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selected visually and isolated by micromanipulation. The diploid status of
selfed genotypes was confirmed by observing that they did not mate with tester
strains of either mating type. For outcrossing, each asexual genotype was mated
with a genotype from a parallel sexual population (for example, genotype 1
from replicate 1 of the sexual glucose population was mated with genotype 1
from replicate 1 of either the mating-type a or mating-type a asexual glucose
population, depending on the mating type of the sexual genotype). Mating
cultures were spread on glucose plates, and mated pairs of cells were selected by
micromanipulation. The fitnesses (w) of diploids produced by selfing and
outcrossing were determined by competitions against a diploid produced by
crossing yVB110 with a derivative of yVB114 carrying a URA3 genetic marker,
and inbreeding depressions were calculated as woutcrossed 2 winbred=woutcrossed.
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IQ heritability, the portion of a population’s IQ variability
attributable to the effects of genes1, has been investigated for
nearly a century, yet it remains controversial. Covariance between
relatives may be due not only to genes, but also to shared
environments, and most previous models have assumed different
degrees of similarity induced by environments specific to twins, to
non-twin siblings (henceforth siblings), and to parents and off-
spring. We now evaluate an alternative model that replaces these
three environments by two maternal womb environments, one for
twins and another for siblings, along with a common home
environment. Meta-analysis of 212 previous studies shows that
our ‘maternal-effects’ model fits the data better than the ‘family-
environments’ model. Maternal effects, often assumed to be
negligible, account for 20% of covariance between twins and 5%
between siblings, and the effects of genes are correspondingly

reduced, with two measures of heritability being less than 50%.
The shared maternal environment may explain the striking
correlation between the IQs of twins, especially those of adult
twins that were reared apart. IQ heritability increases during early
childhood, but whether it stabilizes thereafter remains unclear. A
recent study of octogenarians2, for instance, suggests that IQ
heritability either remains constant through adolescence and
adulthood3, or continues to increase with age2. Although the
latter hypothesis has recently been endorsed4, it gathers only
modest statistical support in our analysis when compared to the
maternal-effects hypothesis. Our analysis suggests that it will be
important to understand the basis for these maternal effects if
ways in which IQ might be increased are to be identified.

Despite its conceptual simplicity, IQ heritability has engendered
vitriolic debates throughout this century, debates that are now
recurring5 following the publication of The Bell Curve by R.
Herrnstein and C. Murray6. Part of this controversy arises because
IQ heritability is not well characterized. Paradoxically, direct versus
indirect analytic methods, both of which attempt to estimate
genetic effects on IQ unencumbered by environmental effects,
yield markedly different estimates7. Direct studies presumably
eliminate environmental covariance by evaluating relatives raised
apart; indirect studies presumably eliminate environmental covar-
iance by contrasting results from different study designs that have
complementary environmental covariance terms. Contrary to their
identical objectives, the former typically produces notably larger IQ
heritability estimates. We postulate that this paradox is attributable
in large part to the presence of unacknowledged maternal effects on
IQ.

In traditional quantitative genetic studies, the environment is
divided into maternal and external constituents1. We expand this
dichotomy to take account of the realities of IQ adoption studies,
lumping maternal environment and any shared external environ-
ment of adopted children into a single ‘pre-separation environ-
ment’. Because the duration of shared external environment is
usually small, pre-separation and maternal effects are roughly
equivalent. Both are distinct from maternal inheritance, which is
sometimes called a maternal effect8.

Our IQ analyses focus on the magnitude of the additive and non-
additive genetic components1, estimated to explain 60–85% of the
variation in IQ from adult monozygotic twin studies, and the
magnitude of maternal effects, usually assumed to be negligible.
To estimate these effects, we analysed 212 IQ studies (or more
precisely, correlations) based on 50,470 distinct pairings. The
analysis included 204 correlations from studies of zero and first-
degree relatives or their adoptive counterparts9. We supplemented
this set with some new twin studies published after 1981: a study of
monozygotic twins reared apart10, the Swedish adoption/twin study
of aging of monozygotic twins reared together and apart and
dizygotic twins reared together11, and two studies of monozygotic
and dizygotic adult twins reared together12.

Each IQ correlation and related sample size is classified by kind of
study (Fig. 1). We evaluate these data using a standard quantitative
genetic model for the components of variance (Table 1) and
Bayesian meta-analysis13, a standard technique for combining
information across studies. Our model is built on two levels of
distributional assumptions: we assume a likelihood model for the
observed correlations among relatives in each type of study; and we
specify a prior distribution for the parameters of the model. We
assume any standardized component of variance (positive correla-
tion) is a priori equally likely to lie between zero and one. These
prior distributions make the Bayesian parameter estimates similar
to maximum-likelihood estimates.

All correlations were Fisher-transformed and, after transforma-
tion, observed correlations from the same study design follow a
normal distribution if they differ only by measurement error.
However, several studies are outliers under a normal likelihood,
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suggesting that the studies are more heterogeneous with respect to
variability than is predicted by measurement error alone. Hetero-
geneity is expected because some study methods differ markedly9.
We account for the heterogeneity by assuming that the transformed
values follow a t-distribution with two degrees of freedom.

We fit four models to the data. The richest of these models, model
IV, allows for additive and non-additive genetic effects, twin and
singleton maternal effects, and external environmental effects for
twins, siblings and parent–offspring. The remaining models differ
from model IV in that Models I and II constrain the maternal effects
to be zero, and models I and III constrain the external environ-
mental effects to be equal.

The models are evaluated informally by comparing the average
observed correlations for each of the nine study designs to the
models’ predicted values (Table 2). Model I predicts the correlation
for the dizygotic twins raised together very poorly. Except for
monozygotic twins raised apart, the predicted correlations for
each study type are similar for models II–IV. The observed correla-
tions for monozygotic twins raised apart (Fig. 1) ranges from 0.62 to
0.78, with a mean of 0.74. The most extreme predicted correlation is
that obtained from model II (0.50), and the closest value is from
model IV (0.74), but model III also predicts the correlation well,
with a value of 0.68. Maternal effects seem to be essential for a good
fit to the data.

Models III and IV estimate a large maternal effect for twins and a
smaller effect for siblings (Table 3). Model III attributes 20% (95%
Bayesian credible interval: 15–24%) to the former and 5% (1–8%)
to the latter. The difference between these estimates is intuitively
appealing. Twins share the womb concurrently, whereas siblings
share the womb serially. Hence, although a mother may have similar
physiological status and personal habits from one pregnancy to
another, the temporal separation between progeny apparently
diminishes the correlation of sibling IQ.

Remarkably, the covariance attributed to environmental compo-
nents is also roughly equal for models II–IV (Table 3). The notable
difference among the models is how the covariance resulting from
shared environments is partitioned.

The models are compared formally using Bayes factors15,16 to
obtain their posterior probabilities. A priori each model is assumed
equally likely. The best model is model III, with a posterior
probability of 0.95, followed by model IV, with probability 0.05,
and models I and II, with probabilities near zero. Hence model II17,
which is commonly used to describe the quantitative genetics of IQ,
is rejected when it is compared to model III, which involves a
common home environment and a maternal environment that
varies depending on whether the pair are twins or not. Model III
is favoured over model II by a posterior factor of almost 10,000 to 1,
primarily on account of model II’s fit to the observed data from
monozygotic twins reared apart: its predicted value is about six
standard deviations from the mean. Model IV, which combines
features of models II and III, seems to be overparameterized and its
environmental components make little sense (Table 3).

Model III’s parameter estimates (Table 3) define estimates of IQ
heritability. However, the concept of heritability has narrow-sense
and broad-sense interpretations. Narrow-sense heritability
accounts for additive genetic effects only; broad-sense heritability
encompasses both additive and non-additive genetic effects. This
distinction is often lost in the ‘IQ debates’, even though it is critical
to the social implications of IQ heritability18. Based on model III,
broad- and narrow-sense heritability estimates are 48% and 34%,
respectively; both agree closely with estimates from studies using
standard quantitative genetic models19,20 and indirect estimation
methods7,21.

An IQ enigma has been developed7 by contrasting the typically
larger direct heritability estimates with complementary, smaller
indirect estimates. For example, an indirect estimate of broad-

Figure 1 IQ correlations for certain study designs (see Table 1 for types) plotted

versus sample size. The horizontal line indicates the mean correlation. Note the

scatter about each mean is consistent with decreasing variance with increasing

sample size, suggesting that much of the variance in the IQ correlations is due to

sampling variance. Four type 4 studies, with missing sample size, are assigned

the median sample size of 201. We analyse all study types6 with zero or first-

degree relatives and their adoptive counterparts with the exception of adopted/

adopted siblings. Adopted/adopted studies are excluded because the observed

correlations are extremely variable relative to the other sets of correlations, and

are inconsistent with the remainingdata. If these data are included in our analysis,

there is no appreciable difference in variance components estimates.

Table 1 Expected covariances by relationship

Relationship Raised Type (j) Expected covariance
.............................................................................................................................................................................

Monozygotic twins Together 1 j2
A þ j2

D þ j2
MT

þ j2
EST

Monozygotic twins Apart 2 j2
A þ j2

D þ j2
MT

Dizygotic twins Together 3 1
2
ð1 þ rj†

AÞj2
A þ 1

4
j2

D þ j2
MT

þ j2
EST

Siblings Together 4 1
2
ð1 þ rj†

AÞj2
A þ 1

4
j2

D þ j2
MS

þ j2
ESS

Siblings Apart 5 1
2
ð1 þ rj†

AÞj2
A þ 1

4
j2

D þ j2
MS

Midparent/child Together 6 j2
A þ j2

ESP

Single-parent/child Together 7 1
2
ð1 þ rÞj2

A þ j2
ESP

Single-parent/child Apart 8 1
2
ð1 þ rÞj2

A

Adopting parent/child Together 9 j2
ESP.............................................................................................................................................................................

Midparent refers to the average of the two parents’ IQ. Covariances are denoted by j2

with subscripts for genetic and environmental effects: A, additive genetic; D, non-
additive genetic; G, total genetic; MT , maternal (twins); MS, maternal (siblings); EST, ESS

and ESP are environments for twins, siblings and parent/child, respectively; T, total.
Standardized covariances, j2

k/j
2
T, are denoted by j†

k. Assortative mating is factored into the
model by the correlation of IQs between mates, r. Following ref. 9, we take r to be 0.33
(s:d: ¼ 0:03). Reanalysing the data with r ¼ 0:33 6 2s:d had no notable effect on our
findings.

Table 2 Posterior means for IQ correlations by study type

Model

Relationship Raised Type 0 I II III IV
.............................................................................................................................................................................

Monozygotic twins Together 1 0.85 0.85 0.85 0.85 0.85
Monozygotic twins Apart 2 0.74 0.68 0.50 0.68 0.74
Dizygotic twins Together 3 0.59 0.46 0.59 0.59 0.60
Siblings Together 4 0.46 0.46 0.44 0.44 0.44
Siblings Apart 5 0.24 0.28 0.23 0.27 0.28
Midparent/child Together 6 0.50 0.51 0.52 0.51 0.50
Single-parent/child Together 7 0.41 0.43 0.40 0.39 0.40
Single-parent/child Apart 8 0.24 0.25 0.23 0.22 0.21
Adopting parent/child Together 9 0.20 0.18 0.17 0.17 0.18
.............................................................................................................................................................................
Column 0 contains the weighted average of the observed correlations, and columns I–IV
contain the predicted values of these correlations from models I–IV. The predicted correla-
tions are obtained through a Bayesian simulation procedure that evaluates integrals
numerically14.
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sense heritability is obtained by multiplying twice the difference
between monozygotic and dizygotic twin correlations (Table 2). For
these data (Table 3), the broad-sense heritability estimate of 0.52 is
slightly greater than that obtained from model III, which is expected
because the contrast overestimates heritability by about 0.5j†

D (see
Table 1). The correlation for monozygotic twins reared apart yields
a much larger direct estimate of 0.74. The difference between
estimates can be reduced by subtracting the maternal effect from
the direct estimate, yielding a value of 0.54.

Twice the observed correlation for siblings reared apart yields
another direct, biased estimate of broad-sense heritability; the bias
is −1/2j†

D, estimated from model III to be −7.5%. This direct
estimate, 0.48, is much lower than the direct estimate obtained
from the monozygotic twins reared apart, but it is similar to the
indirect estimate and model III’s estimate. The similarity to model
III’s estimate can be attributed to the balance between the bias and
the 5% sibling maternal effect, which the direct estimates ignores.
Thus maternal effects may resolve the IQ enigma by rectifying
disparate direct and indirect heritability estimates.

It is not difficult to gather evidence for the importance of
maternal environment. There is substantial brain growth in utero,
and the brain has 70% of its final mass within a year of birth.
Additionally, various studies indicate that IQ can be affected by
prenatal environment: IQ is positively correlated with birth weight
even after controlling for gestational age22,23; twins, who usually
weigh less than singletons, average 4–7 points lower on IQ tests24;
some dietary supplements can raise IQs25,26; alcohol, drug and
cigarette consumption may lower IQs27,29; and lead exchange from
mother to fetus may reduce IQ30.

In contrast, the large direct estimates derived from studies of
adult twins raised apart have been explained by the conjecture that,
as twins get older, IQ becomes more heritable. Evidence has been
provided to support this ‘age hypothesis’4,12, although the results are
inconclusive and relationship unclear.

To compare the age- and maternal-effects hypotheses, we related
the IQ correlations to subject age whenever possible. We classified
the studies by age into three categories, namely youths (,14 years),
adolescents (14–18 years) and adults (.18 years), based on median
or mean subject age for each study; we assigned 71% of the twin and
sibling studies. Because they are cross-generational, assigning
parent–offspring studies was problematic: in one treatment we
included all such studies as adolescents, and in another we excluded
all such studies except for parent/child apart. We then extended
model II. This age-effect model allowed heritability to increase with
age by two adjustments: a multiplicative increase in the genetic
components of variance, namely b−1/2 for youths, b0 for adolescents,
and b2 for adults; and a multiplicative decrease in the shared
environment components of variance, namely c1/2 for youths, c0

for adolescents, and c−2 for adults. For b and c . 1, these multi-
plicative functions have forms consistent with those hypothesized in
ref. 12. Our prior distribution for b and c favoured the age
hypothesis slightly by putting uniform mass between (1/Î2,Î2).

The parameter estimates for b (1.13,[1.05–1.19]) and c
(1.21,[1.03–1.38]), based on the analysis of all types of study, are
consistent with the age hypothesis. Because Bayes factors (BF)
impose a penalty for added complexity we also considered a one-
parameter age-effect model with b ¼ c. This model is favoured over
the two-parameter model (BF ¼ 2:5), and is also favoured to a small
degree over model II (BF ¼ 11, b ¼ 1:10, [1.04–1.16]). Similar
results are obtained when parent–offspring studies are excluded.
However, no version of model II is competitive with model III by
Bayes factor. Moreover, age-effects models fail to fit the data better
than a simpler model that invokes maternal effects.

Our statistical analyses cannot, of course, be considered defini-
tive. Age may affect IQ heritability, even though the age model does
not gain much support from our analyses. Moreover, our analyses
do not preclude other, unmodelled factors, such as cultural inheri-
tance and interaction between genes and the environment, from
having important effects on IQ. Despite these caveats though,
several important conclusions emerge from our results.

Adoption designs are a popular means of estimating IQ herit-
ability. Associated analyses, however, usually assume negligible
maternal effects. By contrast, our results show that 20% of twin
and 5% of sibling covariance may be attributable to maternal effects.
These results have two implications: a new model may be required
regarding the influence of genes and environment on cognitive
function; and interventions aimed at improving the prenatal envir-
onment could lead to a significant increase in the population’s IQ.
Moreover, some of Herrnstein and Murray’s conclusions6 regarding
human evolution such as the development of cognitive castes and
IQ dysgenics, arise from their belief that IQ heritability is at
least 60%, and is probably closer to the 80% values obtained
from adoption studies. Our results suggest far smaller heritabilities:
broad-sense heritability, which measures the total effect of genes on
IQ, is perhaps 48%; narrow-sense heritability, the relevant quantity
for evolutionary arguments because it measures the additive effects
of genes, is about 34%. Herrnstein and Murray’s evolutionary
conclusions are tenuous in light of these heritabilities18. M
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Antagonists of NMDA (N-methyl-D-aspartate)-type glutamate
receptors disrupt several forms of learning1–8. Although this
might indicate that NMDA-receptor-mediated processes are cri-
tical for synaptic plasticity, there may be other mechanisms by
which NMDA-receptor antagonism could interfere with
learning1,9–12. For instance, fear conditioning would be blocked
by microinfusion of the NMDA-receptor antagonist AP5 (D,L-2-
amino-5-phosphonovalerate) into the basolateral amygdala6,13,14 if
AP5 inhibited routine synaptic transmission, thereby reducing
the ability of stimuli to activate amygdala neurons15,16. In second-
order fear conditioning17,18, the reinforcer is a fear-eliciting con-
ditioned stimulus rather than an unconditioned stimulus. Expres-
sion of conditioned fear is amygdala-dependent19,20 and so
provides a behavioural assessment of the ability of the reinforcer
to activate amygdala neurons in the presence of AP5. We report
here that intra-amygdala AP5 actually enhances expression of
conditioned fear to the conditioned stimulus that provides the
reinforcement signal for second-order conditioning. Neverthe-
less, acquisition of second-order fear conditioning is completely
blocked. Our findings strongly support the view that NMDA
receptors are critically involved in synaptic plasticity.

Pavlovian fear conditioning seems to involve the convergence of
inputs representing the conditioned stimulus (CS) and the uncon-
ditioned stimulus (US) in the basolateral amygdala21. Micro-
infusion of NMDA receptor antagonists into the amygdala blocks
the acquisition of fear conditioning, measured using the fear-
potentiated startle response6,13. This is consistent with data from
other behavioural models suggesting that NMDA receptor activa-
tion is critical for the synaptic plasticity underlying several forms of
memory1–8. Alternatively, NMDA receptor blockade might interfere
with the ability of the CS or the US to activate cells in the
amygdala15,16. It is unlikely that the ability of the CS to activate
amygdala neurons is impaired, because local infusion of NMDA
antagonists, in contrast to AMPA antagonists19, does not interfere
with the expression of fear conditioning previously acquired6,13.
However, the ability of the US (typically foot shock) to activate
amygdala neurons is not behaviourally testable in this learning
protocol.

In pavlovian second-order fear conditioning, a second-order CS
acquires conditioned fear by being paired with a first-order CS that
has been paired previously with foot shock. In this case, the ability of
the reinforcer to activate the amygdala can be assessed by the degree
to which the first-order CS elicits conditioned fear. Thus, second-
order conditioning can be used to evaluate whether an NMDA-
receptor antagonist blocks acquisition of conditioned fear or inter-
feres with synaptic transmission of the reinforcement signal in the
amygdala.

To test this, male albino rats were implanted with bilateral
cannulae aimed at the basolateral amygdala. In four sessions of

Figure 1 Fear-potentiated startle to the second-order CS in ACSF (top) and AP5

(bottom) groups tested before second-order conditioning training, and after two

(post-training 1), and three (post-training 2) sessions of second-order condition-

ing training. Fear-potentiated startle (hatched bars, 6s.e.m.) was calculated as

the difference between startle amplitude in the presence (white bars, 6s.e.m.)

and absence (black bars, 6s.e.m.) of the visual CS. No infusion was given

immediately before tests. An analysis of variance (ANOVA) revealed a significant

group-x session interaction, Fð2; 34Þ ¼ 3:8, P , 0:05. In the ACSF group, fear-

potentiated startle increased significantly relative to pretraining baseline in post-

training tests 1 and 2; values of t(8) were 2.4 and 2.6 respectively, P , 0:05. In the

AP5 group, the CS actually tended to inhibit startle relative to the pretraining

baseline in post-training tests 1 and 2, although this effect was not significant; t(9)

was 0.7 and 1.3, respectively.


