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Abstract— Hierarchical Temporal Memory (HTM) is still largely unknown by the pattern recognition community and only a few 

studies have been published in the scientific literature. This paper reviews HTM architecture and related learning algorithms by using 

formal notation and pseudocode description. Novel approaches are then proposed to encode coincidence-group membership (fuzzy 

grouping) and to derive temporal groups (maxstab temporal clustering). Systematic experiments on three line-drawing datasets have 

been carried out to better understand HTM peculiarities and to extensively compare it against other well-know pattern recognition 

approaches. Our results prove the effectiveness of the new algorithms introduced and that HTM, even if still in its infancy, compares 

favorably with other existing technologies.  

 

IERARCHICAL temporal memory (HTM) is a biologically-inspired computational framework recently 

proposed by Hawkins and George [1-3] as a first practical implementation of the memory-prediction theory of 

brain function presented by Hawkins in [4]. A private company, called Numenta
1
 [5], was setup to develop HTM 

technology and to make available to researches and practitioners a complete development platform. A number of 

technical reports and presentations are available in Numenta website [5] to describe HTM technology, application 

and results, but at today few independent studies [6-12] have been published to validate this computational 

framework and to frame it into the state-of-the-art.   

HTM substantially differs from traditional neural network implementations (e.g., a multilayer perceptron) and can 

be conveniently framed into Deep Architectures [13][14]. In particular, Ranzato et al. [15] introduced the term Multi-

stage Hubel-Wiesel Architectures (MHWA) to denote a specific subfamily of Deep Architectures. An MHWA is 

organized in alternating layers of feature detectors (reminiscent of Hubel and Wiesel’s simple cells) and local 

pooling/subsampling of features (reminiscent of Hubel and Wiesel’s complex cells); a final layer trained in 

supervised mode performs the classification. Neocognitron [16], Convolutional Networks [17][18], HMAX and its 

evolutions [19][20] are the best known implementations of MHWA. In analogy with MHWA, HTM alternates 

feature detection and feature pooling; however, in HTM feature pooling heavily relies on the temporal analysis of 

pattern sequences while in Neocognitron is hardwired and in Convolutional Network and HMAX is performed 

through simple spatial operators such as max or average. The temporal analysis and the modeling as a Bayesian 

Network make HTM similar in some aspects to Hierarchical [21] or Layered [22] versions of Hidden Markov Models 

(HMM); however, while HMM attempts to model the intrinsic temporal structure of input patterns
2
, HTM exploits 

time continuity (mainly during learning) for unsupervised derivation of invariant representations, independently of 

the static or dynamic nature of the input patterns. 

 

1 the author of this paper has no business relationships with Numenta or with its founders, and has no commercial interest in promoting HTM technology. 

2 in fact, the most successful HMM applications are in domains where patterns have an intrinsic temporal structure (e.g., speech recognition) or a spatial structure 

that can be naturally decomposed in subsequent parts (e.g., handwriting recognition). 
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As pointed out by Hawkins and George "... many of these ideas existed before HTMs and have been part of other 

models. The power of HTM comes from a unique synthesis of these ideas". In our opinion, HTM is the result of 

brilliant intuitions and clever engineering, and although HTM is still in its infancy, in the future it could help dealing 

with invariance which is the holy grail problem of pattern recognition and computer vision. Why HTM should 

overcome existing techniques in tackling invariance? There are some important properties that can be exploited to 

this purpose:  

 The use of time as supervisor. A key problem in visual pattern recognition is that minor intra-class variations of a 

pattern can result in a substantially different spatial representation (e.g., in term of pixel intensities). Huge efforts 

have been done to develop variation-tolerant metrics (e.g., tangent distance [23]) or invariant feature extraction 

techniques (e.g., SIFT [24]), but to date, successful results have been achieved only for specific problems. HTM 

exploits time continuity to claim that two representations, even if spatially dissimilar, originate from the same 

object if they come close in time. This concept, which constitutes the basis of Slow Feature Analysis [25], is 

simple but extremely powerful because it is applicable to whatever form of invariance (i.e., geometry, pose, 

lighting). It also enables unsupervised learning: labels are provided by the time. 

 Hierarchical organization. This is a largely used computation paradigm to put in practice the maxim "divide et 

impera". Recently a number of studies provided theoretical support to the advantages of hierarchical systems in 

learning invariant representations [13][26]. As the human brain HTM uses a hierarchy of levels to decompose 

object recognition complexity: at low levels the network learns basic features which are used as building blocks at 

higher levels to form representations of increasing complexity. Building blocks are also crucial for efficient 

coding  and generalization since through their combination HTM can encode new objects never seen before.   

 Top down and bottom-up information flow. In MHWA information typically flows one-way from lowers levels to 

upper levels. In the human cortex, both feed-forward and feed-back messages are continuously exchanged 

between different regions; although the precise role of feed-back messages is still very debated, neuroscientists 

agrees on their fundamental support in the perception of non-trivial patterns [4][27]. Memory-prediction theory 

postulates that feed-back messages from higher levels carry contextual information that can bias the behavior of 

lower levels. This is crucial to deal with uncertainty: if a node of a given level has to process an ambiguous 

pattern (e.g., a noisy version of an already encountered pattern) its decision could be better taken in presence of 

hints from upper levels, whose nodes are probably aware of the context the network is operating in (e.g., if one 

step back in time we were recognizing a car, probably we are still processing a traffic scene). 

 Bayesian probabilistic formulation. Probabilistic decisions are often better than binary choices when dealing with 

uncertainty. The state of HTM nodes is encoded in probabilistic terms and Bayesian theory is largely used to 

process messages and fusing information. HTM can be viewed as a Bayesian Network where Bayesian Belief 

propagation equations are used to pass up and down the information across the hierarchy [28]. This formulation is 

not only elegant in mathematical terms, but also allows to solve practical burdens such as value normalization and 

threshold selection.  
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Although HTM can be used in a variety of contexts, in this paper we focus only on visual recognition applications 

(i.e., inputs are 2D images). We also ignore biological aspects of HTM theory: an excellent description of HTM 

biological underpinning is reported in [3] where its implementation in terms of biological circuits is presented. 

When we started working with HTM we initially used the Numenta development platform, called Nupic [5] (most of 

the components are freely available to research organizations), but soon we decided to implement a new version from 

scratch: this is to have more flexibility and full control over the entire training/inference stages. Examples and 

experimental results reported throughout this paper have been obtained with our own HTM implementation.  

The main contributions of this work are: 

 an extensive description of HTM architecture (Sections 1, 2 and 3) and learning algorithms (Section 4) with 

consistent notation and pseudocode description; 

 the introduction of novel approaches (Section 5) to encode coincidence-group membership more robustly (Fuzzy 

grouping) and to derive more stable temporal groups (MaxStab temporal clustering);  

 the implementation of fast learning procedures, based on temporary data-buffering, to speed-up the training stage 

(Section 5.1.3); 

 an extensive experimentation on three line-drawing datasets (Section 6) aimed at: (i) finding out optimal HTM 

architecture and parameters; (ii) assessing the effectiveness of Fuzzy grouping and MaxStab temporal clustering; 

(iii) comparing HTM with other existing approaches. 

 further experiments to understand (and quantify) the efficacy of HTM mechanisms such as overlapped 

architectures (Section 6.2.3) and saccading (Section 6.2.5). 

In Section 7 we draw some conclusions and summarize the huge amount of work we believe it is worth undertaking 

to overcome current HTM limitations and, hopefully, move some steps forward in solving challenging pattern 

recognition problems. 

1. OVERALL HTM STRUCTURE 

An HTM is a tree-like network composed of       (≥ 2) levels    numbered from 0 to         (see Fig. 1).    is 

the input level;          is the output level;                 are called intermediate levels (if      = 2 the 

network has no intermediate levels). Each level    is composed of nodes   
   
           

   
. Nodes in input, 

intermediate and output levels are called input, intermediate and output nodes, respectively. To make notation lighter, 

a generic node can be denoted as   and a generic node at level   can be denoted as     . When an HTM is used for 

visual pattern classification, typically: 

 input nodes are in 1:1 relationship with image pixels; 

 nodes in each level    are arranged in a rectangular grid (i.e., retinotopic mapping of the input); 

 the network has only one output node, i.e.       
           , working as a pattern classifier; 
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Fig. 1. A four-level HTM designed to work with 16x16 pixel images. Level 0 has 16x16 input nodes, each associated to a single 

pixel. Each level 1 node has 16 child nodes (arranged in a 4×4 region) and a receptive field of 16 pixels. Each level 2 node has 4 

child nodes (2×2 region) and a receptive field of 64 pixels. Finally, the single output node at level 3 has 4 child nodes (2×2 

region) and a receptive field of 256 pixels. In the figure only the downward connections of one node per level are shown. 

 levels are sequentially interconnected through node connections: only connections between nodes in consecutive 

levels are allowed; 

 each intermediate or output node   
   

 is connected to a set (called region) of spatially close child nodes in     . 

Given a node  , we denote with           the set of its child nodes, with            the number of its child 

nodes, and with                          its     child node. Regions are rectangular shaped and the 

number of nodes along each of the two dimensions in a region is defined in such a way that allows an even 

partition of      nodes to    nodes. For example, in the network of Fig. 1,    has 256 nodes arranged in a 16×16 

grid whereas    has 16 nodes arranged in a 4×4 grid; each intermediate node      has 256/16=16 child nodes 

arranged in a (16/4)×(16/4) region; 

Level 3 

(output) 

1 node 

Level 2 

(intermediate) 

2×2 nodes 

Level 1 

(intermediate) 

4×4 nodes 

Level 0 

(input) 

16×16 nodes 

Image 

16×16 pixels 
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 each input or intermediate node      is connected to a single parent node in     . In the following, we denote 

with           the parent node of  . Actually, in some special configurations (see Section 6.2.3) the one-

parent constraint is relaxed to allow the visual field of nodes in a given level to be partially overlapped; 

 the receptive field (or visual field) of node can be conceived as the portion of input image that the node can see 

(i.e., the union of image pixels that can be reached by moving downward from the node). For input nodes, the 

receptive field is just one pixel. At higher levels a node receptive field is the union of its child receptive fields. As 

we move up in the hierarchy the receptive field gets larger: the receptive field of the output node is the entire 

image. 

2. INFORMATION FLOW IN HTM 

Information flow in HTM is bidirectional. Messages travelling bottom-up (feed-forward flow) are denoted with   

while messages travelling top-down (feed-back flow) are denoted with  . Using the notation introduced by Pearl for 

Belief Propagation [28] and adjusted to HTM by Hawkins and George [1]: 

 an input from below, denoted with   , is called evidence; in Bayesian terms, if   is a pattern,       corresponds 

to the pattern density; 

 an input from above, denoted with   , is called contextual information; in Bayesian terms, if   is a pattern,       

corresponds to the pattern prior; 

 according to Bayes theorem, by fusing density with prior into a posterior probability we obtain the best 

probabilistic explanation of unknown patterns [28]. Analogously, by fusing bottom up and top down messages 

each HTM node reaches an internal state (called node belief and corresponding to Bayes posterior) which is an 

optimal probabilistic explanation of the external stimuli. 

Although in the HTM framework feed-back flow is expected to be crucial for robust pattern classification, most of 

the practical achievements obtained until now rely on feed-forward flow only. This paper focuses on feed-forward 

flow. Details about feed-back equations can be found in [1] and the application of feed-back flow to segment out 

objects in cluttered scenes with multiple objects is presented in [3].   

In the feed-forward flow each input or intermediate node   takes in input a message   
                  from 

each of its child nodes. The above equation means that   
  corresponds to the conditional density

3
 of the evidence 

given the status of          . After internal processing of this information, the node produces an output    

        for its parent node (see Fig. 2). Since node connections do not alter messages, output messages    at level 

   coincide with input messages    at level     . Input messages to the output node (i.e., the single node in the 

 

3 Throughout this paper we often use the terms density (e.g.,     ) and conditional density (e.g.,       ). In the probability theory,      and        are density 

functions only if their summation (i.e. integral) over all possible values of   is 1. Since this constraint is not enforced in our formulation, we should define new 

functions       and         and claim that they are proportional to      and       , where proportional means equal except for a normalizing factor. However, 

since the normalization factors have no influence on HTM information processing, we prefer to keep notation as simple as possible and to avoid such an 

intermediate definition. 
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output level) are equivalent to those of intermediate and input nodes, whereas the output message is a vector whose 

elements denote the (posterior) probability that the input pattern belongs to any of the problem classes      

    . 

Feed-forward propagation of messages is performed level by level, starting from level 0. All    nodes must process 

their input    (in any order) and produce their output   , before level      nodes can start their computation.  

 

 

Fig. 2. A three-level HTM designed to work with 16×1 pixel images (such a special configuration allows to deal with one 

dimensional patterns). Feed-forward messages (on the left part of the network) are shown. For each node the input message   
  

coincide with the output messages    of its     child node. The output message of the output node is a vector whose elements 

denote the probability that the input pattern belongs to any of the classes   .  
 
 

3. NODE STRUCTURE 

In the previous section we treated the network nodes as black boxes capable of transforming input messages into 

output ones. Here we describe the internal structure of input, intermediate and output nodes and explain how nodes 

process information while performing inference. Inference is the phase where new patterns are presented to the HTM 

for classification. Throughout this section we assume that the network nodes already undergone a training stage 

(node training is discussed in Sections 4 and 5) and therefore all the node internal data have been already initialized. 

3.1 INPUT NODES 

The structure of an input node   is very simple.   receives only one message from below. Let   be the input 

image, where        denotes the image pixel at position    . Then, the input message,   
               is a d-

dimensional feature vector extracted from a local neighborhood of the image centered at       . 

In the simplest case, if I is a grayscale image, a 1-dimensonal feature vector can be obtained as: 

Level 0 (input) 

16×1 nodes 

 
Level 2 (output) 

1 node 

Level 1 

(intermediate) 

4×1 nodes 

Image I 

16×1 pixels 
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However, better performance can be often achieved by using more powerful feature vectors such as the responses of 

a bank of Gabor filters: 

  
                                                         

thus emulating the early processing performed by simple cells in the visual cortex [29]. 

Input nodes do not perform any internal processing, they simply propagate their input to the output: 

     
   

3.2 INTERMEDIATE NODES 

The internal structure of an intermediate node is shown in Fig. 3. The node maintains: 

 a set   of coincidences          ; 

 a set   of temporal groups (or simply groups)          ;      

 a       matrix    . 

 

Fig. 3. An intermediate node working in inference mode. 

3.2.1 Coincidences 

Each coincidence is a sort of prototype pattern that spans a portion of the image corresponding to the node 

receptive field (i.e., small at low levels and large at high levels). Coincidences are used to perform a spatial analysis 

of input patterns and to find out spatial similarities. However, the coincidence structure depends on the node level:   

 if  is an intermediate node at level 1 (hence its child nodes are input nodes), a coincidence corresponds to a 

small image patch. An example of coincidence graphical representation in a level 1 node is shown in Fig. 4 (left). 

  
      

    
  

Coincidences C 

Temporal groups G Matrix 

   …        

   …            
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Note that the coincidence dimensionality is the same as the input message    (i.e., the sum of the dimensionality 

of all the input messages coming from child nodes); 

 if  is an intermediate node at level  2 (hence its child nodes are intermediate nodes), a coincidence    can be 

conceived as a feature selector: each element       is the index of a single temporal group among the groups of 

           The dimensionality of coincidences is             . Although a graphical representation is here 

meaningless, a simple numerical example can help understanding: if   has 4 child nodes and             , then 

   selects: group 5 from child 1, group 3 from child 2, group 1 from child 3 and group 1 from child 4.  

3.2.2 Temporal groups 

A serious drawback of spatial-similarity-based pattern recognition is that slight variations of the input pattern can 

produce relevant changes in the feature representation. For example, let us consider the pixel level representation of a 

short vertical bar (one pixel thick): the right (or left) movement of just one pixel is enough to dramatically reduce the 

spatial similarity with the original pattern. A temporal group (or simply group) is a subset of   coincidences, that 

could be spatially quite different each from the other, but that are likely to be originated from simple variations of the 

same pattern. An example of level 1 temporal groups is shown in Fig. 4 (right). The name “temporal”, as it will 

become clearer in Section 4, depends on the fact that HTM exploits temporal smoothness to create temporal groups; 

in other words, patterns that are presented to the network very close in time, are likely to be variants of the same 

pattern that is smoothly moving throughout the network receptive field. 

          

Fig. 4. Coincidences and temporal groups in a level 1 intermediate node trained on line-drawing patterns. Each of the 133 

coincidences (on the left) is a 16=4×4 dimensional vector. On the right, graphical representation of 14 temporal groups (one per 

row). Group    denotes a horizontal (and    a vertical) bar at different positions within the node receptive field. Groups 

         and    correspond to four different types of corner. As explained in Section 4, HTM groups are not hardwired, but are 

the result of an unsupervised learning process.  

Coincidences:         

Groups:        
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3.2.3 PCG 

    is a       matrix: element                   denotes the conditional probability of coincidence    

given the group   , or, in other words, the relative probability of occurrence of coincidence    in the context of group 

  . Hence, for each group   ,          
  
     . 

3.2.4 Inference steps 

Inference in an intermediate node   can be decomposed in the following steps (see Fig. 3): 

1. Composition of input message: a single input message       
    

    
   is obtained as juxtaposition of the 

             input messages from the child nodes. The dimensionality d of   is the sum of   
  

dimensionalities. In general   
  dimensionality can vary across the child nodes.   

2. Computation of densities over coincidences: vector   is composed by the conditional densities of the evidence 

given the coincidences:                     . Intuitively each      can be conceived as the activation level 

of coincidence    when the node input is   .   computation depends on the node level:  

o if  is an intermediate node at level 1 (hence its child nodes are input nodes), the input message is essentially 

an image patch and coincidences are prototype image patches. In this case      encodes the spatial similarity 

between two image patches and can be conveniently computed as a Gaussian distance: 

            
       (1) 

where σ is a parameter controlling how quickly the activation level decays when    deviates from   . Fig. 5 

shows an example of coincidence activations;  

o if  is an intermediate node at level  2 (hence its child nodes are intermediate nodes), the input message is a 

probability vector (see point 4 below). In this case      is proportional to the probability of co-occurence of 

sub-evidences (each sub-evidence coming from a child), in the context of   . Assuming the sub-evidences to 

be independent the probability is obtained by product rule: 

                                 
 
       

        
 
    (2) 

where   
         is the element at position       in input message   

  from          . 

For example, if   has 4 child nodes,             ,   
                            , 

  
                      ,   

              and   
                  , then                   

               ;     

For numerical stability (i.e., to avoid that probabilities become too small as we move up in the hierarchy) it is 

preferable to normalize   such that      
  
     . This normalization does not alter the HTM behavior.  

3. Computation of densities over groups: the conditional density over a group    (which intuitively can be 

conceived as the activation level of group   ) can be obtained by probability marginalization over the group 

coincidences:  

                              
  
                      

  
                  

  
    (3) 
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where the assumption                      holds because the knowledge of    is irrelevant for the estimation 

of     density in the context of   . Fig. 5 shows an example of group activations.  

4. Composition of output message: the output message           , whose dimensionality is   , is simply 

composed by the conditional densities over the groups:                 
                .  

 

 

Fig. 5. This example shows, in the context of Fig. 4 intermediate node at level 1, the top 3 coincidence activations and the top 3 

group activations produced by the input message    graphically represented in the box located in the top-left part of this figure. 

In particular, even if the input patch is not identical to any of the node coincidences, it activates the three spatially closest 

coincidences. Group activations provide some generalization by associating the input patch to a corner-type pattern, 

independently of its precise location in the node receptive field.   

3.3 OUTPUT NODES 

The output node works as a pattern classifier. Its internal structure is shown in Fig. 6: the input part of the node is 

identical to an intermediate node, whereas in the output part group data are replaced by class data. The node 

maintains: 

 a set   of coincidences          ; 

 a prior probability vector [                    where           are the problem classes; 

 a       matrix    . 

    

    

Coincidences:         

Groups:        
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top 3 group activations 
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Fig. 6. The output node working in inference mode. 

3.3.1 Coincidences 

Output node coincidences are identical to intermediate node ones (see Section 3.2.1). However, except for 

degenerate cases where the network has no intermediate levels, the level of output node is  2 and therefore 

coincidences at this level work as feature selectors. 

3.3.2 Prior class probabilities  

In all pattern classification problems, the knowledge of class prior probabilities allows to improve classification 

accuracy according to Bayes theory. In HTM prior class probabilities              are computed at training 

time. 

3.3.3 PCW 

    is a       matrix: element                   denotes the conditional probability of coincidence    

given the class   , or, in other words, the relative probability of occurrence of coincidence    in the context of class 

  . Hence, for each class   ,          
  
     . 

3.3.4 Inference steps 

Inference in the output node can be decomposed in the following steps (see Fig. 6): 

1. Composition of input message: identical to intermediate nodes (see Section 3.2.4).  

2. Computation of densities over coincidences: identical to intermediate nodes (see Section 3.2.4). 

  
      

    
  

Coincidences C 

Prior class prob. Matrix 

   …        
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3. Computation of densities over classes: the conditional density over a class    (which intuitively can be 

conceived as the activation level of class   ) can be obtained by probability marginalization over the class 

coincidences:  

                              
  
                      

  
                  

  
    (4) 

where the assumption                      holds because the knowledge of    is irrelevant for the estimation 

of     density in the context of   . 

4. Computation of class posterior probabilities: according to Bayes theorem, class posterior probabilities can be 

obtained as:          
             

              
  
   

       .  (5) 

5. Composition of output message: the output message   , whose dimensionality is   , is simply composed by the 

class posterior probabilities:                                 , where          
  
     . 

4. NETWORK TRAINING 

With network training we denote a batch procedure aimed at computing: (i) coincidences  , groups   and     

matrix for all intermediate nodes; (ii) coincidences  , priors       and     matrix for the output node. Once 

training is finalized all network nodes are switched in inference mode and the network can start classifying unknown 

patterns.  

HTM training requires a training set                            , where    is a pattern (e.g., a grayscale 

image) and    the corresponding class. Intermediate levels are trained in unsupervised mode (i.e., pattern classes are 

not used), whereas the output node is trained in supervised mode. HTM training is performed level by level, from    

to         ;    (input level) does not require any training. When training nodes at level   , all the network nodes at 

previous levels, whose training was already finalized, work in inference mode. In Section 4.2 we will present the 

HTM training procedure in details, but before it is necessary to understand how training sequences are generated 

(Section 4.1). 

4.1 TRAINING SEQUENCES 

Training an intermediate level    requires to expose the network to a sequence of patterns. Such a sequence can 

be obtained by smoothly moving each training pattern across the network visual field. Since consecutive patterns in 

the sequence are close in time we can expect they are characterized by minor changes in terms of geometric (e.g., 

translation, rotation, scale, etc.) and photometric (e.g., brightness, color, etc.) features. Although different strategies 

can be designed to extract a sequence of temporally close patterns from a training set       , a baseline 

implementation is as follows: for each pattern            perform two scans (an horizontal zig-zag followed by a 

vertical zig-zag) by moving the foreground object contained in    in all the positions within   . Fig. 7 shows an 

example of sequence for a single training pattern. Performing a double scan is important to learn pattern temporal 

similarities; in fact, if we consider a pattern containing an horizontal bar, an horizontal scan alone would not allow to 
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(temporally) group variants of the same pattern where the bar occurs at slightly different vertical positions. A full 

training sequence can be obtained by concatenating sequences generated by single training patterns. In general, in a 

training sequence we can have discontinuities, denoted as temporal gap (see Fig. 7). Temporal gaps occur when we 

abruptly move a pattern to a distant position to start a new scan or when the training pattern changes (e.g., we stop 

moving    and start with   ).  

 

 

Fig. 7. An example of sequence obtained by the single 16×16 training image shown on the top-left (the foreground object it 

contains is highlighted with a dashed light blue rectangle). The first pattern, at the beginning of the second scan, is not obtained 

as a small movement of its predecessor in the sequence, hence it is marked as temporal gap. 

Intermediate levels can operate in a special mode (denoted as node sharing): in this configuration all the level 

nodes share the same coincidences  , groups   and     matrix. When HTM are used for visual pattern recognition, 

node sharing is typically used for the bottom levels in the hierarchy (e.g., level 1 and/or level 2), whose nodes are 

expected to learn primitives such as bars, corners, etc. that can occur at any position in the image. Node sharing 

forces all the nodes of the level to respond in the same way to identical stimuli
4
. For levels working in shared mode, 

it is sufficient to train just one node (denoted as master node), and then cloning
5
  ,   and     of the master node for 

all the other level nodes. When training a master node, the whole foreground object should be moved across the 

master node receptive field. In general this require to extend the movement of the foreground object outside the 

pattern boundaries
6
. A convenient strategy to generate such a sequence is shown in Fig. 8. 

Finally, to train the output node it is sufficient to expose the node to single training patterns with associated class 

labels (in fact, no temporal information are processed by the output node). However, if the network is required to 

 

4 this is in analogy with early regions (e.g., V1 and V2) in the visual cortex.  

5 in practical HTM implementations, cloning is accomplished by using pointers to the master node data structures. 

6 note that Fig. 7 sequence does not allow the whole foreground object to be moved over the receptive field of a single (master) node. In fact, let us consider a 

level 1 master node with a receptive field of size 4×4: there is no 4×4 subwindow of the 16×16 image over which the entire foreground object is moved.     

horizontal 

zig-zag scan 

vertical 

zig-zag scan 

temporal 

gap 
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recognize patterns independently of their position (translation invariance), each training pattern must be presented at 

different positions. In practice, we can use training sequences like that reported in Fig. 7, but unlike for intermediate 

nodes, here only a single scan (either horizontal or vertical) is necessary.    

 

Fig. 8. A convenient way to create the pattern sequence needed to train a master node, is to slide a window (whose size matches 

the node receptive field) across the foreground object. The example shows the sequence generated by an horizontal zig-zag scan.   

4.2 OVERALL TRAINING 

A pseudo-code implementation of HTM training is here provided: 

HTM Training 

Reset coincidences   // for all network nodes set      

for each level                

{    = Training Sequence for Level    from        // see Section 4.1 

        = Get First Pattern from      //    is the label of the pattern class 

 while (I is not null) 

 { Expose I  to       

  for each Level                              

   Do Inference // see Sections 3.1 and 3.2.4 

  Train    on        // expanded below 

         = Get Next Pattern from    
 } 

 Finalize Training on    // expanded below 

} 

where: 

Train    on        

if (         )    // output level 

 Train Output Node   
   

 on        // see Section 4.4 

else if (   is a node sharing Intermediate level) 

 Train Intermediate Node   
   

 on   // see Section 4.3 (we assume that   
   

 is the master node) 

else       // intermediate level (no node sharing) 

{ for each Node   
   
           

   
                   

  Train Intermediate Node   
   

 on   // see Section 4.3 

} 
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and 

Finalize Training on    

if (         )   // output level 

  Finalize Output Node Training   
   

 // see Section 4.4 

else if (   is a node sharing Intermediate Level) 

{  Finalize Intermediate Node Training   
   

 // see Section 4.3 

 for each node   
   
           

   
                   

  Clone         from   
   

 

} 

else        // intermediate level (no node sharing) 

{ for each Node   
   
           

   
                   

  Finalize Intermediate Node Training   
   

 // see Section 4.3 

} 

4.3 INTERMEDIATE NODE TRAINING 

The procedure Train Intermediate Node      on  , reported below, assumes that I has been presented to the 

network (level   ) and inference has been already performed until level    . Hence messages   
    

    
  are 

available from the   child nodes of     .  

Train Intermediate Node      on   

Compose Input Message       
    

    
    // see 3.2.4, point 1 

if (          // node at level 1 →     is an image patch 

{                          // select the coincidence closest to   , as candidate active coincidence 

 if (                ) // none of the existing coincidences is spatially representative of    

  {          // increase number of coincidences 

      =      // add    to   as a new coincidence 

           // the active coincidence is the new one 

  } 

} 

else       // node at level ≥ 2 →     is a probability vector 

{      = Indices of Child Winning Groups in    // see Equation 6 

                                        // select the coincidence closest to     , as candidate active coincidence 

 if (                              ) // none of the existing coincidences is spatially representative of    

  {          // increase number of coincidences 

      =       // add      to   as a new coincidence 

           // the active coincidence is the new one 

  } 

 } 

                 // number of times     was the active coincidence during training 

if (  is not a temporal gap pattern)  

         
             

        // updates Temporal Activation Matrix 

     
         // remember the active coincidence for next step 

where: 
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 the active coincidence is the spatially closest coincidence to the node input. If all existing coincidences are too 

dissimilar from the input (with respect to a level specific threshold        ), then a new coincidence is created 

and selected as active coincidence. Selecting and bringing forward only one coincidence, implements a winner 

take all criterion that is in contrast with the continuous criterion used during inference, when the activation of all 

coincidences are taken into account for the computation of group activations (see Equation 3). It is worth noting 

that such an asymmetrical approach (winner take all for learning vs continuous for inference) is not atypical, and 

proved to be quite effective in training other deep architectures [15][30]; 

      is a vector of indices of child winning groups. Index         is the group index, within the groups of child 

node         
    , which obtained maximum activation. Let    be the number of groups in         

    , and 

  
     be the     element of vector   

 , then: 

              
      

   
       (6) 

Here too a winner take all criterion is adopted. In fact, only the index of the most active group within each child 

node is considered. Again, this is in contrast with the continuous criterion used during inference where the 

activations of all child groups are used to compute coincidence activations (see Equation 2);  

                       counts the number of differences between indices at corresponding positions in the two 

vectors. For example, if                and                 , then                        ; 

 A scalar       is maintained for each coincidence    to count the number of times    was active during the node 

training. When finalizing node training these values will be used to quantify coincidence relevance;    

  , denoted as Temporal Activation Matrix (or TAM), is an       matrix, used to keep track of coincidences 

that have been activated in succession, and thus are good candidates to form a temporal group. When finalizing 

node training   will be used to compute temporal groups   and    . For simplicity of presentation, in the above 

pseudocode   update is performed by looking only one step back in time (i.e., through      
 ). In general, better 

performance can be achieved by considering                  steps back: let         
  be the index of the 

active coincidence   steps back in time, then: 

for each                       

            
                

                             

where linearly decreasing weights are here used to update   as the time gap increases. 

 

Once all the patterns in the training sequence have been presented to the node, the intermediate node training can be 

finalized as: 
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Finalize Intermediate Node Training      

Forget Rare Coincidences // coincidence    such that                 are removed from   

Compute Coincidence Priors // see Equation 7 

Make   Symmetric  // after this step:                           

Normalize   by Rows  // after this step:            
        

      , see Equation 8   

Temporal Grouping   // determine groups   from   clustering, see Section 4.3.1 

Compute        // see Section 4.3.2 

where: 

 forgetting rare coincidences can be useful to reduce the number of coincidences; in fact, deletion of rarely 

activated coincidences usually has a minor impact on the network classification accuracy;  

 to make   symmetric the upper diagonal part is summed to the lower diagonal part 
7
: 

                                        for each pair                      

Making   symmetric allows coincidences that occurred close in time to be grouped independently of the 

activation order. Therefore a pattern moving left-to-right across a node receptive field yields to the same groups as 

the same pattern moving right-to-left; 

 coincidence priors can be simply obtained by normalizing the number of times coincidences have been activated 

during training: 

                                  (7) 

   values are proportional to the probability of (close in time) co-occurrence of coincidences. A simple 

normalization by rows makes   values true conditional probabilities:    

                                    for each               

After normalization: 

           
        

       (8) 

where   
    means that    was active at time  , and                , for each       . Note that after 

normalization   is no longer symmetric. 

Some further definitions are useful before discussing group computation: 

 Equation 8 asserts that        is the probability that the next active coincidence will be    if the current active 

coincidence is   ; in other words,        denotes the temporal connection of the (ordered) pair   ,   ; 

 the temporal connection    of a single coincidence    is the probability that the next active coincide will be    

independently of the currently active coincidence, and can be obtained from 8 by marginalization: 

            
        

                 
       (9) 

where we assume that     
       are the prior probabilities obtained from Equation 7, and therefore: 

 

7 throughout this paper, for Equations that require updating a whole matrix/vector by overwriting the same matrix/vector, we denote the target with the 

superscript    , in order to avoid any ambiguity due to possible interfering updates. This does not mean that updating require a temporary copy of the data 

structure.        
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                           (10) 

 the temporal connection    of a group    is the average temporal connection between any two coincidences 

belonging to the group. Let      be the number of coincidences in   , then: 

        
 

    
 
                   (11) 

4.3.1 Temporal Grouping by T Clustering 

A temporal group    is a set of coincidences that are likely to occur close in time. Partitioning   coincidences into 

a set of disjoint groups               , can be formulated as a clustering problem aimed at maximizing the 

functional: 

      
 

  
       
  
     (12) 

subject to the constraints: 

          for each         (13) 

               (14) 

                   for each   (15) 

Equation 13 asserts that groups must be disjoint, equation 14 that all the coincidences must be assigned to groups and 

Equation 15 sets a maximum group size. Maximization of 12 leads to maximize the average group temporal 

connection, that is the within group temporal connections among coincidences. 

Clustering is one of the most studied problem in pattern recognition and machine learning [31] and hundreds of 

algorithms have been proposed in the literature. The clustering problem at hand has some peculiarities: (i) we can 

easily compute similarity between any pair of coincidences, but there is not an efficient way to compute the centroid 

of a set of coincidences (this makes the application of k-means like approaches critical); (ii) the number of 

coincidences and groups can be quite large in practical applications, so we need computationally efficient 

approaches; (iii) we do not care too much about the optimality of the solution since HTM is robust enough with 

respect to suboptimal grouping. For this reasons an ad-hoc (computationally efficient) greedy algorithm, here 

denoted as Default temporal clustering, was introduced in [32]:  

Default Temporal Clustering 

          

                           // a flag is maintained to denote coincidences already assigned    

while (not all coincidences have been assigned)   

{                
                  

       // select the non assigned coincidence with highest temporal connection  

            // initialize a new list   with a single coincidence 

           // this is a cursor used to scan   elements by their position   

 while (       (                       ) // until scan is completed or group is too large;    (   is the list length 

 {             // get coincidence at position     in the list 

                             // add to the tail of   the              coincidences that are the most 

connected to   , see below.  
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 } 

           // create a new empty group and add it to   

       

               

 for each         // add the first     coincidences in   to the new group 

 {            

                

                    // mark it as assigned 

 } 

} 

where: 

                      selects the              coincidences    with highest temporal connection        

with   , excluding coincidences already assigned. Selected coincidences are added to  , by inserting them at the 

end of the list and by excluding coincidences already present in the list. A typical value for              is 3.  

The default temporal clustering algorithm runs by creating one group at each time. The group seed is a single highly 

connected coincidence, to which its                  coincidence are associated; group growing is recursive, 

i.e., each newly associated coincidence will cause its                  coincidences to be associated as well. 

Recursion terminates: (i) naturally, when the                  coincidences of all the coincidences in the list are 

already in the list; (ii) forcedly, if the list length exceeds             . Some nice graphical examples of group 

growing are shown in [32]. Temporal grouping shown in Fig. 4 has been created with the default temporal clustering 

algorithm. A different algorithm, based on Agglomerative Hierarchical Clustering, was proposed in [1].     

4.3.2 PCG Computation 

                  denotes the conditional probability of coincidence    given the group   . The computation 

of     matrix is performed in two simple steps: 

1.           
              
          

   ,  for each               

2.                                           ,   for each               

The former step sets the conditional probability as the coincidence prior in case the coincidence belongs to the group. 

The latter is a within group normalization aimed at guaranteeing, for each group   , that                    

4.4 OUTPUT NODE TRAINING 

Training the output node during pattern presentation is very simple:   

Train Output Node      on        

...         // the first part, aimed at selecting/creating the active coincidence    , is 

identical to Intermediate Node Training, see Section 4.3. 

                        // increase the number of times     was active in the context of class     



 

20 

 

A few steps are required to finalize the output node training: 

Finalize Output Node Training      

Forget Rare Coincidences // coincidence    such that                           are removed from   

Compute Class Priors              // see Equation 16 

Normalize        // see Equation 17 

where: 

                 is the total number of times coincidence    has been active independently of the pattern class; 

these values are here used to forget rare coincidences;  

 class Priors              are computed by     marginalization and normalization: 

       
               

                      

   (16) 

     normalization is aimed at guaranteeing, for each class   , that                    

                                          ,   for each              . (17)  

5. NEW TRAINING ALGORITHMS 

In this Section we introduce new training techniques: in particular, Section 5.1.1 presents a new temporal 

clustering algorithm, Section 5.1.2 introduces a fuzzy grouping approach, and finally in Section 5.1.3 we discuss 

computational issues and show how activation buffering can markedly reduce training time.    

A new constructive definition of          is fundamental for the discussion hereafter. Let                be a 

temporal grouping solution and   be a normalized temporal activation matrix (see Equation 8), then:      

              
        

                   
           (18) 

where: 

     
        

              
        

             , since given   
         , the knowledge of    is irrelevant to 

determine   
   ;  

     
          is computed as the relative prior probability of    (see Equation 7) over the total prior probability 

of coincidences belonging to group   : 

    
                             . 

Hence Equation 18 becomes: 

                 
     

           

       (19) 

It can be simply proved that, for each group   : 

                  (20) 

in fact, being                 (see Equation 8), then: 



 

21 

 

                
         

     

           

       
 

           
      

           
              

           

           

  .  

According to Equations 18 (and 19) the conditional probability of a coincidence    given a group    can be 

conceived as the probability that the next active coincidence will be    if the currently active coincidence is one of 

the coincidences of the group   . It is worth noting that Equation 19 allows to compute the degree of membership of 

a coincidence to a group either if the coincidence belongs to the group or not.  

Equation 19 also allows to define the stability of a group   :  

                             (21) 

              is the probability that if the currently active coincidence belongs to    then the next active coincidence 

will also belong to   . It can be simple proved that               always lies in [0,1], where 1 means maximum 

stability; in fact,               is smaller than or equal to the summation in Equation 20.  

It should be noted that the definition of group stability is quite similar to that of group temporal connection (see 

Equation 11): the only difference is that to compute group stability we make use of prior probabilities       to 

weight        values non uniformly. 

5.1.1 MaxStab Temporal Clustering 

The default temporal clustering approach introduced in Section 4.3.1 indirectly maximizes functional    (Equation 

12) by forming groups with high internal        values. The algorithm here introduced performs a more direct 

maximization of the average group stability, expressed by the functional: 

      
 

  
              
  
     (22) 

subject to the constraints 13, 14 and 15.  

MaxStab Temporal Clustering 

          

                           // a flag is maintained to denote coincidences already assigned    

while (not all coincidences have been assigned)   

{                
                  

       // select the non assigned coincidence with highest temporal connection  

           // create a new empty group and add it to   

       

              

 do 

 {               

                     

                 
                  

              // get coincidence that most increases group     stability 

 } 

 while (               
        

  
                       )  

} 
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where: 

               computes the delta stability resulting from the inclusion of    in    .   

MaxStab creates one group at each time starting from a single highly connected coincidence. The group is then 

expanded by associating, step by step, the coincidence that most increases the group stability. The expansion 

continues while: (i) the increase in stability is larger than a given threshold computed as            , and (ii) the 

group size is smaller than             .  

Because of the similarity between group stability and temporal connection both    and    maximization are expected 

to give similar results. However in our experiments, MaxStab usually leads to an higher average group stability 

(Equation 22) with respect to the default temporal clustering of Section 4.3.1, and this often results in better 

classification performance. On the other hand, since HTM networks are quite robust with respect to suboptimal 

grouping the accuracy improvement is often marginal. A graphical comparison of the solutions obtained with the two 

algorithms is shown in Fig. 9.    

 

Fig. 9. Two temporal groupings over the coincidences of Fig. 4 (left) starting from the same temporal activation matrix: (a) 

clustering was performed with the default temporal grouping algorithm with parameter values:                , 

              . The first group, i.e., that containing a single empty patch, was hardcoded; in fact, we noted that for line 

drawing classification, in case of perfectly clean background, this often leads to better accuracy. The average group stability 

obtained is         (b) clustering was performed with MaxStab algorithm with parameter values:                , 

             . Unlike for the default algorithm, no group was hardcoded here, since MaxStab can create groups with a 

single element. The average group stability obtained is       . Finally it should be noted that groups in (b) are better 

balanced and that while in (a) group growing was terminated in 8 cases by the maximum group size constraint, in (b) group 

growing always terminated naturally because of the threshold imposed by         .      

(a) (b) 
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5.1.2 Fuzzy Grouping 

In Section 4.3.1, Equation 13 requires the groups to be disjoint (i.e., no coincidence can be part of more than one 

group) and Equation 14 requires all coincidences to be assigned to one group. In real applications, rarely clusters can 

be clearly identified and even for optimal solutions some patterns can lie near the boundaries of two of more clusters. 

Forcing patterns to be member of only one cluster can lead to ambiguity. For this reason in many pattern recognition 

applications, probabilistic or fuzzy clustering, such as fuzzy-k-means [33] or Expectation-Maximization [34] is 

preferred to exclusive clustering. In the following we will relax Equation 13 and 14 constraints; this will lead to the 

formation of partially overlapped groups from which we will derive     in a novel way. Some steps in this direction 

(non exclusive grouping) were pioneered by Greg Kochaniak (unfortunately a formal description of his approach is 

not available), but his temporal grouping implementation was quite different from the fuzzy grouping approach here 

introduced.  

To implement Fuzzy grouping, the last two steps of the Finalize Intermediate Node Training algorithm in Section 4.3 

must be replaced with the following five sequential stages (previous steps remain unaltered): 

1. Compute initial groups   with a clustering algorithm enforcing Equation 13 and 14. This initial clustering 

solution can be computed with the default algorithm described in Section 4.3.1 or with the MaxStab algorithm 

described in Section 5.1.1. 

2. Remove small groups and groups with low stability. Groups with less than              coincidences are 

expected to bring limited generalization, so they are removed. Analogously, groups    such that               

                  are removed since their elements are not enough temporally close each other. At this stage 

coincidences of deleted groups remain orphans (Equation 14 is no longer enforced). 

3. Computation of    . Each element                   is calculated according to Equation 19. 

4. Group extension. Given a group   , coincidences already belonging to    at the end stage 2, are denoted as 

primary coincidences, whereas coincidences added subsequently (i.e., during this phase) are denoted as 

secondary. Since primary coincidences contributed to the group formation they are expected to be the most 

representative for the group. However, other coincidences not belonging to the group could be temporally close to 

coincidences in the group: we allow a coincidence    to be added to a group    as secondary coincidence if 

         is high. However, instead of explicitly thresholding         , group extension is accomplished as: 

Group Extension to Secondary Coincidences  

for each            

{     

          

 while (                   // we want to add    only to the top% groups (default value for              ) 

 {                
    

          // select the temporally closest group, excluding those already considered  

            // to avoid selecting     again 

                          
  if (      )  //    might already belong to     as primary coincidence 
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                //    is added to     as secondary coincidence 

 }  

}    

At the end of this stage Equation 13 is no longer enforced. 

5. Cleaning and Normalization of     

                
                  

          
   ,  for each              .  

This step clears a          value, computed at stage 3, if    does not belong (neither as primary nor as secondary) 

to group   .  

                                           ,   for each               

This step is necessary, after     cleaning, to ensure that for each group   ,                  .  

It is worth noting that fuzzy grouping could be implemented without group extension (stage 4) and 

cleaning/normalization (stage 5), since, at the end of stage 3,     matrix is already consistent. However, the 

proposed implementation leads to a sparse     (e.g., only a minor portion of its element are not 0) which is 

preferable for both robustness (as confirmed by experimental results) and computational efficiency. In the rest of this 

paper we will denote the temporal grouping introduced in Section 4.3.1 as exclusive grouping in order to distinguish 

it from the fuzzy grouping here proposed. Fig. 10 shows an example of fuzzy grouping and compares it with the 

exclusive grouping solution from which it was derived. 

5.1.3 Activation Buffering 

In Section 4.2 we explained that HTM training is performed level by level: while training level   , all the nodes of 

previous levels work in inference mode. Therefore all the patterns in the training sequence    used to train level    

must be processed (i.e., inference) by all the levels        . For huge training sequences this (lower level) 

processing can be computationally demanding thus leading to long training time. However, since the training 

sequences    used to train the different levels are usually generated from the same training patterns, buffering the 

node responses (i.e., the group activations) allows re-processing of the same patterns to be avoided. This idea is 

derived by an HTM implementation developed by Greg Kochaniak. 

Activation buffering implementation details depend on the training strategy and in particular on the composition 

of the training sequences. In the following we assume that training sequences are created as described in Section 4.1 

where patterns in each training sequence    are obtained by one or more exhaustive scans over the training set 

patterns        (see Fig. 7 and Fig. 8). Let             be a training set pattern, then              is the pattern 

extracted by      when the scan offset is     . Activation buffering can be enabled when training levels    with 

           . The implementation is slightly different if the level is working in node sharing mode or not:  
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Fig. 10. (a) The exclusive grouping solution reported in Fig. 9.b is characterized by an average group stability       . (b) 

Fuzzy grouping solution obtained starting from groups in (a) and with parameter values:               , 

                     ,              . Two groups have been deleted because of               . 

Coincidences enclosed inside red frames are secondary coincidences added during group extension. It can be noted that many of 

the secondary coincidences can be obtained by small translations of primary coincidences in the same group. Here the average 

group stability grows to       , and, even if the average group length increases from 5.5 to 14, the percentage of non-zero 

    elements remains quite small (10.5%).  

 no node sharing. For each node   
   

 of level    and for each pattern           the index      of the winning 

group (i.e., the most active group) is stored in a buffer:                        . When training nodes of 

level     , indices of child winning groups (    , see Equation 6) are composed by directly accessing the buffer 

without any lower level pattern re-processing. 

 node sharing. Only the master node   
   

 is trained. In this case, the node reference   is always 1, so the buffer 

entries are                      . When training nodes of level      the child winning group index of each 

non master node   
   
 can obtained by accessing the buffer at a position      that depends, not only on the 

current scan offset, but also on the relative position of   
   

 with respect to the master node   
   

 (in practice, the 

activation of a non master node is derived from the master node activation upon receptive field shifting).   

Two types of activation buffering, denoted as normalBuffering and fastBuffering, can be implemented: 

 normalBuffering results are identical to the non-buffering case. Buffering is performed at the end of node training 

when the entire training sequence is presented again to the network and inference is carried out through previous 

(a) 

(b) 
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levels        . However, NormalBuffering is effective only for levels operating in node sharing mode; making 

it advantageous also for "no node sharing" levels would be very complex and space-demanding. 

 fastBuffering results are usually slightly different with respect to the non-buffering case. Buffering is carried out 

in two stages: (i) during the training of level   , the winning coincidence indices (i.e., the most active coincidence 

indices) are buffered. At the end of    training, once     has been computed, winning coincidence indices are 

batch converted into winning group indices. This is an heuristic step (leading to a loss of information) because it 

ignores the contributions of the non-winning coincidences to the computation of group activation levels (see 

Equation 3). However, from experimental results (refer to Section 6) we noted that fastBuffering is not only more 

efficient, but sometimes is also more accurate than normalBuffering, and in general, even when it is less accurate, 

the accuracy drop is small. 

6. PATTERN CLASSIFICATION EXPERIMENTS 

In this Section we present several experimental results on pattern classification problems: Subsection 6.1 

introduces the three datasets used in the experiments; in Subsection 6.2 we discuss HTM training, tuning and 

parameterization and we compare the new training algorithms of Section 5 with the default implementation reported 

in Section 4; finally, in Subsection 6.3 HTM is compared with other pattern recognition approaches.          

6.1 DATASETS 

For this study we selected three different pattern classification problems: SDIGIT, PICTURE and USPS. In our 

opinion, these three datasets constitute a good benchmark to study invariance, generalization and robustness of a 

pattern classifiers. However, in all the three cases the patterns are small black-and-white or grayscale images (32×32 

or smaller). Even if HTM was already applied with success to object recognition problems with larger color images 

(see [3][11]) our current implementation need to be further enhanced to be able to efficiently works with large 

patterns. As discussed in Section 7, part of our future efforts will be dedicated to the demonstration of HTM 

capabilities on typical object recognition benchmarks such as CalTech and Pascal VOC datasets [35].          

6.1.1 SDIGIT 

SDIGIT is a machine-printed digit classification problem where just a single (16×16 pixels, 8-bit grayscale) 

image, called primary pattern, is provided for each of the 10 digit classes, and a number of variants are generated by 

geometric transformations of the primary patterns. By explicitly controlling the size and the amount of variation in 

both the training and the test set we can study specific characteristics of HTM related to training, 

generalization/invariance, robustness. With                                               we denote a set of   

patterns, including, for each of the 10 digits, the primary pattern and further          patterns generated by 

simultaneous scaling and rotation of the primary pattern according to random triplets           where    

             ,                  and                . 
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The creation of a test set                                              starts by translating each of the 10 primary 

pattern at all positions that allow it to be fully contained (with a 2 pixel background offset) in the 16×16 window thus 

obtaining   patterns; then, for each of the   patterns,          further patterns are generated by transforming the 

pattern according to random triplets          ; the total number of patterns in the test set is then       . Fig. 11 

shows an example of test set generation. 

 

Fig. 11. SDIGIT: 10 patterns for each class extracted from a test set                                           . Note the large 

intra-class variation because of relevant rotation and scale changes; also note that some patterns of different classes appear to be 

very similar (e.g., rotated "1" and "7", small "5" and "6"). 

6.1.2 PICTURES 

This is a difficult line-drawing classification problem introduced in [1]. The dataset can be obtained from [5]. 

Patterns are 32×32 pixels, 1-bit (i.e., black and white) images belonging to 48 classes, including: characters, 

stereotyped animals and simple objects. The training set                is constituted by 453 images; pattern 

distribution over classes in unbalanced but all classes have more than one pattern. The test set               is 

composed by 8,941 patterns which represent distorted versions of the training set ones. Distortion includes geometric 

change, line thickness change, noise (i.e., randomly flipped pixels), disconnection/cancellation of parts; some of the 

patterns are so severely distorted that also human classification is challenging. Fig. 12 shows some examples. A 

reduced version of PICTURE problem, denoted as PICTURE-, can be obtained by considering only the first 8 

classes: in particular,                  contains 100 patterns and                 contains 2,000 patterns.      

6.1.3 USPS 

USPS is a well known handwritten digit classification problem [36], largely used in the scientific literature as a 

benchmark for pattern recognition and machine learning approaches. USPS patterns are 16×16 pixels, 8-bit grayscale 

images; the training set             and test set            contains 7,291 and 2,007 patterns respectively. Fig. 13 

shows some examples. With                we denote a subset of the training set composed by the first      

patterns of each class. Although the shape variability in the USPS patterns is quite large, the digits are centered in 

their window and the test set variations are quite well covered by the large training set, and therefore even a simple 

approach such as the Nearest-Neighbor classifier achieves good classification results. While we believe this dataset is 

not ideal for studying invariance and generalization features of a pattern classifier, reporting and comparing HTM 

accuracy also on well-know benchmarks is essential.  
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Fig. 12. Two examples per class extracted from (a)                and (b)              . 

 

  

Fig. 13. Ten examples per class extracted from (a)             and (b)           . 

6.2 HTM ANALYSIS 

Designing an HTM architecture and finding optimal values for the numerous parameters controlling the network 

learning and inference is not a trivial task. Furthermore, as for many other pattern recognition approaches, the 

optimal architecture and parameter values are problem dependent and a proper parameter tuning can lead to a 

relevant performance improvement. Fortunately HTM is quite robust with respect to its parameterization and 

(b) 

(a) 

(a) 

(b) 



 

29 

 

performance just nicely degrades as parameters drift away from their optimal values. In our experimentation we tried 

to fix, as much as possible, the network architecture and the parameter values independently of the problem. This 

could lead to suboptimal accuracy, but in general allows to control data overfitting, especially when a validation set 

(disjoint from the test set) is not available to tune parameters.  

6.2.1 Parameter selection 

Table I list the parameter values that we found to be appropriate for all the classification problems addressed in 

this work, while Table II includes dataset specific parameter values. 

All the HTM used are four-level networks: two intermediate levels perform both spatial and temporal analysis; the 

output level performs a further spatial analysis and then classifies the pattern. Some experiments have been carried 

out with three- and five-level networks too; although with proper parameterization these architectures can perform 

well (sometimes better than a four-level HTM), a four-level architecture demonstrated to be an optimal choice for 

input patterns of size 16×16 and 32×32. As reported in Table II, node arrangements across the four levels is 16×16 → 

4×4 → 2×2 → 1 (as in Fig. 1 example) for SDIGIT and USPS, and 32×32 → 8×8 → 4×4 → 1 for PICTURE. 

Level 1 always operates in node sharing mode since its nodes are expected to learn basic features that are somewhat 

independent of the position within the network receptive field. Level 2 also operates in node sharing mode for 

PICTURE while level 2 node sharing is not activated for SDIGIT and USPS since in these cases pattern translations 

across the input window is more limited and    nodes experience sub-patterns that are position dependent. 

 

Common parameter values 
Level 0 (Input) Level 1 (Intermediate) Level 2 (Intermediate) Level 3 (Output) 

                   

 

            

                   

               

                

              

Default Temporal Clustering 

               

MaxStab Temporal Clustering 

              
 

 

          

            

                   

               

                

              

Default Temporal Clustering 

               

MaxStab Temporal Clustering 

              

                       

 

          
            
 

Table I. Common parameter values for all the HTM networks used in our experiments. Optimal parameters for both Default 

Temporal Clustering and MaxStab Temporal Clustering are reported. Parameter           is used only if Fuzzy Grouping is 

activated. 

SDIGIT 
Level 0 (Input) Level 1 (Intermediate) Level 2 (Intermediate) Level 3 (Output) 

16×16 4×4 

 

             

       

MaxStab Temporal Clustering 

                       

2×2 

                   

 

 

1×1 
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PICTURE 
Level 0 (Input) Level 1 (Intermediate) Level 2 (Intermediate) Level 3 (Output) 

32×32 8×8 

 

            

       

MaxStab Temporal Clustering 

                       

4×4 

                  

 

1×1 

 

 

USPS 
Level 0 (Input) Level 1 (Intermediate) Level 2 (Intermediate) Level 3 (Output) 

16×16 4×4 

             

       

MaxStab Temporal Clustering 

                       

2×2 

                   

 

1×1 

 

 

Table II. Problem specific values for the HTM networks used in our experiments. 

Parameters         and   deserve particular attention: 

 Level 2 and 3 always have          , this means that all the sub-patterns encountered during learning are 

stored as coincidences if they are not identical (i.e.,               ) to already seen coincidences. Remember 

that the meaning of         for the intermediate level    is different with respect to subsequent levels; in fact, in 

   nodes the coincidence distances are computed as Gaussian distances while for higher level nodes they are 

computed in terms of winning indices differences (see Section 4.3). As to Level 1, the value of         directly 

controls the number of "basic" coincidences created and heavily influence the whole network complexity (in 

terms of number of coincidences and groups at all levels); for PICTURE we set           because PICTURE 

patterns are black and white and the number of different sub-patterns presented to level 1 nodes is quite small 

(less than 200); on the other hand, SDIGIT and USPS patterns are gray-level and setting           would 

result in a huge number of nearly-identical coincidences at level 1. Experimental results proved that the network 

invariance and generalization capabilities get worse if too many nearly-identical coincidences are retained at level 

1, so         has to be adjusted (by trial and errors) according to the pattern variability in the problem at hand. 

 Parameter   (see Equation 1) is mainly involved in the inference stage where it controls how quickly the 

coincidence activations (in level 1 nodes) decay when the current sub-pattern deviates from the stored 

coincidences. In practice, a too high value of   determines the activation of a large number coincidences thus 

leading to little spatial selectivity, while a too low value of   determines the activation of just one coincidence and 

this penalizes generalization and robustness. We experimentally discovered that an effective way to estimate an 

optimal value for   is to require that a given percentage (around 3%) of    coincidences are responsible for the 

95% of the whole activation. In other words, if      values are sorted in descending order,   should be tuned in 

such a way that, on the average, the first 3%      totals the 95% of the      sum.   

There is not much more to explain about parameters reported in Table I, except noting that the value of 

                 has to be markedly increased moving from    to   ; this is consistent with the provision that 

HTM higher level nodes must be more invariant than lower level nodes with respect to spatial and temporal changes 
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of input patterns and therefore, during training, the temporal analysis must be extended to longer time periods. 

Finally, it is worth noting that the value of parameter                  , which is stable to 0.12 for almost all the 

cases, has been decreased to 0.07 only for USPS (level 1); this was necessary because of the high number of groups 

created at level 1 in USPS (due to the large pattern variability) and the consequent difficulty of achieving high group 

stability after the temporal clustering; using                        for USPS would lead to discard too many 

groups. An alternative approach, to make the choice of minimum group stability totally problem independent, could 

be to define this threshold as a percentage of the average group stability, thus avoiding to provide and absolute value.  

6.2.2 Accuracy and efficiency 

Table III, IV and V report results achieved on SDIGIT, PICTURE and USPS respectively. HTM parameters have 

been set as described in Section 6.2.1. Each table compares three configurations: (i) Baseline refers to an HTM 

trained with default algorithms described in Section 4; (ii) Fuzzy grouping refers to a network where coincidence-

group memberships are computed according to the approach described in Section 5.1.2; (iii) MaxStab is the case 

where the Default temporal clustering is replaced with the MaxStab algorithm introduced in Section 5.1.1 (fuzzy 

grouping is also active in this configuration). 

For all the experiments we report:  

 details about the sequences    used to train the corresponding HTM levels (see Section 4.1); in particular, for 

each sequence we provide the number of sub-patterns and the sub-pattern size; 

 classification accuracy for both training and test set; 

 time elapsed for training/test. The time measure refers to our C# (.net) implementation running on Windows 7 on 

a Xeon CPU W3550 at 3.07 GHz. Although our HTM implementation can take advantage of a multi-core CPU, 

only one core is here used for a fair comparison with other classifiers in Section 6.3. 

 the size of the HTM in MB, that we define as the total amount of data that must be stored at the end of training to 

be able to run inference. For floating points data we used double precision encoding (8 bytes). 

 for the intermediate levels    and    we show: the number of coincidences (  ); the number of groups (  ); the 

average length of each group (in term of coincidences) - this information is reported within brackets just after   ; 

the average group stability    (see Equation 22) resulting from temporal clustering. Note that if the level is 

operating in shared mode the above statistics refer to the master node; otherwise these values have to be intended 

as average values over all the level nodes (we used the notation    , ,    and    to distinguish such a case). For the 

output level    we report the number    of coincidences. 

From this round of experiments we can conclude that: 

 HTM performs well on the three datasets (how well will be more evident from the comparison with other 

approaches in Section 6.3). 

 HTM training, mainly based on unsupervised learning, is computationally efficient.  
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 The larger the training set, the higher is the accuracy on the test set. On the other hand, intensive training leads to 

the creation of a larger number of coincidences and groups and then to a more complex (and larger network) 

whose efficiency can degrade (see test time). 

 Fuzzy grouping improves (often markedly) HTM accuracy with respect to baseline configuration. A minor 

drawback is a certain increase in the average group length leading to larger size and lower efficiency. 

 MaxStab temporal clustering generally improves accuracy, even if in this case the advantage with respect to 

Default temporal clustering is marginal. It is worth noting that MaxStab often leads to the formation of a lower 

number of (more stable) groups at    and, as a consequence, to a lower number of coincidences at   ; hence the 

total size is typically smaller and the network more efficient. 

 Our HTM baseline implementation and Numenta's one achieved very similar performance in term of accuracy on 

PICTURE (see Table VII); however, our HTM training implementation seems to be computationally 

advantageous.           

  

SDIGIT - test set:                                               (6,200 patterns, 10 classes) 

Training set 
HTM 

configuration 

Accuracy (%) Time (hh:mm:ss) Size 

(MB) 
Details 

train test train Test 

        
<50,0.70,1.0,0.7,1.0,40°> 

 

50 Patterns 

 

Training sequences: 
                
                 
                

Baseline 99.94 66.35 00:00:05 00:00:10 0.49 

            ,              ,            

             ,               ,            

            

Fuzzy grouping 99.89 71.15 00:00:07 00:00:13 0.62 

            ,              ,            

             ,                ,            

            

MaxStab 100 71.37 00:00:08 00:00:13 0.58 

            ,              ,            

             ,               ,            

             

        
<100,0.70,1.0,0.7,1.0,40°> 

 

100 Patterns 

 

Training sequences: 
                
                 
                

Baseline 99.97 82.34 00:00:17 00:00:16 0.83 

            ,             ,            

              ,               ,            

            

Fuzzy grouping 100 87.45 00:00:24 00:00:24 1.08 

            ,              ,            

              ,                ,            

            

MaxStab 100 87.56 00:00:25 00:00:23 1.00 

            ,              ,            

              ,                ,            

            

        
<250,0.70,1.0,0.7,1.0,40°> 

 

250 Patterns 

 

Training sequences: 
                 
                  
                

Baseline 99.99 91.55 00:01:15 00:00:32 1.60 

           ,              ,            

              ,               ,            

            

Fuzzy grouping 100 94.35 00:02:01 00:00:58 2.18 

           ,              ,            

              ,                ,            

            

MaxStab 100 94.61 00:02:04 00:00:55 2.06 

           ,              ,            

              ,                ,            

            

Table III. HTM results on SDIGIT. Experiments are performed with three training sets of increasing size: n = 50, n = 100 and n 

= 250. A single test set with 6200 patterns (n = 1000, m = 62, see Section 6.1.1) was used in all the experiments. Note that the 

geometric variations in the training sets are slightly smaller than corresponding test set variations; this led to a minor 

performance improvements in all the tests we carried out (not only for HTM, but also for other classifiers introduced in Section 

6.3).      
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PICTURE - test set:                  (2,000 patterns, 8 classes) 

Training set 
HTM 

configuration 

Accuracy (%) Time (hh:mm:ss) Size 

(MB) 
Details 

train test train test 

                 

 

100 Patterns 

 

Training sequences 
                 
                 
                  

 

Baseline 100 78.30 00:00:13 00:00:03 1.21 

          ,            ,          

           ,             ,           

             

Fuzzy grouping 99.85 83.50 00:00:16 00:00:05 1.21 

          ,             ,           

           ,              ,           

             

MaxStab 99.89 84.20 00:00:16 00:00:04 1.10 

          ,             ,          

           ,              ,           

             

PICTURE - test set:                (8,941 patterns, 48 classes) 

Training set 
HTM 

configuration 

Accuracy (%) Time (hh:mm:ss) Size 

(MB) 
Details 

train Test train test 

               

 

453 Patterns 

 

Training sequences: 
                  
                  
                  

 

Baseline 99.87 66.78 00:01:51 00:01:17 6.05 

          ,            ,            

            ,             ,            

             

Fuzzy grouping 99.69 71.11 00:02:16 00:01:37 6.22 

          ,             ,           

            ,              ,            

             

MaxStab 98.92 71.08 00:01:54 00:01:14 4.81 

          ,             ,            

            ,              ,             

             

Nupic 1.7 100 66.3 00:09:54 00:00:45 - 

          ,        

           ,         

             

Table IV. HTM results on PICTURE. (Top) results achieved on the reduced version PICTURE-; (bottom) results obtained on 

the full PICTURE dataset. In the last row, Nupic 1.7 refers to Numenta's implementation (Vision Toolkit in Nupic 1.7) with 

factory tuned parameters [5]. While learning algorithms, parameters and training sequences in Nupic 1.7 could partially differ 

from the Baseline configuration here provided, the accuracy of the two versions on PICTURE full problem is surprisingly 

similar. 

Fig. 14 shows the results of a further experiment aimed at making the relationship between accuracy and complexity 

(i.e., size) more explicit. To control the HTM complexity we progressively increase level 1 thrDist, directly 

controlling the number of level 1 coincidences and therefore indirectly influencing the whole network size. The graph 

shows that as we reduce complexity, the network accuracy degrades gracefully. Details are provided for two 

operating points: the point on the left is the same as in the last row of Table III; for the operating point on the right, in 

spite of a marginal decrease in performance (94.61% → 91.84%), the network complexity is nearly halved. 

6.2.3 Overlapping 

Overlapping consists in forcing the receptive field of network nodes at the same level to be partially overlapped. 

This can be implemented at level 1, but also at higher levels. The procedure of bottom-up message passing used in 

training and inference is not affected by overlapping: basically, a node belonging to an overlapped region has more 

than one parent node and simply sends   message to all its parent nodes. We carried out a number of experiments 

and we found the following two overlapped architectures to be quite effective for the input size 16×16 (SDIGIT and 

USPS) and 32×32 (PICTURE):  
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USPS - test set:             (2,007 patterns, 10 classes) 

Training set 
HTM 

configuration 

Accuracy (%) Time (hh:mm:ss) Size 

(MB) 
Details 

train Test Train test 

                  

 

100 Patterns 

 

Training sequences: 
                
                 
               

Baseline 100 83.36 00:00:02 00:00:01 0.18 

           ,             ,            

             ,              ,            

           

Fuzzy grouping 100 83.91 00:00:03 00:00:02 0.23 

           ,             ,            

             ,              ,            

           

MaxStab 100 84.11 00:00:03 00:00:02 0.23 

           ,             ,            

             ,              ,            

            

                   

 

1000 Patterns 

 

Training sequences: 
                 
                  
                 

Baseline 100 92.38 00:00:47 00:00:04 0.68 

            ,              ,            

              ,               ,            

            

Fuzzy grouping 99.96 92.87 00:01:33 00:00:09 1.00 

            ,               ,            

              ,               ,            

            

MaxStab 100 93.42 00:01:39 00:00:09 0.97 

            ,               ,            

              ,               ,            

            

                   

 

7291 Patterns 

 

Training sequences: 
                  
                  
                  

Baseline 99.90 93.32 00:13:46 00:00:17 2.77 

           ,              ,           

             ,              ,            

             

Fuzzy grouping 99.34 94.67 00:35:23 00:00:43 4.09 

           ,               ,           

             ,              ,           

             

MaxStab 99.39 95.57 00:26:45 00:00:30 3.52 

           ,               ,            

             ,              ,            

             

Table V. HTM results on USPS. Experiments are performed with three training sets of increasing size: n = 100, n = 1000 and n = 

7291 (full dataset).     

             

 

Fig. 14. HTM accuracy and size on SDIGIT (training set                                   ) as function of           . The 

HTM configuration used is MaxStab (with Fuzzy grouping). 

            

Accuracy = 94.61%, Size = 2.06 Mb 
Training 00:02:04, Test 00:00:55 
           ,              ,            

              ,                ,            

 

            

Accuracy = 91.84%, Size = 1.08 Mb 
Training 00:00:43, Test 00:00:19 
           ,              ,            

              ,                ,            
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 HTM OV18×18 (2,0): this network has 2 child-node overlapping at    and no child-node overlapping at   . To allow 

an even node partitioning the 16×16 input has been expanded to 18×18 (by simply adding a 1 pixel neutral border 

to the patters): the resulting number of nodes per level is 18×18, 8×8, 4×4, 1. Overlapping at    implicitly causes 

   nodes to be partially overlapped (1/3 along each dimensions) in terms of input pixels. Receptive field of    

nodes is 2×2 in terms of    nodes and 6×6 in terms of    nodes (or pixels). See Fig. 15 (left). 

 HTM OV32×32 (2,1): this network has 2 child-node overlapping at    and 1 child-node overlapping
8
 at   : the 

resulting number of nodes per level is 32×32, 15×15, 7×7, 1. The contribution of both    and    overlapping 

determines    nodes to be 1/2 overlapped in terms of input size along each dimensions. Receptive field of    

nodes is 3×3 in terms of    nodes and 8×8 in terms of    nodes (or pixels). See Fig. 15 (right). 

 

 

Fig. 15. A graphical visualization of the receptive field center and size of two overlapped architectures. Small and large crosses 

denote the receptive field centers of level 1 and level 2 nodes respectively. On the top-left part of both the networks the figure 

shows the receptive field size and overlapping of two level 1 nodes. On the bottom-right part of both the networks the figure 

shows the receptive field size and overlapping of two level 2 nodes. 

Table VI highlights accuracy improvements over Section 6.2.2 results: the advantage in terms of accuracy is very 

relevant, even if it comes at expense of network complexity and efficiency. Implementing overlapping under the 

assumption of evenly partitioning child nodes at each level is tricky (especially for small input size), and with respect 

to the non-overlapping case the resulting architecture typically differs in terms of: number of nodes, receptive field 

size of the nodes, composition of the training sequences. Hence, the improvements obtained could be due to a mix of 

factors and further experiments would be necessary to isolate the real advantages of node overlapping. 

 

 

8 1 child-node overlapping at level 2 is necessary for the 32×32 input size due to the constraint of even node partitioning.  

HTM OV18×18 (2,0) 

HTM OV32×32 (2,1) 

size = 4, overlap = 1/2 

size = 6, overlap = 1/3 

size = 8,  

overlap = 1/2 
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SDIGIT - test set:                                               (6,200 patterns, 10 classes) 

Training set Approach 
Accuracy (%) Time (hh:mm:ss) Size 

(MB) Train test Train test 

                                 HTM 100 71.37 00:00:08 00:00:13 0.58 

HTM OV18×18 (2,0) 100 73.39 00:00:35 00:01:02 1.47 

                                  
 

HTM 100 87.56 00:00:25 00:00:23 1.00 

HTM OV18×18 (2,0) 100 91.39 00:02:10 00:01:55 2.74 

                                  
 

HTM 100 94.61 00:02:04 00:00:55 2.06 

HTM OV18×18 (2,0) 100 97.06 00:04:04 00:11:33 6.28 

PICTURE - test set:                  (2,000 patterns, 8 classes) 

Training set Approach 
Accuracy (%) Time (hh:mm:ss) Size 

(MB) train test Train test 

              - 100 Patterns 

 

HTM 99.89 84.20 00:00:16 00:00:04 1.10 

HTM OV32×32 (2,1) 100 85.50 00:00:34 00:00:42 4.32 

PICTURE - test set:                (8,941 patterns, 48 classes) 

Training set Approach 
Accuracy (%) Time (hh:mm:ss) Size 

(MB) Train test Train test 

              - 453 Patterns 

 

HTM 98.92 71.08 00:01:54 00:01:14 4.81 

HTM OV32×32 (2,1) 100 73.36 00:06:06 00:10:07 21.89 

USPS - test set:             (2,007 patterns, 10 classes) 

Training set Approach 
Accuracy (%) Time (hh:mm:ss) Size 

(MB) Train test Train test 

                  HTM 100 84.11 00:00:03 00:00:02 0.23 

HTM OV18×18 (2,0) 100 89.29 00:00:23 00:00:12 0.91 

                   HTM 100 93.42 00:01:39 00:00:09 0.97 

HTM OV18×18 (2,0) 100 95.67 00:18:26 00:01:03 6.79 

                   HTM 99.39 95.57 00:26:45 00:00:30 3.52 

HTM OV18×18 (2,0) 99.97 97.06 05:41:40 00:03:23 32.89 

Table VI. Accuracy improvements achieved by overlapped configurations; baseline HTM performance refers to MaxStab 

configuration reported in tables III, IV and V. 

6.2.4 Activation buffering 

Table VII shows the result of some experiments aimed at determining the speed-up given by activation buffering. 

As explained in Section 5.1.3, normalBuffering does not alter the training results (the network obtained is identical to 

the non buffering case), while fastBuffering leads to a somewhat "approximated" solution. However, if we look at the 

Accuracy column in the table, we note that the accuracy drop due to fastBuffering is marginal in two cases (SDIGIT 

and USPS), and for PICTURE dataset the fastBuffering solution even prevail over the default one. As to the resulting 

training speed-up we note that normalBuffering (in two over three cases) lead to a relevant computational save, and 

fastBuffering saving is always very relevant. 

6.2.5 Saccading 

Saccading consists in performing multiple inferences on the same pattern while the pattern is moved of a few 

pixels each time. This emulates fast eye movements used to focus attention on different parts of an object while 

recognizing it [37]. A simple but effective strategy for HTM is to activate saccading only at test time and presenting 

each pattern of the test set 5 times to the network: the first time in canonical position and then by moving it one pixel 

left, up, right and down. Instead of fusing HTM results at decision level (i.e., Majority Vote Rule) or at confidence 

level (i.e., Sum Rule) we found the following on-line approach to be both simple and effective: 
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1. when a pattern is presented to the HTM in the first (canonical) position, the Prior class probabilities       of the 

output node are (re)set to the values computed at training time (Equation 16); 

2. after inference, the output node Prior class probabilities take the value of the Posterior class probabilities       

        , thus biasing successive inferences; 

3. step 2 is repeated 4 times during successive saccades. 

Table VIII highlights accuracy improvements over Section 6.2.2 results: the advantage in terms of accuracy is quite 

relevant. 

SDIGIT - test set:                                               (6,200 patterns, 10 classes) 

Training set 
HTM 

configuration 

Activation 

Buffering 

Time 

(hh:mm:ss) 
Accuracy (%) 

train train test 

        
<250,0.70,1.0,0.7,1.0,40°> 

MaxStab None 00:03:23 94.61 

MaxStab normalBuffering 00:02:04 94.61 

MaxStab fastBuffering 00:00:26 92.87 

PICTURE - test set:                (8,941 patterns, 48 classes) 

Training set 
HTM 

configuration 

Activation 

Buffering 

Time 

(hh:mm:ss) 
Accuracy (%) 

train train test 

               

453 Patterns 

 

MaxStab None 00:05:37 71.08 

MaxStab normalBuffering 00:01:54 71.08 

MaxStab fastBuffering 00:00:52 71.50 

USPS - test set:             (2,007 patterns, 10 classes) 

Training set 
HTM 

configuration 

Activation 

Buffering 

Time 

(hh:mm:ss) 
Accuracy (%) 

train train test 

                   

 

MaxStab None 00:24:06 95.57 

MaxStab normalBuffering 00:26:45 95.57 

MaxStab fastBuffering 00:07:00 94.52 

Table VII. Comparison of HTM training with: (i) no activation buffering, (ii) normal buffering and (iii) fast buffering. 

SDIGIT - test set:                                                

Training set Approach 
Accuracy 

(%) 

                                  
 

HTM 94.61 

HTM (4 saccades) 97.24 

HTM OV18×18 (2,0) (4 saccades) 97.97 

PICTURE - test set:               

Training set Approach 
Accuracy 

(%) 

              - 453 Patterns 

 

HTM 71.08 

HTM (4 saccades) 76.09 

HTM OV32×32 (2,1) (4 saccades) 74.58 

USPS - test set:             (2,007 patterns, 10 classes) 

Training set Approach 
Accuracy 

(%) 

                   HTM 95.57 

HTM (4 saccades) 96.46 

HTM OV18×18 (2,0) (4 saccades) 97.21 

Table VIII. Accuracy improvement obtained by enabling saccading at test time (i.e., inference over 5 positions for each test 

pattern) for both MaxStab and overlapped configurations. 
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It is worth noting that saccading determines a linear increase in the classification time (i.e., 5 times higher). Rising 

the number of saccades beyond 4 still produces a small accuracy improvement, but the advantage become marginal 

with respect to the efficiency drop.  

6.3 COMPARISONS WITH OTHER SYSTEMS 

Table IX, X and XI compares HTM with other approaches in terms of accuracy and efficiency. Of course, a large 

number of other pattern recognition approaches could be considered for comparison. Here we focused on techniques 

working at pixel level (as HTM), without any hardwired feature extraction. Our selection also privileged techniques 

made available as software libraries by their developers: 

 NN is a simple Nearest Neighbor classifiers; this classifier gives a good baseline performance and is useful to 

estimate the problem difficulty.  

 MLP is a three layers (input-hidden-output) perceptron [38]; MLP is the best known neural network architecture 

and therefore it is interesting to understand how it performs in comparison with HTM;   

 LeNet5 is a Convolutional Network (CN) designed to classify characters and/or small line-drawing [17]. CN is 

one of the most interesting MHWA architectures for visual pattern recognition and therefore is a very good 

reference point for HTM. 

Some notes on the experiment setup: 

 For LeNet5 and MLP implementation we used the primitives made available by EBLearn [39], which is a very 

powerful (C++) library to experiment energy-based learning techniques. EBLearn provides an efficient second 

order backpropagation learning (i.e., exploiting Hessian to speed-up convergence). 

 For LeNet5 and MLP instead of stopping the learning after a given number of epochs or by inspecting the error 

trend on the training set, we used the test set as validation set and stopped learning when the error reached the 

minimum over the test set. In general this is not a correct strategy, since it can lead to an optimistic estimation of 

accuracy; however since our aim is HTM comparison with other techniques, in this way we are slightly favoring 

HTM competitors. 

 LeNet5 receptive field is a 32×32 image; in order to use existing (optimal) parameterization we adapted 16×16 

SDIGIT and USPS patterns to 32×32 size by adding a neutral (i.e., colored as the background) border. 

 The same input adaptation was done for MLP; the resulting number of neurons per level is: 1024−  −  , where: 

   is the number of classes;        for SDIGIT and USPS, and        for PICTURE (near-optimal values 

for    have been determined by trial and error).  

 An important issue is the use of translated patterns for the training: since SDIGIT and PICTURE test sets contains 

translated versions of the corresponding training set patterns we cannot expect that NN and MLP architectures can 

deal with such translations if we do not explicitly provide examples during training. Things are different for 

LeNet5, where thank to the presence of two subsampling layers, moderate object translations are natively 

tolerated. However to avoid any bias in favor of HTM, for experiment on SDIGIT and PICTURE, we trained NN, 
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MLP and LeNet5 exactly on the full     sequences used to train HTM    (the number of translated patterns is 

reported in the first column of tables IX and X). Since USPS patterns are always centered inside their window, 

learning with translated patterns was not necessary and in our experiments it resulted in a slight performance 

drop; for this reason to produce the results reported in table XI translated patterns were not used. 

 Timing for MLP and LeNet5 have been measured on the same hardware used for HTM, even if the C++ (Win32 

native) EBLearn implementation is expected to be from 2 to 3 times more efficient than C# (.Net managed) HTM 

implementation; hence the time comparison is biased in favor of MLP and LeNet5.     

 In analogy with HTM (see Section 6.2.2), to determine the size in MB we assumed to store floating point data in 

double precision format; for example LeNet5 (for a 10 class problem) has 51046 weights and coding each weight 

with 8 bytes yields to a total size of 0.39 MB. 

 the label HTM reported in the tables refers to the MaxStab configuration with Fuzzy grouping enabled and with 

activation buffering set as normalBuffering; results for overlapped HTM are also reported in table XI. In this 

Section we intentionally ignored HTM improvements given by saccading (see Section 6.2.5) because in principle, 

also the other approaches could benefit of information fusion.                   

SDIGIT - test set:                                               (6,200 patterns, 10 classes) 

Training set Approach 
Accuracy (%) Time (hh:mm:ss) Size 

(MB) train test train test 

        
<50,0.70,1.0,0.7,1.0,40°> 
 

1788 translated patterns 

NN 100 57.92 < 1 sec 00:00:04 3.50 

MLP 100 61.15 00:12:42 00:00:03 1.90 

LeNet5 100 67.28 00:07:13 00:00:11 0.39 

HTM 100 71.37 00:00:08 00:00:13 0.58 

        
<100,0.70,1.0,0.7,1.0,40°> 

 

3423 translated patterns 

NN 100 73.63 < 1 sec 00:00:07 6.84 

MLP 100 75.37 00:34:22 00:00:03 1.90 

LeNet5 100 79.31 00:10:05 00:00:11 0.39 

HTM 100 87.56 00:00:25 00:00:23 1.00 

        
<250,0.70,1.0,0.7,1.0,40°> 

 
8705 translated patterns 

NN 100 86.50 < 1 sec 00:00:20 17.0 

MLP 99.93 86.08 00:37:32 00:00:03 1.90 

LeNet5 100 89.17 00:14:37 00:00:11 0.39 

HTM 100 94.61 00:02:04 00:00:55 2.06 

Table IX. HTM compared against other techniques on SDIGIT. 

PICTURE - test set:                  (2,000 patterns, 8 classes) 

Training set Approach 
Accuracy (%) Time (hh:mm:ss) Size 

(MB) train test train test 

               

100 Patterns 

 
20424 translated patterns 

NN 100 33.70 < 1 sec 00:00:59 159.6 

MLP  71.44 44.40 04:23:43 00:00:02 3.78 

LeNet5 99.98 55.25 00:16:56 00:00:03 0.39 

HTM 99.89 84.20 00:00:16 00:00:04 1.10 

PICTURE - test set:                (8,941 patterns, 48 classes) 

Training set Approach 
Accuracy (%) Time (hh:mm:ss) Size 

(MB) train test train test 

               

453 Patterns 
116198 translated patterns 

NN  100 23.31 00:00:04 00:24:08 907.8 

LeNet5  88.78 21.02 01:17:03 00:00:16 0.42 

HTM 98.92 71.08 00:01:54 00:01:14 4.81 

Table X. HTM compared against other techniques on PICTURE. MLP result are not reported for the full problem, because of 

lack of convergence.  
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USPS - test set:             (2,007 patterns, 10 classes) 

Training set Approach 
Accuracy (%) Time (hh:mm:ss) Size 

(MB) train test train test 

                  NN 100 76.53 < 1 sec < 1 sec 0.20 

MLP 100 73.20 00:04:29 < 1 sec 1.90 

LeNet5 100 83.53 00:00:19 00:00:04 0.39 

HTM 100 84.11 00:00:03 00:00:02 0.23 

                   NN 100 91.18 < 1 sec < 1 sec 1.96 

MLP 99.7 89.54 00:03:53 < 1 sec 1.90 

LeNet5 100 94.42 00:06:11 00:00:04 0.39 

HTM 100 93.42 00:01:39 00:00:09 0.97 

HTM OV18×18 (2,0) 100 95.67 00:18:26 00:01:03 6.79 

                   NN 100 94.42 < 1 sec 00:00:05 14.24 

MLP 99.52 94.52 00:50:44 < 1 sec 1.90 

LeNet5 99.87 96.36 00:36:59 00:00:04 0.39 

HTM 99.39 95.57 00:26:45 00:00:30 3.52 

HTM OV18×18 (2,0) 99.97 97.06 05:41:40 00:03:23 32.89 

HTM [12] - 96.1 - - - 

HTM [8] - 96.26 - - - 

PCA [40] - 94.42 - - - 

5 Layer MLP [41] - 95.8 - - - 

SVM [41] - 96.0 - - - 

Virtual SVM [42] - 96.8 - - - 

Human perf. [43]  - 97.5 - - - 

Table XI. HTM compared against other techniques on USPS. The last 7 rows of the table (with grayed background) report results 

already published in the literature. The very last row is an estimation of human performance on USPS classification.  

Experimental results on SDIGIT (table IX) show that: 

 HTM consistently outperforms the other techniques in term of accuracy. LeNet5 is the second-best and MLP 

gains the third place. 

 The training time is also very advantageous for HTM with respect to MLP and LeNet5. The gap would further 

increase if fastBuffering was activated (see Table VII). NN has actually no training (we must simply store all the 

patterns presented). 

 Test time is larger in HTM with respect to LeNet5 and MLP, because of higher inference complexity in HTM. 

 LeNet5 is the smallest size architecture; HTM is more compact than MLP for small training sets and about the 

same size for the largest training set. Of course NN size become unfeasible for very large datasets.     

Moving on PICTURE (table X) we note that: 

 This problem is much more difficult than SDIGIT and USPS as testified by the low accuracy of NN. 

 PICTURE appears to be particularly well suited for HTM that totally overcomes other techniques both in terms of 

accuracy and training time. The black and white nature of PICTURE patterns leads to the creation of a smaller 

number of (robust) coincidences and groups at level 1 with respect to SDIGIT and USPS (see details in Section 

6.2.2 tables); this appear to be one of the reason for the very good HTM performance. 

 Due to the large number of (translated) training patterns, NN test time (and size) grows a lot and MLP does not 

converge on the full problem. 

 Here too HTM if the most efficient on training, whereas LeNet5 is faster than HTM in classification.    

Finally the analysis of USPS results (table XI) can be summarized as: 
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 As noted in Section 6.1.3 USPS is not ideal to study invariance and generalization; in fact test set variations are 

covered by training set patterns to a large extent; this is testified by the good performance of NN. 

 While HTM (non overlapped) still outperform NN and MLP on all the experiments done, LeNet5 performs 

slightly better than HTM (non overlapped) when 1000 and 7291 training patterns are used. However, this is not 

the case for HTMOV18×18 (2,0), whose accuracy is better than LeNet5 both for 1000 and 7291 training patterns. 

 HTM (non overlapped) still has the most efficient training while HTMOV18×18 (2,0) high complexity leads to a 

relevant drop in training/test efficiency.       

 Other authors have reported HTM performance on USPS [12][8] which are in line with those here presented. 

 If we consider only approaches working on pixel intensity (no intermediate feature extraction) and whose training 

does not rely on the use of further patterns (machine printed or generated), HTMOV18×18 (2,0) accuracy is one of the 

best performance reported so far.  

7. CONCLUSION AND FUTURE WORK 

In this paper we provided an in-deep analysis of Hierarchical Temporal Memory application to pattern 

recognition. Novel learning approaches (fuzzy grouping and temporal clustering) have been proposed and their 

efficacy have been demonstrated on three different datasets through a number of experiments. HTM performance 

(both accuracy and efficiency) was then systematically compared with other pattern classification systems including 

Convolutional Network, which at today remains one of the most successful implementation of Multi-stage Huber-

Wiesel Architectures to vision problems. In almost all our experiments HTM accuracy was better than other system 

tested and learning was also more efficient. On the other hand, classification time is often longer in HTM (even if not 

radically) with respect to some of the other systems tested. Finally, node overlapping, saccading and training 

buffering have been demonstrated to be effective in further improving HTM accuracy and efficiency. 

Although results achieved so far are very interesting, we believe that Hierarchical Temporal Memory framework 

could be significantly improved in the future. The most evident weakness of current implementation is scalability; in 

fact the network complexity considerably increases with the number and dimensionality of training patterns. This is 

evident from tables III, IV and V where the number of coincidences and groups (at level 2 and 3) rapidly increases 

with the number of sub-patterns in the training sequences. On the other hand, to deal with complex pattern 

recognition problems (with large intra-class variance) the presentation of a large number of potentially long training 

sequences appear to be necessary for the formation of robust groups. Most of the HTM complexity is due to the 

coding adopted at higher levels where each coincidence often encodes one (or very few) variation(s) of a given 

pattern. In other words, given n bits of information HTM higher levels encode O(n) configurations and not O(2
n
) as 

an ideal information theoretic scenario would suggest. The way the brain encode patterns is still debated by 

neuroscientists (see the discussion on Grandmother cells and population coding in Section 2.2 of [27]), but a sparse 

distributed population encoding is one the most plausible hypotheses: this means that the simultaneous activation of a 

group of cells is responsible for the conscious perception of a stimulus. If the group is composed of just one cell we 
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fall into the Grandmother cell case; if all the cells are included we are in a fully distributed code; the intermediate 

case is the sparse distributed encoding. Going back to the n bits, this means that we could split them in smaller 

groups (also overlapped) and with each subgroups of length m we could encode O(2
m
) patterns. Translating this in 

HTM terms could be very important to overcome current limitation. To this purpose new cortical learning algorithms 

are being developed by Hawkins et al. [44].  

Our future research efforts will be devoted to: 

 develop novel sparse population coding mechanisms to improve HTM scalability. One possibility is removing the 

constraint that a coincidence of a node   must be formed with contributions of all its           nodes. A 

coincidence created from a subset of           would cover only a portion of   receptive field and probably 

would be more general and (re)usable to encode a larger number of patterns.    

 consider saliency of sub-patterns during training and inference; in current implementation a patch containing a 

salient corner and a totally empty patch are treated in the same way by HTM nodes. We believe that saliency 

could play an important role in the development of new effective sparse population coding. 

 exploit top-down messaging (not addressed in this paper) to develop new effective fusion strategies based on 

saccading. In particular, instead of biasing successive classification only through the adaption of Prior 

probabilities in the output node, we think that biasing should be extended to the whole network by influencing the 

belief of all nodes through top-down (i.e., feed-back) messages. 

 apply HTM to difficult object recognition benchmarks such as CalTech and Pascal VOC and systematically 

compare HTM with state-of-the-art approaches. To deal with the unavoidable increase in the network complexity 

due to the need of processing larger (color) images, it will be necessary to embed low-level feature extraction at 

level 0 (e.g., through a bank of Gabor filters as discussed in Section 3.1) and to define different (non exhaustive) 

strategies to create training sequences based on random walks in huge pattern spaces. Interesting results in this 

direction have been already achieved by Numenta. 

 training HTM incrementally, that is exposing a trained network to new patterns and updating internal 

groups/coincidences accordingly is not trivial. In fact, changing coincidences/groups at a given network level 

would invalidate the results of previous training at higher levels. An interesting alternative is initially training an 

HTM with the algorithms proposed in this paper and then fix coincidences and groups throughout the whole 

network; then, during successive training (that could be on-line or batch) adapt the probabilities in     (for the 

output node) and     (for the intermediate nodes) as if they were the weights of a neural network trained with 

backpropagation. This kind of unsupervised pre-training and supervised refinement was recently demonstrated to 

be successful in deep architectures [13]. We carried out some preliminary experiments in this direction and we 

achieved interesting results.  
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