

Università degli Studi di Bologna

DEIS

Biometric System Laboratory

Pattern Recognition by Hierarchical Temporal Memory

Davide Maltoni

davide.maltoni@unibo.it

April 13, 2011

DEIS Technical Report

1

Pattern Recognition by Hierarchical Temporal Memory

Davide Maltoni, DEIS - University of Bologna (Italy)

davide.maltoni@unibo.it

Abstract— Hierarchical Temporal Memory (HTM) is still largely unknown by the pattern recognition community and only a few

studies have been published in the scientific literature. This paper reviews HTM architecture and related learning algorithms by using

formal notation and pseudocode description. Novel approaches are then proposed to encode coincidence-group membership (fuzzy

grouping) and to derive temporal groups (maxstab temporal clustering). Systematic experiments on three line-drawing datasets have

been carried out to better understand HTM peculiarities and to extensively compare it against other well-know pattern recognition

approaches. Our results prove the effectiveness of the new algorithms introduced and that HTM, even if still in its infancy, compares

favorably with other existing technologies.

IERARCHICAL temporal memory (HTM) is a biologically-inspired computational framework recently

proposed by Hawkins and George [1-3] as a first practical implementation of the memory-prediction theory of

brain function presented by Hawkins in [4]. A private company, called Numenta
1
 [5], was setup to develop HTM

technology and to make available to researches and practitioners a complete development platform. A number of

technical reports and presentations are available in Numenta website [5] to describe HTM technology, application

and results, but at today few independent studies [6-12] have been published to validate this computational

framework and to frame it into the state-of-the-art.

HTM substantially differs from traditional neural network implementations (e.g., a multilayer perceptron) and can

be conveniently framed into Deep Architectures [13][14]. In particular, Ranzato et al. [15] introduced the term Multi-

stage Hubel-Wiesel Architectures (MHWA) to denote a specific subfamily of Deep Architectures. An MHWA is

organized in alternating layers of feature detectors (reminiscent of Hubel and Wiesel’s simple cells) and local

pooling/subsampling of features (reminiscent of Hubel and Wiesel’s complex cells); a final layer trained in

supervised mode performs the classification. Neocognitron [16], Convolutional Networks [17][18], HMAX and its

evolutions [19][20] are the best known implementations of MHWA. In analogy with MHWA, HTM alternates

feature detection and feature pooling; however, in HTM feature pooling heavily relies on the temporal analysis of

pattern sequences while in Neocognitron is hardwired and in Convolutional Network and HMAX is performed

through simple spatial operators such as max or average. The temporal analysis and the modeling as a Bayesian

Network make HTM similar in some aspects to Hierarchical [21] or Layered [22] versions of Hidden Markov Models

(HMM); however, while HMM attempts to model the intrinsic temporal structure of input patterns
2
, HTM exploits

time continuity (mainly during learning) for unsupervised derivation of invariant representations, independently of

the static or dynamic nature of the input patterns.

1 the author of this paper has no business relationships with Numenta or with its founders, and has no commercial interest in promoting HTM technology.

2 in fact, the most successful HMM applications are in domains where patterns have an intrinsic temporal structure (e.g., speech recognition) or a spatial structure

that can be naturally decomposed in subsequent parts (e.g., handwriting recognition).

H

2

As pointed out by Hawkins and George "... many of these ideas existed before HTMs and have been part of other

models. The power of HTM comes from a unique synthesis of these ideas". In our opinion, HTM is the result of

brilliant intuitions and clever engineering, and although HTM is still in its infancy, in the future it could help dealing

with invariance which is the holy grail problem of pattern recognition and computer vision. Why HTM should

overcome existing techniques in tackling invariance? There are some important properties that can be exploited to

this purpose:

 The use of time as supervisor. A key problem in visual pattern recognition is that minor intra-class variations of a

pattern can result in a substantially different spatial representation (e.g., in term of pixel intensities). Huge efforts

have been done to develop variation-tolerant metrics (e.g., tangent distance [23]) or invariant feature extraction

techniques (e.g., SIFT [24]), but to date, successful results have been achieved only for specific problems. HTM

exploits time continuity to claim that two representations, even if spatially dissimilar, originate from the same

object if they come close in time. This concept, which constitutes the basis of Slow Feature Analysis [25], is

simple but extremely powerful because it is applicable to whatever form of invariance (i.e., geometry, pose,

lighting). It also enables unsupervised learning: labels are provided by the time.

 Hierarchical organization. This is a largely used computation paradigm to put in practice the maxim "divide et

impera". Recently a number of studies provided theoretical support to the advantages of hierarchical systems in

learning invariant representations [13][26]. As the human brain HTM uses a hierarchy of levels to decompose

object recognition complexity: at low levels the network learns basic features which are used as building blocks at

higher levels to form representations of increasing complexity. Building blocks are also crucial for efficient

coding and generalization since through their combination HTM can encode new objects never seen before.

 Top down and bottom-up information flow. In MHWA information typically flows one-way from lowers levels to

upper levels. In the human cortex, both feed-forward and feed-back messages are continuously exchanged

between different regions; although the precise role of feed-back messages is still very debated, neuroscientists

agrees on their fundamental support in the perception of non-trivial patterns [4][27]. Memory-prediction theory

postulates that feed-back messages from higher levels carry contextual information that can bias the behavior of

lower levels. This is crucial to deal with uncertainty: if a node of a given level has to process an ambiguous

pattern (e.g., a noisy version of an already encountered pattern) its decision could be better taken in presence of

hints from upper levels, whose nodes are probably aware of the context the network is operating in (e.g., if one

step back in time we were recognizing a car, probably we are still processing a traffic scene).

 Bayesian probabilistic formulation. Probabilistic decisions are often better than binary choices when dealing with

uncertainty. The state of HTM nodes is encoded in probabilistic terms and Bayesian theory is largely used to

process messages and fusing information. HTM can be viewed as a Bayesian Network where Bayesian Belief

propagation equations are used to pass up and down the information across the hierarchy [28]. This formulation is

not only elegant in mathematical terms, but also allows to solve practical burdens such as value normalization and

threshold selection.

3

Although HTM can be used in a variety of contexts, in this paper we focus only on visual recognition applications

(i.e., inputs are 2D images). We also ignore biological aspects of HTM theory: an excellent description of HTM

biological underpinning is reported in [3] where its implementation in terms of biological circuits is presented.

When we started working with HTM we initially used the Numenta development platform, called Nupic [5] (most of

the components are freely available to research organizations), but soon we decided to implement a new version from

scratch: this is to have more flexibility and full control over the entire training/inference stages. Examples and

experimental results reported throughout this paper have been obtained with our own HTM implementation.

The main contributions of this work are:

 an extensive description of HTM architecture (Sections 1, 2 and 3) and learning algorithms (Section 4) with

consistent notation and pseudocode description;

 the introduction of novel approaches (Section 5) to encode coincidence-group membership more robustly (Fuzzy

grouping) and to derive more stable temporal groups (MaxStab temporal clustering);

 the implementation of fast learning procedures, based on temporary data-buffering, to speed-up the training stage

(Section 5.1.3);

 an extensive experimentation on three line-drawing datasets (Section 6) aimed at: (i) finding out optimal HTM

architecture and parameters; (ii) assessing the effectiveness of Fuzzy grouping and MaxStab temporal clustering;

(iii) comparing HTM with other existing approaches.

 further experiments to understand (and quantify) the efficacy of HTM mechanisms such as overlapped

architectures (Section 6.2.3) and saccading (Section 6.2.5).

In Section 7 we draw some conclusions and summarize the huge amount of work we believe it is worth undertaking

to overcome current HTM limitations and, hopefully, move some steps forward in solving challenging pattern

recognition problems.

1. OVERALL HTM STRUCTURE

An HTM is a tree-like network composed of (≥ 2) levels numbered from 0 to (see Fig. 1). is

the input level; is the output level; are called intermediate levels (if = 2 the

network has no intermediate levels). Each level is composed of nodes

. Nodes in input,

intermediate and output levels are called input, intermediate and output nodes, respectively. To make notation lighter,

a generic node can be denoted as and a generic node at level can be denoted as . When an HTM is used for

visual pattern classification, typically:

 input nodes are in 1:1 relationship with image pixels;

 nodes in each level are arranged in a rectangular grid (i.e., retinotopic mapping of the input);

 the network has only one output node, i.e.
 , working as a pattern classifier;

4

Fig. 1. A four-level HTM designed to work with 16x16 pixel images. Level 0 has 16x16 input nodes, each associated to a single

pixel. Each level 1 node has 16 child nodes (arranged in a 4×4 region) and a receptive field of 16 pixels. Each level 2 node has 4

child nodes (2×2 region) and a receptive field of 64 pixels. Finally, the single output node at level 3 has 4 child nodes (2×2

region) and a receptive field of 256 pixels. In the figure only the downward connections of one node per level are shown.

 levels are sequentially interconnected through node connections: only connections between nodes in consecutive

levels are allowed;

 each intermediate or output node

 is connected to a set (called region) of spatially close child nodes in .

Given a node , we denote with the set of its child nodes, with the number of its child

nodes, and with its child node. Regions are rectangular shaped and the

number of nodes along each of the two dimensions in a region is defined in such a way that allows an even

partition of nodes to nodes. For example, in the network of Fig. 1, has 256 nodes arranged in a 16×16

grid whereas has 16 nodes arranged in a 4×4 grid; each intermediate node has 256/16=16 child nodes

arranged in a (16/4)×(16/4) region;

Level 3

(output)

1 node

Level 2

(intermediate)

2×2 nodes

Level 1

(intermediate)

4×4 nodes

Level 0

(input)

16×16 nodes

Image

16×16 pixels

5

 each input or intermediate node is connected to a single parent node in . In the following, we denote

with the parent node of . Actually, in some special configurations (see Section 6.2.3) the one-

parent constraint is relaxed to allow the visual field of nodes in a given level to be partially overlapped;

 the receptive field (or visual field) of node can be conceived as the portion of input image that the node can see

(i.e., the union of image pixels that can be reached by moving downward from the node). For input nodes, the

receptive field is just one pixel. At higher levels a node receptive field is the union of its child receptive fields. As

we move up in the hierarchy the receptive field gets larger: the receptive field of the output node is the entire

image.

2. INFORMATION FLOW IN HTM

Information flow in HTM is bidirectional. Messages travelling bottom-up (feed-forward flow) are denoted with

while messages travelling top-down (feed-back flow) are denoted with . Using the notation introduced by Pearl for

Belief Propagation [28] and adjusted to HTM by Hawkins and George [1]:

 an input from below, denoted with , is called evidence; in Bayesian terms, if is a pattern, corresponds

to the pattern density;

 an input from above, denoted with , is called contextual information; in Bayesian terms, if is a pattern,

corresponds to the pattern prior;

 according to Bayes theorem, by fusing density with prior into a posterior probability we obtain the best

probabilistic explanation of unknown patterns [28]. Analogously, by fusing bottom up and top down messages

each HTM node reaches an internal state (called node belief and corresponding to Bayes posterior) which is an

optimal probabilistic explanation of the external stimuli.

Although in the HTM framework feed-back flow is expected to be crucial for robust pattern classification, most of

the practical achievements obtained until now rely on feed-forward flow only. This paper focuses on feed-forward

flow. Details about feed-back equations can be found in [1] and the application of feed-back flow to segment out

objects in cluttered scenes with multiple objects is presented in [3].

In the feed-forward flow each input or intermediate node takes in input a message
 from

each of its child nodes. The above equation means that
 corresponds to the conditional density

3
 of the evidence

given the status of . After internal processing of this information, the node produces an output

 for its parent node (see Fig. 2). Since node connections do not alter messages, output messages at level

 coincide with input messages at level . Input messages to the output node (i.e., the single node in the

3 Throughout this paper we often use the terms density (e.g.,) and conditional density (e.g.,). In the probability theory, and are density

functions only if their summation (i.e. integral) over all possible values of is 1. Since this constraint is not enforced in our formulation, we should define new

functions and and claim that they are proportional to and , where proportional means equal except for a normalizing factor. However,

since the normalization factors have no influence on HTM information processing, we prefer to keep notation as simple as possible and to avoid such an

intermediate definition.

6

output level) are equivalent to those of intermediate and input nodes, whereas the output message is a vector whose

elements denote the (posterior) probability that the input pattern belongs to any of the problem classes

 .

Feed-forward propagation of messages is performed level by level, starting from level 0. All nodes must process

their input (in any order) and produce their output , before level nodes can start their computation.

Fig. 2. A three-level HTM designed to work with 16×1 pixel images (such a special configuration allows to deal with one

dimensional patterns). Feed-forward messages (on the left part of the network) are shown. For each node the input message

coincide with the output messages of its child node. The output message of the output node is a vector whose elements

denote the probability that the input pattern belongs to any of the classes .

3. NODE STRUCTURE

In the previous section we treated the network nodes as black boxes capable of transforming input messages into

output ones. Here we describe the internal structure of input, intermediate and output nodes and explain how nodes

process information while performing inference. Inference is the phase where new patterns are presented to the HTM

for classification. Throughout this section we assume that the network nodes already undergone a training stage

(node training is discussed in Sections 4 and 5) and therefore all the node internal data have been already initialized.

3.1 INPUT NODES

The structure of an input node is very simple. receives only one message from below. Let be the input

image, where denotes the image pixel at position . Then, the input message,
 is a d-

dimensional feature vector extracted from a local neighborhood of the image centered at .

In the simplest case, if I is a grayscale image, a 1-dimensonal feature vector can be obtained as:

Level 0 (input)

16×1 nodes

Level 2 (output)

1 node

Level 1

(intermediate)

4×1 nodes

Image I

16×1 pixels

7

However, better performance can be often achieved by using more powerful feature vectors such as the responses of

a bank of Gabor filters:

thus emulating the early processing performed by simple cells in the visual cortex [29].

Input nodes do not perform any internal processing, they simply propagate their input to the output:

3.2 INTERMEDIATE NODES

The internal structure of an intermediate node is shown in Fig. 3. The node maintains:

 a set of coincidences ;

 a set of temporal groups (or simply groups) ;

 a matrix .

Fig. 3. An intermediate node working in inference mode.

3.2.1 Coincidences

Each coincidence is a sort of prototype pattern that spans a portion of the image corresponding to the node

receptive field (i.e., small at low levels and large at high levels). Coincidences are used to perform a spatial analysis

of input patterns and to find out spatial similarities. However, the coincidence structure depends on the node level:

 if is an intermediate node at level 1 (hence its child nodes are input nodes), a coincidence corresponds to a

small image patch. An example of coincidence graphical representation in a level 1 node is shown in Fig. 4 (left).

Coincidences C

Temporal groups G Matrix

 …

 …

8

Note that the coincidence dimensionality is the same as the input message (i.e., the sum of the dimensionality

of all the input messages coming from child nodes);

 if is an intermediate node at level 2 (hence its child nodes are intermediate nodes), a coincidence can be

conceived as a feature selector: each element is the index of a single temporal group among the groups of

 The dimensionality of coincidences is . Although a graphical representation is here

meaningless, a simple numerical example can help understanding: if has 4 child nodes and , then

 selects: group 5 from child 1, group 3 from child 2, group 1 from child 3 and group 1 from child 4.

3.2.2 Temporal groups

A serious drawback of spatial-similarity-based pattern recognition is that slight variations of the input pattern can

produce relevant changes in the feature representation. For example, let us consider the pixel level representation of a

short vertical bar (one pixel thick): the right (or left) movement of just one pixel is enough to dramatically reduce the

spatial similarity with the original pattern. A temporal group (or simply group) is a subset of coincidences, that

could be spatially quite different each from the other, but that are likely to be originated from simple variations of the

same pattern. An example of level 1 temporal groups is shown in Fig. 4 (right). The name “temporal”, as it will

become clearer in Section 4, depends on the fact that HTM exploits temporal smoothness to create temporal groups;

in other words, patterns that are presented to the network very close in time, are likely to be variants of the same

pattern that is smoothly moving throughout the network receptive field.

Fig. 4. Coincidences and temporal groups in a level 1 intermediate node trained on line-drawing patterns. Each of the 133

coincidences (on the left) is a 16=4×4 dimensional vector. On the right, graphical representation of 14 temporal groups (one per

row). Group denotes a horizontal (and a vertical) bar at different positions within the node receptive field. Groups

 and correspond to four different types of corner. As explained in Section 4, HTM groups are not hardwired, but are

the result of an unsupervised learning process.

Coincidences:

Groups:

9

3.2.3 PCG

 is a matrix: element denotes the conditional probability of coincidence

given the group , or, in other words, the relative probability of occurrence of coincidence in the context of group

 . Hence, for each group ,

 .

3.2.4 Inference steps

Inference in an intermediate node can be decomposed in the following steps (see Fig. 3):

1. Composition of input message: a single input message

 is obtained as juxtaposition of the

 input messages from the child nodes. The dimensionality d of is the sum of

dimensionalities. In general
 dimensionality can vary across the child nodes.

2. Computation of densities over coincidences: vector is composed by the conditional densities of the evidence

given the coincidences: . Intuitively each can be conceived as the activation level

of coincidence when the node input is . computation depends on the node level:

o if is an intermediate node at level 1 (hence its child nodes are input nodes), the input message is essentially

an image patch and coincidences are prototype image patches. In this case encodes the spatial similarity

between two image patches and can be conveniently computed as a Gaussian distance:

 (1)

where σ is a parameter controlling how quickly the activation level decays when deviates from . Fig. 5

shows an example of coincidence activations;

o if is an intermediate node at level 2 (hence its child nodes are intermediate nodes), the input message is a

probability vector (see point 4 below). In this case is proportional to the probability of co-occurence of

sub-evidences (each sub-evidence coming from a child), in the context of . Assuming the sub-evidences to

be independent the probability is obtained by product rule:

 (2)

where
 is the element at position in input message

 from .

For example, if has 4 child nodes, ,
 ,

 ,

 and
 , then

 ;

For numerical stability (i.e., to avoid that probabilities become too small as we move up in the hierarchy) it is

preferable to normalize such that

 . This normalization does not alter the HTM behavior.

3. Computation of densities over groups: the conditional density over a group (which intuitively can be

conceived as the activation level of group) can be obtained by probability marginalization over the group

coincidences:

 (3)

10

where the assumption holds because the knowledge of is irrelevant for the estimation

of density in the context of . Fig. 5 shows an example of group activations.

4. Composition of output message: the output message , whose dimensionality is , is simply

composed by the conditional densities over the groups:
 .

Fig. 5. This example shows, in the context of Fig. 4 intermediate node at level 1, the top 3 coincidence activations and the top 3

group activations produced by the input message graphically represented in the box located in the top-left part of this figure.

In particular, even if the input patch is not identical to any of the node coincidences, it activates the three spatially closest

coincidences. Group activations provide some generalization by associating the input patch to a corner-type pattern,

independently of its precise location in the node receptive field.

3.3 OUTPUT NODES

The output node works as a pattern classifier. Its internal structure is shown in Fig. 6: the input part of the node is

identical to an intermediate node, whereas in the output part group data are replaced by class data. The node

maintains:

 a set of coincidences ;

 a prior probability vector [where are the problem classes;

 a matrix .

Coincidences:

Groups:

top 3 coincidence activations

top 3 group activations

11

Fig. 6. The output node working in inference mode.

3.3.1 Coincidences

Output node coincidences are identical to intermediate node ones (see Section 3.2.1). However, except for

degenerate cases where the network has no intermediate levels, the level of output node is 2 and therefore

coincidences at this level work as feature selectors.

3.3.2 Prior class probabilities

In all pattern classification problems, the knowledge of class prior probabilities allows to improve classification

accuracy according to Bayes theory. In HTM prior class probabilities are computed at training

time.

3.3.3 PCW

 is a matrix: element denotes the conditional probability of coincidence

given the class , or, in other words, the relative probability of occurrence of coincidence in the context of class

 . Hence, for each class ,

 .

3.3.4 Inference steps

Inference in the output node can be decomposed in the following steps (see Fig. 6):

1. Composition of input message: identical to intermediate nodes (see Section 3.2.4).

2. Computation of densities over coincidences: identical to intermediate nodes (see Section 3.2.4).

Coincidences C

Prior class prob. Matrix

 …

12

3. Computation of densities over classes: the conditional density over a class (which intuitively can be

conceived as the activation level of class) can be obtained by probability marginalization over the class

coincidences:

 (4)

where the assumption holds because the knowledge of is irrelevant for the estimation

of density in the context of .

4. Computation of class posterior probabilities: according to Bayes theorem, class posterior probabilities can be

obtained as:

 . (5)

5. Composition of output message: the output message , whose dimensionality is , is simply composed by the

class posterior probabilities: , where

 .

4. NETWORK TRAINING

With network training we denote a batch procedure aimed at computing: (i) coincidences , groups and

matrix for all intermediate nodes; (ii) coincidences , priors and matrix for the output node. Once

training is finalized all network nodes are switched in inference mode and the network can start classifying unknown

patterns.

HTM training requires a training set , where is a pattern (e.g., a grayscale

image) and the corresponding class. Intermediate levels are trained in unsupervised mode (i.e., pattern classes are

not used), whereas the output node is trained in supervised mode. HTM training is performed level by level, from

to ; (input level) does not require any training. When training nodes at level , all the network nodes at

previous levels, whose training was already finalized, work in inference mode. In Section 4.2 we will present the

HTM training procedure in details, but before it is necessary to understand how training sequences are generated

(Section 4.1).

4.1 TRAINING SEQUENCES

Training an intermediate level requires to expose the network to a sequence of patterns. Such a sequence can

be obtained by smoothly moving each training pattern across the network visual field. Since consecutive patterns in

the sequence are close in time we can expect they are characterized by minor changes in terms of geometric (e.g.,

translation, rotation, scale, etc.) and photometric (e.g., brightness, color, etc.) features. Although different strategies

can be designed to extract a sequence of temporally close patterns from a training set , a baseline

implementation is as follows: for each pattern perform two scans (an horizontal zig-zag followed by a

vertical zig-zag) by moving the foreground object contained in in all the positions within . Fig. 7 shows an

example of sequence for a single training pattern. Performing a double scan is important to learn pattern temporal

similarities; in fact, if we consider a pattern containing an horizontal bar, an horizontal scan alone would not allow to

13

(temporally) group variants of the same pattern where the bar occurs at slightly different vertical positions. A full

training sequence can be obtained by concatenating sequences generated by single training patterns. In general, in a

training sequence we can have discontinuities, denoted as temporal gap (see Fig. 7). Temporal gaps occur when we

abruptly move a pattern to a distant position to start a new scan or when the training pattern changes (e.g., we stop

moving and start with).

Fig. 7. An example of sequence obtained by the single 16×16 training image shown on the top-left (the foreground object it

contains is highlighted with a dashed light blue rectangle). The first pattern, at the beginning of the second scan, is not obtained

as a small movement of its predecessor in the sequence, hence it is marked as temporal gap.

Intermediate levels can operate in a special mode (denoted as node sharing): in this configuration all the level

nodes share the same coincidences , groups and matrix. When HTM are used for visual pattern recognition,

node sharing is typically used for the bottom levels in the hierarchy (e.g., level 1 and/or level 2), whose nodes are

expected to learn primitives such as bars, corners, etc. that can occur at any position in the image. Node sharing

forces all the nodes of the level to respond in the same way to identical stimuli
4
. For levels working in shared mode,

it is sufficient to train just one node (denoted as master node), and then cloning
5
 , and of the master node for

all the other level nodes. When training a master node, the whole foreground object should be moved across the

master node receptive field. In general this require to extend the movement of the foreground object outside the

pattern boundaries
6
. A convenient strategy to generate such a sequence is shown in Fig. 8.

Finally, to train the output node it is sufficient to expose the node to single training patterns with associated class

labels (in fact, no temporal information are processed by the output node). However, if the network is required to

4 this is in analogy with early regions (e.g., V1 and V2) in the visual cortex.

5 in practical HTM implementations, cloning is accomplished by using pointers to the master node data structures.

6 note that Fig. 7 sequence does not allow the whole foreground object to be moved over the receptive field of a single (master) node. In fact, let us consider a

level 1 master node with a receptive field of size 4×4: there is no 4×4 subwindow of the 16×16 image over which the entire foreground object is moved.

horizontal

zig-zag scan

vertical

zig-zag scan

temporal

gap

14

recognize patterns independently of their position (translation invariance), each training pattern must be presented at

different positions. In practice, we can use training sequences like that reported in Fig. 7, but unlike for intermediate

nodes, here only a single scan (either horizontal or vertical) is necessary.

Fig. 8. A convenient way to create the pattern sequence needed to train a master node, is to slide a window (whose size matches

the node receptive field) across the foreground object. The example shows the sequence generated by an horizontal zig-zag scan.

4.2 OVERALL TRAINING

A pseudo-code implementation of HTM training is here provided:

HTM Training

Reset coincidences // for all network nodes set

for each level

{ = Training Sequence for Level from // see Section 4.1

 = Get First Pattern from // is the label of the pattern class

 while (I is not null)

 { Expose I to

 for each Level

 Do Inference // see Sections 3.1 and 3.2.4

 Train on // expanded below

 = Get Next Pattern from
 }

 Finalize Training on // expanded below

}

where:

Train on

if () // output level

 Train Output Node

 on // see Section 4.4

else if (is a node sharing Intermediate level)

 Train Intermediate Node

 on // see Section 4.3 (we assume that

 is the master node)

else // intermediate level (no node sharing)

{ for each Node

 Train Intermediate Node

 on // see Section 4.3

}

15

and

Finalize Training on

if () // output level

 Finalize Output Node Training

 // see Section 4.4

else if (is a node sharing Intermediate Level)

{ Finalize Intermediate Node Training

 // see Section 4.3

 for each node

 Clone from

}

else // intermediate level (no node sharing)

{ for each Node

 Finalize Intermediate Node Training

 // see Section 4.3

}

4.3 INTERMEDIATE NODE TRAINING

The procedure Train Intermediate Node on , reported below, assumes that I has been presented to the

network (level) and inference has been already performed until level . Hence messages

 are

available from the child nodes of .

Train Intermediate Node on

Compose Input Message

 // see 3.2.4, point 1

if (// node at level 1 → is an image patch

{ // select the coincidence closest to , as candidate active coincidence

 if () // none of the existing coincidences is spatially representative of

 { // increase number of coincidences

 = // add to as a new coincidence

 // the active coincidence is the new one

 }

}

else // node at level ≥ 2 → is a probability vector

{ = Indices of Child Winning Groups in // see Equation 6

 // select the coincidence closest to , as candidate active coincidence

 if () // none of the existing coincidences is spatially representative of

 { // increase number of coincidences

 = // add to as a new coincidence

 // the active coincidence is the new one

 }

 }

 // number of times was the active coincidence during training

if (is not a temporal gap pattern)

 // updates Temporal Activation Matrix

 // remember the active coincidence for next step

where:

16

 the active coincidence is the spatially closest coincidence to the node input. If all existing coincidences are too

dissimilar from the input (with respect to a level specific threshold), then a new coincidence is created

and selected as active coincidence. Selecting and bringing forward only one coincidence, implements a winner

take all criterion that is in contrast with the continuous criterion used during inference, when the activation of all

coincidences are taken into account for the computation of group activations (see Equation 3). It is worth noting

that such an asymmetrical approach (winner take all for learning vs continuous for inference) is not atypical, and

proved to be quite effective in training other deep architectures [15][30];

 is a vector of indices of child winning groups. Index is the group index, within the groups of child

node
 , which obtained maximum activation. Let be the number of groups in

 , and

 be the element of vector

 , then:

 (6)

Here too a winner take all criterion is adopted. In fact, only the index of the most active group within each child

node is considered. Again, this is in contrast with the continuous criterion used during inference where the

activations of all child groups are used to compute coincidence activations (see Equation 2);

 counts the number of differences between indices at corresponding positions in the two

vectors. For example, if and , then ;

 A scalar is maintained for each coincidence to count the number of times was active during the node

training. When finalizing node training these values will be used to quantify coincidence relevance;

 , denoted as Temporal Activation Matrix (or TAM), is an matrix, used to keep track of coincidences

that have been activated in succession, and thus are good candidates to form a temporal group. When finalizing

node training will be used to compute temporal groups and . For simplicity of presentation, in the above

pseudocode update is performed by looking only one step back in time (i.e., through
). In general, better

performance can be achieved by considering steps back: let
 be the index of the

active coincidence steps back in time, then:

for each

where linearly decreasing weights are here used to update as the time gap increases.

Once all the patterns in the training sequence have been presented to the node, the intermediate node training can be

finalized as:

17

Finalize Intermediate Node Training

Forget Rare Coincidences // coincidence such that are removed from

Compute Coincidence Priors // see Equation 7

Make Symmetric // after this step:

Normalize by Rows // after this step:

 , see Equation 8

Temporal Grouping // determine groups from clustering, see Section 4.3.1

Compute // see Section 4.3.2

where:

 forgetting rare coincidences can be useful to reduce the number of coincidences; in fact, deletion of rarely

activated coincidences usually has a minor impact on the network classification accuracy;

 to make symmetric the upper diagonal part is summed to the lower diagonal part
7
:

 for each pair

Making symmetric allows coincidences that occurred close in time to be grouped independently of the

activation order. Therefore a pattern moving left-to-right across a node receptive field yields to the same groups as

the same pattern moving right-to-left;

 coincidence priors can be simply obtained by normalizing the number of times coincidences have been activated

during training:

 (7)

 values are proportional to the probability of (close in time) co-occurrence of coincidences. A simple

normalization by rows makes values true conditional probabilities:

 for each

After normalization:

 (8)

where
 means that was active at time , and , for each . Note that after

normalization is no longer symmetric.

Some further definitions are useful before discussing group computation:

 Equation 8 asserts that is the probability that the next active coincidence will be if the current active

coincidence is ; in other words, denotes the temporal connection of the (ordered) pair , ;

 the temporal connection of a single coincidence is the probability that the next active coincide will be

independently of the currently active coincidence, and can be obtained from 8 by marginalization:

 (9)

where we assume that
 are the prior probabilities obtained from Equation 7, and therefore:

7 throughout this paper, for Equations that require updating a whole matrix/vector by overwriting the same matrix/vector, we denote the target with the

superscript , in order to avoid any ambiguity due to possible interfering updates. This does not mean that updating require a temporary copy of the data

structure.

18

 (10)

 the temporal connection of a group is the average temporal connection between any two coincidences

belonging to the group. Let be the number of coincidences in , then:

 (11)

4.3.1 Temporal Grouping by T Clustering

A temporal group is a set of coincidences that are likely to occur close in time. Partitioning coincidences into

a set of disjoint groups , can be formulated as a clustering problem aimed at maximizing the

functional:

 (12)

subject to the constraints:

 for each (13)

 (14)

 for each (15)

Equation 13 asserts that groups must be disjoint, equation 14 that all the coincidences must be assigned to groups and

Equation 15 sets a maximum group size. Maximization of 12 leads to maximize the average group temporal

connection, that is the within group temporal connections among coincidences.

Clustering is one of the most studied problem in pattern recognition and machine learning [31] and hundreds of

algorithms have been proposed in the literature. The clustering problem at hand has some peculiarities: (i) we can

easily compute similarity between any pair of coincidences, but there is not an efficient way to compute the centroid

of a set of coincidences (this makes the application of k-means like approaches critical); (ii) the number of

coincidences and groups can be quite large in practical applications, so we need computationally efficient

approaches; (iii) we do not care too much about the optimality of the solution since HTM is robust enough with

respect to suboptimal grouping. For this reasons an ad-hoc (computationally efficient) greedy algorithm, here

denoted as Default temporal clustering, was introduced in [32]:

Default Temporal Clustering

 // a flag is maintained to denote coincidences already assigned

while (not all coincidences have been assigned)

{

 // select the non assigned coincidence with highest temporal connection

 // initialize a new list with a single coincidence

 // this is a cursor used to scan elements by their position

 while (() // until scan is completed or group is too large; (is the list length

 { // get coincidence at position in the list

 // add to the tail of the coincidences that are the most

connected to , see below.

19

 }

 // create a new empty group and add it to

 for each // add the first coincidences in to the new group

 {

 // mark it as assigned

 }

}

where:

 selects the coincidences with highest temporal connection

with , excluding coincidences already assigned. Selected coincidences are added to , by inserting them at the

end of the list and by excluding coincidences already present in the list. A typical value for is 3.

The default temporal clustering algorithm runs by creating one group at each time. The group seed is a single highly

connected coincidence, to which its coincidence are associated; group growing is recursive,

i.e., each newly associated coincidence will cause its coincidences to be associated as well.

Recursion terminates: (i) naturally, when the coincidences of all the coincidences in the list are

already in the list; (ii) forcedly, if the list length exceeds . Some nice graphical examples of group

growing are shown in [32]. Temporal grouping shown in Fig. 4 has been created with the default temporal clustering

algorithm. A different algorithm, based on Agglomerative Hierarchical Clustering, was proposed in [1].

4.3.2 PCG Computation

 denotes the conditional probability of coincidence given the group . The computation

of matrix is performed in two simple steps:

1.

 , for each

2. , for each

The former step sets the conditional probability as the coincidence prior in case the coincidence belongs to the group.

The latter is a within group normalization aimed at guaranteeing, for each group , that

4.4 OUTPUT NODE TRAINING

Training the output node during pattern presentation is very simple:

Train Output Node on

... // the first part, aimed at selecting/creating the active coincidence , is

identical to Intermediate Node Training, see Section 4.3.

 // increase the number of times was active in the context of class

20

A few steps are required to finalize the output node training:

Finalize Output Node Training

Forget Rare Coincidences // coincidence such that are removed from

Compute Class Priors // see Equation 16

Normalize // see Equation 17

where:

 is the total number of times coincidence has been active independently of the pattern class;

these values are here used to forget rare coincidences;

 class Priors are computed by marginalization and normalization:

 (16)

 normalization is aimed at guaranteeing, for each class , that

 , for each . (17)

5. NEW TRAINING ALGORITHMS

In this Section we introduce new training techniques: in particular, Section 5.1.1 presents a new temporal

clustering algorithm, Section 5.1.2 introduces a fuzzy grouping approach, and finally in Section 5.1.3 we discuss

computational issues and show how activation buffering can markedly reduce training time.

A new constructive definition of is fundamental for the discussion hereafter. Let be a

temporal grouping solution and be a normalized temporal activation matrix (see Equation 8), then:

 (18)

where:

 , since given
 , the knowledge of is irrelevant to

determine
 ;

 is computed as the relative prior probability of (see Equation 7) over the total prior probability

of coincidences belonging to group :

 .

Hence Equation 18 becomes:

 (19)

It can be simply proved that, for each group :

 (20)

in fact, being (see Equation 8), then:

21

 .

According to Equations 18 (and 19) the conditional probability of a coincidence given a group can be

conceived as the probability that the next active coincidence will be if the currently active coincidence is one of

the coincidences of the group . It is worth noting that Equation 19 allows to compute the degree of membership of

a coincidence to a group either if the coincidence belongs to the group or not.

Equation 19 also allows to define the stability of a group :

 (21)

 is the probability that if the currently active coincidence belongs to then the next active coincidence

will also belong to . It can be simple proved that always lies in [0,1], where 1 means maximum

stability; in fact, is smaller than or equal to the summation in Equation 20.

It should be noted that the definition of group stability is quite similar to that of group temporal connection (see

Equation 11): the only difference is that to compute group stability we make use of prior probabilities to

weight values non uniformly.

5.1.1 MaxStab Temporal Clustering

The default temporal clustering approach introduced in Section 4.3.1 indirectly maximizes functional (Equation

12) by forming groups with high internal values. The algorithm here introduced performs a more direct

maximization of the average group stability, expressed by the functional:

 (22)

subject to the constraints 13, 14 and 15.

MaxStab Temporal Clustering

 // a flag is maintained to denote coincidences already assigned

while (not all coincidences have been assigned)

{

 // select the non assigned coincidence with highest temporal connection

 // create a new empty group and add it to

 do

 {

 // get coincidence that most increases group stability

 }

 while (

)

}

22

where:

 computes the delta stability resulting from the inclusion of in .

MaxStab creates one group at each time starting from a single highly connected coincidence. The group is then

expanded by associating, step by step, the coincidence that most increases the group stability. The expansion

continues while: (i) the increase in stability is larger than a given threshold computed as , and (ii) the

group size is smaller than .

Because of the similarity between group stability and temporal connection both and maximization are expected

to give similar results. However in our experiments, MaxStab usually leads to an higher average group stability

(Equation 22) with respect to the default temporal clustering of Section 4.3.1, and this often results in better

classification performance. On the other hand, since HTM networks are quite robust with respect to suboptimal

grouping the accuracy improvement is often marginal. A graphical comparison of the solutions obtained with the two

algorithms is shown in Fig. 9.

Fig. 9. Two temporal groupings over the coincidences of Fig. 4 (left) starting from the same temporal activation matrix: (a)

clustering was performed with the default temporal grouping algorithm with parameter values: ,

 . The first group, i.e., that containing a single empty patch, was hardcoded; in fact, we noted that for line

drawing classification, in case of perfectly clean background, this often leads to better accuracy. The average group stability

obtained is (b) clustering was performed with MaxStab algorithm with parameter values: ,

 . Unlike for the default algorithm, no group was hardcoded here, since MaxStab can create groups with a

single element. The average group stability obtained is . Finally it should be noted that groups in (b) are better

balanced and that while in (a) group growing was terminated in 8 cases by the maximum group size constraint, in (b) group

growing always terminated naturally because of the threshold imposed by .

(a) (b)

23

5.1.2 Fuzzy Grouping

In Section 4.3.1, Equation 13 requires the groups to be disjoint (i.e., no coincidence can be part of more than one

group) and Equation 14 requires all coincidences to be assigned to one group. In real applications, rarely clusters can

be clearly identified and even for optimal solutions some patterns can lie near the boundaries of two of more clusters.

Forcing patterns to be member of only one cluster can lead to ambiguity. For this reason in many pattern recognition

applications, probabilistic or fuzzy clustering, such as fuzzy-k-means [33] or Expectation-Maximization [34] is

preferred to exclusive clustering. In the following we will relax Equation 13 and 14 constraints; this will lead to the

formation of partially overlapped groups from which we will derive in a novel way. Some steps in this direction

(non exclusive grouping) were pioneered by Greg Kochaniak (unfortunately a formal description of his approach is

not available), but his temporal grouping implementation was quite different from the fuzzy grouping approach here

introduced.

To implement Fuzzy grouping, the last two steps of the Finalize Intermediate Node Training algorithm in Section 4.3

must be replaced with the following five sequential stages (previous steps remain unaltered):

1. Compute initial groups with a clustering algorithm enforcing Equation 13 and 14. This initial clustering

solution can be computed with the default algorithm described in Section 4.3.1 or with the MaxStab algorithm

described in Section 5.1.1.

2. Remove small groups and groups with low stability. Groups with less than coincidences are

expected to bring limited generalization, so they are removed. Analogously, groups such that

 are removed since their elements are not enough temporally close each other. At this stage

coincidences of deleted groups remain orphans (Equation 14 is no longer enforced).

3. Computation of . Each element is calculated according to Equation 19.

4. Group extension. Given a group , coincidences already belonging to at the end stage 2, are denoted as

primary coincidences, whereas coincidences added subsequently (i.e., during this phase) are denoted as

secondary. Since primary coincidences contributed to the group formation they are expected to be the most

representative for the group. However, other coincidences not belonging to the group could be temporally close to

coincidences in the group: we allow a coincidence to be added to a group as secondary coincidence if

 is high. However, instead of explicitly thresholding , group extension is accomplished as:

Group Extension to Secondary Coincidences

for each

{

 while (// we want to add only to the top% groups (default value for)

 {

 // select the temporally closest group, excluding those already considered

 // to avoid selecting again

 if () // might already belong to as primary coincidence

24

 // is added to as secondary coincidence

 }

}

At the end of this stage Equation 13 is no longer enforced.

5. Cleaning and Normalization of

 , for each .

This step clears a value, computed at stage 3, if does not belong (neither as primary nor as secondary)

to group .

 , for each

This step is necessary, after cleaning, to ensure that for each group , .

It is worth noting that fuzzy grouping could be implemented without group extension (stage 4) and

cleaning/normalization (stage 5), since, at the end of stage 3, matrix is already consistent. However, the

proposed implementation leads to a sparse (e.g., only a minor portion of its element are not 0) which is

preferable for both robustness (as confirmed by experimental results) and computational efficiency. In the rest of this

paper we will denote the temporal grouping introduced in Section 4.3.1 as exclusive grouping in order to distinguish

it from the fuzzy grouping here proposed. Fig. 10 shows an example of fuzzy grouping and compares it with the

exclusive grouping solution from which it was derived.

5.1.3 Activation Buffering

In Section 4.2 we explained that HTM training is performed level by level: while training level , all the nodes of

previous levels work in inference mode. Therefore all the patterns in the training sequence used to train level

must be processed (i.e., inference) by all the levels . For huge training sequences this (lower level)

processing can be computationally demanding thus leading to long training time. However, since the training

sequences used to train the different levels are usually generated from the same training patterns, buffering the

node responses (i.e., the group activations) allows re-processing of the same patterns to be avoided. This idea is

derived by an HTM implementation developed by Greg Kochaniak.

Activation buffering implementation details depend on the training strategy and in particular on the composition

of the training sequences. In the following we assume that training sequences are created as described in Section 4.1

where patterns in each training sequence are obtained by one or more exhaustive scans over the training set

patterns (see Fig. 7 and Fig. 8). Let be a training set pattern, then is the pattern

extracted by when the scan offset is . Activation buffering can be enabled when training levels with

 . The implementation is slightly different if the level is working in node sharing mode or not:

25

Fig. 10. (a) The exclusive grouping solution reported in Fig. 9.b is characterized by an average group stability . (b)

Fuzzy grouping solution obtained starting from groups in (a) and with parameter values: ,

 , . Two groups have been deleted because of .

Coincidences enclosed inside red frames are secondary coincidences added during group extension. It can be noted that many of

the secondary coincidences can be obtained by small translations of primary coincidences in the same group. Here the average

group stability grows to , and, even if the average group length increases from 5.5 to 14, the percentage of non-zero

 elements remains quite small (10.5%).

 no node sharing. For each node

 of level and for each pattern the index of the winning

group (i.e., the most active group) is stored in a buffer: . When training nodes of

level , indices of child winning groups (, see Equation 6) are composed by directly accessing the buffer

without any lower level pattern re-processing.

 node sharing. Only the master node

 is trained. In this case, the node reference is always 1, so the buffer

entries are . When training nodes of level the child winning group index of each

non master node

 can obtained by accessing the buffer at a position that depends, not only on the

current scan offset, but also on the relative position of

 with respect to the master node

 (in practice, the

activation of a non master node is derived from the master node activation upon receptive field shifting).

Two types of activation buffering, denoted as normalBuffering and fastBuffering, can be implemented:

 normalBuffering results are identical to the non-buffering case. Buffering is performed at the end of node training

when the entire training sequence is presented again to the network and inference is carried out through previous

(a)

(b)

26

levels . However, NormalBuffering is effective only for levels operating in node sharing mode; making

it advantageous also for "no node sharing" levels would be very complex and space-demanding.

 fastBuffering results are usually slightly different with respect to the non-buffering case. Buffering is carried out

in two stages: (i) during the training of level , the winning coincidence indices (i.e., the most active coincidence

indices) are buffered. At the end of training, once has been computed, winning coincidence indices are

batch converted into winning group indices. This is an heuristic step (leading to a loss of information) because it

ignores the contributions of the non-winning coincidences to the computation of group activation levels (see

Equation 3). However, from experimental results (refer to Section 6) we noted that fastBuffering is not only more

efficient, but sometimes is also more accurate than normalBuffering, and in general, even when it is less accurate,

the accuracy drop is small.

6. PATTERN CLASSIFICATION EXPERIMENTS

In this Section we present several experimental results on pattern classification problems: Subsection 6.1

introduces the three datasets used in the experiments; in Subsection 6.2 we discuss HTM training, tuning and

parameterization and we compare the new training algorithms of Section 5 with the default implementation reported

in Section 4; finally, in Subsection 6.3 HTM is compared with other pattern recognition approaches.

6.1 DATASETS

For this study we selected three different pattern classification problems: SDIGIT, PICTURE and USPS. In our

opinion, these three datasets constitute a good benchmark to study invariance, generalization and robustness of a

pattern classifiers. However, in all the three cases the patterns are small black-and-white or grayscale images (32×32

or smaller). Even if HTM was already applied with success to object recognition problems with larger color images

(see [3][11]) our current implementation need to be further enhanced to be able to efficiently works with large

patterns. As discussed in Section 7, part of our future efforts will be dedicated to the demonstration of HTM

capabilities on typical object recognition benchmarks such as CalTech and Pascal VOC datasets [35].

6.1.1 SDIGIT

SDIGIT is a machine-printed digit classification problem where just a single (16×16 pixels, 8-bit grayscale)

image, called primary pattern, is provided for each of the 10 digit classes, and a number of variants are generated by

geometric transformations of the primary patterns. By explicitly controlling the size and the amount of variation in

both the training and the test set we can study specific characteristics of HTM related to training,

generalization/invariance, robustness. With we denote a set of

patterns, including, for each of the 10 digits, the primary pattern and further patterns generated by

simultaneous scaling and rotation of the primary pattern according to random triplets where

 , and .

27

The creation of a test set starts by translating each of the 10 primary

pattern at all positions that allow it to be fully contained (with a 2 pixel background offset) in the 16×16 window thus

obtaining patterns; then, for each of the patterns, further patterns are generated by transforming the

pattern according to random triplets ; the total number of patterns in the test set is then . Fig. 11

shows an example of test set generation.

Fig. 11. SDIGIT: 10 patterns for each class extracted from a test set . Note the large

intra-class variation because of relevant rotation and scale changes; also note that some patterns of different classes appear to be

very similar (e.g., rotated "1" and "7", small "5" and "6").

6.1.2 PICTURES

This is a difficult line-drawing classification problem introduced in [1]. The dataset can be obtained from [5].

Patterns are 32×32 pixels, 1-bit (i.e., black and white) images belonging to 48 classes, including: characters,

stereotyped animals and simple objects. The training set is constituted by 453 images; pattern

distribution over classes in unbalanced but all classes have more than one pattern. The test set is

composed by 8,941 patterns which represent distorted versions of the training set ones. Distortion includes geometric

change, line thickness change, noise (i.e., randomly flipped pixels), disconnection/cancellation of parts; some of the

patterns are so severely distorted that also human classification is challenging. Fig. 12 shows some examples. A

reduced version of PICTURE problem, denoted as PICTURE-, can be obtained by considering only the first 8

classes: in particular, contains 100 patterns and contains 2,000 patterns.

6.1.3 USPS

USPS is a well known handwritten digit classification problem [36], largely used in the scientific literature as a

benchmark for pattern recognition and machine learning approaches. USPS patterns are 16×16 pixels, 8-bit grayscale

images; the training set and test set contains 7,291 and 2,007 patterns respectively. Fig. 13

shows some examples. With we denote a subset of the training set composed by the first

patterns of each class. Although the shape variability in the USPS patterns is quite large, the digits are centered in

their window and the test set variations are quite well covered by the large training set, and therefore even a simple

approach such as the Nearest-Neighbor classifier achieves good classification results. While we believe this dataset is

not ideal for studying invariance and generalization features of a pattern classifier, reporting and comparing HTM

accuracy also on well-know benchmarks is essential.

28

Fig. 12. Two examples per class extracted from (a) and (b) .

Fig. 13. Ten examples per class extracted from (a) and (b) .

6.2 HTM ANALYSIS

Designing an HTM architecture and finding optimal values for the numerous parameters controlling the network

learning and inference is not a trivial task. Furthermore, as for many other pattern recognition approaches, the

optimal architecture and parameter values are problem dependent and a proper parameter tuning can lead to a

relevant performance improvement. Fortunately HTM is quite robust with respect to its parameterization and

(b)

(a)

(a)

(b)

29

performance just nicely degrades as parameters drift away from their optimal values. In our experimentation we tried

to fix, as much as possible, the network architecture and the parameter values independently of the problem. This

could lead to suboptimal accuracy, but in general allows to control data overfitting, especially when a validation set

(disjoint from the test set) is not available to tune parameters.

6.2.1 Parameter selection

Table I list the parameter values that we found to be appropriate for all the classification problems addressed in

this work, while Table II includes dataset specific parameter values.

All the HTM used are four-level networks: two intermediate levels perform both spatial and temporal analysis; the

output level performs a further spatial analysis and then classifies the pattern. Some experiments have been carried

out with three- and five-level networks too; although with proper parameterization these architectures can perform

well (sometimes better than a four-level HTM), a four-level architecture demonstrated to be an optimal choice for

input patterns of size 16×16 and 32×32. As reported in Table II, node arrangements across the four levels is 16×16 →

4×4 → 2×2 → 1 (as in Fig. 1 example) for SDIGIT and USPS, and 32×32 → 8×8 → 4×4 → 1 for PICTURE.

Level 1 always operates in node sharing mode since its nodes are expected to learn basic features that are somewhat

independent of the position within the network receptive field. Level 2 also operates in node sharing mode for

PICTURE while level 2 node sharing is not activated for SDIGIT and USPS since in these cases pattern translations

across the input window is more limited and nodes experience sub-patterns that are position dependent.

Common parameter values
Level 0 (Input) Level 1 (Intermediate) Level 2 (Intermediate) Level 3 (Output)

Default Temporal Clustering

MaxStab Temporal Clustering

Default Temporal Clustering

MaxStab Temporal Clustering

Table I. Common parameter values for all the HTM networks used in our experiments. Optimal parameters for both Default

Temporal Clustering and MaxStab Temporal Clustering are reported. Parameter is used only if Fuzzy Grouping is

activated.

SDIGIT
Level 0 (Input) Level 1 (Intermediate) Level 2 (Intermediate) Level 3 (Output)

16×16 4×4

MaxStab Temporal Clustering

2×2

1×1

30

PICTURE
Level 0 (Input) Level 1 (Intermediate) Level 2 (Intermediate) Level 3 (Output)

32×32 8×8

MaxStab Temporal Clustering

4×4

1×1

USPS
Level 0 (Input) Level 1 (Intermediate) Level 2 (Intermediate) Level 3 (Output)

16×16 4×4

MaxStab Temporal Clustering

2×2

1×1

Table II. Problem specific values for the HTM networks used in our experiments.

Parameters and deserve particular attention:

 Level 2 and 3 always have , this means that all the sub-patterns encountered during learning are

stored as coincidences if they are not identical (i.e.,) to already seen coincidences. Remember

that the meaning of for the intermediate level is different with respect to subsequent levels; in fact, in

 nodes the coincidence distances are computed as Gaussian distances while for higher level nodes they are

computed in terms of winning indices differences (see Section 4.3). As to Level 1, the value of directly

controls the number of "basic" coincidences created and heavily influence the whole network complexity (in

terms of number of coincidences and groups at all levels); for PICTURE we set because PICTURE

patterns are black and white and the number of different sub-patterns presented to level 1 nodes is quite small

(less than 200); on the other hand, SDIGIT and USPS patterns are gray-level and setting would

result in a huge number of nearly-identical coincidences at level 1. Experimental results proved that the network

invariance and generalization capabilities get worse if too many nearly-identical coincidences are retained at level

1, so has to be adjusted (by trial and errors) according to the pattern variability in the problem at hand.

 Parameter (see Equation 1) is mainly involved in the inference stage where it controls how quickly the

coincidence activations (in level 1 nodes) decay when the current sub-pattern deviates from the stored

coincidences. In practice, a too high value of determines the activation of a large number coincidences thus

leading to little spatial selectivity, while a too low value of determines the activation of just one coincidence and

this penalizes generalization and robustness. We experimentally discovered that an effective way to estimate an

optimal value for is to require that a given percentage (around 3%) of coincidences are responsible for the

95% of the whole activation. In other words, if values are sorted in descending order, should be tuned in

such a way that, on the average, the first 3% totals the 95% of the sum.

There is not much more to explain about parameters reported in Table I, except noting that the value of

 has to be markedly increased moving from to ; this is consistent with the provision that

HTM higher level nodes must be more invariant than lower level nodes with respect to spatial and temporal changes

31

of input patterns and therefore, during training, the temporal analysis must be extended to longer time periods.

Finally, it is worth noting that the value of parameter , which is stable to 0.12 for almost all the

cases, has been decreased to 0.07 only for USPS (level 1); this was necessary because of the high number of groups

created at level 1 in USPS (due to the large pattern variability) and the consequent difficulty of achieving high group

stability after the temporal clustering; using for USPS would lead to discard too many

groups. An alternative approach, to make the choice of minimum group stability totally problem independent, could

be to define this threshold as a percentage of the average group stability, thus avoiding to provide and absolute value.

6.2.2 Accuracy and efficiency

Table III, IV and V report results achieved on SDIGIT, PICTURE and USPS respectively. HTM parameters have

been set as described in Section 6.2.1. Each table compares three configurations: (i) Baseline refers to an HTM

trained with default algorithms described in Section 4; (ii) Fuzzy grouping refers to a network where coincidence-

group memberships are computed according to the approach described in Section 5.1.2; (iii) MaxStab is the case

where the Default temporal clustering is replaced with the MaxStab algorithm introduced in Section 5.1.1 (fuzzy

grouping is also active in this configuration).

For all the experiments we report:

 details about the sequences used to train the corresponding HTM levels (see Section 4.1); in particular, for

each sequence we provide the number of sub-patterns and the sub-pattern size;

 classification accuracy for both training and test set;

 time elapsed for training/test. The time measure refers to our C# (.net) implementation running on Windows 7 on

a Xeon CPU W3550 at 3.07 GHz. Although our HTM implementation can take advantage of a multi-core CPU,

only one core is here used for a fair comparison with other classifiers in Section 6.3.

 the size of the HTM in MB, that we define as the total amount of data that must be stored at the end of training to

be able to run inference. For floating points data we used double precision encoding (8 bytes).

 for the intermediate levels and we show: the number of coincidences (); the number of groups (); the

average length of each group (in term of coincidences) - this information is reported within brackets just after ;

the average group stability (see Equation 22) resulting from temporal clustering. Note that if the level is

operating in shared mode the above statistics refer to the master node; otherwise these values have to be intended

as average values over all the level nodes (we used the notation , , and to distinguish such a case). For the

output level we report the number of coincidences.

From this round of experiments we can conclude that:

 HTM performs well on the three datasets (how well will be more evident from the comparison with other

approaches in Section 6.3).

 HTM training, mainly based on unsupervised learning, is computationally efficient.

32

 The larger the training set, the higher is the accuracy on the test set. On the other hand, intensive training leads to

the creation of a larger number of coincidences and groups and then to a more complex (and larger network)

whose efficiency can degrade (see test time).

 Fuzzy grouping improves (often markedly) HTM accuracy with respect to baseline configuration. A minor

drawback is a certain increase in the average group length leading to larger size and lower efficiency.

 MaxStab temporal clustering generally improves accuracy, even if in this case the advantage with respect to

Default temporal clustering is marginal. It is worth noting that MaxStab often leads to the formation of a lower

number of (more stable) groups at and, as a consequence, to a lower number of coincidences at ; hence the

total size is typically smaller and the network more efficient.

 Our HTM baseline implementation and Numenta's one achieved very similar performance in term of accuracy on

PICTURE (see Table VII); however, our HTM training implementation seems to be computationally

advantageous.

SDIGIT - test set: (6,200 patterns, 10 classes)

Training set
HTM

configuration

Accuracy (%) Time (hh:mm:ss) Size

(MB)
Details

train test train Test

<50,0.70,1.0,0.7,1.0,40°>

50 Patterns

Training sequences:

Baseline 99.94 66.35 00:00:05 00:00:10 0.49

 , ,

 , ,

Fuzzy grouping 99.89 71.15 00:00:07 00:00:13 0.62

 , ,

 , ,

MaxStab 100 71.37 00:00:08 00:00:13 0.58

 , ,

 , ,

<100,0.70,1.0,0.7,1.0,40°>

100 Patterns

Training sequences:

Baseline 99.97 82.34 00:00:17 00:00:16 0.83

 , ,

 , ,

Fuzzy grouping 100 87.45 00:00:24 00:00:24 1.08

 , ,

 , ,

MaxStab 100 87.56 00:00:25 00:00:23 1.00

 , ,

 , ,

<250,0.70,1.0,0.7,1.0,40°>

250 Patterns

Training sequences:

Baseline 99.99 91.55 00:01:15 00:00:32 1.60

 , ,

 , ,

Fuzzy grouping 100 94.35 00:02:01 00:00:58 2.18

 , ,

 , ,

MaxStab 100 94.61 00:02:04 00:00:55 2.06

 , ,

 , ,

Table III. HTM results on SDIGIT. Experiments are performed with three training sets of increasing size: n = 50, n = 100 and n

= 250. A single test set with 6200 patterns (n = 1000, m = 62, see Section 6.1.1) was used in all the experiments. Note that the

geometric variations in the training sets are slightly smaller than corresponding test set variations; this led to a minor

performance improvements in all the tests we carried out (not only for HTM, but also for other classifiers introduced in Section

6.3).

33

PICTURE - test set: (2,000 patterns, 8 classes)

Training set
HTM

configuration

Accuracy (%) Time (hh:mm:ss) Size

(MB)
Details

train test train test

100 Patterns

Training sequences

Baseline 100 78.30 00:00:13 00:00:03 1.21

 , ,

 , ,

Fuzzy grouping 99.85 83.50 00:00:16 00:00:05 1.21

 , ,

 , ,

MaxStab 99.89 84.20 00:00:16 00:00:04 1.10

 , ,

 , ,

PICTURE - test set: (8,941 patterns, 48 classes)

Training set
HTM

configuration

Accuracy (%) Time (hh:mm:ss) Size

(MB)
Details

train Test train test

453 Patterns

Training sequences:

Baseline 99.87 66.78 00:01:51 00:01:17 6.05

 , ,

 , ,

Fuzzy grouping 99.69 71.11 00:02:16 00:01:37 6.22

 , ,

 , ,

MaxStab 98.92 71.08 00:01:54 00:01:14 4.81

 , ,

 , ,

Nupic 1.7 100 66.3 00:09:54 00:00:45 -

 ,

 ,

Table IV. HTM results on PICTURE. (Top) results achieved on the reduced version PICTURE-; (bottom) results obtained on

the full PICTURE dataset. In the last row, Nupic 1.7 refers to Numenta's implementation (Vision Toolkit in Nupic 1.7) with

factory tuned parameters [5]. While learning algorithms, parameters and training sequences in Nupic 1.7 could partially differ

from the Baseline configuration here provided, the accuracy of the two versions on PICTURE full problem is surprisingly

similar.

Fig. 14 shows the results of a further experiment aimed at making the relationship between accuracy and complexity

(i.e., size) more explicit. To control the HTM complexity we progressively increase level 1 thrDist, directly

controlling the number of level 1 coincidences and therefore indirectly influencing the whole network size. The graph

shows that as we reduce complexity, the network accuracy degrades gracefully. Details are provided for two

operating points: the point on the left is the same as in the last row of Table III; for the operating point on the right, in

spite of a marginal decrease in performance (94.61% → 91.84%), the network complexity is nearly halved.

6.2.3 Overlapping

Overlapping consists in forcing the receptive field of network nodes at the same level to be partially overlapped.

This can be implemented at level 1, but also at higher levels. The procedure of bottom-up message passing used in

training and inference is not affected by overlapping: basically, a node belonging to an overlapped region has more

than one parent node and simply sends message to all its parent nodes. We carried out a number of experiments

and we found the following two overlapped architectures to be quite effective for the input size 16×16 (SDIGIT and

USPS) and 32×32 (PICTURE):

34

USPS - test set: (2,007 patterns, 10 classes)

Training set
HTM

configuration

Accuracy (%) Time (hh:mm:ss) Size

(MB)
Details

train Test Train test

100 Patterns

Training sequences:

Baseline 100 83.36 00:00:02 00:00:01 0.18

 , ,

 , ,

Fuzzy grouping 100 83.91 00:00:03 00:00:02 0.23

 , ,

 , ,

MaxStab 100 84.11 00:00:03 00:00:02 0.23

 , ,

 , ,

1000 Patterns

Training sequences:

Baseline 100 92.38 00:00:47 00:00:04 0.68

 , ,

 , ,

Fuzzy grouping 99.96 92.87 00:01:33 00:00:09 1.00

 , ,

 , ,

MaxStab 100 93.42 00:01:39 00:00:09 0.97

 , ,

 , ,

7291 Patterns

Training sequences:

Baseline 99.90 93.32 00:13:46 00:00:17 2.77

 , ,

 , ,

Fuzzy grouping 99.34 94.67 00:35:23 00:00:43 4.09

 , ,

 , ,

MaxStab 99.39 95.57 00:26:45 00:00:30 3.52

 , ,

 , ,

Table V. HTM results on USPS. Experiments are performed with three training sets of increasing size: n = 100, n = 1000 and n =

7291 (full dataset).

Fig. 14. HTM accuracy and size on SDIGIT (training set) as function of . The

HTM configuration used is MaxStab (with Fuzzy grouping).

Accuracy = 94.61%, Size = 2.06 Mb
Training 00:02:04, Test 00:00:55
 , ,

 , ,

Accuracy = 91.84%, Size = 1.08 Mb
Training 00:00:43, Test 00:00:19
 , ,

 , ,

35

 HTM OV18×18 (2,0): this network has 2 child-node overlapping at and no child-node overlapping at . To allow

an even node partitioning the 16×16 input has been expanded to 18×18 (by simply adding a 1 pixel neutral border

to the patters): the resulting number of nodes per level is 18×18, 8×8, 4×4, 1. Overlapping at implicitly causes

 nodes to be partially overlapped (1/3 along each dimensions) in terms of input pixels. Receptive field of

nodes is 2×2 in terms of nodes and 6×6 in terms of nodes (or pixels). See Fig. 15 (left).

 HTM OV32×32 (2,1): this network has 2 child-node overlapping at and 1 child-node overlapping
8
 at : the

resulting number of nodes per level is 32×32, 15×15, 7×7, 1. The contribution of both and overlapping

determines nodes to be 1/2 overlapped in terms of input size along each dimensions. Receptive field of

nodes is 3×3 in terms of nodes and 8×8 in terms of nodes (or pixels). See Fig. 15 (right).

Fig. 15. A graphical visualization of the receptive field center and size of two overlapped architectures. Small and large crosses

denote the receptive field centers of level 1 and level 2 nodes respectively. On the top-left part of both the networks the figure

shows the receptive field size and overlapping of two level 1 nodes. On the bottom-right part of both the networks the figure

shows the receptive field size and overlapping of two level 2 nodes.

Table VI highlights accuracy improvements over Section 6.2.2 results: the advantage in terms of accuracy is very

relevant, even if it comes at expense of network complexity and efficiency. Implementing overlapping under the

assumption of evenly partitioning child nodes at each level is tricky (especially for small input size), and with respect

to the non-overlapping case the resulting architecture typically differs in terms of: number of nodes, receptive field

size of the nodes, composition of the training sequences. Hence, the improvements obtained could be due to a mix of

factors and further experiments would be necessary to isolate the real advantages of node overlapping.

8 1 child-node overlapping at level 2 is necessary for the 32×32 input size due to the constraint of even node partitioning.

HTM OV18×18 (2,0)

HTM OV32×32 (2,1)

size = 4, overlap = 1/2

size = 6, overlap = 1/3

size = 8,

overlap = 1/2

36

SDIGIT - test set: (6,200 patterns, 10 classes)

Training set Approach
Accuracy (%) Time (hh:mm:ss) Size

(MB) Train test Train test

 HTM 100 71.37 00:00:08 00:00:13 0.58

HTM OV18×18 (2,0) 100 73.39 00:00:35 00:01:02 1.47

HTM 100 87.56 00:00:25 00:00:23 1.00

HTM OV18×18 (2,0) 100 91.39 00:02:10 00:01:55 2.74

HTM 100 94.61 00:02:04 00:00:55 2.06

HTM OV18×18 (2,0) 100 97.06 00:04:04 00:11:33 6.28

PICTURE - test set: (2,000 patterns, 8 classes)

Training set Approach
Accuracy (%) Time (hh:mm:ss) Size

(MB) train test Train test

 - 100 Patterns

HTM 99.89 84.20 00:00:16 00:00:04 1.10

HTM OV32×32 (2,1) 100 85.50 00:00:34 00:00:42 4.32

PICTURE - test set: (8,941 patterns, 48 classes)

Training set Approach
Accuracy (%) Time (hh:mm:ss) Size

(MB) Train test Train test

 - 453 Patterns

HTM 98.92 71.08 00:01:54 00:01:14 4.81

HTM OV32×32 (2,1) 100 73.36 00:06:06 00:10:07 21.89

USPS - test set: (2,007 patterns, 10 classes)

Training set Approach
Accuracy (%) Time (hh:mm:ss) Size

(MB) Train test Train test

 HTM 100 84.11 00:00:03 00:00:02 0.23

HTM OV18×18 (2,0) 100 89.29 00:00:23 00:00:12 0.91

 HTM 100 93.42 00:01:39 00:00:09 0.97

HTM OV18×18 (2,0) 100 95.67 00:18:26 00:01:03 6.79

 HTM 99.39 95.57 00:26:45 00:00:30 3.52

HTM OV18×18 (2,0) 99.97 97.06 05:41:40 00:03:23 32.89

Table VI. Accuracy improvements achieved by overlapped configurations; baseline HTM performance refers to MaxStab

configuration reported in tables III, IV and V.

6.2.4 Activation buffering

Table VII shows the result of some experiments aimed at determining the speed-up given by activation buffering.

As explained in Section 5.1.3, normalBuffering does not alter the training results (the network obtained is identical to

the non buffering case), while fastBuffering leads to a somewhat "approximated" solution. However, if we look at the

Accuracy column in the table, we note that the accuracy drop due to fastBuffering is marginal in two cases (SDIGIT

and USPS), and for PICTURE dataset the fastBuffering solution even prevail over the default one. As to the resulting

training speed-up we note that normalBuffering (in two over three cases) lead to a relevant computational save, and

fastBuffering saving is always very relevant.

6.2.5 Saccading

Saccading consists in performing multiple inferences on the same pattern while the pattern is moved of a few

pixels each time. This emulates fast eye movements used to focus attention on different parts of an object while

recognizing it [37]. A simple but effective strategy for HTM is to activate saccading only at test time and presenting

each pattern of the test set 5 times to the network: the first time in canonical position and then by moving it one pixel

left, up, right and down. Instead of fusing HTM results at decision level (i.e., Majority Vote Rule) or at confidence

level (i.e., Sum Rule) we found the following on-line approach to be both simple and effective:

37

1. when a pattern is presented to the HTM in the first (canonical) position, the Prior class probabilities of the

output node are (re)set to the values computed at training time (Equation 16);

2. after inference, the output node Prior class probabilities take the value of the Posterior class probabilities

 , thus biasing successive inferences;

3. step 2 is repeated 4 times during successive saccades.

Table VIII highlights accuracy improvements over Section 6.2.2 results: the advantage in terms of accuracy is quite

relevant.

SDIGIT - test set: (6,200 patterns, 10 classes)

Training set
HTM

configuration

Activation

Buffering

Time

(hh:mm:ss)
Accuracy (%)

train train test

<250,0.70,1.0,0.7,1.0,40°>

MaxStab None 00:03:23 94.61

MaxStab normalBuffering 00:02:04 94.61

MaxStab fastBuffering 00:00:26 92.87

PICTURE - test set: (8,941 patterns, 48 classes)

Training set
HTM

configuration

Activation

Buffering

Time

(hh:mm:ss)
Accuracy (%)

train train test

453 Patterns

MaxStab None 00:05:37 71.08

MaxStab normalBuffering 00:01:54 71.08

MaxStab fastBuffering 00:00:52 71.50

USPS - test set: (2,007 patterns, 10 classes)

Training set
HTM

configuration

Activation

Buffering

Time

(hh:mm:ss)
Accuracy (%)

train train test

MaxStab None 00:24:06 95.57

MaxStab normalBuffering 00:26:45 95.57

MaxStab fastBuffering 00:07:00 94.52

Table VII. Comparison of HTM training with: (i) no activation buffering, (ii) normal buffering and (iii) fast buffering.

SDIGIT - test set:

Training set Approach
Accuracy

(%)

HTM 94.61

HTM (4 saccades) 97.24

HTM OV18×18 (2,0) (4 saccades) 97.97

PICTURE - test set:

Training set Approach
Accuracy

(%)

 - 453 Patterns

HTM 71.08

HTM (4 saccades) 76.09

HTM OV32×32 (2,1) (4 saccades) 74.58

USPS - test set: (2,007 patterns, 10 classes)

Training set Approach
Accuracy

(%)

 HTM 95.57

HTM (4 saccades) 96.46

HTM OV18×18 (2,0) (4 saccades) 97.21

Table VIII. Accuracy improvement obtained by enabling saccading at test time (i.e., inference over 5 positions for each test

pattern) for both MaxStab and overlapped configurations.

38

It is worth noting that saccading determines a linear increase in the classification time (i.e., 5 times higher). Rising

the number of saccades beyond 4 still produces a small accuracy improvement, but the advantage become marginal

with respect to the efficiency drop.

6.3 COMPARISONS WITH OTHER SYSTEMS

Table IX, X and XI compares HTM with other approaches in terms of accuracy and efficiency. Of course, a large

number of other pattern recognition approaches could be considered for comparison. Here we focused on techniques

working at pixel level (as HTM), without any hardwired feature extraction. Our selection also privileged techniques

made available as software libraries by their developers:

 NN is a simple Nearest Neighbor classifiers; this classifier gives a good baseline performance and is useful to

estimate the problem difficulty.

 MLP is a three layers (input-hidden-output) perceptron [38]; MLP is the best known neural network architecture

and therefore it is interesting to understand how it performs in comparison with HTM;

 LeNet5 is a Convolutional Network (CN) designed to classify characters and/or small line-drawing [17]. CN is

one of the most interesting MHWA architectures for visual pattern recognition and therefore is a very good

reference point for HTM.

Some notes on the experiment setup:

 For LeNet5 and MLP implementation we used the primitives made available by EBLearn [39], which is a very

powerful (C++) library to experiment energy-based learning techniques. EBLearn provides an efficient second

order backpropagation learning (i.e., exploiting Hessian to speed-up convergence).

 For LeNet5 and MLP instead of stopping the learning after a given number of epochs or by inspecting the error

trend on the training set, we used the test set as validation set and stopped learning when the error reached the

minimum over the test set. In general this is not a correct strategy, since it can lead to an optimistic estimation of

accuracy; however since our aim is HTM comparison with other techniques, in this way we are slightly favoring

HTM competitors.

 LeNet5 receptive field is a 32×32 image; in order to use existing (optimal) parameterization we adapted 16×16

SDIGIT and USPS patterns to 32×32 size by adding a neutral (i.e., colored as the background) border.

 The same input adaptation was done for MLP; the resulting number of neurons per level is: 1024− − , where:

 is the number of classes; for SDIGIT and USPS, and for PICTURE (near-optimal values

for have been determined by trial and error).

 An important issue is the use of translated patterns for the training: since SDIGIT and PICTURE test sets contains

translated versions of the corresponding training set patterns we cannot expect that NN and MLP architectures can

deal with such translations if we do not explicitly provide examples during training. Things are different for

LeNet5, where thank to the presence of two subsampling layers, moderate object translations are natively

tolerated. However to avoid any bias in favor of HTM, for experiment on SDIGIT and PICTURE, we trained NN,

39

MLP and LeNet5 exactly on the full sequences used to train HTM (the number of translated patterns is

reported in the first column of tables IX and X). Since USPS patterns are always centered inside their window,

learning with translated patterns was not necessary and in our experiments it resulted in a slight performance

drop; for this reason to produce the results reported in table XI translated patterns were not used.

 Timing for MLP and LeNet5 have been measured on the same hardware used for HTM, even if the C++ (Win32

native) EBLearn implementation is expected to be from 2 to 3 times more efficient than C# (.Net managed) HTM

implementation; hence the time comparison is biased in favor of MLP and LeNet5.

 In analogy with HTM (see Section 6.2.2), to determine the size in MB we assumed to store floating point data in

double precision format; for example LeNet5 (for a 10 class problem) has 51046 weights and coding each weight

with 8 bytes yields to a total size of 0.39 MB.

 the label HTM reported in the tables refers to the MaxStab configuration with Fuzzy grouping enabled and with

activation buffering set as normalBuffering; results for overlapped HTM are also reported in table XI. In this

Section we intentionally ignored HTM improvements given by saccading (see Section 6.2.5) because in principle,

also the other approaches could benefit of information fusion.

SDIGIT - test set: (6,200 patterns, 10 classes)

Training set Approach
Accuracy (%) Time (hh:mm:ss) Size

(MB) train test train test

<50,0.70,1.0,0.7,1.0,40°>

1788 translated patterns

NN 100 57.92 < 1 sec 00:00:04 3.50

MLP 100 61.15 00:12:42 00:00:03 1.90

LeNet5 100 67.28 00:07:13 00:00:11 0.39

HTM 100 71.37 00:00:08 00:00:13 0.58

<100,0.70,1.0,0.7,1.0,40°>

3423 translated patterns

NN 100 73.63 < 1 sec 00:00:07 6.84

MLP 100 75.37 00:34:22 00:00:03 1.90

LeNet5 100 79.31 00:10:05 00:00:11 0.39

HTM 100 87.56 00:00:25 00:00:23 1.00

<250,0.70,1.0,0.7,1.0,40°>

8705 translated patterns

NN 100 86.50 < 1 sec 00:00:20 17.0

MLP 99.93 86.08 00:37:32 00:00:03 1.90

LeNet5 100 89.17 00:14:37 00:00:11 0.39

HTM 100 94.61 00:02:04 00:00:55 2.06

Table IX. HTM compared against other techniques on SDIGIT.

PICTURE - test set: (2,000 patterns, 8 classes)

Training set Approach
Accuracy (%) Time (hh:mm:ss) Size

(MB) train test train test

100 Patterns

20424 translated patterns

NN 100 33.70 < 1 sec 00:00:59 159.6

MLP 71.44 44.40 04:23:43 00:00:02 3.78

LeNet5 99.98 55.25 00:16:56 00:00:03 0.39

HTM 99.89 84.20 00:00:16 00:00:04 1.10

PICTURE - test set: (8,941 patterns, 48 classes)

Training set Approach
Accuracy (%) Time (hh:mm:ss) Size

(MB) train test train test

453 Patterns
116198 translated patterns

NN 100 23.31 00:00:04 00:24:08 907.8

LeNet5 88.78 21.02 01:17:03 00:00:16 0.42

HTM 98.92 71.08 00:01:54 00:01:14 4.81

Table X. HTM compared against other techniques on PICTURE. MLP result are not reported for the full problem, because of

lack of convergence.

40

USPS - test set: (2,007 patterns, 10 classes)

Training set Approach
Accuracy (%) Time (hh:mm:ss) Size

(MB) train test train test

 NN 100 76.53 < 1 sec < 1 sec 0.20

MLP 100 73.20 00:04:29 < 1 sec 1.90

LeNet5 100 83.53 00:00:19 00:00:04 0.39

HTM 100 84.11 00:00:03 00:00:02 0.23

 NN 100 91.18 < 1 sec < 1 sec 1.96

MLP 99.7 89.54 00:03:53 < 1 sec 1.90

LeNet5 100 94.42 00:06:11 00:00:04 0.39

HTM 100 93.42 00:01:39 00:00:09 0.97

HTM OV18×18 (2,0) 100 95.67 00:18:26 00:01:03 6.79

 NN 100 94.42 < 1 sec 00:00:05 14.24

MLP 99.52 94.52 00:50:44 < 1 sec 1.90

LeNet5 99.87 96.36 00:36:59 00:00:04 0.39

HTM 99.39 95.57 00:26:45 00:00:30 3.52

HTM OV18×18 (2,0) 99.97 97.06 05:41:40 00:03:23 32.89

HTM [12] - 96.1 - - -

HTM [8] - 96.26 - - -

PCA [40] - 94.42 - - -

5 Layer MLP [41] - 95.8 - - -

SVM [41] - 96.0 - - -

Virtual SVM [42] - 96.8 - - -

Human perf. [43] - 97.5 - - -

Table XI. HTM compared against other techniques on USPS. The last 7 rows of the table (with grayed background) report results

already published in the literature. The very last row is an estimation of human performance on USPS classification.

Experimental results on SDIGIT (table IX) show that:

 HTM consistently outperforms the other techniques in term of accuracy. LeNet5 is the second-best and MLP

gains the third place.

 The training time is also very advantageous for HTM with respect to MLP and LeNet5. The gap would further

increase if fastBuffering was activated (see Table VII). NN has actually no training (we must simply store all the

patterns presented).

 Test time is larger in HTM with respect to LeNet5 and MLP, because of higher inference complexity in HTM.

 LeNet5 is the smallest size architecture; HTM is more compact than MLP for small training sets and about the

same size for the largest training set. Of course NN size become unfeasible for very large datasets.

Moving on PICTURE (table X) we note that:

 This problem is much more difficult than SDIGIT and USPS as testified by the low accuracy of NN.

 PICTURE appears to be particularly well suited for HTM that totally overcomes other techniques both in terms of

accuracy and training time. The black and white nature of PICTURE patterns leads to the creation of a smaller

number of (robust) coincidences and groups at level 1 with respect to SDIGIT and USPS (see details in Section

6.2.2 tables); this appear to be one of the reason for the very good HTM performance.

 Due to the large number of (translated) training patterns, NN test time (and size) grows a lot and MLP does not

converge on the full problem.

 Here too HTM if the most efficient on training, whereas LeNet5 is faster than HTM in classification.

Finally the analysis of USPS results (table XI) can be summarized as:

41

 As noted in Section 6.1.3 USPS is not ideal to study invariance and generalization; in fact test set variations are

covered by training set patterns to a large extent; this is testified by the good performance of NN.

 While HTM (non overlapped) still outperform NN and MLP on all the experiments done, LeNet5 performs

slightly better than HTM (non overlapped) when 1000 and 7291 training patterns are used. However, this is not

the case for HTMOV18×18 (2,0), whose accuracy is better than LeNet5 both for 1000 and 7291 training patterns.

 HTM (non overlapped) still has the most efficient training while HTMOV18×18 (2,0) high complexity leads to a

relevant drop in training/test efficiency.

 Other authors have reported HTM performance on USPS [12][8] which are in line with those here presented.

 If we consider only approaches working on pixel intensity (no intermediate feature extraction) and whose training

does not rely on the use of further patterns (machine printed or generated), HTMOV18×18 (2,0) accuracy is one of the

best performance reported so far.

7. CONCLUSION AND FUTURE WORK

In this paper we provided an in-deep analysis of Hierarchical Temporal Memory application to pattern

recognition. Novel learning approaches (fuzzy grouping and temporal clustering) have been proposed and their

efficacy have been demonstrated on three different datasets through a number of experiments. HTM performance

(both accuracy and efficiency) was then systematically compared with other pattern classification systems including

Convolutional Network, which at today remains one of the most successful implementation of Multi-stage Huber-

Wiesel Architectures to vision problems. In almost all our experiments HTM accuracy was better than other system

tested and learning was also more efficient. On the other hand, classification time is often longer in HTM (even if not

radically) with respect to some of the other systems tested. Finally, node overlapping, saccading and training

buffering have been demonstrated to be effective in further improving HTM accuracy and efficiency.

Although results achieved so far are very interesting, we believe that Hierarchical Temporal Memory framework

could be significantly improved in the future. The most evident weakness of current implementation is scalability; in

fact the network complexity considerably increases with the number and dimensionality of training patterns. This is

evident from tables III, IV and V where the number of coincidences and groups (at level 2 and 3) rapidly increases

with the number of sub-patterns in the training sequences. On the other hand, to deal with complex pattern

recognition problems (with large intra-class variance) the presentation of a large number of potentially long training

sequences appear to be necessary for the formation of robust groups. Most of the HTM complexity is due to the

coding adopted at higher levels where each coincidence often encodes one (or very few) variation(s) of a given

pattern. In other words, given n bits of information HTM higher levels encode O(n) configurations and not O(2
n
) as

an ideal information theoretic scenario would suggest. The way the brain encode patterns is still debated by

neuroscientists (see the discussion on Grandmother cells and population coding in Section 2.2 of [27]), but a sparse

distributed population encoding is one the most plausible hypotheses: this means that the simultaneous activation of a

group of cells is responsible for the conscious perception of a stimulus. If the group is composed of just one cell we

42

fall into the Grandmother cell case; if all the cells are included we are in a fully distributed code; the intermediate

case is the sparse distributed encoding. Going back to the n bits, this means that we could split them in smaller

groups (also overlapped) and with each subgroups of length m we could encode O(2
m
) patterns. Translating this in

HTM terms could be very important to overcome current limitation. To this purpose new cortical learning algorithms

are being developed by Hawkins et al. [44].

Our future research efforts will be devoted to:

 develop novel sparse population coding mechanisms to improve HTM scalability. One possibility is removing the

constraint that a coincidence of a node must be formed with contributions of all its nodes. A

coincidence created from a subset of would cover only a portion of receptive field and probably

would be more general and (re)usable to encode a larger number of patterns.

 consider saliency of sub-patterns during training and inference; in current implementation a patch containing a

salient corner and a totally empty patch are treated in the same way by HTM nodes. We believe that saliency

could play an important role in the development of new effective sparse population coding.

 exploit top-down messaging (not addressed in this paper) to develop new effective fusion strategies based on

saccading. In particular, instead of biasing successive classification only through the adaption of Prior

probabilities in the output node, we think that biasing should be extended to the whole network by influencing the

belief of all nodes through top-down (i.e., feed-back) messages.

 apply HTM to difficult object recognition benchmarks such as CalTech and Pascal VOC and systematically

compare HTM with state-of-the-art approaches. To deal with the unavoidable increase in the network complexity

due to the need of processing larger (color) images, it will be necessary to embed low-level feature extraction at

level 0 (e.g., through a bank of Gabor filters as discussed in Section 3.1) and to define different (non exhaustive)

strategies to create training sequences based on random walks in huge pattern spaces. Interesting results in this

direction have been already achieved by Numenta.

 training HTM incrementally, that is exposing a trained network to new patterns and updating internal

groups/coincidences accordingly is not trivial. In fact, changing coincidences/groups at a given network level

would invalidate the results of previous training at higher levels. An interesting alternative is initially training an

HTM with the algorithms proposed in this paper and then fix coincidences and groups throughout the whole

network; then, during successive training (that could be on-line or batch) adapt the probabilities in (for the

output node) and (for the intermediate nodes) as if they were the weights of a neural network trained with

backpropagation. This kind of unsupervised pre-training and supervised refinement was recently demonstrated to

be successful in deep architectures [13]. We carried out some preliminary experiments in this direction and we

achieved interesting results.

43

ACKNOWLEDGEMENTS

The author would like to thank Greg Kochaniak for providing an HTM implementation which inspired some of the

improvements here proposed, in particular the coincidence buffering techniques described in Section 5.1.3.

Acknowledgments also go to Pierre Sermanet for providing the EBLearn library and some suggestions for the

implementation of LeNet5 and MLP under EBLearn. Finally I would like to thank Dario Maio for the very useful

discussions and suggestions about HTM development and experimentations.

REFERENCES

[1] D. George, "How the Brain Might Work: A Hierarchical and Temporal Model for Learning and Recognition",

Ph.D Thesis, Stanford University, June 2008.

[2] D. George and J. Hawkins, “A Hierarchical Bayesian Model of Invariant Pattern Recognition in the Visual

Cortex”, proc. International Joint Conference on Neural Networks (IJCNN), 2005.

[3] D. George and J. Hawkins, “Towards a Mathematical Theory of Cortical Micro-circuits”, PLoS Computational

Biology, 5(10), 2009.

[4] J. Hawkins and S. Blakeslee, On Intelligence, Times Books, Henry Holt and Company, New York, 2004.

[5] http://www.numenta.com (last accessed April 1st, 2011)

[6] S. Garalevicius, "Memory–Prediction Framework for Pattern Recognition: Performance and Suitability of the

Bayesian Model of Visual Cortex", proc. of Int. Florida Artificial Intelligence Research Society Conference,

2007.

[7] J. Thornton et al., "Robust Character Recognition using a Hierarchical Bayesian Network", proc. Australian

Joint Conference on Artificial Intelligence, 2006.

[8] B. Bobier, "Handwritten Digit Recognition using Hierarchical Temporal Memory", University of Guelph, 2007.

Available at http://arts.uwaterloo.ca/~cnrglab/?q=system/files/SoftComputingFinalProject.pdf (last accessed

April 1st, 2011).

[9] Y. Hall, R. Poplin, "Using Numenta’s Hierarchical Temporal Memory to Recognize CAPTCHAs", Carnegie

Mellon University, 2007. Available at http://www.pembrokeballet.com/10701-HTM_CAPTCHA.pdf (last

accessed April 1st, 2011).

[10] B. Bobier and M. Wirth, "Content-Based Image Retrieval Using Hierarchical Temporal Memory", proc. Int.

Conf. on Multimedia, 2008.

[11] A. Csapo, P. Baranyi and D. Tikk, "Object Categorization Using Vfa-generated Nodemaps and Hierarchical

Temporal Memories", proc. IEEE International Conference on Computational Cybernetics (ICCC), 2007.

[12] L. Wang et al., "Object Recognition Using a Bayesian Network Imitating Human Neocortex", proc. Int.

Congress on Image and Signal Processing, 2009.

44

[13] Y. Bengio, "Learning Deep Architectures for AI", Foundations and Trends in Machine Learning, vol. 2, no. 1,

2009.

[14] I. Arel, D.C. Rose, and T.P. Karnowski, "Deep Machine Learning - A New Frontier in Artificial Intelligence

Research", IEEE Computational Intelligence Magazine, vol. 5, no. 4. pp. 13-18, 2010.

[15] M. Ranzato et al., "Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object

Recognition", proc. Computer Vision and Pattern Recognition (CVPR), 2007.

[16] K. Fukushima, "Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern Recognition", Neural

Networks, vol. 1, no. 2, pp. 119-130, 1988.

[17] Y. LeCun et al., "Gradient Based Learning Applied to Document Recognition", Proceedings of the IEEE, vol.

86, no. 11, pp. 2278-2324, 1998.

[18] Y. LeCun, F.J. Huang and L. Bottou, “Learning Methods for Generic Object Recognition with Invariance to

Pose and Lighting,” proc. Conf. Computer Vision and Pattern Recognition (CVPR), 2004.

[19] M. Riesenhuber and T. Poggio, “Hierarchical Models of Object Recognition in Cortex”, Nature Neuroscience,

vol. 2, no. 11, pp. 1019-1025, 1999.

[20] T. Serre et al., "Robust Object Recognition with Cortex-Like Mechanisms", IEEE trans. on Pattern Analysis

Machine Intelligence, vol. 29, no. 3, 2007.

[21] S. Fine, Y. Singer and N. Tishby, "The Hierarchical Hidden Markov Model: Analysis and Applications",

Machine Learning, vol. 32, p. 41-62, 1998.

[22] N. Oliver, A. Garg and E. Horvitz, "Layered Representations for Learning and Inferring Office Activity from

Multiple Sensory Channels", Computer Vision and Image Understanding, vol. 96, pp. 163-180, 2004.

[23] P. Simard, Y. LeCun, and J. Denker, "Efficient Pattern Recognition Using a New Transformation Distance", in

Hanson, S. and Cowan, J. and Giles, L. (Eds), Advances in Neural Information Processing Systems, 5, Morgan

Kaufmann, 1993.

[24] D.G. Lowe, “Object Recognition from Local Scale-Invariant Features”, proc. Int. Conf. Computer Vision, pp.

1150-1157, 1999.

[25] L. Wiskott and T. Sejnowski, "Slow Feature Analysis: Unsupervised Learning of Invariances", Neural

Computation, vol. 14, no. 4, pp. 715-770, 2002.

[26] J. Bouvrie, L. Rosasco and T. Poggio, "On Invariance in Hierarchical Models", Proc. Neural Information

Processing Systems (NIPS), 2009.

[27] C. Koch, The Quest for Consciousness: A Neurobiological Approach, Roberts & Company Publishers, 2004.

[28] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan-Kaufmann, 1988.

[29] J. G. Daugman, "Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by

Two-dimensional Visual Cortical Filters", Journal of the Optical Society of America A, vol. 2, no. 7, pp. 1160-

1169, 1985.

[30] G. Hinton, S. Osindero and Y.W. Teh, "A Fast Learning Algorithm for Deep Belief Nets", Neural Computation,

vol. 18, pp. 1527-1554, 2006.

45

[31] A.K. Jain, M.N. Murthy and P.J. Flynn, "Data Clustering: A Review", ACM Computing Reviews, Nov 1999.

[32] D. George and B. Jaros, "The HTM Learning Algorithms", Numenta tech. report, March 1, 2007.

http://www.numenta.com (last accessed April 1st, 2011).

[33] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.

[34] G.J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, Wiley, 2008.

[35] J. Ponce et al., "Dataset Issues in Object Recognition", LNCS 4170, pp. 29-48, 2006.

[36] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, Springer, 2001.

[37] J.M. Findlay and I.D. Gilchrist, Active Vision, Oxford University Press, 2003.

[38] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 2 edition, 1998.

[39] P. Sermanet, K. Kavukcuglu and Y. LeCun, "EBLearn: Open-Source Energy-Based Leraning in C++", proc. Int.

Conf. on Tools with Artificial Intelligence (ICTAI), 2009.

[40] Y. Hu et al., "Handwritten Digit Recognition Using Low Rank Approximation Based Competitive Neural

Network", J. Wang et al. (Eds.), LNCS 3972, pp. 287 - 292, 2006.

[41] V. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.

[42] B. Scholkopf, C.J.C. Burges and V. Vapnik, "Incorporating Invariances in Support Vector Learning Machines",

LNCS 1112, pp. 47-52, 1996.

[43] J. Bromley and E. Sackinger, "Neural-Network and K-Nearest-Neighbor Classifiers", Tech. Rep. 11359-910819-

16TM, AT&T, 1991.

[44] J. Hawkins, S. Ahmad and D. Dubinsky, "Hierarchical Temporal Memory including HTM Cortical Learning

Algorithms", Numenta tech. report, December 10, 2010. Available at: http://www.numenta.com/htm-

overview/education/HTM_CorticalLearningAlgorithms.pdf (last accessed April 1st, 2011).

