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Abstract

Thermal constraints have limited the performance im-
provement of modern computing systems in recent years.
As a system could fail if the peak temperature exceeds its
thermal constraint, overheating should be avoided while
designing a system. Moreover, higher temperature also
leads to higher leakage power consumption. This paper ex-
plores dynamic thermal management to minimize the en-
ergy consumption for a specified computing demand under
the thermal constraint. We develop energy-efficient speed
scheduling schemes for frame-based real-time tasks under
thermal constraints. Experimental results reveal the effec-
tiveness of the proposed scheme in terms of energy con-
sumption with comparison to the reactive schemes in the
literature.

Keywords: Energy-efficient scheduling, thermal con-
straint, Dynamic Voltage Scaling, Dynamic Thermal
Management.

1 Introduction

Due to the significant increase of power density in mod-
ern circuits, low-power and energy-efficient designs have
played important roles for designing modern computing
systems. The reduction of power consumption can en-
hance the system reliability, reduce the cost of packaging,
prolong the battery lifetime for embedded systems, and
cut the power bills for server systems.

There are two major sources of power consumption
of a processing unit [15]: dynamic power consumption
due to switching activities and leakage power consump-
tion due to the leakage current. Dynamic voltage/speed
scaling (DVS) approach has been designed to reduce
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the dynamic power consumption with different execution
speeds. Many technologies, such as Intel SpeedStepR© and
AMD PowerNOW!tm, have implemented dynamic volt-
age/speed scaling. The power consumption of processors
with DVS is a convex and increasing function of proces-
sor speeds, which is highly dependent on the hardware
designs. Well-known DVS processors for embedded sys-
tems are Transmeta Crusoe and the Intel XScale. By ap-
plying DVS, the system could adjust its execution speed
dynamically to satisfy the performance requirement, such
as the response time or the throughput requirements. In
the past decade, the minimization of energy consump-
tion for real-time DVS systems has been an active topic,
such as [1, 13, 14, 20, 29]. The pursuit of energy efficiency
balances the energy consumption and the performance
requirement.

Meanwhile, along with the dramatic increase of power
density, heat dissipation has become a prominent issue
since costly cooling systems must be adopted to prevent
from overheating. Current estimates are that cooling
solutions are rising at $1 to $3 per watt of heat dissi-
pated [24]. Energy and temperature are both related to
power consumption, but they are physical entities with
different properties. Energy-efficient scheduling focuses
on dealing with the accumulative power consumption,
while thermal-aware scheduling focuses on handling the
peak temperature [3, 6, 7]. An energy-inefficient schedul-
ing could exhaust the battery. However, the system could
fail if the peak temperature of a device exceeds its thermal
threshold.

When the maximum thermal threshold is specified as
the thermal constraint, the system should adjust the
execution speed or execution mode to satisfy the ther-
mal constraint. To maximize the performance under
the thermal constraint, Dynamic Thermal Management
(DTM) [5, 11, 24] has been proposed to adopt DVS to
prevent the system from overheating. Bansal et al. [2]
developed an algorithm to maximize the workload that
can complete in a specified time interval without vio-
lating the thermal constraints. Wang et al. [26] de-
veloped reactive speed control for frame-based real-time
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tasks and provided schedulability tests, in which all the
tasks have the same period. In [25], delay analysis is
performed under reactive speed control for general task
arrivals. Chen et al. [8] developed proactive speed con-
trol to adapt dynamic speeds for different temperature for
scheduling real-time tasks. Zhang and Chatha [31] pro-
vided approximation algorithms to minimize the comple-
tion time, while each task is restricted to execute at one
speed. Thermal issues for multiprocessor systems have
also been explored [6, 9, 12, 19], in which heat transfer
between cores/processors makes the analysis more com-
plicated.

Since there exist both energy-efficient approaches and
thermal-constrained approaches in the literature, we are
tempted to combine them together in order to achieve
thermal-constrained energy-efficient design. However,
this does not work. The existing energy-efficient ap-
proaches might make the system violate the thermal con-
straints, while the existing thermal-constrained schedul-
ing approaches might make the system consume too much
energy. Moreover, it has been shown that leakage current
is dependent upon the temperature and it goes up rapidly
when the temperature increases [16, 17]. For systems
with temperature-dependent leakage power consumption,
energy-efficient scheduling must prevent the system from
over-heating so that the energy consumption can be re-
duced. Specifically, Yuan, Leventhal, and Qu [30] ex-
plored how to turn on/off a processor dynamically to cool
down the system for energy reduction under a fixed sup-
ply voltage. For multiprocessor/multicore systems, Liu
et al. [18] and Bao et al. [4] explored how to select volt-
ages/speeds for the cores so that the energy consumption
can be reduced without violating the timing constraints.

To the best of our knowledge, known results for
thermal-constrained or thermal-aware energy-efficient
scheduling, e.g., [4, 17, 30], do not dynamically change
the supply voltage on a core since each core is fixed
with a supply voltage due to the simplification of calcu-
lation. This paper explores how to apply DVS for energy
consumption minimization under thermal constraints in
uniprocessor systems and design the corresponding speed
scheduling. By applying the derived speed scheduling
scheme repetitively, we propose energy-efficient schedul-
ing schemes to meet a given workload demand period-
ically under the thermal constraint. Experimental re-
sults reveal the effectiveness of the proposed scheme in
terms of energy consumption in comparison to the reac-
tive schemes in the literature.

The rest of this paper is organized as follows: Sec-
tion 2 shows the system models and problem definition.
Section 3 presents our schemes for energy consumption
minimization. Practical design issues will be discussed
in Section 4. The performance evaluation is presented in

Section 5. We conclude this paper in Section 6.

2 System Models and Problem Definition

This section will lay out some system models used in
our design, such as processor and power model, cooling
model, and then present problem definition.

Processor and power model We explore thermal-
aware scheduling on DVS processors. The power con-
sumption Ψ() is contributed by:

• The speed-dependent power consumption Ψdep()
mainly resulting from the charging and discharging
of gates on the circuits. The speed-dependent power
consumption could be modeled as a convex function
of the processor speed such as the dynamic power
consumption in CMOS processors [21]: Ψdep(s) =

CefV 2
dds, where s = κv

(Vdd−Vt)
2

Vdd
. 1 We can further

simplify the formula of the speed-dependent power
consumption as Ψdep(s) = hsγ , where h and γ are
constants and γ ≤ 3.

• The speed-independent power consumption Ψind()
mainly resulting from leakage current. The speed-
independent power consumption function of the sys-
tem could be modeled as a nonnegative constant
when leakage power consumption is independent of
the temperature [7,28]. When the leakage power con-
sumption is related to the temperature, we model the
leakage power consumption by a linear function of
the temperature [6]. Hence, the speed-independent
power consumption is as follows: Ψind(Θ) = δΘ + ρ,
where Θ is the absolute temperature and δ and ρ are
constants.

In this paper, we use the following formula as the overall
power consumption

Ψ(s, Θ) = Ψdep(s) + Ψind(Θ) = hsγ + δΘ + ρ. (1)

The speed s = s(t) and temperature Θ = Θ(t) are func-
tions of time t. The number of CPU cycles (or workload)

completed in the time interval [t0, t1] is
∫ t1

t0
s(t)dt. The

energy consumed in [t0, t1] is
∫ t1

t0
Ψ(s(t), Θ(t))dt.

Cooling model Although cooling is a complicated
physical process, it could be approximately modelled
by applying Fourier’s Law. This is used in most ex-
isting thermal-aware system designs, such as those in

1Cef , Vt, Vdd, and κv denote the effective switch capacitance,
the threshold voltage, the supply voltage, and a hardware-design-
specific constant, respectively. Vdd ≥ Vt ≥ 0; κv, Cef > 0.
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[2, 3, 6, 22, 25, 26, 31]. This paper adopts such approxi-
mation on the cooling process. The ambient temperature
is assumed fixed. Formally, if we define Θ(t) as the tem-
perature at time instant t, then

Θ′(t) = α̂Ψ(s(t), Θ(t)) − β̂(Θ(t) − Θa)

= α̂(hsγ(t) + δΘ(t) + ρ) − β̂(Θ(t) − Θa)

= αsγ(t) − βΘ(t) + σ, (2)

where Θa is the ambient temperature, α̂ is the coefficient
for heating, β̂ is the coefficient for cooling, α is hα̂, β is
β̂ − α̂δ, and σ is α̂ρ + βΘa.

Based on (2), for notational simplicity, we define the

adjusted temperature as θ(t)
def

= Θ(t)
α

− σ
αβ

. Therefore, the
cooling and heating process can be simplified as

θ′(t) = sγ(t) − βθ(t). (3)

The overall power consumption can be rewritten in
terms of s and θ as

Ψ(s, θ) = hsγ + δαθ + (ρ +
δσ

β
). (4)

To simplify the presentation, for the rest of the pa-
per, if the context is clear, we will use “temperature” to
refer to “adjusted temperature”, including thermal con-
straints. Given the initial temperature θ(t0) at t0, based
on (3), the temperature at time t can be written as

θ(t) =

∫ t

t0

sγ(τ)e−β(t−τ)dτ + θ(t0)e
−β(t−t0). (5)

Suppose that θ∗ is the maximum thermal threshold in the
processor (note that its value has been adjusted by the
definition of θ(t)). The equilibrium speed sE is defined as
the maximum constant speed that maintains the temper-
ature under the maximum thermal constraint. Based on
(3), we can obtain sE as

sE = (βθ∗)
1

γ . (6)

If we remove the constraint that the speed is constant
to allow variable speed, we are able to design a better
energy-efficient speed scheduling which respects the max-
imum thermal threshold.

Problem definition In this paper, we consider peri-
odic real-time tasks. A periodic task is an infinite se-
quence of task instances, referred to as jobs. We focus on
a set T of N frame-based periodic real-time, in which all
tasks have the same period P [27]. The amount of the
required computation cycles of task Ti ∈ T is Ci. The
relative deadline of task Ti is Di, in which Di ≤ P . We
define ∆i as the response time for task Ti. We assume an

Earlier Deadline First (EDF) scheduling is used for job
arrivals.

This paper copes with energy consumption minimiza-
tion for a specified performance requirement under ther-
mal constraints. We consider the tasks with the same
deadline first (the extension to different deadlines are ad-
dressed in Subsection 3.3). Specifically, given a set of
frame-based real-time tasks with total workload demand
C and a common period P , the problem is to derive a
speed assignment for providing C computation cycles be-
fore ∆ under thermal constraints such that the resulting
energy consumption is minimized, where ∆ ≤ P . The
maximum thermal threshold θ∗ must be satisfied, while
the initial temperature of the system is the ambient tem-
perature. A speed scheduling s in time interval [t0, t0+P ]
is said feasible if the amount of the completed cycles is

no less than C, i.e.,
∫ t0+P

t0
s(t)dt ≥ C without violating

the maximum thermal threshold.

3 Thermal-Constrained Energy-Efficient

Speed Scheduling

3.1 Repetitive Speed Scheduling

To guarantee the schedulability of frame-based real-
time tasks, one has to perform schedulability tests for
each individual period. Fortunately, the following lem-
mas show that we can guarantee schedulability tests over
all time periods if we find a feasible speed scheduling over
a single period with a specific initial temperature con-
straint:

Lemma 1 (Chen, Wang, Thiele [8]) Let s† be a fea-
sible speed scheduling in time period [t0, t0 + P ] with the
temperature θ(t0) = θ(t0+P ) = θP . Then, s† is a feasible
speed scheduling over all time periods.

A feasible speed scheduling s† is said to have a converg-
ing initial temperature θP if it satisfies the statement in
Lemma 1. Moreover, we find out that a feasible speed
scheduling that converges at some temperature is also a
necessary condition for schedulability as shown in the fol-
lowing lemma:

Lemma 2 (Chen, Wang, Thiele [8]) If there does
not exist any feasible speed scheduling s† that has a
converging initial temperature no more than θ∗, there
does not exist any feasible speed scheduling under the
thermal and timing constraint.

By Lemmas 1 and 2, applying a feasible speed schedul-
ing, if there exists, repetitively guarantees the schedula-
bility and feasibility of the resulting speed scheduling. In
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this paper, we explore the thermal-constrained energy-
efficient speed scheduling problem to derive the feasi-
ble speed scheduling with the minimum converging en-
ergy consumption. The converging energy consumption
of a feasible speed scheduling s is the energy consump-

tion
∫ t0+P

t0
Ψ(s, θ)dt in a time interval [t0, t0 + P ] when

the temperature θ(t0) at time t0 is the converging initial
temperature θP of the feasible scheduling. We say that
a feasible speed scheduling is optimal (in terms of en-
ergy consumption minimization) if the converging energy
consumption is the minimum among all feasible speed
scheduling.

Motivational example Consider the scheduling of a
task whose period is P = 0.1 sec, relative deadline D is
0.08 sec, and workload demand C is 0.16G cycles. The
task can be completed in time by executing at speed
2GHz. The hardware parameters here are assumed as
follows: β̂ = 12.5, δ = 0.01, ρ = 0.1, α̂ = 17.5, h = 6,
γ = 3, Θa = 30◦C, Θ∗ = 89.25◦C, while the dynamic
power consumption is normalized to 1GHz. The equi-
librium speed in this example is 1.907GHz. To minimize
the energy consumption without considering the thermal-
aware power consumption, it has been shown that exe-
cuting at speed C

D
minimizes the energy consumption [1].

However, executing at speed 2GHz leads to a scheduling
with peak temperature 90.45◦C, which violates the ther-
mal constraint.

We could apply the reactive speed approach proposed
in [26] to derive speed scheduling under thermal con-
straints. For the reactive speed approach, the task is
executed at a constant speed high speed sH when the tem-
perature is lower than the thermal constraint θ∗, where
sH > sE . Then, once the temperature reaches the ther-
mal constraint, the task is executed at speed sE . The
delay analysis in [26] can then be applied to analyze the
response time. As our objective is to minimize the energy
consumption, it is straightforward that we would like to
complete the task just in time. Therefore, one possible
way is to extend the reactive speed approach by choosing
a proper sH so that the response time is equal to D. In
this example, setting sH as 2.63GHz leads to a feasible
reactive speed scheduling with response time equal to D.
The feasible reactive speed scheduling with the minimum
converging energy consumption consumes 4.383J.

One could also apply the proactive speed approach pro-
posed in [8]. However, it is not clear how to extend the
algorithms in [8] directly for energy consumption mini-
mization. In this paper, we will adopt the optimal con-
trol framework to derive the proactive speed scheduling.
By applying the optimal control framework, we will exe-
cute at a higher speed at the beginning of a period, and
the slow down smoothly without violating the thermal

constraints. The feasible proactive speed scheduling with
the minimum converging energy consumption consumes
4.206J.

Figure 1 illustrates the temperature, speed, and power
consumption curves for the above schedules when they
converge. Therefore, since known results for thermal-
constrained or thermal-aware energy-efficient scheduling,
e.g., [4,17,30], do not dynamically change the supply volt-
age on a processor, they can not deal with these cases.
In this paper, we will present optimal speed scheduling
schemes to derive energy-efficient speed scheduling under
thermal constraints.

3.2 Energy-Efficient Speed Scheduling

Given a period [t0, t0 + P ], the accumulated jobs of all
tasks will be executed during [t0, t1], where t1 = t0 + D,
where D is the deadline. During the interval [t1, t0 + P ],
the processor is idle and the temperature will cool down.

In order to minimize the energy consumption, first we
would like to investigate the energy consumption during
the period [t0, t0 + P ]. Based on (4) and (3), the overall
power consumption can be rewritten as

Ψ(s, θ) = hsγ + δα
sγ − θ′

β
+ (ρ +

δσ

β
) (7)

= (h +
δα

β
)sγ −

δα

β
θ′ + (ρ +

δσ

β
). (8)

In [t0, t1], we have an undetermined speed s(t); In [t1, t0+
P ] the speed s(t) = 0. Therefore, the energy consumption
during the interval [t0, t0 + P ] can be calculated as

∫ t0+P

t0

Ψ(s, θ)dt = (h +
δα

β
)

∫ t1

t0

sγ(t)dt

−
δα

β
(θ(t0 + P ) − θ(t0))

+(ρ +
δσ

β
)P. (9)

Recall that we assume θ(t0) eventually converges to θP ,
therefore we can assume θ(t0) = θ(t0 + P ) = θP . Then
the energy consumption during the interval [t0, t0 + P ]
can be simplified as

∫ t0+P

t0

Ψ(s, θ)dt = (h +
δα

β
)

∫ t1

t0

sγ(t)dt + (ρ +
δσ

β
)P. (10)

Based on (10), to minimize the energy consumption

during [t0, t1], we only need to minimize
∫ t1

t0
sγ(t)dt, which

is subject to the workload constraint
∫ t1

t0
s(t)dt ≥ C

and the thermal equation and other thermal constraints.
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Figure 1. Temperature, speed, and power consumption curves for two speed schedules, where the
dotted line in 1(a) is the thermal constraint.

Given the proceeding discussion, we can state the opti-
mization problem as:

minimize

∫ t1

t0

sγ(t)dt (11a)

subject to

∫ t1

t0

s(t)dt ≥ C, (11b)

θ′(t) = sγ(t) − βθ(t), (11c)

θ(t) ≤ θ∗, (11d)

θ(t0) = θP . (11e)

In (11), (11b) is the workload constraint, (11c) is the
Fourier Law, (11d) is the thermal constraint, and (11e)
is the initial converging temperature constraint. Since θP

can be any value, the constraint (11e) can be ignored.
This is an optimal control problem with a pure state in-

equality constraint. The speed s(t) is the control variable,
and the temperature θ(t) is the state variable. The prob-
lem is to find an admissible control s(t), which minimize
the objective function (11a) subject to the isoperimetric
constraint (11b), the state equation (11c), and the pure
state inequality constraint (11d). We adopt the maxi-
mum principle with a direct adjoining approach [10, 23].
Since our optimization is a minimization problem, first we
can convert this minimization problem into the standard
maximum problem by multiplying the objective function
with −1.

In the maximum principle, we need to define Hamilto-
nion and Lagrangian. The Hamiltonion is

H = −sγ(t) + λ(t)(sγ(t) − βθ(t)), (12)

where λ(t) is an adjoint variable for the state equation
(11c). Now we form the Lagrangian as

L = H + µs(t) + ν(t)(θ∗ − θ(t)), (13)

where µ is a constant Lagrangian multiplier for the
isoperimetric constraint (11b), which should satisfy

µ ≥ 0, (14)

and ν(t) is a Lagrangian multiplier for the pure state in-
equality constraint (11d), which also should satisfy the
complementary slackness conditions

ν(t) ≥ 0, ν(t)(θ∗ − θ(t)) = 0. (15)

Furthermore, the optimal trajectory must satisfy

∂L

∂s
= γ(λ(t) − 1)sγ−1(t) + µ = 0. (16)

Based on the above formula, the speed s(t) can be written
as

s(t) =

(

γ

µ
(1 − λ(t))

)
1

1−γ

. (17)

From the Larangian we also get an adjoint equation

λ̇(t) = −
∂L

∂θ
= βλ(t) + ν(t). (18)

• If θ(t) < θ∗ in some interval, by (15) we have ν(t) =
0. Therefore, based on (18) λ can be written as

λ(t) = κeβ(t−t0). (19)

Furthermore the speed s(t) in (17) can be rewritten
as

s(t) =

(

γ

µ
(1 − κeβ(t−t0))

)
1

1−γ

. (20)

In our performance evaluation, we observe that under
the optimization the speed function defined in (20)
is a non-increasing function and the resulting tem-
perature is increasing in the beginning and might be
decreasing later.
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• If θ(t) = θ∗ in some interval, then the speed must be
s(t) = sE .

In order to address the optimal control issue, we con-
sider the state (i.e., thermal) constraint (11d) with the
following scenarios:

Constant Speed Scheduling If θ(t) < θ∗ during
[t0, t1], by an additional boundary constraint λ(t1)(θ

∗ −

θ(t1)) = 0, we have λ(t1) = 0. Applying this bound-
ary condition into (19), we have κ = 0, and the speed
scheduling becomes a constant speed control as

s(t) = (
γ

µ
)

1

1−γ . (21)

Recall that s(t) is subject to the workload constraint
(11b). In all our cases, the optimal solution will be
reached as the constraint becomes equality. Then we have

s(t) =
C

t1 − t0
. (22)

In this scenario, the temperature never violates the ther-
mal constraint (11d).

Smooth Speed Scheduling If the thermal violation
occurs when we apply the constant speed control in the
previous case, then we need to revise the solution. Our
first try is to find a non-zero κ and then a decreasing
speed s(t) so that the temperature does not violate the
thermal constraint (11d) except at t1 (i.e., θ(t) < θ∗ dur-
ing [t0, t1) and θ(t1) = θ∗), which will minimize the objec-
tive function. By the temperature constraint at t0 and t1:
θ(t0) = θP and θ(t1) = θ∗. By the temperature formula
in (5), we have

θ∗ =

∫ t1

t0

sγ(t)e−β(t1−t)dt + θP e−β(t1−t0). (23)

We also know during [t1, t0 + P ] the speed is zero and
the temperature changes from θ∗ to θP , then we have
θP = θ∗e−β(t0+P−t1). Applying this into (23), we have
another thermal constraint:

∫ t1

t0

sγ(t)e−β(t1−t)dt = θ∗(1 − e−βP ). (24)

Together with the workload equality constraint in (11b),
we are able to obtain µ and κ in (20).

Piecewise Speed Scheduling If we can not find a
feasible speed scheduling with the above approach, then
we might have θ(t) = θ∗ during an subinterval [u, t1] ⊆
[t0, t1], and θ(t) < θ∗ during [t0, u). This scenario includes
the previous case by setting u = t1.

During [t0, u), the speed s(t) follows (20). Note that
κ might be zero. If κ 6= 0, then it also requires a smooth
switching condition at u, i.e., θ(u) = θ∗ and θ′(u) = 0.
Therefore, we have the smooth switching condition at u

s(u) = sE as κ 6= 0. (25)

In addition, the speed is also subject to the tempera-
ture constraints at t0, u, and t1: θ(t0) = θP , θ(u) = θ∗,
and θ(t1) = θ∗ = θP eβ(t0+P−t1). Similar to the temper-
ature analysis in the previous scenario, we have another
thermal constraint:

∫ u

t0

sγ(t)e−β(u−t)dt = θ∗(1 − e−β(P−t1+u)). (26)

Recall that the optimization is reached as the workload
constraint becomes equality

∫ t1

t0
s(t)dt = C. Then we

have an additional constraint
∫ u

t0

s(t)dt + sE(t1 − u) = C. (27)

Based on Equations (20), (25), (26), and (27), we can
solve µ, κ, and u.

In the piecewise speed scheduling, if κ = 0, this will be
the reactive speed scheduling with the best high constant
speed during [t0, u] to minimize the energy. However, in
some case, this reactive speed scheduling might not be
feasible. Then, we have to set κ 6= 0, which is more
general case of the piecewise speed scheduling.

3.3 Extensions

Tasks with different deadlines In Section 3, we have
assumed that all tasks have the same relative deadline.
For tasks with different deadlines, with the EDF schedul-
ing, the task instance with the earliest deadline will be
executed first. Without loss of generality, we assume
task instances in T are non-decreasingly ordered accord-
ing to their relative deadlines in time period [t0, t0 + P ]
as: Di ≤ Dj as i < j. The workload demand right be-

fore Di is
∑i

j=1 Cj . We define ∆i as the response time
of Task i. To meet timing constraints, we need to ensure
that ∆i ≤ Di for i = 1, 2, . . . , N .

The derived speed scheduling scheme in Section 3
might not satisfy the timing and thermal constraints for
all tasks. We will revise the scheme.

We start with the task TN . We can apply the approach
in Section 3 for all cumulative tasks. If there exists a feasi-
ble speed scheduling s†, then we calculate each individual
response time ∆j in the derived energy-efficient schedul-
ing by setting DN as the deadline. If ∆j ≤ Dj , ∀j ≤ N ,
then we return the feasible schedule s†. Otherwise, we
find earlier-deadline task Ti∗ with timing violation. We
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then apply the approach in Section 3 for the cumulative
tasks during [t0, t0 + Di∗ ] by replacing the workload C

with
∑i∗

j=1 Cj and setting the speed at sE from t0 + Di∗

to the completion time. The same procedure is repeatedly
applied. It returns either a feasible and energy-efficient
speed scheduling or non-schedulable.

Tasks with different arrival-times As shown in [26],
the critical instant for thermal-constrained scheduling of
periodic real-time tasks is at the moment that all in-
stances arrive at the same time when all tasks are with
the same relative deadline. As a result, we can perform
schedulability test based on the assumption that all the
tasks arrive at the same time. However, this might lead to
a solution that intends to execute some workload before it
arrives. Suppose s† is the speed scheduling that converges
at temperature θP . Then, if applying s† to task set T
leads to a speed scheduling that executes some computa-
tion before the workload arrives, we have to set speed to 0
when there is no task instance in the system. When a task
instance arrives at time t with instantaneous temperature
θ(t) < θ∗, we refer to the speed scheduling s† to find time
instant w with θ(t0 + w) = θ(t) and s†(t0 + w) > sE and
then follow the speed scheduling s† to serve the incoming
tasks. When tasks have the same relative deadline but
different arrival times, it is not difficult to see that the
above speed scheduling does not make any task miss its
deadline under the thermal constraint if s† is a feasible
speed scheduling.

4 Practical Design Issues

As current DVS platforms have limitations on the max-
imum and minimum available speeds, we will show how to
revise the approaches in this paper to deal with systems
with bounded speeds. Moreover, since modern commer-
cial processors have discrete speeds only, we will explore
how to deal with systems with discrete speeds.

Bounded speeds Suppose that smax is the maximum
available speed of the processor. Without loss of gener-
ality, we assume smax > sE . Otherwise, the solution is
trivial. We only consider the case that the derived so-
lution in Section 3 violates the speed constraint smax at
some time instance. In such a case, we have to revise the
derivation of speed scheduling. Recall that the derived
speed scheduling is an increasing function. Therefore, the
processor should run at the speed smax for a while and
then start to slow it down at a time instant w (w > t0).
The corresponding temperature curve is increasing until
the temperature reaches the threshold θ∗ at u (defined
in previous section), and then it runs at the speed sE .

During [w, u], the temperature curve follows the speed
scheduling in (20). We have assumed w > u, otherwise
the case is trival.

The workload constraint in (11b) will be revised as

∫ u

w

s(t)dt + smax(w − t0) + sE(t1 − u) = C. (28)

Denote the temperature at the moment w as θw. The
temperature constraints at w and u can be revised as

θw =
1

β
sγ
max + (θ0 −

1

β
sγ
max)e

−β(w−t0), (29)

θ∗ =

∫ u

w

sγ(t)e−β(u−t)dt + θwe−β(u−w). (30)

Then we follow the same procedure in Section 3. In
comparison, here we have one more parameter w, but
we also have one more equation (29). Therefore we can
derive the speed curve.

For the case that there is a minimum speed for execu-
tion, the procedure is similar.

Processors with discrete speeds In Section 3, we
have assumed that the processor supports continuous
speed. For commercial processors, only discrete speeds
might be available. Then we can first derive a solution by
assuming continuously available speeds as the approaches
in Sections 3. Then, we use some available speeds to ap-
proximate the speed scheduling by restricting and per-
form schedulability tests by applying similar procedures.

For instance, we can find a high speed sH to approx-
imate the non-constant heating speed scheduling derived
in Section 3. Suppose that s† is a speed scheduling that
converges at temperature θP . We can set sH by us-
ing the following equation: θ∗ = 1

β
sγ

H(1 − e−β(u−t0)) +

θP e−β(u−t0), where the temperature reaches the highest
at u in speed scheduling s†. Whether the task set is
schedulable under the thermal and timing constraints can
then be derived. Similarly, for cooling speed scheduling
derived in Section 3, we can use a speed sL < sE to ap-
proximate it. The overhead of switching processor speeds
can also be taken into account.

5 Performance Evaluation

5.1 Setup

This section provides performance evaluation of our
proposed approaches. Throughout this section, we use
the following settings: The power consumption function
Ψ(s, Θ) is assumed to be 6s3 +0.01Θ+0.1 Watt, where s
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is normalized to GHz. The cooling factor β̂ of the proces-
sor is set as 1/0.08 sec−1, while α̂ is 17.5 K/Joule. The
ambient temperature Θa is 30◦C.

We evaluate three different sets of workloads by vary-
ing their periods, relative deadlines, and workload de-
mands. To characterize the workload demand, the av-
erage speed is defined as the workload demand divided
by the relative deadline, i.e., C/D. By varying the
relative deadlines, we generate frame-based real-time
task sets with a common relative deadline in the range
of [0.5, 0.85]P , in which the period is in the range of
[0.05, 0.125] sec and the average speed is 2GHz. By
varying the periods, we generate frame-based real-time
task sets with periods in the range of [0.05, 0.125] sec,
in which the common relative deadline is 0.7P and the
average speed is 2GHz. By varying the periods, we gen-
erate frame-based task sets with period in the range of
[0.05, 0.125] sec and the common relative deadline 0.8P ,
where the average speed is in the range of [1.5, 2.5]GHz.

As the thermal constraint Θ∗ affects the performance,
the thermal constraint is set dynamically. Suppose that
θpeak is peak (adjusted) temperature by scheduling the
task set at the average speed. Clearly, according to our
analysis in Section 3, if the peak temperature is lower than
the thermal constraint, executing at the average speed
can optimize the energy consumption. Throughout the
simulation, we will assume that the peak temperature
θpeak violates the (adjusted) thermal constraint a little
bit by setting θ∗ as 0.98θpeak.

We evaluate the following algorithms:

• Reactive: Apply the reactive scheme proposed in
[25, 26] by using two speeds for execution, in which
one is the equilibrium speed sE and the other is a
speed sH > sE . Note that as sH could be defined
as any speed higher than sE . To make our compari-
son fair, we find the best sH to minimize the energy
consumption by completing the tasks just in time.

• Optimal : Apply the energy-efficient optimal speed
scheduling scheme proposed in this paper.

As the reactive speed scheduling is a special case of the
optimal speed scheduling, for an input instance, the opti-
mal speed scheduling is always no worse than the reactive
speed scheduling. We report the normalized converging
energy consumptions of the derived speed schedulings in
the evaluated algorithms, where the normalized converg-
ing energy is defined as the converging energy consump-
tion of the reactive speed scheduling divided by that of
the optimal speed scheduling.
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Figure 2. Simulation results for task sets with
period in the range of [0.05, 0.125] sec and aver-
age speed 2GHz.

5.2 Simulation Results

Figure 2 presents the evaluation results of the normal-
ized converging energy consumption by varying the rel-
ative deadlines. By taking a proper speed sH , the en-
ergy consumption of the reactive speed scheduling is, in
general, quite close to the optimal solution. When D
is larger, since there is more room for optimization, the
optimal speed scheduling can improve the energy con-
sumption more. However, when D is quite close to the
period, i.e., D > 0.8P , the satisfaction of the thermal
constraint is more important than the energy consump-
tion minimization. Therefore, the normalized converging
energy decreases when D > 0.7P .

Figure 3 presents the evaluation results of the normal-
ized converging energy consumption by varying the peri-
ods. According to our settings, when the period is larger,
we have more slack for cooling. Therefore, compared to
the reactive speed scheduling, the speed variance in the
optimal speed scheduling is more close to the average
speed. As a result, when the period is larger, the nor-
malized converging energy consumption becomes larger.
Figure 4 presents the evaluation results of the normalized
converging energy consumption by varying the average
speeds. As the period and the relative deadline are fixed
in

Figure 4, varying the average speed would mostly lead
to a speed scheduling with a constant scale up/down on
the optimal and the reactive speed schedulings in their
speed curves. Therefore, the normalized converging en-
ergy does not vary too much when varying the average
speed.
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Figure 3. Simulation results for task sets with
relative deadline 0.7P and average speed 2GHz.
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Figure 4. Simulation results for task sets with
period in the range of [0.05, 0.125] sec and rela-
tive deadline 0.8P .

6 Conclusion

In this paper, we have presented optimal control speed
scheduling schemes for real-time tasks to minimize the
energy consumption under both timing and thermal con-
straints. We first showed that executing at a constant
speed just in time minimizes the energy consumption if
the thermal constraint is satisfied. However, when the
thermal constraint is violated by executing at the con-
stant speed, we presented optimal control speed schedul-
ing schemes (extended from the proactive speed schedul-
ing in [8]), by considering smooth speed scheduling and
piecewise speed scheduling. We also presented the ex-
tensions to cope with non-ideal processors with bounded
speed limitations, discrete speeds, or tasks with differ-
ent relative deadlines or arrival times. Experimental re-
sults showed that the proposed schemes can derive more
energy-efficient solutions than the reactive speed schedul-
ing in [26] under the thermal constraint.
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