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Abstract—Magnetic Resonance Imaging (MRI) uses applied
spatial variations in the magnetic field to encode spatial position.
Therefore, non-uniformities in the main magnetic field can cause
image distortions. In order to correct the image distortions, it
is desirable to simultaneously acquire data with a field map
in registration. We propose a joint estimation (JE) framework
with a fast, non-iterative approach using harmonic retrieval
(HR) methods, combined with a multi-echo EPI acquisition. The
connection with HR establishes an elegant framework to solve the
JE problem through a sequence of one dimensional HR problems
in which efficient solutions are available. We also derive the
condition on the smoothness of the field map in order for HR
techniques to recover the image with high signal-to-noise ratio.
Compared to other dynamic field mapping methods, this method
is not constrained by the absolute level of the field inhomogeneity
over the slice, but relies on a generous pixel-to-pixel smoothness.
Moreover, this method can recover image, field map, and T2*
map simultaneously.

Index Terms—Image reconstruction, field inhomogeneity, func-
tional MRI, EPI, harmonic retrieval, geometric distortions.

I. INTRODUCTION

A. Motivation

CONVENTIONAL image reconstruction in MRI relies on
a Fourier transform relationship between the acquired

data and the image of the object. Given a continuous object
with contrast-weighted spin density represented by f(r) and
a specific k-space trajectory k, which is a function of time t
(however for our convenience we will write t as a function of
k) and neglecting field inhomogeneity the signal s(k) during
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the readout can be written as [1]

s(k) =
∫

f(r)e−i2π(k·r)dr, (1)

However, in practice the magnetic field across the object being
imaged is not homogeneous, which leads to distortions in the
resulting image. Due to magnetic susceptibility differences
near air/tissue interfaces, an inhomogeneous magnetic field
exists in many regions of the body and brain [2], [3]. This
in turn leads to an off-resonance in the frequency and the
relation (1) between MRI data and object is no longer a Fourier
transform [4]–[7]:

s(k) =
∫

f(r)e−iω(r)t(k)e−t(k)/T∗
2 (r)e−i2π(k·r)dr, (2)

where ω(r) is a map of the inhomogeneity of the magnetic
field, i.e., a field map,1 and T ∗

2 (r) term models the destruction
of transverse magnetization in the spatial domain. Based on
(2) we notice that the long readout time of single-shot acqui-
sitions such as echo-planar imaging (EPI) or spiral imaging
leads to a significant diversion from the standard model (1)
and causes image distortion [4], [8]. As field inhomogeneity
scales with magnetic field, the current trend towards higher
field systems makes potential image distortions and correction
methods vital to continued accurate imaging. In addition, fast,
single-shot acquisitions make scans very sensitive to magnetic
susceptibility differences at air/tissue interfaces in the brain
[3]. This can cause severe distortions in functional imaging of
the brain.

As an example of the impact of magnetic field inhomogene-
ity, consider functional magnetic resonance imaging (fMRI),
which plays an important role in studying localized brain
function, both in examining healthy cognitive function and
in clinical patient groups. Geometric distortions in EPI and
blurring effects in spiral imaging caused by field inhomo-
geneity severely affect predictions about the subject’s brain
[see Fig. 5(c) and Fig. 6(c)]. Many different methods to
correct the distortions have been proposed [9]–[15]. Most of
these methods involve two steps: estimating magnetic field
variation and then compensating for this variation during
image reconstruction. The methods differ both in how they
estimate the field map and how they use that information
to correct the images. A common method measures the field
map by acquiring two images (which are called the reference

1In our notations, we assume that the field map is measured in rad/s.
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images) with slightly different echo times (TEs), which are
times at which the echoes appear, and computing the field
map based on their phase difference divided by difference in
TEs [7]. In the case of a rectilinear trajectory, such as echo
planar imaging (EPI), once the field map is found, correction
of the images can be accomplished by shifting image pixels
and correcting their intensities based on the estimated field
map [9]. This conventional method for finding the field map
from reference images implicitly assumes that magnetic field
inhomogeneity is static, an assumption that is violated due to
subject motion or physiological changes [4]. To overcome this
problem Nayak and Nishimura [6] used multi-shot acquisition
to generate multiple reference images, each subsequent shot
having a delayed TE. Yet, this approach is limited by its
temporal resolution (multi-shot) and by the global range of
the field map that can be recovered. In addition, the approach
estimates distorted field maps that are used to correct the
images. Some other methods try to bypass estimation of the
field map. For example, in [2] and [16] two images of the same
object are acquired with preparation and readout gradients
altered by some ratio α. The corrected image is produced
by combining and rectifying these two acquired images pixel
by pixel. However, such rectification method requires iden-
tification of an initial pair of corresponding points. Another
recent approach suggested by [4], [17] is to combine the two
steps together: reconstruct the undistorted image and field
map simultaneously from the acquired data. This problem is
called the joint estimation (JE) problem. The advantages of
the JE approach is that it needs only single shot excitation
to estimate the field map dynamically and does not require
acquiring reference images, thus bypassing the problem of the
displacement error between these images. Moreover, the field
map is estimated dynamically, allowing to account for motion
or physiological changes; it is also in registration with the data
and undistorted by field inhomogeneity effects, so there is no
need to realign the field map with the data prior to being able
to apply a correction scheme.

B. Goal of This Work

In [4] the JE problem was solved as a nonlinear least-
squares optimization problem with regularization using iter-
ative conjugate gradients (CG) method. This method requires
an initial guess of the field map for the first iteration and it is
computationally expensive. In this work, we propose a non-
iterative approach to the JE problem using harmonic retrieval
(HR) techniques. We show that under certain approximation
the JE problem can be treated as a sequence of 1D HR
problems in which efficient solutions are available [18]. Thus,
we present a method that can dynamically estimate the field
map non-iteratively. Advantages of this approach include low
complexity and robustness to incorrect local minima solutions
of the CG method. In addition, no prior information for field
map is needed. We concentrate on the case when k-space
trajectory is EPI, which is commonly used for functional
imaging, and we modify the EPI trajectory to be a multi-echo
acquisition. We also point out a condition on the smoothness of
the original field map and characterize the restoration quality

as a function of field map. This condition shows that our
approach is not limited by the absolute field map range that
we can afford. In addition, experimental results show that the
restored image does not suffer from geometric distortions and
has much reduced signal loss artifact compared to the methods
that do not account for the field map.

The outline of the rest of the paper is as follows. Section
II recalls the mathematical formulation of the JE problem and
describes continuous and discrete equations of the problem
[4]. Section III shows the key contribution of our work: how
to solve the JE problem using HR techniques, which gives the
advantages that we discussed above, and a generous criteria for
this approach to work. Section IV considers practical issues
including choosing an appropriate HR technique for the JE
problem and designing a suitable data acquisition scheme.
Section V presents experimental results with simulated and
real data. Section VI presents our conclusions.

II. PROBLEM SETUP

Given the signal during the readout s(t) with specific k-
space trajectory k(t), the JE problem recovers the image f(r)
and the field map w(r), both satisfying (2) in the presence of
the T ∗

2 decay.
We use r = (x, y) to denote a location in the image

space; k = (kx, ky) to denote a location in the k-space; while
n = [n1, n2] and m = [m1, m2] are indexes for the discrete
locations of r and k, respectively.

Assume the object has size N1×N2. We expand continuous
image f(r) by linear expansion using the box function

ϕT(r) =

{
1, 0 ≤ x < T1, 0 ≤ y < T2

0, else
(3)

and its translated versions {ϕT(r − n � T ) = ϕT(x −
n1T1, y − n2T2)}n∈Z2 , where operator � denotes Schur-
Hadamard (element by element) matrix product. That is

f(r) =
∑
n

f [n]ϕT(r − n � T ) (4)

or we have f(r) = f [n] for r ∈ Vn, where Vn denotes
the voxel region [n1T1, (n1 + 1)T1] × [n2T2, (n2 + 1)T2] of
size T1 × T2 indexed by n = (n1, n2). And similarly, we
can approximate the continuous field map ω(r) and T ∗

2 decay
map T ∗

2 (r) with discrete signals ω[n] and T ∗
2 [n], respectively,

using the same box function. Notice that here we assume
constant intensity within a voxel for both the image and field
map, which ignores the possibility of intra-voxel gradients in
the field inhomogeneity.

Substituting (4) into (2) yields

s(k) =
∑
n

f [n]
∫

ϕT(r − T � n)e−iω(r)t(k)

×e−t(k)/T∗
2 (r)e−i2πk·rdr. (5)

Since ϕT(r−n�T ) = 1 when r ∈ Vn and 0 else, we only
need to consider r ∈ Vn in the integral in (5). In that region
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Fig. 1. Left: EPI sampling trajectory in k-space: Δ1, Δ2 are sampling
intervals in k-space. Right: EPI sampling trajectory in time domain: δ1, δ

′
2 are

time delays between samples along the kx and ky dimensions, respectively;
δ2 is a time delay from the origin until point A.

we have ω(r) = ω[n] and T ∗
2 (r) = T ∗

2 [n], which yields

s(k) =
∑
n

f [n]e−iω[n]t(k)e−t(k)/T∗
2 [n]

×
∫

ϕT(r − T � n)e−i2πk·rdr

=
∑
n

f [n]e−iω[n]t(k)e−t(k)/T∗
2 [n]ΦT(k)

×e−i2πk·(T�n),

where ΦT(k) def=
∫

ϕT(r)e−i2πk·rdr is the Fourier transform
of ϕT(r). Thus, the discretized form of the JE problem is
given by the following equation

s(k) def=
s(k)

ΦT(k)
=

∑
n

f [n]e−iω[n]t(k)e−t(k)/T∗
2 [n]

×e−i2πk·(T�n). (6)

III. PROPOSED APPROACH

In this section we show the main contribution of this work:
realizing and building a bridge between JE problem and
another problem, called Harmonic Retrieval (HR), which can
be solved using existing signal processing techniques.

A. Connecting JE to HR Problem

We assume the particular case of an EPI trajectory k as
described in Fig. 1. Denote those k-space lines along which
the data is acquired from left to the right as forward lines and
lines along which the data is acquired from right to the left as
backward lines.

Let δ1, δ
′
2 be the time delays and Δ1, Δ2 be the distances

in k-space between two consecutive samples of the EPI
trajectory along frequency-encoding (kx) and phase-encoding
axes (ky), respectively, as shown in Fig. 1. The total number of
samples along the horizontal and vertical axes is M1 and M2,
respectively. We also denote δ2 to be a time delay between
sampling the centers of adjacent horizontal lines, i.e., echo
spacing. Hence, the following relation holds

δ2 = δ1(M1 − 1) + δ′2. (7)

Next, we need to discretize continuous k-space trajectory k
and the related timing function t(k). The discrete function
k[m] has one single form for both forward and backward lines.
For simplicity in derivation and without loss of generality

through the Fourier shift theorem, we assume that k-space
sampling starts from the origin as it is depicted in Fig. 1:

k[m] =
[

m1Δ1

m2Δ2

]
. (8)

The continuous function t(k) takes different discrete forms
t[m] depending on the kind of the k-space line that we are
considering. From the figure we see that the timing delay for
the samples lying on forward lines (m2 is even) and backward
lines (m2 is odd) is expressed differently as the following:

t[m] =

{
m1δ1 + m2δ2, m2 even,

(M1 − 1 − m1)δ1 + m2δ2, m2 odd.
(9)

Forward lines: Substituting (8) and (9) into (6) while normaliz-
ing k-space locations by 1

FOV and spatial locations by FOV ,
which leads to T1 = 1/N1 and T2 = 1/N2, we obtain

s[m] =
∑
n

f [n]e−iω[n](m1δ1+m2δ2)

×e−(m1δ1+m2δ2)/T∗
2 [n]

×e−i( 2π
N1

m1Δ1n1+ 2π
N2

m2Δ2n2). (10)

In practice, the time interval δ1 between two samples
along the horizontal k-space line is two orders of magnitude
smaller than the time δ2 needed for the gradient to change
its direction and go to the next line, therefore δ1 � δ2.
Hence, we can assume that ω[n]δ1 ≈ 0 and δ1/T ∗

2 [n] ≈ 0.
The first approximation is widely used for EPI [9] and the
second approximation is easily satisfied noting that the typical
sampling readout δ1 is about 5 μs, whereas T ∗

2 [n] is usually
in the range from 10 ms to 100 ms. Setting Δ1 = 1 and
taking inverse DFT of both sides of the equation (10) along
horizontal m1 direction, we get

ŝ[n1, m2] =
N2−1∑
n2=0

f [n1, n2]

×
(

e−δ2/T∗
2 [n2]e−i(ω[n]δ2+

2π
N2

Δ2n2)

)m2

,

m2 = 0, ..., M2 − 1, (11)

where ŝ[n1, m2]
def= DFT−1

N1
{s[m1, m2]}. For a fixed n1

denote

an = f [n1, n],

zn = e−δ2/T∗
2 [n1,n]e−i(ω[n1,n]δ2+

2π
N Δ2n)

τm = ŝ[n1, m2], (12)

where n = n2, N = N2, m = m2, M = M2. Then we can
rewrite (11) as

τm =
N−1∑
n=0

anzm
n , m = 0, ..., M − 1. (13)

Backward lines: similarly, we get the following equation for
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backward case:

s[m] =
∑
n

f [n]e−i(ω[n](M1−1−m1)δ1+m2δ2)

×e−((M1−1−m1)δ1+m2δ2)/T∗
2 [n]

×e−i( 2π
N1

m1Δ1n1+
2π
N2

m2Δ2n2). (14)

Assuming again that w[n]δ1 ≈ 0 and δ1/T ∗
2 [n] ≈ 0, we

obtain the same problem formulation as equation (11) in
forward case. As a result, with this assumption, the forward
and backward lines can be treated in the same way.

In practice, since k-space coverage is symmetric, the ac-
quired data is s[k̃1, k̃2], where −N1

2 ≤ k̃1 < N1
2 and −N2

2 ≤
k̃2 < N2

2 . In this case we get the same derivation except that
the shift in k-space, s[k1 − N

2 , k2 − N
2 ] leads to a modulation

term in the spatial domain: f̃ [n] = f [n]e−iπn1e−iπn2 .

B. Harmonic Retrieval Methods

In (13), {τm} are the given data samples {ŝ[n1, m]},
whereas {an} and {zn} are unknowns. Solving (13) is pre-
cisely the 1D harmonic retrieval (HR), which can be solved
when M ≥ 2N (M complex data samples τm, 2N complex
unknowns an and zn). Given the complex values zn, we can
recover the field map and T ∗

2 map by noting that

|zn| = e−δ2/T∗
2 [n1,n],

∠zn = −ω[n1, n]δ2 − 2π

N
Δ2n. (15)

The HR problem (11) can be solved by noting that {zn} are
roots of the characteristic polynomial [19], [20]

zN + pN−1z
N−1 + ... + p1z

1 + p0z
0 = 0, (16)

where the polynomial coefficients pn, n = 0, ..., N − 1 are
solutions of the following matrix equation:⎡⎢⎢⎣

τ0 τ1 · · · τN−1

τ1 τ2 · · · τN

· · ·
τM−N−1 τM−N · · · τM−2

⎤⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎣
p0

p1

· · ·
pN−1

⎤⎥⎥⎦
︸ ︷︷ ︸

p

= −

⎡⎢⎢⎣
τN

τN+1

· · ·
τM−1

⎤⎥⎥⎦
︸ ︷︷ ︸

b

. (17)

Solving this equation gives coefficients {pn}, from which
we can find {zn} as roots of the polynomial in (16). Once
{zn} are found, the corresponding unknowns {an} can be
easily computed by solving the following linear equation with
a Vandermonde matrix Z:⎡⎢⎢⎣

τ0

τ1

· · ·
τM−1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
z0
0 · · · z0

N−1

z1
0 · · · z1

N−1

· · ·
zM−1
0 · · · zM−1

N−1

⎤⎥⎥⎦
︸ ︷︷ ︸

Z

⎡⎢⎢⎣
a0

a1

· · ·
aN−1

⎤⎥⎥⎦ . (18)

The total complexity of the proposed approach using HR
technique for a fixed n1 is O(N2

2 ) by exploiting the Toeplitz
and Vandermonde structures of the matrices A and Z, while
the existing method [4] solving JE problem for both the
image and field map using iterative CG method requires much
larger computation time O(N 2

1 N2
2 ) per each iteration [21].

The described above HR technique is called the LS Prony
method. Other techniques exist to solve the HR problem, such
as forward-backward (FB), total LS Prony (TLS), Cadzow
denoising, and iterated quadratic maximum likelihood (IQML)
methods [19], [20], [22]–[24]. FB method is a variation of LS
Prony method, where harmonics are assumed to lie on the
unit circle. The rest of the listed methods are HR methods
which deal with the noise in the data. Particularly, IQML
gives a maximum-likelihood solution to the HR problem
and it asymptotically reaches the Cramer-Rao lowest bound
on the estimated harmonics as the number of data samples
approaches infinity. Its first iteration coincides with the TLS
Prony method.

C. Condition on the Field Map Smoothness

In the noiseless case for each fixed n1 the HR problem
(13) solves for each column of f [n1, n2] of the image and a
corresponding phase sequence

θn2 = −∠zn2 = ω[n1, n2]δ2 +
2π

N2
n2Δ2, (19)

which we call as the harmonics, but the order of θn2 (and
hence, f [n1, n2]) in general cannot be preserved, since in the
HR problem (13) reordering of {an} and {zn} does not change
the data {τm}. To resolve this ambiguity, we require the
sequence θn2 = ω[n1, n2]δ2+ 2π

N n2Δ2 to be strictly increasing
with respect to n2, i.e.

ω[n1, n2]δ2 +
2π

N2
n2Δ2 < ω[n1, n2 + 1]δ2

+
2π

N2
(n2 + 1)Δ2, (20)

which is equivalent to

ω[n1, n2] − ω[n1, n2 + 1] < 2πΔ2
N2δ2

, for all n1, n2. (21)

We call this condition the smoothness condition, which
requires the field map to be sufficiently smooth. Most standard
methods of estimating the field map are limited by the overall
field map range that they can afford. Instead, here we require
a generous smoothness condition (21) on the field map, which
in practice is satisfied. For example, given δ2 = 0.5 ms
and 64 × 64 data samples, the smoothness condition requires
ω[n1, n2] − ω[n1, n2 + 1] < 393 rad/s or 62.5 Hz. Thus, in
this case our approach only requires the variation in field map
of adjacent voxels to be bounded by 62.5 Hz, while the whole
variation range of the field map can be as much as 63 times
larger.

If the smoothness condition is not satisfied, the HR method
will retrieve the harmonics with some local swapping of the
order. This will lead mostly to a discontinuity in the recovered
image and field map. Since there is not any prior information
about the correct order of the harmonics, we check for any
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voxel of the recovered image that has discontinuity and we
replace its value by an interpolated intensity of the neighbor
voxels. This condition rarely happens in the fMRI data that
we have collected so far.

Without the field map term, the nth
2 harmonic is 2 π

N2
n2Δ2.

Thus, the smoothness condition is automatically satisfied and
plotting all harmonics over n2 gives a straight line ranging
from 0 to 2π. The presence of the field map can be viewed as
fluctuations around this straight line. Noise in the field map
ηω can further push some harmonic at position n2 too close
to its neighbor harmonic at n2 − 1 or n2 + 1, which makes
the JE problem ill-conditioned or even ill-posed.

When the data ŝ[n1, m2] are contaminated with noise η,
which is assumed to be additive complex uncorrelated Gaus-
sian noise N (0, σ2I), then the HR method returns an estimate
θ̃n2 of θn2 . We denote the noisy observations as

y = s + η, (22)

where s is a vector consisting of all signal samples ŝ[n1, m2],
m2 = 0, ..., M2 − 1. In the case of an unbiased estimator,
the harmonic separation gn2 = θn2+1 − θn2 is the distance
E[θ̃n2+1] − E[θ̃n2 ] between the means of two distributions.
Thus, assuming uniform distribution in the range [0; 2π] for
parameters θ̃n2 , we can impose the following condition on gn2

so that the two harmonics are resolvable [25]:

gn2 ≥
(√

CRBθn2+1 +
√

CRBθn2

)
, (23)

where CRBθn2
is the Cramer-Rao lower bound (CRB) on

the variance of the error between estimated θ̂n2 and exact
parameters θn2 of the model. This CRB for the HR problem
has been studied and derived in the literature (see [26] and
other results on CRB in [25], [27]). This condition is just one
reasonable necessary condition for gn2 , because if we choose
a different resolvability criteria, we will get a different bound
on gn2 . Using (19) we get

gn2 = θn2+1 − θn2 = δ2(ω[n1, n2 + 1]−ω[n1, n2]) +
2π

N2
Δ2.

Substituting this equation into (23) we get the following
constraint:

ω[n1, n2]−ω[n1, n2+1] ≤
2πΔ2
N2

− √
CRBθn2+1 −

√
CRBθn2

δ2
,

(24)
which is the smoothness condition in the presence of noise.

In [28], a noise fluctuation study on 5 normal subjects was
performed to obtain the average value of SNR(y) at different
spatial resolutions and field strengths. For our case, where the
resolution is 3×3×3 mm3 and field strength is 3 T, the listed
SNR(y) was 87.80 or 38.8 dB, where

SNR(y) =
||s||22

||s − y||22
or SNRdB(y) = 10 log10 SNR(y).

(25)
At this signal-to-noise ratio and for the same practical values
δ2 = 0.5 ms and 64 × 64 data samples as we used in the
noiseless case, condition (24) requires the lowest allowable
value of ω[n1, n2] − ω[n1, n2 + 1] is approximately 60.6 Hz,
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Fig. 2. Upper bound on Δωn2 in Hz, given δ2 = 0.5 ms and N2 = 64:
(a) SNR of observations y is 38 dB; (b) SNR of observations y is 19 dB.
For clarity, only the region of the subject is shown.

as shown in Fig. 2. When SNR of y is two times smaller (19
dB), the lowest allowable value of ω[n1, n2] − ω[n1, n2 + 1]
decreases to 46.1 Hz. In comparison, the lowest allowable
value is 62.5 Hz in the noiseless case. The plots in Fig. 2
were produced from a ground truth image and field map of
the subject’s brain. We chose a column from a field map low
in the brain that ranged from −53.34 Hz to 61.77 Hz, avoiding
regions outside the brain.

D. Proposed Algorithm

Below is the summary of proposed algorithm (see Fig. 3
for illustration):

1) Given acquisition data samples s[n1, n2], divide cor-
respondingly by the discrete samples of the function
ΦT(k) and take inverse DFT along m1 axis or 1D grid
if the readout is ramp-sampled. Denote the result by
ŝ[n1, m2].

2) For each fixed value of n1 solve the 1D HR problem
described by (11), (12), and (13) to recover ω[n], image
f̃ [n], and T ∗

2 [n] map.

IV. METHODS

A. Proposed Acquisition Scheme

As it was mentioned, from (13) it can be seen that 2N
unknowns from the magnitude and phase of the an term,
which is the set of all image voxels at a particular column
n1, and 2N unknowns from the magnitude and phase of the
zn term, which contain T ∗

2 and field map values at the nth
1

column respectively, lead to the minimum of 2N complex
data samples τm, which are the desired MRI data samples to
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DFT−1 HR

Fig. 3. Illustration of the proposed approach.

be collected. Hence, HR requires size of the collected data to
be larger than the final resolution of the image, field map, and
T ∗

2 map by a factor of 2 along the phase-encoding direction,
which motivates for a double-echo acquisition. Standard EPI
data is not sufficient for the current HR framework. One way
to double the number of k-space lines would be to decrease
the spacing Δ2 in k-space along phase-encoding direction
twice, thus getting twice more k-space lines. Although this
approach indeed works, it reduces the overall range of φn2

terms from [0, 2π] to [0, π], which makes the JE problem more
ill-conditioned. Instead, consider k-space trajectory shown in
Fig. 4(a), where a standard EPI trajectory is centered about the
k-space origin and traversed twice. It can be verified that with
this trajectory, the equation (6), after making an assumption
that ω[n]δ1 ≈ 0 and δ1/T ∗

2 [n] ≈ 0 and taking inverse DFT
along m1, becomes

ŝ1[n1, m2] =
N2−1∑
n2=0

f [n1, n2]e−m2δ2/T∗
2 [n2]

×e
−i(ω[n]m2δ2+ 2π

N2
Δ2n2m2) (26)

for the first time traversing through the k-space center, i.e.
m2 = 0, ..., M2/2 − 1, and

ŝ1[n1, m2] =
N2−1∑
n2=0

f [n1, n2]e−(m2δ2+Tjump)/T∗
2 [n2]

× e
−i

(
ω[n](m2δ2+Tjump)+ 2π

N2
Δ2n2(m2−M2

2 )

)
(27)

for the second time, where m2 = M2/2, ..., M2−1 and Tjump

is the time required to reset the position in k-space between
the two passes through the center of k-space. Notice that the
desired data by HR, as we discussed, should be

ŝ[n1, m2] =
N2−1∑
n2=0

f [n1, n2]e−m2δ2/T∗
2 [n2]

×e−i(ω[n]m2δ2+
2π
N2

Δ2n2m2) (28)

ky

t

Tjump

M2/2 − 1

−M2/2

(a)

extract

32

16

−16

−32

48.29 ms

ky

t

Tjump

TE1

TE2

(b)

Fig. 4. (a) Proposed k-space trajectory for the HR framework; (b) Proposed
interleaved k-space trajectory.

for both the first and second halves of the data, i.e. m2 =
0, ..., M2 − 1. Hence, the first half of the data produced with
the considered k-space trajectory is the same as the first half
of the data that the HR framework needs. We further notice
that the term 2π

N2
Δ2n2(m2 − M2

2 ) in (27) can be simplified
to 2π

N2
Δ2n2m2 when M2 is a multiple of 2N2. In this case,

comparing (26) and (27) with (28), the considered trajectory
satisfies the HR framework when Tjump = 0. We keep Tjump

short to try to minimize its effect on the estimation scheme.
In our sequence Tjump is 420 μs, which is small on the order
of one δ2.

We can further extend our proposed k-space trajectory as
shown in Fig. 4(b), so that we could also obtain a higher
resolution standard EPI data and then use them together
with the obtained from HR image and field map of a lower
resolution to fit the iterative CG reconstruction proposed in
[4]. Note that the magnitude MR image, field map, and T ∗

2

map can all be calculated from the sequence illustrated in Fig.
4(b) using conventional post-processing methods.

The sequence parameters are the following: dwell time
δ1 = 3.4 μs, echo spacing δ2 = 0.5 ms, echo times TE1 = 25
ms and TE2 = 41 ms, Tjump = 420 μs, TR = 2 s, and
a stack of 20 2D slices is acquired every TR. Specifically,
to acquire 64 × 64 MRI data, we consider k-space window
(k-space is normalized by 1

FOV ) −32 ≤ kx ≤ 32 and
−32 ≤ ky ≤ 32. In that k-space region we cover the first
subregion −32 ≤ ky ≤ 16 along a standard EPI trajectory (by
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alternating the polarity of the readout gradient and applying the
phase-encoding gradient blips) and then the second subregion
−16 ≤ ky ≤ 32 also along the same trajectory. Then,
the data from both the first and the second subregions that
fall within the range −16 ≤ ky ≤ 16 are extracted and
stacked. By doing this we get the two k-space subregions
interleaved and the extracted 64 × 64 data represents the
oversampling of k-space center. We should also point out
that in practice we use ramp-sampling in the kx direction
along with oversampling, providing a more time efficient EPI
readout. So instead of getting 64 sampled along kx direction,
we get 128 samples within the range −32 ≤ kx ≤ 32. Then,
we use the gridding procedure [29] to generate 64 uniformly
spaced image locations across the field of view in the x-
direction. At the end of the acquisition window we apply
the spoiler to spoil residual magnetization to prepare for the
excitation of the next slice.

At the beginning of the EPI readout, we collect 3 lines (2
forward and 1 backward) at ky = 0 for correcting ghosting
artifact, which is caused mainly by eddy currents. Eddy
currents cause odd and even echo lines to have an alternating
shift in the k-space along the frequency encoding direction,
which in turn leads to the phase ramps in the image domain,
visualized as a ghost effect. Acquiring reference lines with
no phase encoding helps to estimate and remove this effect.
We used the standard single pair, 3 reference line method to
correct for Nyquist ghost, where the first and third lines were
averaged together to obtain an average forward line with the
same echo time as the single backward line (refer to [30]).

Along with the mentioned advantages of the proposed acqui-
sition scheme, there are trade-offs. One obvious disadvantage
is the reduction of the number of slices that could fit within
a TR time interval, since the acquisition time per each slice
increases compared with the conventional gradient-echo EPI
sequence. For a conventional EPI sequence, the echo time
is 25 ms and there is a half of k-space left to acquire after
the echo, i.e. 16 ms. Given a 2 ms RF pulse (of which half
counts towards TE), the total time for a single slice would be
(1+25+16) = 42 ms. For our proposed acquisition, recall that
the first echo time is 25 ms and the second is 41 ms. With 16
ms of additional data acquisition after the last echo, the total
scan time per slice now is (1 + 41 + 16) = 58 ms, which is
an increase of 16 ms compared to the normal EPI acquisition.
Thus, the number of slices that could be scanned will decrease.
Second trade-off is that the acquisition will experience a more
significant T ∗

2 decay, especially the second half of the data.
This is a main reason for the signal loss in the acquisition.
Note that we are modeling voxels as having constant field
map, so any gradients would result in a decrease in T ∗

2 value
for that voxel. We may not be able to estimate the signal from
the regions of a severe signal decay, which is faster than the
echo time of our sequence.

B. Regularization

Recall equation (12), from which we see that the T ∗
2 map

can be estimated as the following:

T ∗
2 [n] = −δ2/ ln |zn|. (29)

Due to the characteristics of the logarithmic function in the
region when |zn| ≤ 1, small perturbations in |zn| lead to large
perturbations in the T ∗

2 [n] value, which implies the need of
the regularization in the case of high noise level in the data.
In practice the T ∗

2 [n] map has values ranging in the order of
10 ms to 100 ms, which means that in the case δ2 = 0.5
ms, the magnitude of zn is e−δ2/T∗

2 [n] = 0.95 and 0.995,
respectively. This fact is taken as a prior knowledge about
|zn| and incorporated into the JE model.

Suppose that |zn| = α. Using similar arguments as in
the Forward-Backward algorithm [19] we can show that in
addition to the matrix equation (17) we have the following
equation:⎡⎢⎢⎣

τ∗
N c∗N (α) τ∗

N−1c
∗
N−1(α) ... τ∗

1 c∗1(α)
τ∗
N+1c

∗
N (α) τ∗

Nc∗N−1(α) ... τ∗
2 c∗1(α)

· · ·
τ∗
M−2c

∗
N (α) τ∗

M−3c
∗
N−1(α) ... τ∗

M−N−1c
∗
1(α)

⎤⎥⎥⎦
︸ ︷︷ ︸

Aα

×

⎡⎢⎢⎣
p0

p1

...
pN−1

⎤⎥⎥⎦
︸ ︷︷ ︸

p

= −

⎡⎢⎢⎣
τ∗
0 c∗0(α)

τ∗
1 c∗0(α)

...
τ∗
M−N−2c

∗
0(α)

⎤⎥⎥⎦
︸ ︷︷ ︸

bα

, (30)

where

c(α) =
[

(αN )∗/α0 (αN−1)∗/α1 ... (α0)∗/αN
]T

.
(31)

A least squares solution for (17) and (30) can be formulated
as the solution to the optimization problem

min
p

{
||Ap − b||2 + λ2||Aαp − bα||2

}
, (32)

where parameter λ determines the significance of the con-
straint |zn| = α; the larger λ, the more significant the
constraint is. When λ = 0, we return to the general joint
estimation problem without any constraint. Notice that for a
special case when α = 1, which means that all {zn} lie on
the unit circle, and λ = 1, the matrix equation (30) becomes
the same as in the Forward-Backward method. The solution
to (32) is obtained by solving the least-squares solution of the
following matrix equation for the coefficients {p i}:[

A
λAα

]
p =

[
b

λbα

]
. (33)

Having the coefficients {pi}, the desired regularized {zn}
can be found as the roots of the characteristic polynomial (16).

V. EXPERIMENTAL RESULTS

A. Simulated Data

To quantify performance of the proposed approach we
simulate data with realistic field maps. In these experiments,
a real MRI image and field map were acquired in accordance
with the Institutional Review Board (IRB) of the University of
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Illinois at Urbana-Champaign. The ground truth field map was
obtained by a non-fMRI, multi-echo GRE (not EPI) acquisition
with TR = 400 ms, flip angle of 45◦, echo times 10 ms
and 12.46 ms. The acquisition gives the correct field map,
although it takes about 2 mins to acquire. In addition, the
resulting image from this acquisition does not have the same
contrast as the functional image and does not contain function
information.

The MRI data is simulated according to the model described
in (10) and (14) with the following parameters: Δ1 = Δ2 = 1,
δ1 = 5 μs, δ2 = 400 μs and the T ∗

2 map is also synthesized.
We are interested in the SNR of the reconstructed image
with and without compensating for the field map and the
SNR of the field map recovered from conventional field map
estimation and our joint estimation. The conventional field
map estimation that we compare our method to is based on
reconstructing the individual images from the oversampled
central k-space lines and dividing their phase difference by
the difference in echo times, which was 16 ms in this case.

In the first experiment, the input image to the algorithm is
an axial slice of the brain and the corresponding field map
shows a significant off-resonance due to field inhomogeneity
in the region of the frontal lobe, as shown in Fig. 5(a),(f).
The field map varies from −10.34 Hz until 40.44 Hz. In this
experiment the T ∗

2 map was modeled as ovals (see Fig. 5(i)).
The T ∗

2 value for the gray and white matters was taken to be
80 ms (the region outside the two ovals) and 50 ms (the region
inside the two ovals) respectively, according to [31].

The results, given in Fig. 5, show that our approach recovers
the original image and field map better (SNR = 61.02 dB for
the image and SNR = 31.35 dB for the field map) compared to
the case where field map is not considered (SNR = 20.48 dB
for the image). Note that for an appropriate SNR comparison
with the HR image reconstruction, the DFT recovered image
does not include T ∗

2 decay. The total acquisition time along
the phase-encoding direction is N2 × δ2 = 64 × 0.5 ms= 32
ms, which leads to the bandwidth per pixel BWPPpe = 31.3
Hz along the phase-encoding direction. Since the field map is
moderate and has a maximum value of 40.44 Hz, we expect
there is about 1 to 2 off-pixel shifts, which is not noticeable
from the image in Fig. 5(c). The distortion along the frequency
encoding direction is negligible because δ1 is very small. For
a clear visualization, Fig. 5(d) shows the difference between
the HR recovered and original images and Fig. 5(e) shows
the difference between the DFT reconstructed image and the
original image. Conventional field map estimate results from
the distorted image, so its contour is also slightly distorted as
can be seen from Fig. 5(h). In addition, the regions of white
and grey matter in the T ∗

2 map recovered by HR, shown in
Fig. 5(j), resemble those regions in the ground truth T ∗

2 map
with SNR=20.93 dB.

In the second simulation experiment, shown in Fig. 6, the
phantom is filled with two horizontal plastic structures inside
and the ground truth field map is more severe. This field map
has a maximum absolute value of 71 Hz, which causes a
geometric distortion in the region of field inhomogeneity to a
reconstructed image without taking into account the field map.
The T ∗

2 ground truth was simulated to be a 10 ms constant

map. For this particular experiment, the field map and the T ∗
2

decay are more severe than in the first case. We apply the
proposed in the section IV-B regularization approach with the
regularization parameters α = e−δ2/10ms = 0.95 and λ = 1.
The results are shown in Fig. 6. While the recovered from
HR magnituge image resembles the original image perfectly
with SNR=40.85 dB (Fig. 6(b)), the DFT reconstruction is
visually worse and has SNR=15.89 dB. As we can see from
Fig. 6(c), compared to the original image, the two stripes
in the DFT reconstructed image are skewed off by some
small angle towards the top of the image with the maximum
extend in the right area where the ground truth field map is
most significant. The maximum distortion in the phase encode
direction should be approximately 3 pixels (90 Hz/BWPPpe),
which is approximately what we observe. To visualize this
skewing clearer, Fig. 6(d) shows the difference between the
original image and the DFT reconstructed image. Note that
for a fair comparison with the HR reconstruction, the DFT
reconstructed image does not have a T ∗

2 weighting included,
similar to the first simulation. The field map recovered from
our approach has SNR = 24.53 dB and its original shape and
all details are more preserved than a conventional field map
estimate, which has a slightly distorted shape and the stripes
slightly shifted from their original positions. In addition, our
approach retrieves a T ∗

2 map that is very close to the 10 ms
constant ground truth, as shown in Fig. 6(h). We further
gradually scaled the ground truth T ∗

2 maps in both experiments
shown in Fig. 5 and Fig. 6 and found that the T ∗

2 value below
1 ms gives a very severe signal loss to the MRI data, especially
to the second half of the data, leading to an impossible retrieval
of the desired image, field map, and T ∗

2 map.

B. Real Data

Results of our technique applied on two real subjects
together with the DFT reconstructed image and field map,
obtained by applying the conventional field map estimate
approach that has been described in Simulated data section, are
displayed in Fig. 7 and Fig. 8. For each experiment 20 axial
slices 3 mm thick at 25 time points with a TR of 2 s were
acquired using the proposed acquisition scheme. Severeness
of field inhomogeneity increases when we go from slice 20
(superior) to slice 1 (inferior). The T1-weighted reference
image and ground truth field map were acquired with the non-
fMRI GRE acquisition described in the section V-A (TE = 10
ms, 12.46 ms) that is not significantly geometrically distorted
by the field inhomogeneity. Acquisition time for this static
field map was approximately 2 min. Notice that although the
T1-weighted reference image is insensitive to magnetic field
inhomogeneity, it is also insensitive to functional changes
leading to a different contrast in the image. Thus, we use
the reference image only as a ground truth for the overall
geometric shape of the object.

As the second simulation study suggests, for the real data
case with some the noise level, the problem becomes badly
ill-conditioned and thus we need to apply regularization in
order to solve for the reasonable image, field map, and T ∗

2

map. Before applying the regularization approach proposed
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(a) Original 64 × 64 image. (b) HR recovered image, SNR =
61.02 dB.

(c) DFT recovered image without T∗
2

decay, SNR=20.48 dB.
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Fig. 5. Simulation 1: reconstructions. All scales of field maps are in Hz.

(a) Original 64 × 64 image. (b) HR recovered image, SNR =
40.85 dB.

(c) DFT recovered image without
T ∗
2 decay, SNR=15.89 dB.

(d) 6(a)-6(c).
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Fig. 6. Simulation 2. All scales of field maps are in Hz.

in the section IV-B, we need to decide which value of the
regularization parameters α and λ, introduced in (32), to take.
As already discussed, parameter λ is used to enforce the level
of significance of the constraint |zn| = α, while parameter α

plays a crucial role on the reconstruction. In fact, the acquired
MRI data contain a rough idea about the value of α. The data
acquired from the proposed gradient-echo sequence always
have two data peaks, which we denote as S1 and S2, each
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corresponding to the time when the echo appears. Since the
amplitude of a gradient echo carries a mean T ∗

2 -weighting, we
fit an exponential through the signal intensities of these two
data peaks. Thus, the mean T ∗

2 value can be estimated as

T̃ ∗
2 =

TE1 − TE2

ln(S2/S1)
(34)

and based on (15) we choose α to be e−δ2/T̃∗
2 [n]. However,

note that this is only a rough, poor estimate of α. After the HR
reconstruction, it is possible to detect the HR failures from the
information about |zn2 | for each fixed n1. Specifically, if the
recovered |zn2 | values are out of the possible physical range,
i.e. |zn2 | > 1 (outside of unit circle) or |zn2 | < ε, where ε
is the threshold dictated by the smallest possible T ∗

2 value,
taken from the prior information about the T ∗

2 range, then at
the corresponding recovered HR image pixels we will see the
dark or white gaps, respectively. We correct these pixels by
setting the value of |zn2 | to either 1 or ε, which automatically
corrects for the T ∗

2 map. If this still gives an obvious failure in
the reconstructed image, we interpolate the nearest neighbor
pixels of the image at that location.

Figure 7 shows the reconstructions of a lower slice covering
the medial temporal lobe, where field inhomogeneity begins to
have a dramatic effect on the usual DFT image reconstruction
(field map varies from −73.63 Hz to 35.21 Hz in this slice).
As discussed, at those locations that the HR approach fails to
recover |zn| in the reasonable range, we threshold the wrongly
recovered |zn| and apply the interpolationg on the neigbor
image pixels. Shown in Fig. 7(a) is the DFT image recon-
struction, while Fig. 7(b) shows the HR image reconstruction
when the regularization parameter α is set to 0.99 and λ = 1.7,
which gives a good image reconstruction with a trade-off on
the field map and T ∗

2 reconstructions. In the middle region
of the brain where there is a signal void, indicated by an
arrow, the proposed approach succeedes to fill in the image.
Fig. 7(d) shows the corresponding T ∗

2 map reconstruction. The
reconstructed T ∗

2 map is smooth and varies in the range from
20 ms to 50 ms, with the most common values of 46± 3 ms.
Figs. 7(e),(f) show a conventionally estimated field map and
a HR recovered field map, both beging not phase unwrapped
except for a very obvious 2π wraps, where we use the available
information from the neigbor, not-phase wrapped, field map
columns to compensate for the wraps. Phase unwrapping for
the HR field map reconstruction remains to be the future work
and is out of scope of this paper.

Similar to the first experiment, reconstructions from the
second real experiment are shown in Fig. 8. Arrows in Fig.
8(a) indicate those regions of the brain that are corrected using
the HR approach with the regularization parameter α and λ
being equal to 0.985 and 1, respectively. Recall again from
our discussion that in the proposed approach, the term |zn2 |
carries a significant amount of information, since it helps to
identify those image and T ∗

2 voxels at which HR fails. This
enables a post-processing step to correct for these failures.
Recovered by the HR, the T ∗

2 map, shown in Fig. 8(d), has
the maximum value of 50 ms, with the most common value
range from 28 ms to 34 ms approximately, which is fairly

relevant to the estimated value of 33 ms found by fitting
an exponential. In the region of the severe signal decay the
recovered T ∗

2 value drops to 2 ms. This results in recovery
of signal in the region corresponding to the low T ∗

2 area, as
seen from the reconstructed HR image. Figs. 8(e),(f) show the
unwrapped field maps, reconstructed from the conventional
and HR approaches.

Dynamic imaging study was performed on the same two
subjects to assess the stability of the proposed approach. To
show the image intensity fluctuations over all voxels, we
take the time series of reconstructions, demean whole data
with respect to time, and then for each voxel we calculate
the normalized root mean squared error (NRMSE) around
the corresponding mean to obtain the NRMSE map which
quantifies the signal fluctuations over time. Larger fluctuations
of the reconstructed signals over time result in a higher
NRMSE. Figs. 9(a),(b) show the NRMSE maps for the HR and
DFT reconstructed images for the first real data experiment.
These two maps indicate that both DFT and HR approaches
have small signal fluctuations over the time, fairly comparable
to each other. The bright spots in Fig. 9(a) show the locations
at which the ill-conditioning of the HR method is more
significant than at the other locations. For the second subject,
as can be seen from Figs. 10(a),(b), variations in the HR
signal are larger and in this case DFT stability outperforms
the HR stability. The T ∗

2 NRMSE maps for the two subjects
are shown in Fig. 9(c) and Fig. 10(c), respectively. These plots
suggest that the T ∗

2 map reconstruction is fairly stable over
time and is more stable than the HR image reconstruction.
This can be explained from the fact that the T ∗

2 map relates
directly to the recovered from HR |zn| according to (29),
while the magnitude image is found from |zn| by inverting
Vandermond matrix, which causes the ill-conditioning in the
image reconstruction. It is worth pointing out that the HR
method is non-iterative: it does not use any information about
previous time points nor does it smooth temporally. Overall,
the pixel-wise signal fluctuations were not in a large scale,
although a further improvements on the stability of the HR
method should be investigated.

VI. CONCLUSION

In this work, we propose a new, non-iterative method for
joint estimation (JE) and correction of susceptibility artifacts
problem in the case of EPI functional MRI. We present a
method that can dynamically estimate the undistorted field
map, magnitude image, and T ∗

2 map simultaneously from the
acquired multi-echo EPI data, non-iteratively. The advantages
of this approach are: (i) much lower complexity compared with
a recent method [4] which views the JE problem as a nonlinear
least-squares optimization problem; (ii) this approach does not
require a prior knowledge of the field map.

We convert the JE problem to the harmonic retrieval (HR)
problem by making a practical approximation that helps to
transform the nonlinear 2D JE problem to a set of 1D linear
problems. To make a bridge between the JE and HR problems,
we need a generous condition, which we call the smoothness
condition, on the smoothness voxel-to-voxel along vertical
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(a) DFT reconstructed image. (b) HR reconstructed image. (c) Reference image.
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Fig. 7. Experimental results with the first subject. HR magnitude image, field map, and T∗
2 reconstructions are obtained with the regularization parameters

α = 0.99 and λ = 1.7. All scales of field maps are in Hz.

(a) DFT reconstructed image. (b) HR reconstructed image. (c) Reference image.
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Fig. 8. Experimental results with the second subject. HR magnitude image, field map, and T∗2 reconstructions are obtained with the regularization parameters
α = 0.985 and λ = 1. All scales of field maps are in Hz.
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Fig. 9. Dynamic imaging study with the first subject: normalized root mean squared error (NRMSE) map for (a) HR image reconstruction; (b) DFT image
reconstruction; (c) HR T∗

2 map reconstruction.

direction of the original field map. In the rare case when the smoothness condition does not hold, we can still reconstruct
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Fig. 10. Dynamic imaging study with the second subject: normalized root mean squared error (NRMSE) map for (a) HR image reconstruction; (b) DFT
image reconstruction; (c) HR T∗

2 map reconstruction.

all details and shape of the image, but with slight voxel shifts
caused by incorrect order of harmonics. A further postpro-
cessing to detect and shift back the voxels can be applied. We
analyze the noise effect on the performance of the method and
derive a bound on the resolution of the image and size of the
field map given a fixed noise level in the case of unbiased
estimator. In real practice when the problem becomes ill-
conditioned, we propose a specific regularization approach on
the apriori known possible range of the T ∗

2 map. Experimental
results on the real data show that the reconstructed from HR
image has much reduced signal loss artifact in those regions
of the brain that correspond to the low T ∗

2 area and high field
inhomogeneity, as the DFT reconstructed image. A validation
of whether and how the proposed regularization affects time-
domain signal behavior and BOLD detectability is needed to
be performed.
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