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Abstract— Many graph layout algorithms optimize visual characteristics to achieve useful representations. Implicitly, their goal is 
to create visual representations that are more intuitive to human observers. In this paper, we asked users to explicitly manipulate 
nodes in a network diagram to create layouts that they felt best captured the relationships in the data. This allowed us to measure 
organizational behavior directly, allowing us to evaluate the perceptual importance of particular visual features, such as edge 
crossings and edge-lengths uniformity. We also manipulated the interior structure of the node relationships by designing data sets 
that contained clusters, that is, sets of nodes that are strongly interconnected. By varying the degree to which these clusters were 
“masked” by extraneous edges we were able to measure observers’ sensitivity to the existence of clusters and how they revealed 
them in the network diagram. Based on these measurements we found that observers are able to recover cluster structure, that 
the distance between clusters is inversely related to the strength of the clustering, and that users exhibit the tendency to use 
edges to visually delineate perceptual groups. These results demonstrate the role of perceptual organization in representing 
graph data and provide concrete recommendations for graph layout algorithms. 

Index Terms— Network layout visualization, perceptual organization, graph layout, user studies.

 

1 INTRODUCTION 
Recent years have seen a meteoric growth in the availability of data 
about networks, ranging from neural networks to communication 
networks to social networks. Since these networks are typically large 
and complex, it is often difficult to represent the information in a 
way that allows users to understand patterns and relationships in the 
data.  Graph drawing algorithms allow us to automatically generate 
visual representations of these networks, and make it easier for users 
to reason about network properties. These algorithms often optimize 
particular visual characteristics of the layout, such as minimizing 
edge crossings, maintaining uniform edge length or keeping edges 
orthogonal.  

In most cases, these characteristics are based on the algorithm 
designer’s intuitions about proper network layout and not on 
empirical data about how human observers perceive and organize 
networks. Although a number of studies have been performed  to see 
how various properties compare on different user tasks  [21] [11] [7], 
these all analyze a predetermined set of visual characteristics. They 
do not address the question of how end users would spontaneously 
arrange a graph, which might reveal visual characteristics that have 
not previously been considered or controlled for. 

The experiments in this paper fill this gap by allowing the users 
themselves to arrange the nodes in a graph, providing more direct 
and explicit insight into how human observers perceive and organize 
network information. In particular, we ask users to arrange the nodes 
in graph layouts in order to best represent the structure in the data 
and we then analyze the graphs they create. We measure edge-
crossings, node positions, edge length uniformity and examine their 
ability to discover and represent cluster structures in the data with 
different levels of internal complexity. We also examine their layouts 
for patterns that we had not anticipated. By measuring the users’ 
behaviour directly, as they discover and represent information in a 
connected graph, we hope to improve our knowledge about what 
spatial parameters should be emphasized for network layout.  

Consistent with intuitions derived from the literature on 
perceptual organization, we found that users have a strong preference 

for creating layouts that perceptually group clusters together and that 
the distance between these groups is inversely related to the number 
of edges connecting them. Furthermore, we found that users often 
visually delineate their cluster layouts by using the cluster’s edges to 
create a bounding hull. Both of these results can offer guidance to 
network layout algorithm design and suggest potential avenues for 
future research. 

2 RELATED WORK 
At the beginning of the twentieth century, visual psychology 
research was dominated by an empirical tradition that sought to 
describe higher-level perception in terms of hierarchical low-level 
operators. The Gestalt school was a reaction to this approach, 
pointing out, famously, that “the whole is greater than the sum of the 
parts.” In a very convincing set of experiments, they demonstrated 
that perception is largely driven by top-down processes  [5]. In their 
view, human perception is an active process, and we are hard-wired 
to perceive visual grouping and organization. Later work in cognitive 
psychology has showed how we actively seek to organize 
information into meaningful groups, or “clusters”, and that 
information can be more easily remembered if it is organized into 
meaningful “chunks”  [8]. 

The Gestalt principles of Proximity and Closure  [22] bear explicit 
exploration. The law of Proximity states that objects near each other 
will be perceived as belonging to a common group. The Law of 
Closure states that objects that are bound together by a common edge 
will be perceived as belonging together. Recent studies have 
empirically demonstrated the operation of Gestalt principles in visual 
organization  [6] [10]. To test the operation of these principles in 
network organization, we have devised an experimental paradigm in 
which users dynamically adjust the nodes in a network diagram. The 
goal is to see whether users are sensitive to clusters in a network 
structure and if so, how they surface these groupings perceptually.  
We hypothesize that users will organize nodes that belong within a 
cluster near each other, according to the principle of Proximity, and 
that edges may function to reinforce cluster boundaries.  
Previous work in evaluation of visual characteristics in graph layouts 
is mostly aimed at evaluating a particular aesthetic’s fitness for 
certain tasks. Purchase’s early work performed a number of 
experiments to rank layout aesthetics based on the effect they had on 
a user’s understanding of the graph  [11]. Minimizing edge overlap 
emerged as the most important aesthetic for graph comprehension, 
followed by minimizing the number of bends and maximizing 
symmetry. Later research  [21] also looked at edge continuity and its 
effect on path finding in graphs. 
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In a study of UML-like software engineering diagrams, Purchase 
 [12] showed that the influence of diagram semantics could have a 
much larger impact than the influence of aesthetics. In this study, 
users did not care so much that their diagrams had non-uniform edge 
lengths, but found the perceptual grouping of related classes much 
more important. In a study of social networks, McGrath et al  [7] used 
an online questionnaire to evaluate how people perceive groups in 
networks. Their study shows people prefer graphs with fewer edge 
crossings where nodes sharing social connections were grouped 
together. Huang et al  [3], however, have shown that simply 
preferring a layout doesn’t necessarily correlate with the best task 
performance and pointed out that more empirical work was needed 
to understand the effectiveness of visual network layouts. In dynamic 
graph drawing, where the structure of the network varies over time, 
the trade-off is different and designers have to balance optimizing a 
set of aesthetics with minimizing changes to the user’s mental map 
of the structure  [13]. Finally, other studies have pointed out that in 
particular cases it may not make sense to use node link diagrams at 
all, and other representations are preferable for a specific task set  [2]. 

All of the above studies evaluate known graph layout aesthetics 
on particular well-defined tasks. Although it’s very useful to know 
which types of layouts perform well for which type of tasks, the 
results are limited by the particular conditions set by the 
experimenters. Studying how users organize network diagrams, 
without imposing any constraints on their structure should reveal 
interesting information about the importance of edge crossings, node 
uniformity and the importance of representing clusters, and might 
provide guidance to network layout algorithm design 

3 EXPOSITION 
The goal of this paper is to explore the importance of certain visual 
characteristics to users whose task it is to organize nodes and edges 
of a graph into a coherent picture representing the structure in the 
data. First, we examine the degree to which users actually minimize 
edge crossings and the degree to which they try to keep edge lengths 
uniform. Secondly, we examine the ability of human observers to 
discover connected groups of nodes, or clusters, in a network, and 
examine how this ability depends on the degree to which this 
information is masked by an increasing number of inter-cluster 
edges. 

In these experiments, users viewed node-link graphs on a 
computer screen and manipulated the node positions until they felt 
that the structure best captured the structure in the data. The nodes 
were presented to the users in one of two different initial 
configurations. In the circular configuration, nodes were randomly 
placed in a circular arrangement and in the force-directed condition 
nodes were place according to an algorithm that tries to maintain 
uniform edge lengths and optimal node separation. Comparing user 
layouts with those produced by the lay-out algorithms allowed us to 
examine which visual characteristics are important for the perceptual 
organization of network data.  

We manipulated the internal structure of the data, creating 
“clusters” of nodes that were highly interconnected. By manipulating 
the number of edges connecting these clusters, we varied the 
prominence of the clusters. This allowed us to examine how sensitive 
users were to the organizational structure in the data. Our initial 
hypotheses in this setup were the following: 

• Based on previous findings  [11], we hypothesized that 
human observers would seek to reduce edge crossings, and 
would produce layouts with fewer crossings than the basic 
force-directed algorithm, which did not optimize for this 
particular feature.  

• We knew from the perceptual organization literature that 
human observers are responsive to spatial groupings and 
predicted that they would be able to recover these structures 
in the graph. Accordingly, we expected that the observers 
would organize nodes belonging to the same cluster 
preferentially into spatially-localized regions, especially in 
the conditions with fewer between-cluster connecting edges. 

• Finally, we hypothesised that the distance between these 
regions would decrease if we increased the number of 
between-cluster edges. If true, this would provide us with a 
welcome design guideline for clustered graph drawing 
algorithms and diminish the importance of the uniform edge 
length aesthetic. 

4  EXPERIMENTAL DESIGN 
Partly inspired by the popularity of the online ‘Planarity’ game  [17] 
we used a web-based interactive environment to present our 
participants with their tasks instead of a more traditional laboratory 
setup. This allowed us to test a large number of users in a relatively 

  
C1-Force (1 connecting edge) C2-Force (2 connecting edges) 

  
C3-Force (3 connecting edges) C4-Force (4 connecting edges) 

Figure 1. The observer dynamically moved the nodes of a graph to best represent the relationships between nodes. This table shows the 
four force-directed graph initial layouts. Clusters in the data are connected by 1, 2, 3, or 4 “masking” edges 



short period of time  [4]. During a period of 14 days all users visiting 
the homepage of the Many Eyes collaborative visualization site  [19] 
were invited to participate in the experiment by means of a banner. If 
they choose to do so, a mouse click brought them to a webpage 
outlining the experiment. The instructions explained that we were 
measuring how people perceive and organize networks, and that they 
were going work with several network diagrams showing 
relationships between people. For each, they were asked “to 
rearrange the nodes in a network in a way that you think best 
reflects their interconnections”. We then briefly explained the 
controls and finally presented the user with four links to four 
experimental conditions. The order of the links was varied randomly 
from subject to subject to prevent order bias, and the users had no 
way of knowing what condition they were going to be shown when 
clicking a link. 

4.1 Conditions 
In each condition of the experiment, the user was presented with an 
existing graph layout of a network consisting of 16 nodes. Each data 
set was specifically designed to include two “clusters”. That is, in 
each 16-node data set, there were two groupings of 8 nodes which 
were highly interconnected. Within a cluster, each node was 
connected to several (3-5) other cluster members. The within-cluster 
node connections were constant across the various conditions in the 
experiments.   

The eight conditions in the experiment are shown in Table 1. We 
varied the degree to which the nodes within the first cluster were 
connected to nodes in the other cluster. In conditions C1, C2, C3 and 
C4 there were 1,2,3, and 4 edges connecting to nodes in the other 
cluster, respectively. These additional edges served to obfuscate or 
“mask” the cluster structure. We also varied the starting 
configuration of the nodes to explore how the initial presentation of 
the data influences organizational strategy. In half of the conditions, 
the starting structure for the experiment was a circular arrangement 
of nodes in random order; in the other half, the starting structure was 
computed using a popular force-directed layout algorithm that tries 
to minimize edge-length variability. In this case we used a stress 
majorization variant  [1] for its ability to compute good optima. We 
did not perform any post processing such as crossing reduction, 
better spacing or label overlap removal. Both layouts were selected 
to provide starting points that did not emphasize any structural 
features by design. We did not test more sophisticated (e.g., 
clustered) layout algorithms because the point was to see whether 
users would recover the cluster structure. Also, our main objective 
was to measure how human observers would lay out a network, not 
to compare the perceptual quality of various network lay-out 
algorithms.  Figure 1 shows layouts of the four conditions generated 
by the force-directed algorithm. Figure 2 shows the two starting 
positions for the data set with two masking edges. 

4.2 Procedure 
For each condition, the observers’ task was to move the nodes of the 
network until they thought the graph best represented the structure of 
the data. The user was allowed to enter commentary on the submitted 
layout if they so desired and then saved their layout by clicking a 
button at the bottom of the page. There was no preset time limit and 
users were told they could take as long as they wanted.  
We choose to label every node with an arbitrary male or female 
name, taken from a set of randomized first names to make the 
problem more concrete to users. In early pilots which did not include 
labels, we found that some users had difficulty performing the test 
because they had no concept of an abstract network, or what the 
optimal layout of such a network should be. To prevent users from 
using the labels to remember the structure over different tasks, we 
randomly assigned new labels to nodes whenever a new condition 
was shown.  
 

4.3 Participants 
The participants in this experiment were mostly self-selected from 
the pool of users of the Many Eyes visualization service, so the 
population tested did had at least some sophistication in data 
visualization [17], possibly limiting the ability to generalize our 
experimental results. However, the pool also included a small 
number of friends and colleagues, and where it was possible to 
compare, no systematic differences between the two groups was 
observed. Although some of our participants had created Many Eyes 
profiles for themselves on a prior visit to the site, most of them 
(68%) did not and, as a consequence, their results were completely 
anonymous. Although this increases the risk for duplicate 
submissions, we estimate it as low, given the time (μ = 409 sec; 
almost 7 minutes) and effort required to create and submit a layout. 
To make sure, we hand pruned the data to discard submissions that 
were obvious duplications due to users clicking the submit button 
twice (i.e. two identical layouts submitted within a short timeframe) 
and found one such duplicate. This left us with 73 submitted layouts. 

5 METRICS 
We designed metrics to capture characteristics of user performance 
when organizing graph layouts. These metrics allowed us to examine 
the layout strategies of human observers compared with a force-
directed layout algorithm, gave us insight into the degree to which 
observers responded to cluster structure in the data, and gave us a 
first indication of how their visual attention was directed. 

5.1 Layout Metrics 
The first set of metrics examines the strategies employed by users 
when organizing graph lay-outs. In particular, we measured their use 
of edge crossings, the spatial positioning of nodes and edges and the 
orientation of the final configuration, and compared these with the 
initial layout.  
 
Edge crossings: To evaluate the degree to which human observers 
tolerated edge crossings, we counted the number of edge crossings in 
each submitted layout. 

 
Figure 2. The circular and force-directed starting layouts for the 2-
edge conditions: C2-Circular (left) and C2-Force (right). 

Table 1. Factors and conditions 

 Initial Layout 
 Force directed  Circular  

1 intercluster edge C1-Force C1-Circular 
2 intercluster edges C2-Force C2-Circular 
3 intercluster edges C3-Force C3-Circular 
4 intercluster edges C4-Force C4-Circular 

 



 
Edge length distribution: To measure the degree to which 
observers sought to keep equal distances between the nodes we 
measured the distribution of edge lengths. For a graph with uniform 
edge lengths the variance in edge lengths will be low. 
 
Orientation: To measure whether the graph is oriented on the page, 
or is isotropic, we computed a convex hull for the graph layout, 
approximated it by an ellipse, and then measured the orientation of 
the ellipse’s major axis. 
 

5.2 Cluster Metrics 
The second set of metrics looked at whether observers were sensitive 
to the cluster structure in the data, and how they represented this 
structure. 
 
Cluster Separability: To evaluate the degree to which human 
observers spatially separated clusters, we counted how many of a 
cluster’s nodes fell inside the bounding polygon defined by the other 
clusters’ outer nodes.  
 
Cluster Extraction: To estimate the degree to which users identified 
and isolated sets of interconnected nodes in the dataset we compared 
the average inter-node distance within a cluster with the average 
inter-node distance for the whole graph. If users manage to isolate 
clusters correctly we should see a distinct difference between these 
two values. 
 
Cluster Distance: To evaluate the separation between clusters we 
measured both the minimum and average inter-node distance 
between nodes in the two clusters. This gives us an estimate of the 
relative positioning of the two clusters. 

    

   
(a) 

    

  
 

 
(b) 

Figure 3. A number of user-generated layouts with two connecting edges between clusters for (a) the circular starting layout (C2-Circular) 
and (b) the force-directed layout (C2-Force). 
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Figure 4. Edge Crossings. Human observers produced graph layouts 
with fewer edge crossings than the force-directed graph algorithm. 
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Figure 5. Edge Length Distribution. Human observers did not focus 
on maintaining equal edge length as much as the force directed 
algorithm. 



Cluster Delineation by Hulls: To evaluate the perceptual 
organization of clusters we examined whether the set of nodes in 
each cluster were visually bounded by a closed segment of edges. 
We measured the number of clusters per dataset that were bounded 
by a closed segment of edges. 

To account for differences in layout scales we normalize all node 
distances, by dividing them by the maximum node-node distance 
found in the graph. This allows us to directly compare distances 
among different layouts. 

6 RESULTS  
The experiment ran for two weeks, during which time 73 network 

diagrams were submitted. Observers were encouraged to participate 
in all four test conditions, but there is no way to know whether 
twenty anonymous observers submitted on all four conditions or 
whether eighty anonymous observers each submitted one. The 
randomization algorithms, however, produced an even distribution of 
observers over the eight experimental manipulations (four levels of 
cluster connection and two starting conditions for each). Overall, 
inter-subject reliability was very high, although, as to be expected, 
there were several cases where user behaviour was unique and far 
from the average. These data have all been included in the analysis. 
The only data values that were edited were two measurements of 
completion time, where the user supposedly finished the tasks more 
than 3 hours after initiating the test. In this case, we substituted the 
mean completion time for this task for these values. 

Figure 3 shows some of the solutions produced by observers for 
conditions C2, with two connecting edges. Figure 3a shows solutions 
obtained from condition C2-Circular; Figure 3b shows solutions 
resulting from condition C2-Force. Note that one of the 
configurations in figure 3b is actually a degenerate case where the 
user either did not understand the purpose of the experiment or went 
out of their way to do something creative.  

6.1 Perceptual Factors in Network Layout 
Edge crossings. To begin this analysis we compare the performance 
of human observers with that of the force-directed layout algorithm. 
Figure 1 showed the four starting configurations produced by the 
force-directed algorithm. The number of edge crossings in these 
graphs is displayed as a solid line in Figure 4. The median human 
response is shown in dotted lines. Some observers created graphs 
that had very few crossings. In conditions C1, two observers created 
solutions with just one edge crossing; two observers did the same for 
condition two; the best solution for C3 was two edge crossings, 
achieved by 2 observers; and the best solution for C4 had six edge 
crossings.  

At the other end of the spectrum, there were one or two observers 
per condition whose graphs were highly crossed, in two cases in 
excess of 100 line crossings. To avoid having these extreme values 
obscure the behaviour of the pool of observers, we represented these 
as the median. The interesting observation from this graph is that 
human observers strive to reduce edge crossings, as much as 
possible, which is consistent with results from  [11]. On average, they 
produce layouts with fewer crossings than the force-directed graph 
algorithm, which prioritizes uniform edge lengths and separation 
between unconnected nodes. On average 67% of observes created 
embeddings with fewer edge crossings than the algorithmic layout, 
even when they were presented with the algorithmic layout to start 
with, which confirmed our first hypothesis.  

 
Edge length distribution. When we examined the standard 
deviation in edge lengths we found that in all but 2 of the 73 of the 
user generated embeddings, the variance in edge lengths was bigger 
than the variance in the optimal force directed layout. Figure 5 plots 
the variance in edge lengths for the force directed layout and the 
average variance in the user generated layouts. Overall, all user 
generated diagrams have a significantly (p < 0.05) bigger variance in 
edge lengths than the force directed layouts. Looking at the diagrams 
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Figure 6. Cluster Separability. Even with four connecting edges 
between clusters, observers are able to isolate the clusters in 
the data, with at most 1 node from one cluster (12%) positioned 
in the polygon defining the other. 
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Figure 7. Cluster Extraction. For all levels of masking, the 
distance between nodes within a cluster is significantly smaller 
than the overall inter-node distance, demonstrating perceptual 
grouping. Error bars show 95% confidence intervals 
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Figure 8. Cluster Distance. As the number of connecting edges 
between clusters increases, both the minimum distance (top) 
and average distance (bottom) between the clusters decreases, 
although only significantly for the 4-edge condition. Error bars 
show 95% confidence intervals 

 



and posted comments we speculate that this is due to users putting a 
lot of effort into generating symmetrical or crossing-free diagrams. 
To see if users could actually be primed to generate drawings with 
uniform edge lengths if they were initially shown a force directed 
layout, we also examined the results by initial layout. For the C1 
conditions the edge length variance was significantly smaller (p < 
0.01) when the observer started from a force directed layout while 
we did not find a significant difference for the other conditions. For 
the C2-Force condition the average variance was actually bigger, 
mainly due to one of the degenerate cases displayed in Figure 3b. 
These results suggest that users are not that sensitive to edge length 
uniformity and would rather trade it off for fewer crossings or more 
symmetrical layouts. 
 
Orientation. The starting orientation for all the force-directed 
layouts was roughly 60 degrees. For conditions C1-Force and C2-
Force over 70% of the observers maintained this orientation in their 
layouts. However, as the amount of masking between clusters was 
increased, the proportion of horizontal and vertical orientations 
increased, and with four edge crossings, 90% of the user-generated 
graphs placed clusters either side-by-side or one above the other. 
With the circular starting layout, users systematically preferred 
horizontal orientations, especially in the two-and three-edge 
conditions, where 70 and 90% of the user-constructed layouts were 
oriented horizontally. This may suggest users have a preference for 
horizontal and vertical oriented layouts, although our horizontal 
screen aspect ratio may have been a contributing factor here. 
 
Finally, we looked at the time it took user to complete a layout. For 
the circular conditions we computed a mean of 620 seconds with a 
standard deviation of 52. For the force-directed condition the mean 
was 322 with a standard deviation of 53 seconds. As expected, users 
took significantly longer on the circular layouts, although the 
difference in results was not that big. 

6.2 Identifying and Representing Clusters  
In these experiments, two highly-interconnected sets of nodes were 
present in each of the data sets. In the four test conditions, additional 
edges were added which connected a node in one cluster to a node in 
the other. This section analyzes the degree to which observers 
organized their visual representations in a way that preserved the 
cluster structure in the data.  
 
Cluster Separability. To examine the salience of the cluster 
structure, we measured how the nodes in the two clusters were 
represented visually. To do so, we measured the degree to which the 
clusters were spatially separated in the users’ solution. If all nodes 
within a cluster are organized near each other, with no node crossing 
into the spatial region occupied by nodes from the other cluster, we 
say that the clusters are separable. Figure 6 shows the percentage of 
user solutions where the clusters were separable. User solutions are 
100% separable when there is only one connecting edge, and 
separability drops slightly over the range. Even with four connecting 
edges, however, only 2 of the 20 user solutions exhibited overlap of 
nodes from one cluster within the region defined by the other. Not 
surprisingly, these were the same solutions that exhibited high 
numbers of edge crossings, described above. 
 
Cluster Extraction. Another way to look at the degree to which 
users identified and spatially isolated clusters is to look at the 
distribution of distances between nodes. If users arranged nodes 
randomly, ignoring the inherent cluster structure, the nodes that were 
part of a cluster would not be placed especially close to each other in 
the network. That is, the inter-node distance between nodes within 
the same cluster would be the same as the overall inter-node 
distance. To evaluate this, we computed the inter-node distance for 
each user solution, and averaged the result across observers. Figure 7 
plots the mean inter-node distance for all nodes (solid lines) vs. the 
inter-node distance for nodes within a cluster (dashed lines). 

Independent of how many inter-connecting edges there were, nodes 
within a cluster were organized significantly closer together than the 
norm. The difference between these measures is greatest when there 
is only one edge, and decreases monotonically as the number of 
connecting edges is increased. Post-hoc normality analysis and 
pairwise t-testing showed no significant differences between the 
overall node distances over the four different conditions (which was 
expected). Conform our second hypothesis, the distance between 
nodes in a single cluster indeed grows if the number of connecting 
edges is increased. However, our analysis showed that this effect was 
not significant at the p = 0.05 level. 
 
Cluster Distance. Figure 8 shows two additional measures of cluster 
salience as the number of interconnecting edges is increased. The 
first measure, shown in dashed lines, identifies the node from each 
cluster that is closest to a node from the other cluster and computes 
the distance between them. The distance between clusters measured 
this way is largest when there is only one edge connecting clusters 
and drops monotonically as the number of connecting edges is 
increased. The second measure, shown in solid lines, calculates the 
average position of nodes that belong to each cluster, and computes 
the difference between these average positions. Subsequent Welch t-
testing showed a significant (p<0.05) difference in both measures for 
the C4 conditions only. The greater the number of interconnecting 
edges, the closer the clusters, which confirmed our third hypothesis. 
 
Cluster delineation by hulls. One interesting observation that we 
were not expecting at the start of this experiment is that a lot of users 
took special care to visually bound the clusters in the data by 
creating a continuous ‘silhouette’ of edges around their clusters, with 
all of the other nodes in the cluster positioned inside this hull. (See 
Fig. 9) Slightly over 81% of our users created hulls for one or more 
clusters in the data, with an average of 1.34 hulls per dataset over all 
conditions. If we compare this with the force directed layouts we 
find a total of 0.16 (1 out of 8) hulls per dataset.  
From a perceptual standpoint this behaviour makes perfect sense as 
the human visual system is highly efficient at detecting and 
interpreting shape contours. In this case our human subjects are 
trying to create clearly delineated visual entities to indicate a cluster. 
Previous experiments that only measured layout algorithm 
effectiveness would not have surfaced this type of insight, as the 
input stimuli are generated by known layout algorithms. Although 
layout algorithms exist that start from a convex hull and then render 
the entire graph inside this hull  [16] [18] we are unaware of any 
layouts that render individual clusters in this manner.  

7 DISCUSSION AND CONCLUSION 
We have developed a direct-manipulation method for exploring 
perceptual factors at work in representing network information. In 
each condition of the experiment, the observer was presented with a 
16-node directed graph and was asked to manually adjust the 
positions of the nodes until he or she felt the structure best captured 
the relationships in the data. The structure of the data was designed 
to include two sets of highly-interconnected nodes, or clusters, and 

  
Figure 9. Cluster Hulls. Two examples of user-generated layouts 
where cluster edges formed a hull enclosing the cluster, 
organizing it into a single perceptual group. 



the number of inter-cluster “masking” edges was varied. Two 
popular layout algorithms defined the starting configuration for the 
nodes. As expected, the random configuration, in which nodes were 
evenly spaced on a circle, took the most time to complete. The 
directed graph algorithm, which organized nodes according to their 
connectedness, while minimizing the variability in edge length, 
provided a better starting point for the observers, and afforded 
consistently shorter completion times. However, despite this 
enormous difference in solution times, the actual solutions were not 
substantively affected by starting position. 

The solutions the human observers created, however, were 
significantly different from the starting configurations in several 
ways. First, they were highly structured and did not resemble the 
random configuration at all. In many ways, the Force-directed 
algorithm provided a very good model of human behaviour, in terms 
of the spatial distribution of the nodes and the separation of the 
clusters. Human performance, however, did differ notably in two 
respects. First, human solutions contained 60% fewer edge crossings 
on average and secondly, humans did not value uniform edge length 
as much as the algorithm did. 

One of the main findings in this study is that users are able to 
perceive and operate on the cluster structure in the data, even if it is 
obscured by extraneous edges. In almost all cases users constructed 
layouts that distinctively grouped clusters in a spatial region that did 
not overlap with the spatial region occupied by the other cluster. 
More importantly both the minimum and average distance between 
the two clusters is inversely related to the strength of their clustering, 
supporting layout techniques like Lin-Log layouts  [9] or clustered 
layouts. In all cases but one, the mean edge length of edges 
connecting two different clusters was bigger than the mean edge 
length connecting nodes inside a single cluster. This leads us to 
believe that maintaining uniform edge lengths has less value when it 
comes to organizing network information that contains cluster 
structure. A second important finding from this study is that over 
80% of observers used the edges in a cluster to visually delineate the 
cluster itself, creating a convex hull around the nodes in the cluster. 
Although this might seem obvious in retrospect, it would have been 
much harder to surface these types of layouts had we just looked at 
evaluating known layout techniques or aesthetics.   

In evaluating these results, it is important to keep in mind that 
because these experiments were conducted over the internet through 
the Many Eyes visualization service  [20], they may not be 
representative of the general population. This has previously been 
identified as general issue with Internet based experimentation  [15]. 
To mitigate this potential bias, we did invite people who were not 
Many Eyes users to participate, but we did not collect basic 
population statistics.  

Another potential confounding factor was the inclusion of names 
labelling each node. Although we were careful to randomize names 
over different tests to avoid learning effects, the tendency to avoid 
overlapping labels could potentially have influenced the resulting 
layouts. The labels may also have influenced some of the more 
“unique” graph layouts, and some users may have believed that their 
task was more related to the names associated with the nodes than 
the relationships between the nodes. For example, one user created a 
layout pairing male and female names.   

In conclusion, these experiments show that although human 
observers create unique layouts, they very reliably converge on 
representations that share important similarities. They seek to reduce 
edge crossings,  they enclose organizations within bounding hulls, 
and they are extremely competent at identifying and spatially 
segmenting clusters in the data. In terms of automatic layout 
algorithms, this suggests focus on algorithms that minimize edge 
crossings, suggests introducing methods that emphasize structures by 
manipulating the nodes so that these regions are bounded by edges, 
and it supports research on algorithms that are designed to reveal 
clustered structures. These results demonstrate the importance of 
research in visual perception and cognition in developing better 
methods for visualization.  
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