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Summary: 
Software developers have individual styles of programming. This paper empirically 
examines the validity of the consistent programmer hypothesis:  that a facet or set of 
facets exist that can be used to recognize the author of a given program based on 
programming style.  The paper further postulates that the programming style means that 
different test strategies work better for some programmers (or programming styles) than 
for others. For example, all-edges adequate tests may detect faults for programs written by 
Programmer A better than for those written by Programmer B.  This has several useful 
applications:  to help detect plagiarism/copyright violation of source code, to help improve 
the practical application of software testing, and to help pursue specific rogue 
programmers of malicious code and source code viruses. This paper investigates this 
concept by experimentally examining whether particular facets of the program can be used 
to identify programmers and whether testing strategies can be reasonably associated with 
specific programmers. 
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1.   Introduction 

 
This paper experimentally examines the consistent programmer hypothesis (ConPH):  that a facet or set of 

facets exist that can be used to recognize the author of a given program.  If this hypothesis is valid, there are 

several useful applications.  If some test strategies work better for some programmers or programming styles 

than for others, the practical application of software testing will be improved.  Second, the ability to recognize 

authors will support the detection of plagiarism or copyright violation of source code.  Third, being able to 

recognize authors may help pursue specific rogue programmers of malicious code and source code viruses and 

deter others considering such undertakings.   

    The dissemination of infectious computer viruses has become commonplace.  Viruses and malicious 

code have cost companies, governments, and individuals billions of dollars in lost data and productivity.  

Apprehending and convicting perpetrators is inhibited by many factors, including inadequate technology law, 
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unclear international criminal jurisdiction, and the difficulty of positively identifying the code's author.  When 

malicious code or viruses are in the form of source (such as macro languages used for word processing or 

spreadsheet packages), the proposed method can serve to help law enforcement authorities in the pursuit of a 

specific rogue programmer and serve as a deterrent to those considering such illegal activities. 

   Plagiarism detection is another application area for the consistent programmer hypothesis.  It benefits the 

education sector by helping to detect student plagiarism.  It can also benefit the legal sector in proof of 

ownership and software forensics.  Plagiarism detection requires author identification (who really wrote the 

code), author discrimination (did the same person write both pieces of code), and similarity detection [1, 2]. 

This paper describes a method for recognizing the author of a given program, (or narrowing down to a set of 

potential authors) that can serve to help detect software plagiarism and presents results from an empirical 

evaluation. 

1.1.   Competent Programmer Hypothesis 

 
The competent programmer hypothesis was identified by DeMillo et al., who made the observation that 

programmers have an advantage that is rarely exploited:  “they create programs that are close to being 

correct!” [3]. The competent programmer hypothesis underlies several testing methods or techniques such as 

mutation testing [3]. 

   A similar hypothesis is postulated in this paper, that programmers are consistent.  This is referred to as the 

consistent programmer hypothesis (ConPH).  The authors believe that this consistency means that certain test 

techniques (such as random testing and category-partition testing) will be better suited to some programmers 

than to others.  Knowing that specific test techniques suit specific programmers could be very useful during 

practical unit (and possibly integration) testing of large multi-programmer applications, by allowing 

developers to apply only those test techniques best suited to individual programmers.  The goal of this 

experiment is to evaluate the static and/or dynamic facets (if any) that can be used to recognize the author of a 

given program, as well as to see if certain testing techniques are better suited to some programmers than to 

others.  A facet is defined as an aspect, dimension or characteristic of a program that can be quantified1. For 

example, program measures such as number of comments, total number of operands, and unique number of 

operators are all facets. These facets may belong to one or more domains (also called components) or software 

quality attributes such as understandability, maintainability, etc.  The ConPH is discussed at length in the next 

section. 

1.2.   Consistent Programmer Hypothesis 

 

   This paper examines the conjecture that programmers are unique and that this uniqueness can be observed in 

the code they write.  Programmers often have a penchant for certain constructs (perhaps preferring the while 

to the for loop) much as writers have preferences for certain words and for certain media (e.g., iambic 

pentameter [4]).  This uniqueness gives each program a “signature” of the person who wrote it.  Educators 

                                                           
1 The term facet is also employed in Maturity Modeling research (such as the Software Engineering Institute’s Capability 
Maturity Model Integration [48]) to refer to measured aspects of an organization or undertaking that is being analyzed.  
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teaching young children to write refer to this property as “voice.”  As will be mentioned in Section 2.1, 

authorship attribution researchers refer to this as “style.” The goal of this experiment is to learn the specific 

characteristics of a program that amplify the programmer’s “voice.”   

   To examine the consistent programmer hypothesis further, the ability to identify the author of a piece of text 

is studied.  The motivation for this research started with an informal survey of a dozen colleagues in industry 

and academia. The survey was conducted via email over the course of several weeks. Most of those surveyed 

claimed they could identify the author of a hand-written note if the colleague had worked with the author for a 

number of years.  Further, many commented that they could identify the author of a piece of text even if it had 

been typed, if they had worked with the author for several years.  This was true regardless of whether the text 

section appeared in an email, specification, research paper, or report.  When questioned further, they stated 

that certain phrases, certain words, bolding or capitalizing of certain words, or use of certain non-textual 

symbols (such as dashes) tipped them off to the author.  Similarly, some of those interviewed agreed that they 

could identify the author of a piece of code, if they had worked with the author for some time.  This was due 

in part to syntactic formatting of the code (indentation, use of headers, capitalization of variables), but also due 

to the use of certain constructs and patterns of constructs.  Identification of the author of source code is of 

interest here.  This informal, preliminary survey led us to formulate the principal hypothesis of this research. 

   The consistent programmer hypothesis postulates that a facet, or a set of related facets, exists that can 

identify the author of a program.  That is to say, there exists a set of facets f that are elements of the program p 

that can be used to map the program p to one or more potential authors a.  Further, it is postulated that a test 

technique t exists that is better suited to programs written by author a1 than to programs written by author a2.   

Ramsey and Basili also felt that the structure of code impacted testing: “the data suggests that it may be 

possible to differentiate test sets using structural coverage [5].”  In addition to the structure of code, the 

authors hypothesize that programmers tend to make the same types of mental errors and hence introduce the 

same types of faults into the code that they write.  This hypothesis was generated based on observation, a 

literature survey, and brainstorming.  There is evidence to support the idea that some quality assurance 

techniques are better at finding some types of faults than others (testing techniques included) [6].  The authors 

decided to examine widely used testing techniques (that also may be applied in an automated fashion by 

advanced testing organizations) to determine if testing techniques are better suited to certain programmers. 

This question was studied by undertaking a series of experiments, first gathering data from professional 

programmers, and then from students. 

1.3.   Experiment 

 
A series of experiments were undertaken to study the consistent programmer hypothesis.  In the first 

experiment, five professional programmers wrote the same three applications that were then evaluated 

statically and dynamically. The static evaluation showed that five aspects of programs, or facets, have 

potential for recognizing the author of a program or at least narrowing down to a set of potential authors: (1) 

number of lint warnings, (2) number of unique constructs, (3) number of unique operands, (4) average 
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occurrence of operators, and (5) average occurrence of constructs2.  Also, three of these facets were shown to 

be correlated with the individual programmer and the application.  Dynamic evaluation was used to obtain a 

testability measure for each program, but the measure was not found to be correlated with the individual 

programmer and application (Section 3 discusses this further).   In a second study, the work was repeated for 

four programs written by 15 graduate students, and it was found that ratio of the number of semi-colons per 

comment also has potential for recognizing authors. 

 

1.4.   Paper Organization 

 
Section 2 discusses related work and the consistent programmer hypothesis.  Section 3 describes the research 

hypothesis.  Section 4 defines the experiment design.  It presents a description of the techniques used, the 

subject programs evaluated, and the measurements taken for these subject programs.  Section 5 addresses the 

analysis and results of the experiment.  Finally, Section 6 presents conclusions and future work. 

 

2.   Background 

The concept investigated for this paper is related to literary analysis and software forensics, so a brief review 

is required. This review is followed by a statement of the main topic for this research, the consistent 

programmer hypothesis. 

 

2.1.   Literary Analysis and Software Forensics for Authorship Attribution 

 
Literary analysis for authorship attribution (also called stylometry) refers to determining the author of a 

particular piece of text.  Style, also called voice, concerns the way in which a document is written rather than 

its contents [7].  Stylometry has been a field of interest for many centuries, for those in the humanities as well 

as lawyers, politicians, and others [8].  Many techniques exist for analyzing literature/text in order to 

determine the author.  A three-step process is often applied:  canonicization, determination of event set, and 

statistical inference.  Canonicization refers to restricting the event space by treating similar events as identical 

(in English, the lower and upper case E would be treated as identical, for example) [8].  The event space is the 

collection of all possible event sets.  Event set determination involves partitioning the literature (the text) into 

non-overlapping events and removal of non-meaningful events.   The analyst can specify what should be 

extracted as event sets. For example, characters can be extracted as event sets, words can be event sets, 

character N-grams can be event sets (a collection of N characters), and word N-grams can be event sets (a 

collection of N words) [43].  The events that have not been discarded are then subjected to statistical analysis 

such as Principal Components Analysis [46] or Linear Discriminant Analysis [47]. 

                                                           
2 A construct is a reserved word in the programming language such as if, else, for.  Constructs are a subset of Halstead’s 
operators. 
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     Let us step through a typical three-step literary analysis process, using the steps described above.  One can 

imagine many ways to proceed with such analysis when attempting to discover the author of a piece of text 

written in English (a user’s manual, for example).  One may decide that individual letters will be events (such 

as a, e, p, etc.) or that words will be events.  If using words as events, a removal list may be used to winnow 

the list of events.  Once the event list has been obtained, statistical inference might be performed by building a 

histogram of the events and comparing this to a standard such as the Brown histogram [9]. The Burrows 

method follows the same three steps outlined above, with specific activities applied in steps two (event set 

determination) and three (statistical inference) [10, 11].  In the event set determination step, most words are 

thrown out, except for a few select function words (a part of speech that marks grammatical structure, such as 

an article, preposition, conjunction). These few words are used to build a histogram that is then compared to 

similar histograms collected from known documents [10, 11].  Juola and Baayen follow the same process, use 

either letters or words as the event set, and then look at the cross-entropy between the histogram (or 

probability distribution) of the current text and of other historical or standard texts [12].  Cross-entropy is the 

application of the Kullback-Leibler divergence [44] to small samples.  Specifically, “the Kullback–Leibler 

divergence is a non-commutative measure of the difference between two probability distributions P and Q. KL 

measures the expected difference in the number of bits required to code samples from P when using a code 

based on P, and when using a code based on Q. Typically P represents the “true” distribution of data, 

observations, or a precise calculated theoretical distribution. The measure Q typically represents a theory, 

model, description, or approximation of P [45].”     

     Software forensics refers to the use of measurements from software source code or object code for some 

legal or official purpose [13].  Plagiarism detection requires author identification (who really wrote the 

code), author discrimination (did the same person write both pieces of code), and similarity detection [13].  

Some features and metrics suggested for malicious code analysis by Gray et al. [1] and Kilgour et al. [2] 

include: choice of programming language, formatting of code (e.g., most commonly used indentation style), 

commenting style (e.g., ratio of comment lines to non-comment lines of code), spelling and grammar, and data 

structure and algorithms (e.g., whether pointers are used or not).  Some metrics suggested for plagiarism 

detection by Sallis et al. [14] are volume (e.g., Halstead’s n, N, and V [15]), control flow (e.g., McCabe’s 

V(G) [16]), nesting depth, and data dependency.   

   A web application called JPlag has been used successfully to detect plagiarism in student Java programs.  It 

finds pairs of similar programs in a given set of programs by parsing the programs, converting the program to 

token strings, and then applying the Greedy String Tiling algorithm [17].  Schleimer et al. [18] use winnowing, 

a local fingerprinting algorithm, to select document k-grams as the document’s representative fingerprints (the 

k-gram model assumes that the probability of a “word” occurring in a sentence depends only on the previous 

k-1 words).  The Moss tool, which Schleimer et al. used in experiments, is based on this technology [18].  

Oman and Cook examined authorship analysis by focusing on markers such as blocks of comments, character 

case (upper versus lower), etc.  They used clustering analysis and found that authors who consistently used 

such markers could be identified.  A problem with this study is that they examined textbook implementations 

of algorithms, and these could have been improved or modified by editors and might not illustrate the original 
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author’s style [19].  Spafford and Weeber [20] define software forensics as examining code remnants3 to 

gather evidence about the author.  They compare this to handwriting analysis.  They suggest a number of 

features that may provide evidence of the author such as data structures and algorithms, choice of system calls, 

errors, comment styles, etc.  Krsul examined programming layout metrics, such as placement of comments, 

placement of brackets, indentation, etc., in order to identify program authors [21]. 

   Researchers at the University of Otago have developed a system, Integrated Dictionary-based Extraction of 

Non-language-dependent Token Information for Forensic Identification, Examination, and Discrimination 

(IDENTIFIED), to extract counts of metrics and user defined meta-metrics to support authorship analysis [1].  

In a later paper [22], they examined the usefulness of feed-forward neural networks (FFNN), multiple 

discriminant analysis (MDA), and case-based reasoning (CBR) for authorship identification.  The dataset 

included C++ programs from seven authors (source code for three authors came from programming books, 

source code for another author was from examples provided with a C++ compiler, and three authors were 

experienced commercial programmers).  Twenty-six measures were extracted (using IDENTIFIED), including 

proportion of blank lines, proportion of operators with whitespace on both sides, proportion of operators with 

whitespace on the left side, proportion of operators with whitespace on the right side, and the number of while 

statements per non-comment lines of code.  All three techniques provided authorship identification accuracy 

between 81.1% and 88% on a holdout testing set4, with CBR outperforming the other two techniques (FFNN 

and MDA) in all cases by 5 – 7% [22]. 

   Software engineering researchers have indirectly examined authorship when studying other areas.  

Programmer characteristics have been indirectly addressed by research examining the maintainability of 

modules written by different programmers [23, 24] and by research on the fault proneness of modules written 

by different programmers [25]. 

   Kilgour et al. [2] looked at the usefulness of fuzzy logic variables for authorship identification.  The dataset 

was comprised of eight C++ programs written by two textbook authors.  Two experienced software developers 

then subjectively analyzed the programs, examined measures such as spelling errors, whether the comments 

matched the code, and meaningful identifiers.  They then assigned one of the fuzzy values Never, 

Occasionally, Sometimes, Most of the Time, and Always to each measure.  The authors concluded that 

fuzzy-logic linguistic variables have promise for improving the accuracy and ease of authorship analysis 

models [2]. 

   Collberg and Thomborson [26] examined methods for defending against various security attacks.  They 

suggested using code obfuscation to transform a program into another that is more difficult to reverse 

engineer, while maintaining the semantics of the program.  It appeared that control and data transformations 

might hold promise for erasing a programmer's ”style,” though not all factors being explored for the consistent 

programmer hypothesis (ConPH) would be "“erased.”  Also, the lexical transformation they presented [26] 

would not serve to remove the programmer's signature. 

                                                           
3 A remnant of an attack may take many forms, including programming language source files, object files, executable code, 
shell scripts, changes made to existing programs, or even a text file written by the attacker [20].  This paper concentrates on 
source files or fragments of source files. 
4 In holdout validation, “observations are chosen randomly from the initial sample to form the validation data, and the 
remaining observations are retained as the training data. Normally, less than a third of the initial sample is used for 
validation data.” From Wikipedia entry on Cross Validation, http://en.wikipedia.org/wiki/Cross_validation . 
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   The work presented here places the emphasis on structural measures instead of stylistic measures.  When 

attempting to mask identity, an author can easily modify stylistic items within a program.  Stylistic measures 

such as blank lines, indentation, in-line comments, use of upper or lower case for variable names, etc. are then 

no longer reliable.  This approach to masking is seen often when multiple students have copied from one 

student’s program.  The plagiaristic students re-name all the variables.  They remove or modify the comments 

and blank space.  They re-order the methods or procedures.  They modify indentation.  Also, stylistic features 

may be omitted from source code whereas programmers must use structural constructs to write functioning 

code.  The approach proposed here does not require large quantities of data (such as is needed to train a 

FFNN).  A unique aspect is that a number of testing-related measures are used to augment the proposed 

authorship recognition approach.  In addition, measures derived from dynamic analysis of the programs as 

well as measures derived from static analysis are used in the proposed approach.  An experiment was 

performed to validate the research.  Professional programmers who developed the same programs according to 

written program specifications were used in the experiment.  This helped control for confounding factors. 

 

2.2.   A Potential Application of the Consistent Programmer Hypothesis 

   The consistent programmer hypothesis was introduced in Section 1.2.  Here, a high level illustration of how 

the ConPH might be used is presented.  Specific details are deferred until later in the paper.   If the facets 

discussed above can be used to map a program to a unique author or at least narrow down to a set of potential 

authors, they may also be used to generate an identifier or discriminator for a programmer, called the target 

discriminator.  A discriminator could similarly be built for individual programs, called the source 

discriminator.  The idea is to collect enough information (experimentally) to be able to build a look-up table 

of target discriminators (unique to a programmer) and suitable quality assurance methods.  To illustrate, 

testing techniques are examined first.  Suppose that by experimentation and actual execution of various test 

techniques, it is discovered that the Category-Partition test technique is best suited to programmer 4’s style 

(where programmer 4 has a target discriminator value of 374), that programmer 5 has a target discriminator 

value of 436, and that it appears that both random testing and category-partition testing work equally well for 

programmer 5.  The corresponding look-up table would be: 

 

Target   

Discriminator 

Value 

Category-Partition 

(test technique 1) 

Random 

(test technique 2

…. …. Another Test 

 Technique 

(test technique 

N) 

Programmer 4 374 X 
Programmer 5 436 X X …. …. 
……. 
……. …. …. 
Programmer M 

 

Note that a large number of test techniques and programmers could be listed in the table (hence the Mth 

programmer and Nth test technique). 

   When a given program is being evaluated to decide the type of testing technique to use:  the source 

discriminator (discriminator for a program) will be calculated, a simple table look-up procedure will be used 
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to find the target discriminator, and the row for the target discriminator will identify the applicable test 

techniques.   

    It is also desirable if the facet or set of facets for identifying an author can be derived from as small a 

sample of code as possible.  In many cases, only one module or source code method will be available as the 

“fingerprint” for an author that one is trying to “tie” to another piece of code (such as a piece of malicious 

code, another student’s program, etc.). 

3.   Research Hypothesis 

 
The general hypothesis for this experiment is that one or more facets exist for a program that can identify the 

author of the program.  Informal hypotheses are presented below followed by more formal null hypotheses. 

1. The dynamic measure of testability (the likelihood that software faults in a program will be detected 

during testing [27]) is correlated with the input distribution used and the individual programmer such that 

one particular testing technique (category-partition, random, or all-edges) is best suited to a particular 

programmer’s code.  The null hypothesis is that the mean value of testability is not affected by the 

programmer. 

2. The static measure of number of semi-colons per comment is correlated with the individual programmer.  

The null hypothesis is that the mean value of number of semi-colons per comment is not affected by the 

programmer. 

3. The static measure of average occurrence of operands is correlated with the individual programmer.  The 

null hypothesis is that the mean value of average occurrence of operands is not affected by the 

programmer. 

4. The static measure of average occurrence of operators is correlated with the individual programmer.  

The null hypothesis is that the mean value of average occurrence of operators is not affected by the 

programmer. 

5. The static measure of average occurrence of constructs is correlated with the individual programmer.  

The null hypothesis is that the mean value of average occurrence of constructs is not affected by the 

programmer. 

6. The static measure of average occurrence of constants is correlated with the individual programmer.  The 

null hypothesis is that the mean value of average occurrence of constants is not affected by the 

programmer.5 

7. The static measure of number of unique constructs is correlated with the individual programmer.  The 

null hypothesis is that the mean value of number of unique constructs is not affected by the programmer. 

8. The static measure of number of unique operands [15] is correlated with the individual programmer.  The 

null hypothesis is that the mean value of number of unique operands is not affected by the programmer. 

9. The static measure of number of lint warnings is correlated with the individual programmer.  The null 

hypothesis is that the mean value of number of lint warnings is not affected by the programmer. 

 
The null hypothesis was rejected when the probability that the differences in the facets were attributable to 

chance was small (p-value was 0.05 or less).  That is to say, if the null hypothesis was rejected for facet X, 

facet X helps to identify uniquely the author of a program.  The alternative hypothesis is that the mean value 

of the facet was affected by the programmer.  Note that this process was used as a starting point for finding 

potential facets to help build a discriminator. 

                                                           
5 A constant will be defined in a program (such as static final int MAX_LENGTH = 2000;), each subsequent use of the 
constant (MAX_LENGTH) is counted as one (1) occurrence of a constant. 
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4.   Experiment Design 

 
Two studies were undertaken, one using professional programmers and the other using students.  In the first 

study, five programmers wrote the same three C applications.  This study consisted of six steps.  First, all 

programs were compiled and tested in an ad hoc fashion to ensure that the competent programmer assumption 

could be made (that the programs are close to correct).  Second, control flow graphs were manually generated 

for each program.  Third, test case sets were generated for all 15 programs using three separate testing 

techniques.  Fourth, measures such as number of unique operands, and number of constants per semi-colon 

were collected manually to perform static evaluation of the applications.  Fifth, the programs were submitted 

to lint (a static analyzer that detects poor programming practices such as variables that are defined but not 

used).  Sixth, the test cases were submitted to the Automatic Test Analysis for C (ATAC) tool [28] to ensure 

that minimal coverage criteria were met.  The PISCESTM test analysis tool [27] was used to perform dynamic 

evaluation, measuring testability of the programs (dynamic evaluation is described in Section 4.3.1).  

    The second study attempted to see if similar results would hold true for students who may not have had time 

to develop a distinct style. Fifteen graduate students wrote the same four C programs.  This study consisted of 

the first four steps performed for the first study (see above). 

The remainder of section 4 is organized as follows.  Section 4.1 discusses the testing techniques used in 

both studies.  The programmers and programs of the first study are presented in section 4.2.  The 

measurements for both studies are presented in section 4.3.   Unique aspects of the second study are discussed 

in Section 4.4. 

4.1.   Testing Techniques 

 
Testing is used to experimentally evaluate the consistent programmer hypothesis because a major purpose of 

the ConPH is to improve testing in a practical way.  It is postulated that some programmers will achieve 

higher dynamic evaluation scores (testability) when using certain test techniques.   Three common test 

techniques were chosen:  random testing [29], category-partition testing [30, 31], and all-edges testing [32, 

33].   It is worth noting that because programmers were given a great degree of flexibility in implementing 

solutions, not all test cases could be used for all versions of the programs.  Specifically, one programmer 

implemented Mid in such a way that all three inputs (integer values) had to be unique.  That is, if a “1” was 

entered for the first value, a “1” could not be entered for the second or third values.  This made it impossible to 

run a few of the random and category-partition test cases for that program, so slight modifications had to be 

made to the test case set. The next three subsections describe how these test techniques were used in the 

experiment. 

4.1.1.   Random testing 

 
Beizer defines random testing as the use of a random data generator that will force arbitrary but achievable 

paths through a routine [29].  For this work, random testing refers to the use of a random number generator to 

build test cases that meet a specified coverage criterion.  The coverage aspect was added to ensure 
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measurability and comparability of the results of all the testing techniques.  Random test cases were built for 

all three programs using a three-step procedure.  First, values were generated using a random number 

generator based on the C library utility rand.  To run the random number generator, the number and range of 

values were specified.  The range of values was from -9999 to +9999.  The second step was to submit the 

subject programs to the ATAC tool [28] to determine block, decision, computation-use, and predicate-use 

coverage for the test cases.  Block coverage refers to the percent of basic blocks that are executed.  

   Checking the coverage of the random test cases required three ATAC runs, one run for each of the three 

programs6.  The third step required the generation of additional test cases and an ATAC re-run for programs 

that did not achieve coverage of at least 90% for one of the 4 measures.  This third step was repeated until at 

least one of the coverage measures equaled or exceeded 90%.  Additional random test cases were added for 

both Trityp and Mid to reach 90% coverage.   

4.1.2.   Category-partition testing 

 
The category-partition testing technique is a specification-based technique that uses partitioning to generate 

functional tests for programs [30, 31].  The specifications shown in Figure 1 were used to generate category-

partition test cases.  The steps followed were:  (1) analyze the specification, (2) partition the categories into 

choices, (3) determine constraints among the choices, and (4) write test cases [30]. 

   Once test cases were generated, they were submitted to ATAC, just as described for random test cases.  This 

required three ATAC runs, one for each of the three programs6.  For one program (Trityp), additional test 

cases had to be added to reach 90% coverage. The coverage aspect was added to ensure measurability and 

comparability of the results of all the testing techniques. 

Program 1  ---> Write a subroutine (or function) FIND that has three parameters:  An array of 

elements (A); an index into the array (F); and the number of elements that should be considered 

(N).  F is an index into array A.  After FIND is executed, all elements to the left of A(F) are less 

than or equal to A(F) and all elements to the right of A(F) are greater than or equal to A(F).  Only 

the first N elements of the array are considered. 

 

Program 2 ---> Write a subroutine or function MID that examines three integers and returns the 

middle value (for example, if 6, 9, and 3 are entered, 6 is returned). 

 

Program 3 ---> Write a subroutine or function TRITYP that examines 3 integer values and 

determines what type of triangle (if any) is represented.  Output will be: 

TRIANG=1 if triangle is scalene 

TRIANG=2 if triangle is isosceles 

TRIANG=3 if triangle is equilateral 

TRIANG=4 if not a triangle 

Figure 1. Specifications for the Find, Mid, and Trityp. 

                                                           
6 Only one version of each of the three programs was needed in order to generate test cases (random and category-partition).  
The cases were then run on all five programmer’s programs.  It was randomly decided to use programmer 3’s version of 
each program (mid, find, trityp) to build the first set of test cases (that were then improved until the ATAC tool showed that 
the coverage goal had been met). 
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4.1.3.   All-edges testing 

 
The all-edges criterion (also called branch testing) requires that every edge in the program’s flow graph be 

executed by at least one test case [32, 33].  Since branch testing is a white box testing technique it depends on 

actual details of the program implementation.  Therefore, a flow graph had to be drawn for all 15 programs in 

order to build test cases. For this experiment, control flow graphs were manually generated, and the all-edges 

test cases were built by hand.    The test cases were then submitted to ATAC for each program.  This required 

fifteen ATAC runs; five runs for each programmer’s version of Find, five runs for each version of Mid, and 

five runs for each version of Trityp. 

   It should be noted that 100% coverage could not be achieved for all versions of all programs.  For example, 

one programmer’s implementation of Trityp included some dead code, which made it impossible to achieve 

100% for blocks covered.  Similarly, faults in several of the programs prevented certain branches from being 

taken.  For practical purposes, a set of test cases was considered adequate if at least one coverage measure 

reached or exceeded 90%.  In most cases, the coverage reached 97% or more, but in one or two cases the 

highest coverage value was 91% (see table below for block coverage for all-edges).  For these lower coverage 

percentage programs, additional test cases were not added.  This is because the same method of generating 

flow graphs and building test cases was carefully applied to each program.  Arbitrary generation of additional 

test cases for an individual program would require that all program test cases be revised; otherwise a bias 

would be introduced. 

 

Programmer/Program Trityp Find Mid 

Programmer 1   91% 100%   93% 

Programmer 2   97% 100% 100% 

Programmer 3   91% 100% 100% 

Programmer 4   97%   95% 100% 

Programmer 5 100%   97% 100% 

 

4.2.   Programmers 

This research seeks to exploit differences among individuals.  All programmers were given the same 

specifications for the three programs, and were asked to implement the programs in C by a specified date.  The 

subject programs were intentionally short: to serve as a small sample of code; to increase turn-around time; 

and to minimize volunteer dropout.  Programmers were not monitored.  No time limit was set.  No order of 

development of the three programs was mandated.  No requirements for in-line documentation (comments) 

were identified.  These types of requirements and constraints were not levied in order to encourage the 

programmers to use their own characteristic style. 

4.2.1.   Profile of the programmers 

 
An attempt was made to use experienced programmers in the experiment.  One possibility is that novice 

programmers or programmers new to a particular programming language might not exhibit a unique style or 
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voice, because they are still developing their style.  Researchers have found this to be true in the field of 

literary authorship attribution [34].  That is, novice writers may not exhibit a unique style or “authorial 

fingerprint.”  The second experiment used inexperienced programmers to separate this variable. 

   Five programmers with varying backgrounds and levels of experience assisted with the experiment.  A 

profile of the programmers is shown in Table 1. 

 

Table 1. Programmer Profiles. 

 
Subject Employer Highest Degree Work 

Experience 

1 BDM Int’l Inc. M.S. SWE 
 

Programmer, Analyst 

2 Science Applications International Corp. 
(SAIC) 

M.S. CS Programmer, Analyst 

3 SAIC M.S. CS Analyst, Programmer 
4 E-Systems M.S. CS Programmer, Analyst 
5 George Mason University Ph.D. CS Asst. Professor, Programmer 

 

   The disparity in the size of the solutions and the amount of time programmers spent on the solutions was 

striking.  For example, one programmer implemented the program Find in 23 lines (counting semi-colons), 

while another programmer used 69 lines.  Similarly, the amount of in-line documentation varied greatly.  

Several programmers supplied no comments at all, while another provided a comment for every 1.5 semi-

colons. 

4.2.2.   Programs 

 
The three programs were Find, Mid, and Trityp.  The specifications for these programs were derived from the 

in-line comments in implementations by Offutt [35].  Figure 1 presents the specifications exactly as they were 

provided to the programmers.  It should be noted that the restrictions in program Find relating to the index (F) 

being less than or equal to the number of relevant elements (N), were ignored during test case generation.  

That is, test cases were generated to violate these constraints (F > N) as well as to comply with the constraints 

(F <= N). 

     Questions were received from three of the programmers on the Find program, so a subsequent specification 

clarification was sent to and was used by all five programmers (they had not finished their solutions before 

they received the information).  It is shown in Figure 2.  It should be noted that the researcher’s response to 

the questions might have biased the programmers in favor of a sorting solution to Find.  All programs met the 

specifications. 
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It does not matter what type of array you use or how you get input (from a file, interactively, etc.).  

You don’t have to sort the array, though that is a possible solution.  If N=6, elements a[7] through 

a[10] are ignored.  If you have the following values, a=2 5 1 1 3 4 4 4 4 4, N=6, F=3, one correct 

result would be:  a=1 1 2 5 3 4 because a[F]=1 and all values .LE. 1 are now to the left of 1 and 

all values greater than or equal to 1 are now to the right of it (even though they are not sorted).  

a=1 1 2 3 4 5 is also a correct result. 

Figure 2.  Clarification of Program Find. 

 

Table 2 shows the size of the programs used in the first experiment. Five programs were used for each of the 

three specifications. The size is given in lines of executable code (LOC). 

 

Table 2. Size of Programs from First Experiment. 

 
Program LOC 1 LOC 2 LOC 3 LOC 4 LOC 5 

Find 46 28 23 69 46 
Mid 35 10 16 18 17 
TriTyp 34 13 20 36 26 

 

4.3.   Measurements 

The C programs were analyzed statically and dynamically, as discussed below. 

 

4.3.1.   Experimental evaluation using PISCES 

 
PISCES performs dynamic failure analysis to predict the testability of programs.  Testability [27] is defined as 

the likelihood that software faults that exist in the program will be revealed during testing.  If testability is 

high (close to 1), then it is likely that any faults in the code will easily be found during testing.  If testability is 

low (close to 0), it is not likely that faults will be found [27].   

   PISCES performs execution, infection, and propagation for each program it analyzes.  Execution analysis 

“estimates the probability of executing a particular location when inputs are selected according to a particular 

input distribution” [27].  Infection analysis is based on mutation analysis. Mutation analysis is a fault-based 

testing technique that helps the tester create a set of test cases to detect specific, predetermined types of faults 

[3].  Mutation analysis systems introduce a large number of simple faults, called mutations, into a test program 

to create a set of mutant programs. These mutants are created from the original program by applying mutation 

operators, which describe syntactic changes (such as relational operator replacement or statement deletion). 

Test cases are then measured by determining how many of the mutant programs produce incorrect output 

when executed. Each live mutant is executed with the test cases and when a mutant produces incorrect output 

on a test case, that mutant is said to be “killed" by that test case and is not executed against subsequent test 

cases [35].    Infection analysis generates program mutants and then estimates the probability that a program 

mutant alters a data state (variables, input files, output files, and the program counter) of the program [27].  
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Propagation analysis alters (or infects) a data state of a program (termed perturbing) and then examines the 

probability that this perturbation will result in a change in the program output (i.e., the perturbation 

propagated) [27].  An input distribution (that is, a set of test cases) must be provided for each program run 

with this tool.  The tests are used to estimate the probabilities for execution, infection, and propagation. 

   Three testing techniques (category-partition, random, and all-edges) described in Section 4.1 were applied to 

all 15 programs.  This required a total of 45 PISCES runs:  one run for each of the 15 programs for all-edges 

tests (15 runs); one run for each of the 15 programs for category-partition tests (15 runs); and one run for each 

of the 15 programs for random tests (15 runs).  

 

4.3.2.   Experimental evaluation using static analysis 

 
All programs were manually analyzed so that static measures could be gathered.  Fourteen direct measures 

were extracted from the source code and test case generation.  Five indirect measures, such as average number 

of comments per semi-colon, were also obtained. 

 

Counting was performed consistently for each program (using the CMT++ tool by Testwell7).  Most static 

measures are self-explanatory (such as number of semi-colons).  The counting rules that are not so obvious 

are: 

 

Operator:  One of the following: ! != % %= & && || &= ( ) * *= + ++ += , - -- -= -> . ... / /= : :: < << 

<<= <= = == > >= >> >>= ? [ ] ^ ^= { } | |= ~ 

 

Operands:  Operator and operand counts are very intuitive.  The statement f(x, y) is counted as follows: f, x 

and y are operands and the parentheses and comma are operators.  

 

Number of comments:  From /* to the ending symbol */ was counted as 1 comment, even if it ran over several 

lines. 

 

Average occurrence of operands:  Defined as the total number of operands in a program divided by the 

number of unique operands.  Suppose a program had only 2 unique operands, A and B.  A occurred three 

times in the program and B occurred four times.  The average occurrence is found by adding the total number 

of occurrences of all operands  (3 + 4 = 7 occurrences) and dividing by the number of unique operands (7/2 = 

3.5).  Thus 3.5 would be the value for this program. 

 

Average occurrence of operators:  Defined as the total number of operators in a program divided by the 

number of unique operators. 

 

                                                           
7 http://www.testwell.fi/cmtdesc.html 
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Average occurrence of constants:  Defined as the total number of constants in a program divided by the 

number of unique constants.  This value is set to 0 if the number of unique constants is 0. 

 

Average occurrence of constructs:  Defined as the total number of constructs in a program divided by the 

number of unique constructs.  It should be noted that an if construct was counted as 1 even if it contained 

multiple else if clauses or an else clause. 

 

In addition to these static measures, the UNIX utility lint was run on each program to gather information on 

the number of warnings received.  The manual generation of the program flow graph, the extraction of each of 

the static measures from the code, and the running of lint took approximately 1 hour and 35 minutes per 

program (15 programs total).  Note that the most time consuming process, manual extraction of measures, 

could be performed quite quickly if a tool was available (no tool was available to the authors until after the 

work had been performed manually). 

4.3.3.   Data Analysis Techniques 

The static and dynamic measures for each program were recorded as the rows in a spreadsheet as shown in 

Table 3.  Each measure in the table is mapped to a research hypothesis (such as Research hypothesis 1 (R1) -- 

testability) or is used to calculate a measure for a hypothesis (Research hypothesis 2 (R2) requires number of 

comments in order to calculate number of semi-colons per comment), as indicated in the first column of the 

table.    Next, analysis of variance (ANOVA) was applied.  The assumption of normality of errors was met (as 

could be seen visually by the residuals scatterplot – the residuals were normally distributed).  Homogeneity of 

variance was met for the majority of the measures (as shown by Bartlett’s chi-square)8.  The design of the 

ANOVA was one between subject factor, with that factor being programmer.  The factor had five levels (one 

for each programmer) and there were three observations in a condition (one for each program).  This required 

thirteen runs, one for each measure shown in Table 3, each run took approximately one minute. 

    

                                                           
8 ANOVA is a robust procedure and works well unless both the assumption of normality and of homogeneity of variance are 
violated.  That was not the case for the data presented here. 
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Table 3. Static and Dynamic Measures Collected for Consistent Programmer Hypothesis Experiment. 

4.4.   Networking Dataset 

In the second study, fifteen graduate students wrote four C programs for a graduate networking course (a 

protocol layer assignment by instructor Ken Calvert).  The same specifications were implemented by each 

student [36].  The students had the same due date for the programs.  The only specified order was that 

programs one and two were to be turned in prior to programs three and four.  Static analysis of the sixty 

programs was performed using a commercially available tool (CMT++ tool by Testwell), with the same 

measures collected as for the five-programmer dataset9.  Analysis of variance was applied.  The assumption of 

normality of errors was met (as could be seen visually by the residuals plot), as was homogeneity of variance.  

The programs ranged in size from 53 to 468 lines of code [37]. 

5.   Analysis and Results 

The two experiments in Section 4 had some limitations and constraints that must be kept in mind when 

examining the results.  Threats to validity are discussed in Section 5.1. 

 

                                                           
9 Note that it could not be confirmed that the counting rules used by the commercial tool matched the manual counting rules 
used for the programs of the five professional programmers (the rules were not available for each measure provided by the 
tool).  This constitutes an instrumentation threat to internal validity.  This threat was minimized by verifying the rules that 
were available.  Therefore, the results of the networking dataset should be viewed independently of the results for the 
professional programmer dataset. 

Research  Find Mid Trityp Find Mid Trityp Find Mid Trityp Find Mid Trityp Find Mid Trityp

Hypothesis  Pgmr 1 Pgmr 1 Pgmr 1 Pgmr 2 Pgmr 2 Pgmr 2 Pgmr 3 Pgmr 3 Pgmr 3 Pgmr 4 Pgmr 4 Pgmr 4 Pgmr 5 Pgmr 5 Pgmr 5

 Variables:                

For R2 # comments   16 1 0 0 0 0 3 2 1 21 4 8 22 10 17 

For most # semi-colons   46 35 34 28 10 13 23 16 20 69 18 36 46 17 26 

R8 # unique operands   17 5 4 16 9 9 9 4 4 26 12 15 13 9 7 

R7 # unique constructs  11 9 9 7 5 5 4 3 3 6 4 6 6 4 6 

R3 avg. occur. of 
operands 

    6.05 11 9     4.5      4.55      5.88     7.55     7.25    13.75     4.92     3.92     4.66     7.23     4.66 6.29 

R4 avg. occur. of 
operators 

    6.33     7.5      6.75     3.13     2.5      2.36 5.6     3.33    6.4     5.57    2.5     5.25     5.66     3.66 5.4 

R5 avg. occur of 
constructs 

    3.81     4.33      4.88     3.42     1.8     2.8     4.25     4.66 5    5.5     3.75     3.66    3.5     2.75 3 

R6 avg. occur of 
constants 

    2.66 4 4 0 0 0 0 0 0 8 0 3 3 0 3.25 

R2 # semi-
colons/comment 

    2.9 35 0 0 0 0     7.66 8 20     3.28    4.5    4.5     2.09    1.7 1.53 

R1 Random Cases 
Testability 

     0.04 1        0.03     0.04     0.08    0.1     0.04     0.04     0.03     0.04 0.08 

R1 All-Edges 
Testability 

     0.04     0.008       0.125     0.04     0.04     0.25     0.04     0.04     0.03     0.06 0.04 

R1 Category-Partition 
Testability 

    0.33    0.125       0.027     0.04     0.04    0.2     0.04     0.04     0.25     0.04 0.04 

 Lint Results                

R9 # warnings 12 4 2 46 42 42 3 3 6 8 5 5 5 3 6 
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   The data were analyzed:  

1. to look for an effect based on programmer (or author), and 

2. to look for an effect based on the programs. 

 

These areas are addressed in Sections 5.2 and 5.3.  The overall hypothesis results are discussed in Section 5.4.  

Results for the networking dataset are presented in Section 5.5. 

5.1.   Threats to validity 

The results from the experiments are subject to a number of limitations.  Of particular concern are internal, 

external, and conclusion validity.  An experiment can be said to possess internal validity if it shows a causal 

relationship between the independent and dependent variables.  A number of influences can impact internal 

validity.  For example, the programmers’ solution to the Find program may have been influenced by the 

experimenter responses to questions on the specification.  However, this could have only served to prompt the 

programmers to use a similar solution, resulting in similar programs.  So any bias would have been in favor of 

the null hypothesis.  History threats to internal validity were not applicable, as all programmers experienced 

the same current events [38].    

   To minimize selection threats to internal validity, each programmer was assigned the same three programs.  

Also, the order in which the programs were developed was not mandated.  Another threat to internal validity is 

that of programmers biasing each other.  Specifically, two of the programmers work in the same location and 

may have discussed the programs, causing their solutions to be similar (note that no correlation was found 

between the programs of these two authors).  Each programmer was asked to work in isolation to minimize 

this threat. 

   Experimental mortality threats to internal validity were not applicable, as all programmers completed the 

assigned programs [38].  Design contamination threats to internal validity were not applicable, as there was 

not a separate control and experimental group [38].  There is a possibility of an instrumentation threat to 

internal validity (see section 4.4) due to switching to a commercial tool for the networking dataset. 

   External validity is possessed by an experiment if the causal relationship can be generalized to other 

groups, environments, etc.  There were several threats to external validity in the experiments.  First, a small 

number of programmers were used in the experiments.  Each programmer wrote a small number of programs 

(three).  Also, these programs were very small and were not very complicated to write.  It is not certain that 

the results seen here would be observed for larger, more complex applications.  Also, there is a potential bias 

since all the programmers are from the Washington metropolitan area and four of the five work for defense 

contractors.   

   Another limitation of note relates to the use of the PISCES tool.  An incompatibility existed between four of 

the 15 programs and PISCES in that the tool was unable to compile the programs and therefore could not 

perform dynamic analysis.  The incompatibility dealt with the use of certain programming constructs.  One 

approach would have been to “forbid” the programmers from using these constructs.  However, it was decided 

that such a prohibition could bias the solution to the specifications and may cause a programmer to stray away 

from their characteristic style and preference of constructs.  The programs were compatible with the ATAC 
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compiler.  Unfortunately, three of the four programs were written by the same programmer (Programmer 2).  

So, dynamic evaluation was performed for only four of the five programmers.  

     Construct validity is possessed by an experiment if the theoretical concepts being examined and the 

measuring procedure are in concurrence.  A possible threat to construct validity deals with the testability 

measure provided by the PISCES tool.  This measure might not discriminate well between test suites.. 

   Conclusion validity is possessed by an experiment if there are no issues “affecting the ability to draw the 

correct conclusion about relations between the treatment and the outcome of an experiment [39].”  Due to the 

small number of observations, the power of the statistical test may increase the risk that an erroneous 

conclusion is drawn.  Also, if one views each dataset as a separate investigation, the significance level 

increases, meaning that significant results may be discovered due to chance. 

5.2.   Analysis by programmer 

Facets (such as number of comments and average occurrence of operators) were deemed to be distinguishing 

if the ANOVA for that facet showed statistical significance for a programmer (that is, the p-value was 0.05 or 

less).  The facets that were found to be distinguishing are listed in boldface in Table 4.  The abbreviations used 

in the table are Sum of Squares (SS), degrees of freedom (DF), mean squares (MS), F-value (F), and p-value 

(p). 

Table 4.  Distinguishing Facets By Programmer. 

Programmer Facets 
 

Distinguishing? SS DF MS F p 

number of semi-colons per comment No     408.4 4   102         1.1     0.41 

average occurrence of operands No       60.2 4     15         3.5     0.06 

average occurrence of operators Yes       27.1 4       6.8         6.7     0.01 

average occurrence of constants No       39.3 4       9.8         2.6     0.12 

average occurrence of constructs Yes         9.0 4       2.3         5.0     0.02 

number of unique constructs Yes       64.4 4     16.1       40.2     2.4E-05 

number of unique operands Yes    238.2 4     59.6       10.3     0.003 

number of lint warnings Yes  3505 4   876.2     135.5     2.2E-07 

Testability       

   Random cases No       0.23 4    0.05         0.92     0.49 

   All-edge cases No       0.02 4    0.005          1.70     0.24 

   Category-partition cases No       0.04 4    0.01          0.90     0.50 

 
   Based on Table 4, it appears that five measures correlate with the author of a program, with a sixth 

measurement, average occurrence of operands, having borderline correlation with a p of 0.06 (recall that a p 

value of 0.05 or less indicates statistical significance):   

 

1) average occurrence of operators  

2) average occurrence of constructs  

3) number of unique constructs  

4) number of unique operands 

5) number of lint warnings 

6) average occurrence of operands (borderline) 
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Number of unique constructs is not a “normalized” measure because a very large, complex program will have 

more constructs than a very small, simple program.  It should be dismissed in favor of the “normalized” facet 

average occurrence of constructs.  Further, it is felt that using a single facet to determine the author of a 

program is less likely to have external validity.  Therefore, a discriminator that combines several facets is 

preferred over a single facet. 

   The six potential discriminating facets listed above were examined further.  Various combinations of the 

facets were built (e.g., product of the number of lint warnings and average occurrence of constructs).  The 

combined facets were then compared to each of the values for a particular programmer and program.  The 

combination was rejected if visual examination of the data did not indicate any correlation.  If the combination 

appeared to have some merit (it seemed to correlate well with the data for at least two programmers), it was 

examined further. 

5.2.1.   A Discriminator for Identifying Programmers 

    By applying the process described above, it appears that three static measures have the potential for 

determining the author of a program: (1) average occurrence of operands, (2) average occurrence of operators, 

and (3) average occurrence of constructs.  A number of methods for combining the factors were considered.  

One idea considered was to define and calculate the “average deviation,” by computing the facet values for a 

programmer, then computing the value for each facet on the program, and averaging the ratio of the program’s 

value over the programmer’s value for all the facets. Although this measure was logically appealing, when 

applied to the data, the results were very unsatisfactory. 

   Due to these shortcomings, a single value discriminator was selected.  Further, it was decided to use the 

product of the factors.  Multiplying measures to build discriminators or “identifiers” is common.  In 

information retrieval and requirements tracing, term frequency and inverse document frequency are multiplied 

to build a similarity measure used to see if a document is similar to a posed query.  The Maintainability Index 

(MI) [40] multiplies a number of static measures such as average extended cyclomatic complexity per module 

[16], average count of lines of code (LOC) per module, and average percent of lines of comments per module 

to build a measure of the maintainability of a piece of code.  The unit of this composite measure is not 

specified by Welker and Oman.  However, prevalent use of MI by practitioners and researchers alike indicate 

that the lack of a specified unit has not deterred its use or importance.  Component measures have also been 

used successfully as discriminators.  For example, logistic regression models that multiply various variables 

and their coefficients are used to discriminate modules that are fault-prone [41, 25].  Multiple and simple 

regression models multiply measures (often of varying units).  The effect is that the resulting discriminators 

will be “spread” further apart than if addition, subtraction, or some other operation was applied. 

    The result of this analysis is the following equation, called the Nicholson discriminator10.  The Nicholson 

discriminator is the product of the aforementioned factors: 

 

 Na  = f1 * (f22) * f3 

                                                           
10 The Nicholsons (brother and sister) worked for Newport News Shipbuilding in the ‘30s and ‘40s.  Part of their job was to 
determine if ships were seaworthy, based on several pieces of data. 



 20

 
where Na is the target Nicholson discriminator for programmer a, f1 is the average occurrence of operands, f2 

is the average occurrence of operators, and f3 is the average occurrence of constructs.  The average occurrence 

of operators is squared because it had the lowest p-value of the three. 

   Using the mean values obtained for each programmer, the target Na for each programmer is: 

 

N1=   1772.8 

N2 =      93.9 

N3 =  1149.8 

N4 =    374.6 

N5 =    436.5 

 
   Closer examination of the target Na made it clear that a single value would not work well for the look-up 

table.  Using an increment of + and – 5% of Na, a range of Na values were calculated for each programmer 

(subtract 5% from the value for the low end of the range, add 5% to the value for the high end).  The 

increment can be expected to vary based on the number of programmers being distinguished.  Additional 

evaluation is required to gain more general understanding about the increment.  The ranges for target Na 

values are shown below: 

 

Programmer 1:   Range of 1684.2 through 1861.4 

Programmer 2:   Range of 89.2 through 98.6 

Programmer 3:   Range of 1092.3 through 1207.3 

Programmer 4:   Range of 355.9 through 393.3 

Programmer 5:   Range of 414.7 through 458.3 

 
To truly validate these ranges, additional programs written by the same programmers need to be evaluated. 

Thus, these data should be considered preliminary and inconclusive, but nevertheless quite interesting as a 

starting point.   

   Note that all the programmers have mutually exclusive ranges, although the range values for programmers 4 

and 5 are close (programmer 4’s high end of 393.3 and programmer 5’s low end of 414.7).  It could be 

possible, based on the limited data of these experiments, that facets can be used to pinpoint individual 

programmers. It is also possible that the close ranges of programmers 4 and 5 could cause problems for the 

method.     

5.2.2.   A Second Dataset 

   To further examine the validity of this work, programs from the networking dataset described in Section 4.4 

were chosen.  The ranges for target Na were calculated and nine of the fifteen were unique ranges (they did not 

overlap with the five programmer ranges nor with each other).  Of the six that overlapped, three were 

overlapping only slightly (for example, one student’s Na lower bound overlapped with programmer 3’s upper 

bound, but by less than 5%).  It could be possible that facets can be used to identify categories of programmers 

as opposed to pinpointing individual programmers.  This is still a useful finding, if Quality Assurance methods 

can be shown to work better for certain types of programmers.  That is, it might not be possible to take an 

anonymous program and report that “programmer X” was the author, but it might be possible to report that “a 
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category 1 programmer” was the author (where some relatively small number of categories has been defined).  

This would also be useful in narrowing down suspected authors of malicious or virus source code as well as in 

plagiarism detection. 

5.3.   Analysis by Program 

   The ANOVA showed no evidence of a difference among the measures for the programs Mid and Trityp.  

For example, the p-value for average occurrence of operands was 0.35.  However, there was a statistically 

significant difference (p-value less than 0.05) for three measures for program Find:  average occurrence of 

operands; average occurrence of operators; and average occurrence of constructs.   

     The testability facet was not found to be distinguishing; the testability results were very similar for all of 

the programs.  Figures 3 through 5 present the testability results for the three programs (these can also be 

found in Table 3). The three test techniques listed left to right are random (shown as rand), all edge (shown as 

ae), and category partition (shown as catp). In Figure 3, for example, it can be seen that all five programmer 

versions of Mid, when executed using random test cases (mid/rand), had testability scores of 0.04.   As can be 

seen, the programs written by programmer 1 often had a higher testability score than that of the programs of 

other programmers, regardless of the test technique.  For example, Figure 3 shows that programmer 1’s 

version of Mid tested with category-partition test cases had higher testability than the versions of Mid written 

by the other programmers.  Figure 4 shows that programmer 1’s version of Trityp also had a higher testability 

score than other versions of Trityp, for both random and category-partition testing.   Figure 5 shows that 

programmer 4’s version of Find had higher testability scores for random and all edge testing than the versions 

of Find written by other programmers.   

     It should be noted that many of the programs had 0.04 as their testability score, regardless of the 

programmer or the test technique.  Although it is not clear why this value showed up so often, three possible 

explanations are:  (1) test techniques do not work better for certain programming styles than for others, (2) 

testability does not capture the desired aspect, and (3) coincidence.  In future studies, the defect detection 

effectiveness of various test techniques when applied to programs written by distinguishable authors will be 

examined. 
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Figure 3.  Testability Results for Program Mid. 

 

 

Figure 4.  Testability Results for Program Trityp. 
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Figure 5.  Testability Results for Program Find. 
 

    
In examining order of development, one programmer did not report the order of program writing.  One 

programmer wrote Mid last, one programmer wrote Find last, and one programmer wrote Trityp last.  One 

programmer reported working on bits and pieces of Find while finishing the other two programs, claiming that 

the order was “difficult to say.”  Based on this varied order of development, it is believed that the order did not 

cause the differences between individual programmers. 

5.4.   Hypothesis Results 

The general hypothesis for these experiments (the consistent programmer hypothesis) is that one or more 

characteristics exist for a program that can recognize the author.  Evidence has been presented in Section 5.2 

to support the notion that characteristics exist to identify the author of a program.  However, the other aspect 

of the consistent programmer hypothesis, that some testing techniques are better suited to code developed by 

some programmers than others, was not supported experimentally.  Therefore, the general hypothesis is not 

supported by the experiments. 

   Some of the specific hypotheses were supported and some were not.  The results are listed below: 

 

1. The dynamic measure of testability could not be correlated to a particular programmer. 

2. The static measure of number of semi-colons per comment did vary for several individual 

programmers, but the hypothesis was not supported overall. 

3. The static measure of average occurrence of operands is correlated with the individual programmer. 
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4. The static measure of average occurrence of operators is correlated with the individual programmer. 

5. The static measure of average occurrence of constructs is correlated with the individual 

programmer. 

6. The static measure of average occurrence of constants was not found to vary greatly based on 

programmer. 

7. The static measure of number of unique constructs is correlated with the individual programmer. 

8. The static measure of number of unique operands is correlated with the individual programmer. 

9. The static measure of number of lint warnings is correlated with the individual programmer. 

 

   To examine the role of size within the measure set, a subsequent Principal Components Analysis (PCA) [46] 

of the original dataset was performed.  This analysis identifies domains or components of interest by showing 

the sources of variance in a given dataset.  The PCA showed that the measures do not all correlate with size.  

Table 5 shows the correlation between each identified principal component (called simply ‘component’) and 

the original measures (also called features in PCA) [37].  The largest values (when examining the absolute 

value) for a measure indicate the strongest relationship with a component (and are bolded in Table 5).  Once 

the components have been identified, the relationships between measures and components must be examined.  

Based on this, the components are labeled or categorized. 
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Table 5. Rotated components of original dataset – five components selected. 

 
 
 
 
 
 
 
 
 
 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     The first component shown in Table 5 consists of lines of program code, Halstead’s  N (length), Halstead’s 

N1, Halstead’s N2 (N1 and N2 are summed to give N), Halstead’s n (vocabulary), n2, V (Halstead’s volume), 

B (Halstead’s estimated number of bugs), E (Halstead’s effort), T (Halstead’s time), average occurrence of 

operators, and H (Halstead’s predicted length) as shown by the relatively high values of these items in the 

table (in the [-0.7; +0.7] range).  The longer the source code is, the higher the count of each of these measures.  

So, this can be seen as a component that represents the size or length of a program.  The second component 

includes the number of comments, comments per physical lines of code, comments per program lines of code, 

number of unique operands per physical lines of code, and number of unique operators per physical lines of 

code.  The first three measures, number of comments, comments per physical lines of code, and comments per 

program lines of code, are clearly related to comments.  The latter two items, number of unique operands per 

physical lines of code and number of unique operators per physical lines of code, can be seen to tie to 

understandability also [37].  That is, the number of unique operators and operands drive the number of mental 

“lookups” a programmer must perform when maintaining code.  Thus, it appears that this second component 

ties to understandability.  
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    The third component includes only the difference between estimated and actual length (H – N).  We label 

this component “error of predicted length.”  The fourth component contains D (Halstead’s difficulty) and L 

(Halstead’s program level).  L is the relationship between Program Volume and Potential Volume. Only the 

most clear algorithm can have a level of unity.  D is 1/L.  A program grows more difficult as its level 

decreases.  These both deal with difficulty.  The final component includes McCabe’s cyclomatic complexity 

and maximum cyclomatic complexity.  These both deal with control flow [37].  The components are hence 

identified as follows: 

 

• Component 1 – size/length  

• Component 2 – understandability  

• Component 3 – error of predicted length  

• Component 4 – difficulty  

• Component 5 – control flow 

 

The eigenvalues of the correlation matrix from Table 5 are shown in Table 6.  Only three components are 

needed to explain at least 86% of the overall variance.  The principal factor method (with prior communality 

estimates of one followed by a varimax-rotation) is selected to establish the factor model for interpretation 

[42].  This adjustment gives weight to the highly correlated variables within each factor and lesser weight to 

any remaining variables [42].  That is, each variable will be highly correlated to exactly one factor and not to 

others. 

 

Table 6.  Principal components analysis  – eigenvalues of the correlation matrix – Original Dataset. 

  

 Eigenvalue % of Variance Cumulative % 

Component 1 15.615 55.768 55.768 

Component 2   5.246 18.734 74.502 

Component 3   3.240 11.570 86.072 

Component 4   1.789   6.388 92.460 

Component 5   1.040   3.714 96.174 

 

 

 

 

5.5.   Results for networking dataset 

 
As shown in Table 7, the distinguishing feature identified in the networking dataset was number of comments 

per program line.  The Sum of Squares was 0.75,  the mean square was 0.05, the F-value was 2.63, and the p-

value was 0.006.  Further analysis of the programs written by each author and an attempt to identify the 

authors based on this feature failed to identify authors or small sets of potential authors.  The general 

hypothesis (static or dynamic facets of a program can be identified and used to recognize a program author) 

was not supported.  This study is presented in detail in [37]. 
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Table 7.  Distinguishing Facets By Programmer – Networking Dataset. 

 
Programmer: 

Features 

Distinguishing? SS DF MS F p 

number of program lines No 136106.40 14 9721.88 1.03  0.44 

number of unique operators per program line No              0.07 14           0.005 1.06  0.40 

number of unique operands per program line No              0.61 14           0.04 0.61  0.83 

average occurrence of operators No        1131.51 14         80.82 0.85  0.60 

average occurrence of operands No           278.85 14         19.91 0.67  0.78 

number of comments per program line Yes               0.75 14           0.05 2.63 0.006 

 

6.   Conclusions and Future Work 

 
Experiments were undertaken to evaluate the general hypothesis that one or more facets (static or dynamic) 

exist for a program such that the author, or a small set of potential authors, of the program can be recognized, 

and that testing techniques correlate to programmers.  A number of specific hypotheses were posited for 

individual characteristics such as “the static measure of number of unique operands is correlated with the 

individual programmer.”  The same three programs written by five different professional programmers as well 

as four C programs written by 15 different graduate students were examined.  Support was not found for the 

general hypothesis that testing techniques correlate to programmer voice.  This may have been due to the 

testability measure that was used to evaluate the techniques.  As explained in Section 5.3, the testability values 

were often identical (0.04) regardless of the program, the programmer, or the testing technique applied.  It is 

not clear that this measure supports the research.  Therefore, for future work, the defect detection effectiveness 

of various test techniques will be examined rather than the testability.  Evidence was found that the 

professional programmers exhibit voice in the professional programmer dataset, as shown by the strong 

correlation between five facets and programmer as well as weaker correlation with a sixth facet.  In the 

networking dataset, strong correlation between one facet and programmer was found.  Further work is 

required, particularly with a larger sample. 

   The results are encouraging.  A number of new questions arose from this work.  First, can an author be 

identified if he/she has modified someone else’s code?  There have been recent cases where virus writers copy 

an existing virus and make changes to it.  There are certainly many cases where students copy wholesale 

sections of code from other students.  How much code must be written by an individual for their “voice” to be 

evident?  If an individual wrote 80% of the code, can that individual be identified?  Also, it is not clear how 

this technique might be used to evaluate group software projects where several students have developed an 

application.  It may be possible to approach this problem by focusing on modules as that is typically the level 

at which work is shared by programmers.  The authors also plan to investigate how early a programmer 

develops voice.  More detailed facets of testing techniques and inspection techniques are being examined to 

ensure that a lack of construct validity did not account for the lack of correlation. Section 4.3.2 used static 

analysis to count the number of operators, operands, and other program features used. It is possible that a finer 
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grained count, such as which specific operators were used, could lead to a more effective way to identify 

programmers. This would be an excellent topic for future work. An additional follow-up study could be to 

investigate whether factors such as experience, age, education, etc. affect these results. 

   

 

Acknowledgements 
 
This work was supported in part by the U.S. National Science Foundation under grant CCR-98-04111.  We 

would like to thank Jeff Payne of Cigital for the use of PISCES as well as his technical assistance in 

unraveling some operator errors, and Bob Horgan at Telcordia Technologies for the use of ATAC.  We would 

also like to thank the five programmers for volunteering their time to write three programs each.  We thank 

Ken Calvert and his networking students.  Thanks also to Kelly Noss Marcum of the Powell County School 

System for her insights on writing style and “voice.” 

 

References 
 

1. A. R. Gray, P. J. Sallis, and S. G. MacDonell, IDENTIFIED (Integrated Dictionary-based Extraction of 
Non-language-dependent Token Information for Forensic Identification, Examination, and 
Discrimination):  A dictionary-based system for extracting source code metrics for software forensics, in 
Proceedings of SE:E&P'98 (Software Engineering: Education & Practice Conference), (Dunedin, New 
Zealand, 1998), 252-259. 

2. R. I. Kilgour, A. R. Gray, P. J. Sallis, and S. G. MacDonell, A fuzzy logic approach to computer 
software source code authorship analysis, in Proceedings of ICONIP/ANZIIS/ANNES'97, (Dunedin, New 
Zealand, 1997),  865-868. 

3. Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward, Hints on test data selection:  Help 
for the practicing programmer,  IEEE Computer 11(4) (1978) 34-41. 

4. Wikipedia, Iambic pentameter, http://en.wikipedia.org/wiki/Iambic_pentameter. 
5. J. Ramsey and V.R. Basili, Analyzing the test process using structural coverage, in Proceedings of the 
IEEE 8th International Conference on Software Engineering (ICSE 1985), (London, England, 1985)  306 
– 312. 

6. Basili, V. R. & R. W. Selby (1987) Comparing the Effectiveness of Software Testing Strategies. IEEE 
Trans. SE, 13. p. 1278-1296. 

7. “Searching with style: Authorship attribution in classic literature”, Y. Zhao and J. Zobel, Proceedings of 

the Australasian Computer Science Conference, G. Dobbie (ed), Ballarat, Australia, January 2007, pp. 59-

68. 
8. Juola, P. and Sofko, J. ‘Proving and Improving Authorship Attribution Technologies,’ Proceedings of 

       Canadian Symposium for Text Analysis (CaSTA-04) “The Face of Text”, Hamilton, ON, CA. November, 
      2004, pp. 1 – 5. 

9. Kuˇcera, H. and Francis, W. N. (1967). Computational Analysis of Present-day American English. 
Brown University Press, Providence. 

10. Burrows, J. F. (1989). ‘an ocean where each kind. . . ’: Statistical analysis and some major 

determinants of literary style. Computers and the Humanities, 23(4-5):309–21. 

11. Burrows, J. (2003). Questions of authorships : Attribution and beyond. Computers and the Humanities, 

      37(1):5–32. 
12. Juola, Patrick; Baayen, R. Harald, ‘A Controlled-corpus Experiment in Authorship Identification by 
Cross-entropy,’ Literary and Linguistic Computing, Volume 20, Supplement 1, 2005 , pp. 59-67(9).
13. A. R. Gray, P. J. Sallis, and S. G. MacDonell, Software Forensics:  Extending authorship analysis 
techniques to computer programs, presented at the Third Biannual Conference of the International 
Association of Forensic Linguists, (at Duke University, Durham, North Carolina, 4 – 7 September 1997), 
p. 1 - 8. 



 29

14. P. Sallis, A. Aakjaer, and S. MacDonell, Software Forensics:  Old methods for a new science, in 
Proceedings of SE:  E&P ’96 (Software Engineering:  Education and Practice Conference ’96), (Dunedin, 
New Zealand, 1996) 367-371. 
15. M. H. Halstead, Elements of Software Science, (Elsevier North-Holland, New York, 1977). 
16. T. McCabe and C. Butler, Design complexity measurement and testing. Communications of the ACM 
32(12) (1989) 1415–1425. 

17. L. Prechelt, G. Malpohl, and M. Philippsen, Finding plagiarisms among a set of programs with JPlag.  
Journal of Universal Computer Science, vol. 8, no. 11 (2002), 1016-1038 

18. S. Schleimer, D. Wilkerson, and A. Aiken, Winnowing: Local Algorithms for Document 
Fingerprinting, in Proceedings of the ACM SIGMOD International Conference on Management of Data, 
(San Diego, CA, 2003) 76-85. 

19. P.W. Oman and C.R. Cook, Programming style authorship analysis, in Proceedings of the Seventeenth 
Annual ACM Conference on Computer Science: Computing trends in the 1990's, (Louisville, Kentucky, 
1989)  320 – 326. 

20. E.H. Spafford and S.A. Weeber, Software Forensics: Can we track code to its authors? Computers & 
Security 12 (1993)  585-595. 

21. I. Krsul, Authorship Analysis:  Identifying the Author of a Program, Purdue University, May, 1994, 
Technical Report CSD-TR-94-030. 

22. S. G. MacDonell, A. R. Gray, G. MacLennon and P.J. Sallis, Software Forensics for discriminating 
between program authors using code-based reasoning, feed-forward neural networks, and multiple 
discriminant analysis, in Proceedings of the 6th International Conference on Neural Information 
Processing ICONIP'99, ANZIIS'99, ANNES'99, and ACNN'99, (Perth, Western Australia, 1999),  66-67. 

23. J. Huffman Hayes, N. Mohamed, and T. Gao, The Observe-Mine-Adopt Model:  An Agile Way to 
Enhance Software Maintainability, Journal of Software Maintenance and Evolution: Research and 
Practice, 15, 5 (October 2003), 297 – 323. 

24. J. Huffman Hayes, S. Patel, and L. Zhao, A Metrics-Based Software Maintenance Effort Model, in 
Proceedings of the 8th European Conference on Software Maintenance and Reengineering, (Tampere, 
Finland, March 2004), pp. 254-258 

25. A. Nikora and J. Munson, Developing Fault Predictors for Evolving Software Systems, in Proceedings 
of the 9th International Software Metrics Symposium (Metrics2003), (Sydney, Australia, 2003), pp. 338 - 
350. 

26. Christian Collberg and Clark Thomborson, Watermarking, tamper-proofing, and obfuscation - Tools 
for software protection, University of Arizona Computer Science Technical Report number 2000-03, 
(February 10, 2000) 5-7. 

27. J. M. Voas, PIE:  A dynamic failure-based technique.  IEEE Transactions on Software Engineering 
18(8),  (1992) 717-727. 

28. J. R. Horgan and S. London,  1992.  A data flow coverage testing tool for C, in Proceedings of the 
Symposium of Quality Software Development Tools, (New Orleans, Louisiana, 1992) 2 - 10. 

29. B. Beizer, Software System Testing and Quality Assurance, (Van Nostrand Reinhold, New York, NY, 
1984)  45-51. 

30. T. J. Ostrand and M. J. Balcer, The category-partition method for specifying and generating functional 
tests.  Communications of the ACM 31(6), (1998)  676-686. 

31. Mats Grindal, Jeff Offutt and Sten F. Andler. Combination Testing Strategies: A Survey. Journal of 
Software Testing, Verification and Reliability, Wiley, 15(2):97-133, September 2005. 
32. P. G. Frankl, and S. N. Weiss, An experimental comparison of the effectiveness of the all-uses and all-
edges adequacy criteria, in Proceedings of the 4th Symposium on Software Testing, Analysis, and 
Verification,  (1991)  154-164. 

33. Paul Ammann and Jeff Offutt, Introduction to Software Testing, Cambridge University Press, 2008. 
34. R. H. Baayen, A. Neijt, H. van Halteren, and F. Tweedie, An experiment in authorship attribution.  In 
Proceedings of the 6s Journies Internationales dAnalyse de Donnies Textuelles (JADT), (Malo, France, 2002), pp. 
29 - 37. 

35. A. J. Offutt, Investigations of the software testing coupling effect.  ACM Transactions on Software 
Engineering and Methodologies 1(1), (1992)  5-20. 

36. K. Calvert.  “Programming Assignment 0: Protocol Layers, Version 1.2.”  CS 571 Computer 
Networks, University of Kentucky, Spring 2003a.  Assignment available upon request. 

37. Jane Huffman Hayes, Authorship Attribution:  A Principal Component and Linear Discriminant 



 30

Analysis of teh Consistent Programmer Hypothesis, International Journal of Computers and Their 
Applications (IJCA), VOLUME 15, NO. 2, June, 2008, p. 79 – 99. 

38. Experimental designs for research, http://www.csulb.edu/~msaintg/ppa696/696exper.htm. 
39. C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslen, Experimentation in 
Software Engineering, (Kluwer Academic Publishers, London, England, 2000). 

40. K.D. Welker and P.W. Oman, Software Maintainability Metrics Models in Practice, Journal of 
Defense Software Engineering, 8, 11, (November/December 1995)  19-23. 

41. G. Denaro, S. Morasca, and M. Pezze, Deriving Models of Software Fault-Proneness, in Proceedings 
of the 14th International Conference on Software Engineering and Knowledge Engineering (SEKE 
2002), (Ischia, Italy, July 2002), pp. 361 - 368. 

42. N. Hanebutte, C. Taylor, and R. Dumke.  “Techniques of Successful Application of Factor Analysis in 
Software Measurement.”  Empirical Software Engineering, Volume 8, p. 43-57, 2003. 

43. Patrick Juola, John Noecker, Mike Ryan and Mengjia Zhao, Authorship Attribution for the Rest of Us, 
Proceedings of Digital Humanities 2008, http://www.ekl.oulu.fi/dh2008/. 

44.  S. Kullback, The Kullback-Leibler distance, The American Statistician 41:340-341, 1987. 
45. Kullback–Leibler divergence, Wikipedia, http://en.wikipedia.org/wiki/Kullback-Leibler_divergence. 
46. Pearson, K. (1901). “On Lines and Planes of Closest Fit to Systems of Points in Space”. Philosophical 
Magazine 2 (6): 559–572, http://stat.smmu.edu.cn/history/pearson1901.pdf. 

47. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 
7, 179–188 

48. Capability Maturity Model Integration (CMMI), Software Engineering Institute, 
http://www.sei.cmu.edu/cmmi/index.html. 

  

 

 


