, which also form a
highly degenerate Fermi gas. A typical neutron star has a mass comparable to that
of the sun, but its radius is of the order of 15 km.

Neutron stars can exist only if their mass is less than approximately 3 solar
masses. For larger masses, the neutron degeneracy pressure is no longer sufficient to
support the star against its own weight. The neutron star then collapses completely,
and becomes a black hole.
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6.10 Highly degenerate Bose gas. I: Zero

temperature

Because bosons are not bound by Pauli’s exclusion principle, a highly degenerate
boson gas behaves very differently from a highly degenerate fermion gas. This is
the topic of this and the following sections, which will conclude our discussion of
the quantum statistics of ideal gases.

A Bose gas behaves quite simply at zero temperature: because there is no ob-
stacle in doing so, all N particles just occupy the single-particle zero-energy states.
(Because of spin degeneracy, there is a number g of zero-energy states.) Recalling
from Eq. (6.11) that the mean occupation numbers of a Bose gas are given by

n̄r =
1

eα+βεr − 1
,

where α = −µ/kT and β = 1/kT , and using the fact that only the states for which
εr = 0 are occupied at T = 0, we have that

N =
1

eα − 1

at zero temperature. This can be inverted to give

eα = 1 +
1

N
≃ 1 . (6.41)

Thus, the highly degenerate limit of a Bose gas is characterized by the fact that
α ≡ −µ/kT is a very small number, approximately equal to 1/N .

It is obvious that if all the particles occupy the zero-energy states, then E = 0
at zero temperature. This immediately implies that P = 0, and T = 0 also implies
S = 0. Not a lot happening in a Bose gas at T = 0!

6.11 Highly degenerate Bose gas. II: Low

temperatures

The relation eα ≃ 1 stays valid at low temperatures, and we will use it to derive
the following results. We are mainly interested in two things: How many particles
stay in the zero-energy states when T 6= 0, and how does the system’s mean energy
increase with increasing temperature. To simplify the terminology, in the following
we will refer to the zero-energy states as the single-particle ground state.

6.11.1 Bose-Einstein integrals

Before we begin, we must quote the following mathematical result:

Iν ≡
∫ ∞

0

xν dx

ex − 1
= Γ(ν + 1) ζ(ν + 1) . (6.42)

Here ν stands for any number, and Γ(z) is our old friend the Gamma function. The
function ζ(z) is new. It is called the Riemann zeta function, and it is defined by

ζ(z) =

∞
∑

k=1

1

kz
. (6.43)



96 Quantum statistics of ideal gases

By directly evaluating the sum, which converges quite rapidly, it is easy to show
that

ζ(3
2 ) ≃ 2.612, ζ(5

2 ) ≃ 1.341.

The integrals I1/2 = 1
2

√
π ζ(3

2 ) and I3/2 = 3
4

√
π ζ(5

2 ) will be required in the following
calculations.

6.11.2 Number of particles in ground state

We want to calculate N0, the mean number of particles that stay in the single-
particle ground state when T 6= 0. To do so, we go back to the fundamental
relation

N =
∑

r

n̄r = N0 +
∑

excited states

n̄r.

As usual, we replace the sum by an integral, which gives

N = N0 +

∫ ∞

0

ω(ε) dε

eβε − 1
,

where we have used the approximation eα = 1. It may appear objectionable to
the set the lower limit of integration to zero, as we are supposed to sum over
the excited states only. However, because ω(ε) ∝ ε1/2, the lower limit actually
contributes nothing to the integral, and we make no significant error in setting it
to zero.

Substituting Eq. (6.21) for the density of states gives

N0 = N − 2πgV

(2π~)3
(2m)3/2 β−3/2

∫ ∞

0

x1/2 dx

ex − 1
,

where x ≡ βε. The integral is just I1/2, and we obtain

N0 = N − 2πgV

(2π~)3
(2mkT )3/2 × 1

2

√
π ζ(3

2 ).

Cleaning this up, we arrive at the desired result

N0 = N

[

1 −
(

T

Tc

)3/2
]

, T ≤ Tc , (6.44)

where the constant Tc, called the condensation temperature, is given by

Tc =
(2π~)2

2πmk

[

N

gζ(3
2 )V

]2/3

. (6.45)

Equation (6.44) tells us that as the temperature increases, the mean number
of particles in the ground state decreases, until the condensation temperature Tc

is reached, at which point all the particles occupy the excited states. This result
certainly makes sense physically, as we expect that increasing the temperature will
give some energy to the particles. What is remarkable, however, is that until T = Tc,
there is still a macroscopic number of particles that stay in the ground state. In
effect, the thermal energy is not shared by all the particles, but by only a fraction
of them. As was indicated, Eq. (6.44) is valid only for T ≤ Tc. Beyond this point,
the approximation eα ≃ 1 starts breaking down, and this prevents N0 from going
negative, a nonsensical result.
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6.11.3 Energy and pressure

We now turn to the evaluation of the mean energy. We start with the integral

E =

∫ ∞

0

ε ω(ε) dε

eβε − 1
,

in which we substitute Eq. (6.21). After using Eq. (6.45) to simplify the resulting
expression, we obtain

E =
2N√
πζ(3

2 )

1

(kTc)3/2
β−5/2

∫ ∞

0

x3/2 dx

ex − 1
,

where x ≡ βε. The integral is just I3/2, and we arrive at

E =
3ζ(5

2 )

2ζ(3
2 )
NkT

(

T

Tc

)3/2

, T ≤ Tc . (6.46)

This is clearly very different from the classical result, E = 3
2NkT , and also the

Fermi-Dirac result (6.38).
From Eqs. (6.16) and (6.46) we immediately obtain an expression for the pres-

sure,

PV =
ζ(5

2 )

ζ(3
2 )
NkT

(

T

Tc

)3/2

, T ≤ Tc . (6.47)

Again, this is markedly different from the classical equation of state, PV = NkT ,
and also the Fermi-Dirac relation (6.39). Also interesting is the fact that because
Tc ∝ V −2/3, the right-hand side of Eq. (6.47) is actually proportional to V . This
means that the pressure of a highly degenerate Bose gas is independent of volume!

6.11.4 Heat capacity

Finally, we evaluate CV , the heat capacity at constant volume, by differentiating
Eq. (6.46) with respect to T . This gives

CV =
15ζ(5

2 )

4ζ(3
2 )

Nk

(

T

Tc

)3/2

, T ≤ Tc . (6.48)

The numerical factor is approximately equal to 1.9. The heat capacity is therefore
proportional to T 3/2 at low temperatures. At high temperatures, it settles to the
classical value 3

2Nk.

c

C  /NkV

1

1.5

1.9

T/T

It can be shown that although the heat capacity is continuous at T = Tc, its
slope ∂CV /∂T is not. This discontinuity of the first derivative signals the occurrence
of a phase transition at T = Tc: An ideal Bose gas cooled below the condensation
temperature goes into a state in which a macroscopic number of particles have
precisely zero energy. This transition is known as Bose-Einstein condensation, and
the term “condensate” refers to that part of the system which occupies the single-
particle ground state.

6.12 Highly degenerate Bose gas. III:

Bose-Einstein condensation

Bose-Einstein condensation is manifested in various ways in nature. We describe a
few examples in this section.
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6.12.1 Superfluidity

Unless the pressure is extremely high, Helium 4 does not freeze when cooled toward
T = 0. Instead, it undergoes a phase transition — the lambda point — at T =
Tλ = 2.17 K. Below Tλ, the liquid becomes a superfluid, a liquid with no viscosity
at all.

This phase transition bears a close resemblance to Bose-Einstein condensation.
First, Helium 4 atoms are bosons, having zero spin. Second, the lambda-point
temperature is very close to the condensation temperature,

Tc =
(2π~)2

2πmk

[

N

gζ
(

3
2

)

V

]2/3

;

with g = 1, m = 6.65× 10−24 g, and V/N = 27.6 cm3/mole, this yields Tc ≃ 3.1 K.

However, there are significant differences between Bose-Einstein condensation
and the lambda point. The most noticeable is in the behaviour of the heat capacity
near the transition temperature: Whereas the heat capacity climbs to the finite
value 1.9Nk in the case of Bose-Einstein condensation, it climbs to infinity in the
case of the lambda point. (This λ-shaped behaviour of the heat capacity is at the
origin of the term “lambda point”.)

These differences can be attributed to the fact that unlike the ideal Bose gas,
Helium 4 atoms have interactions that cannot be neglected. (Otherwise they would
not form a liquid!) Nevertheless, the highly degenerate Bose gas provides a useful
basis for our understanding of superfluidity.

6.12.2 Superconductivity

Some metals undergo a phase transition to a superconducting state as they are cooled
below some critical temperature. This temperature is distinct for each metal, and
ranges from approximately 1 K to 100 K. When the metal is in the superconducting
state, it offers no resistance whatsoever to electric currents, and it expels any applied
magnetic field (Meissner effect).

Again, in spite of differences due to interactions, the superconducting phase
transition has strong similarities with Bose-Einstein condensation. But where are
the bosons?

We already have mentioned that the thermal and electrical properties of metals
are due to the conduction electrons, which are fermions. In the superconducting
state, interactions within the metal allow electrons to form bound pairs, called
Cooper pairs. These electron pairs obey Bose-Einstein statistics, and they are the
bosons associated with the condensation phenomenon.

6.12.3 Holy Grail

To produce a near-ideal Bose gas and cool it down below Tc has long been considered
a Holy Grail of experimental physics. This Grail was finally achieved in 1995: Bose-
Einstein condensation was observed directly by an experimental group in Boulder,
Colorado. The bosons are Rubidium 87 atoms. For the very low densities involved,
Tc ≃ 170 nK.

Details on this remarkable discovery can be found in the August 1995 issue of
Physics Today, or in the original paper by Anderson et. al, Science 269, 198 (1995).
Check out also the course web page: it displays, for three different temperatures,
both below and above the condensation temperature, a beautiful graph of the ve-
locity distribution of the Rubidium atoms
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6.13 Problems

1. Show that the entropy of an ideal quantum gas is given by

S = k
∑

r

[

±(1 ± n̄r) ln(1 ± n̄r) − n̄r ln n̄r

]

,

with the upper sign applying to a boson gas, and the lower sign applying to
a fermion gas.

2. In this problem we consider a physical system consisting of three particles,
assumed to be bosons. Each of these can be in any one of three quantum
states, with energy eigenvalues 0, ε, and 2ε, respectively.

a) Using the rules of quantum statistics, calculate the partition function for
this system. [Hint: First tabulate the states accessible to the entire sys-
tem. These are specified by giving the values that each of the occupation
numbers take, taking into account the fact that their sum must always
be equal to three.]

b) Evaluate the mean energy when the temperature is such that βε = 1.

3. In this problem we consider the same system as above, but with an indefinite
number of particles. (The system is interacting with a particle reservoir.)

a) Calculate the grand partition function of this system.

b) Evaluate the mean number of particles when the temperature is such that
βε = 1 and the chemical potential is such that α ≃ 0.3326.

c) Evaluate the mean energy under the same conditions. Why doesn’t your
result agree with the answer you obtained in the previous problem?

4. Calculate the mean energy of an ideal Fermi gas at zero temperature. Express
your result in terms of NεF . Calculate also the pressure of this gas.

5. (Reif 9.20) The atomic weight of sodium (Na) is 23, and the density of the

metal is 0.95 g/cm3. There is one conduction electron per atom.

a) Calculate the Fermi temperature of the conduction elections.

b) It is desired to cool a sample consisting of 100 cm3 of Na metal from 1
K to 0.3 K. (At these low temperatures the lattice heat capacity of the
metal is negligible compared to that due to to its conduction electrons.)
The metal can be cooled by bringing it in thermal contact with liquid
He3 at 0.3 K. If 0.8 Joules of heat input are required to evaporate 1 cm3

of liquid He3, estimate how much of the liquid must be vaporized to cool
the Na sample.

6. Show that the entropy of an extremely degenerate Fermi gas is given by

S =
π2

2
Nk

T

TF
.

[Hint: Use the relation E = TS−PV + µN derived in part A of this course.]

7. In this problem we consider a fictitious system consisting of N identical
fermions, whose energy levels are given by

εr = r ε1, r = 0, 1, 2, . . . ,

where ε1 is some unit of energy. It is assumed that N ≫ 1, and that the
system is in thermal equilibrium.
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a) Calculate ω(ε), the density of single-particle states for this system.

b) Calculate εF , the system’s Fermi energy.

c) Assuming that the system is at zero temperature, calculate E, its mean
energy.

d) How high must the temperature be for E to differ significantly from the
result of part c)? (Give a precise criterion.)

8. We have seen in the text that a typical metal contains electrons which move
freely within the metal and therefore form an ideal Fermi gas. In certain
metals, these electrons are confined to move in a two-dimensional plane.
The single-electron states are therefore determined by the two-dimensional
Schrödinger equation,

− ~
2

2m

(

∂2

∂x2
+

∂2

∂y2

)

ψ = Eψ.

a) Show that the density of single-particle states for this two-dimensional
system is given by

ω(ε) dε =
4πmA

(2π~)2
dε,

where A is the area of a two-dimensional cell within the metal.

b) Calculate the system’s mean energy at zero temperature, and express it
in terms of N and εF .



7
Black-body radiation

The term black-body radiation refers to a gas of photons in thermal equilibrium
at a temperature T . Our purpose in this section is to apply the tools of statistical
mechanics to work out the physical properties of such a gas. Our discussion relies
heavily on the material presented in part F.

7.1 Photon statistics

Because they have a spin of unity, photons are in fact bosons, and as such they
must obey the Bose-Einstein statistics. The mean occupation numbers for a gas of
photons are therefore given by

n̄r =
1

e(εr−µ)/kT − 1
.

Here, r labels the single-photon states, and εr denotes their energy eigenvalues,
which will be calculated in Sec. 2.

In fact, photons obey a special case of the Bose-Einstein statistics, which we
shall call photon statistics. Indeed, it is easy to see that for photons, the chemical
potential must vanish. This follows at once from the definition

µ =

(

∂E

∂N

)

S,V

,

which states that the chemical potential is equal to the change in the system’s
energy when photons are added at constant entropy. Since adding photons to a
system is precisely what is meant by adding heat, and since adding heat is always
accompanied by a change in entropy, adding photons can clearly not be done at
constant entropy. In other words, the only amount of energy that can be added
at constant entropy to a photon gas is zero. This, then, implies that the chemical
potential must vanish:

µ = 0.

The mean occupation numbers of a photon gas are therefore found to obey a special
case of the Bose-Einstein distribution, given by

n̄r =
1

eεr/kT − 1
. (7.1)

101
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This is called the Planck distribution.

7.2 Energy eigenvalues

Equation Eq. (7.1) is useless without an explicit expression for εr, the energy eigen-
values. We know that these are related to ωr, the photon eigenfrequencies, by the
Einstein relation,

εr = ~ωr . (7.2)

We must therefore find a way to characterize the single-photon states r, and calcu-
late their associated frequencies.

Whether it is treated as a classical quantity or as a quantum field operator, the
electric field E always obeys the wave equation

(

− 1

c2
∂2

∂t2
+ ∇2

)

E = 0,

where c is the speed of light. (The magnetic field B also satisfies this equation.) This
is the equation we will use to find the single-photon states and their eigenfrequencies.
In effect, the wave equation plays the same role for photons as the Schrodinger
equation plays for massive particles.

By analogy with the solutions to the Schrodinger equation, we may look for
solutions of the form

E = ǫ sin(kxx) sin(kyy) sin(kzz) e
−iωt,

where ǫ is the field’s polarization, and k is the wave vector. Substituting this into
the wave equation indeed gives zero, provided that the frequency ω be given by

ω2 = c2
(

kx
2 + ky

2 + kz
2
)

.

This is the well-known dispersion relation for photons.
To find what kx, ky, and kz are, we must examine the boundary conditions

satisfied by E. If we imagine that the radiation is contained in a box of volume V ,
then it is natural to impose that the field must vanish at the walls of this box. In
effect, the box is imagined to be made of mirrors, and it is these mirrors that confine
the radiation to the box. The condition that E vanishes at the walls simply means
that the radiation is perfectly reflected by the mirrors. For simplicity, we suppose
that the box is cubical, with length L and volume V = L3. If we place two of the
walls at x = 0 and x = L, then the condition E = 0 at x = L leads immediately to
the equation kxL = nxπ, where nx is some integer. Proceeding similarly with the
other dimensions gives kyL = nyπ, kzL = nzπ, and finally,

ωr =
πc

V 1/3

√

nx
2 + ny

2 + nz
2 . (7.3)

The single-photon states are therefore characterized by a set r = {nx, ny, nz} of
three quantum numbers, and by the eigenfrequencies (7.3). These quantum numbers
take integer values only. Furthermore, because changing the sign of a quantum
number changes only the sign of E, which does not produce a new quantum state,
the quantum numbers may be assumed to take positive values only.

The characterization of single-photon states is therefore very similar to that of
the states of massive particles: each requires a set of three positive integers. The
energy eigenvalues, however, are different. While the energy is proportional to
nx

2 +ny
2 +nz

2 in the case of massive particles, it is proportional to its square root

in the case of photons.
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7.3 Density of states

Calculation of the thermodynamic quantities of a photon gas involves summing over
the single-photon states. We are now used to the fact that these discrete sums can
be converted into continuous integrals. This requires the introduction of the density

of states, which we now calculate.
We denote the density of single-photon states by ρ(ω). This is defined by

ρ(ω) dω ≡ number of single-photon states in the frequency

interval between ω and ω + dω.

We have calculated similar things before, for example, in Sec. B.3.
Using Eq. (7.3), we see that ρ(ω) dω is equal to the number of points within the

region of the fictitious nx-ny-nz space defined by

V 1/3

πc
ω <

√

nx
2 + ny

2 + nz
2 <

V 1/3

πc
(ω + dω).

Geometrically, this is equal to the volume of a spherical shell of radius V 1/3ω/πc and
thickness V 1/3dω/πc. The result, however, must be multiplied by 1/8, to account
for the fact that the quantum numbers are all positive definite. Furthermore, the
result must also be multiplied by 2, to account for the fact that photons have two
polarization states. This factor of 2 is analogous to the factor g in Eq. (6.21), which
accounts for the number of internal (spin) states of massive particles.

We therefore have

ρ(ω) dω = 2
1

8
4π

(

V 1/3ω

πc

)2
V 1/3dω

πc
,

or

ρ(ω) dω =
V

π2c3
ω2 dω . (7.4)

This is the density of single-photon states, which is used to convert discrete sums
over these states into continuous integrals over ω.

7.4 Energy density

We are now ready to compute the thermodynamic quantities of the photon gas.
Of particular interest is the radiation’s mean energy, which is given by the usual
relation

E =
∑

r

n̄r εr =
∑

r

εr

eεr/kT − 1
=
∑

r

~ωr

e~ωr/kT − 1

=

∫ ∞

0

~ω ρ(ω) dω

e~ω/kT − 1
=

V ~

π2c3

∫ ∞

0

ω3 dω

e~ω/kT − 1
,

where we have used Eqs. (7.2) and (7.4) in the second and fifth steps, respectively.
We shall denote E/V , the energy density, by the symbol u. We therefore have

u =

∫ ∞

0

I(ω) dω,

where the function I(ω), called the spectral intensity, is given by

I(ω) =
~

π2c3
ω3

e~ω/kT − 1
. (7.5)
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This result was first obtained by Planck in 1990, and marks the earliest occurrence
of Planck’s constant in physics. The method of derivation used here is due to Bose
(1924).

It useful to define the variable

z =
~ω

kT

as the ratio of ~ω, the quantum unit of energy, to kT , the thermal unit of energy.
In terms of z,

I(ω) dω =
~

π2c3

(

kT

~

)4
z3 dz

ez − 1
.

The function z3/(ez − 1) is plotted on the side of this page. It goes to zero as
z2 when z → 0, and decays as z3e−z when z → ∞. The function possesses a
single maximum at z ≃ 2.8214. This immediately tells us that I(ω), the radiation’s
intensity, is maximum at ω = ωmax, where

ωmax = (2.8214)
kT

~
.

This remarkable scaling of the frequency at maximum with temperature is known as
Wien’s displacement law. It provides an efficient way of measuring the black-body
temperature directly from its spectrum.
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The energy density is now given by

u =
~

π2c3

(

kT

~

)4 ∫ ∞

0

z3 dz

ez − 1
.

This integral is one of the Bose-Einstein integrals encountered in Sec. F.11. It is
equal to Γ(4)ζ(4) = 6ζ(4), where ζ(x) is the Riemann zeta function. It turns out
that ζ(4) = π4/90, so that u can be expressed in the simple form

u =
π2

15

(kT )4

(~c)3
. (7.6)

This remarkably simple result is known as the Stephan-Boltzmann law. It provides
another way of measuring the black-body temperature.

7.5 Other thermodynamic quantities

We now calculate the pressure of a photon gas. We recall from Sec. F.1 that for
a gas of massive particles, whether they are bosons or fermions, the pressure is
always given by P = 2E/3V . When deriving this result, we saw that the factor of
2/3 originated from the fact that for massive particles, the energy eigenvalues vary
with volume as εr ∝ V −2/3. On the other hand, we recall from Sec. 2 that in the
case of photons, the energy eigenvalues behave as εr ∝ V −1/3. We might therefore
be tempted to guess that the pressure of a photon gas must be given by

P =
1

3
u , (7.7)

where u = E/V is the energy density. That this is in fact true follows from the
same calculation as that presented in part f of Sec. F.1.

The entropy density of a photon gas, s = S/V , can be calculated by first com-
puting lnZ using Eqs. (6.12) and (7.1), and then substituting the result into the
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relation S = k lnZ + E/T . This derivation is the topic of a homework problem.
Here we proceed differently, and deal directly with the first law of thermodynamics,

dE = T dS − P dV,

in which we substitute the relations E = u(T )V , P = u(T )/3, and S = s(T )V .
Notice that we do not yet use the fact that u(T ) is given by Eq. (7.6). After some
algebra, we see that the substitutions give

(4u/3− Ts) dV + V (u′ − Ts′) dT = 0,

where a prime denotes differentiation with respect to T . Now, because V and T
can be varied independently, we must have that each coefficient vanishes separately.
This then tells us that

s =
4u

3T
=

4π2 k

45

(

kT

~c

)3

, (7.8)

which is the desired expression for the entropy density. Notice that the equation
u′ = Ts′, together with s = 4u/3T , confirm the fact that u ∝ T 4.

Finally, the mean number density of photons, n = N/V , is computed from the
relation N =

∑

r n̄r by using all of the standard tricks. This also will be carried
out in a homework problem. You should find that the number density is given by

n =
2ζ(3)

π2

(

kT

~c

)3

, (7.9)

where ζ(x) is our old friend the Riemann zeta function.

7.6 The cosmic microwave background radiation

It is a truly remarkable fact that our universe is filled with black-body radiation at
a temperature of 2.7 K. This radiation, discovered by Penzias and Wilson in 1965,
is known as the cosmic microwave background radiation (CMBR). A discussion of
this phenomenon will conclude this section.

7.6.1 Recombination in the early universe

There was a time (t < 105 yr) in the history of the universe when atoms had not yet
formed. The universe was then composed of light atomic nuclei, free electrons, neu-
trinos, and photons. By scattering them, the free electrons prevented the photons
from propagating freely; the universe was opaque.

As the universe expanded, it cooled off, and eventually the electrons started to
combine with protons to form hydrogen (and other light) atoms. The temperature
of the universe at recombination can easily be estimated: kT must be somewhat
smaller than the ionization energy of hydrogen, which is 13.6 eV. After conversion,
this gives

T ∼ 104 K.

(A more precise calculation gives T = 3575 K.) Because of the disappearance of the
free electrons, the photons could propagate freely after recombination; the universe
became transparent.

The photons stayed in thermal equilibrium as the universe expanded to its
present-day size. All the while, their temperature kept on decreasing. Today, this
radiation (the CMBR) is measured to have a perfect black-body spectrum at a
temperature

T0 = 2.7 K.
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7.6.2 Dipole anisotropy

To a good approximation, the CMBR appears to be perfectly isotropic: the temper-
ature is the same in all directions. (This poses quite a puzzle in cosmology, because
it is not at all obvious that the entire universe had time to come to thermal equilib-
rium by the time recombination occurred. The currently favoured solution to this
puzzle is known as inflation.) However, precise measurements reveal a slight varia-
tion with direction. This anisotropy is called the dipole anisotropy. Measurements
show that the CMBR’s temperature is more accurately described by

T (θ) = T0 + ∆T cos θ,

where θ is the angle with respect to the direction at which the temperature is
maximum. The amplitude of the temperature variation is ∆T = 3.2 mK. So the
CMBR appears to be hottest in one direction, and coolest in the opposite direction.
Does this mean that there exists a preferred direction in the universe?

7.6.3 Black-body radiation as seen by a moving observer

Before we answer this question, let us ask how black-body radiation would appear to
a moving observer. Suppose that a photon emitted by a black body at a temperature
T0 has a frequency ω0 as measured by an observer at rest with respect to the body.
This photon is now measured by an observer which is moving with respect to the
body. If the observer moves directly toward the body with a velocity v, then the
measured frequency ω will be slightly larger (shifted toward the blue) than ω0:
ω = ω0(1 + v/c). (This is just the good old Doppler effect.) If, on the other hand,
the observer moves directly away from the body, then the measured frequency ω
will be slightly smaller (shifted toward the red) than ω0: ω = ω0(1 − v/c). More
generally, if the observer moves at an angle θ with respect to the black body, then
the measured frequency is

ω = ω0

(

1 +
v

c
cos θ

)

.

This dependence on θ looks suspiciously similar to the one encountered before.

The spectrum of the black-body radiation, as measured by the observer at rest,
is given by the Planck function, which depends on the quantity

~ω0

kT0
.

When expressed in terms of ω, the frequency measured by the moving observer, this
quantity becomes

~ω

kT0(1 + v
c cos θ)

.

This shows that the spectrum, as measured by the moving observer, is also Planck-
ian, but with a temperature

T (θ) = T0

(

1 +
v

c
cos θ

)

.

This temperature, as that of the CMBR, depends on the angle of approach: A black
body appears cooler when the observer is moving away from it, and hotter when
the observer is moving toward it.
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7.6.4 Proper motion of the galaxy

So, does the universe possess a preferred direction? The answer is no. The cos θ
variation in temperature is due to the Earth’s relative motion with respect to the
rest frame of the CMBR (the rest frame of the universe!). The Earth’s velocity vE

is easily obtained from the relation ∆T/T0 = vE/c, which gives

vE = 355 km/s.

Part of this motion is due to the rotation of the sun around the galactic centre. But
this does not account for the whole effect: the remaining part must be attributed
to the motion of the galaxy as a whole:

vG = 500 km/s.

To explain this proper motion of our galaxy is still a major challenge of cosmology.

7.6.5 Quadrupole anisotropy

Once the dipole anisotropy has been subtracted out, the CMBR appears almost
perfectly isotropic. There remains, however, a slight anisotropy (the quadrupole

anisotropy) of amplitude
∆T

T0
∼ 10−5.

This remaining anisotropy gives an important clue as to how galaxies might have
formed in the early universe. This is the topic of a lot current work in cosmology.

7.7 Problems

1. Calculate the following quantities for a photon gas in thermal equilibrium:

a) The entropy density s = S/V . [You must calculate s directly, without
referring to the thermodynamic derivation presented in the notes.]

b) The mean number density n = N/V .

2. A photon gas at a temperature TA fills a thermally insulated cavity of volume
VA. If the cavity is expanded reversibly to a new volume VB, what is TB, the
final temperature?


