
Moving Objects Databases

Unit 1:

Introduction - Spatio-Temporal Databases in the Past

Authors: Ralf Hartmut Güting, Markus Schneider

4

street
1 2 3

1908

Smith Benson

4

street
1 5

1920

Smith Benson

4

street
1 5

1938

Smith Benson

school

4

street
1 5

1958

Meyer

school
4

street
1 5

1964

Meyer

school

pa
th

5

4

street
1

1974

Meyer

school

pa
th

6 Mason7 7

MOVING OBJECTS DATABASES

Preface

Dear student,

welcome to the course on “Moving Objects Databases”. We hope you will enjoy reading
about this topic which has come up as a research issue not too long ago, roughly in 1996
or 1997. We, the authors, surely find it exciting, as it has been at the center of our
research for the last few years.

The Topic

The general idea of moving objects databases is that we would like to be able to repre-
sent moving entities in databases and ask queries about them. Moving entities could be
people, animals, all kinds of vehicles such as cars, trucks, air planes, ships, etc. For these
examples, usually only the time-dependent position in space is relevant, not the extent,
hence we can characterize them as moving points. However, there are also moving enti-
ties with an extent, for example, hurricanes, forest fires, oil spills, armies, epidemic dis-
eases, and so forth. These we would characterize as moving regions.

Extending database technology to deal with such objects means - as for many other non-
standard database applications - to provide facilities in a DBMS data model for describ-
ing such entities and to extend the query language by constructs for analyzing them, e.g.
for formulating predicates about them. Second, it means that the implementation of a
DBMS must be extended. The two major strategies for this are (i) to build a layer on top
of an existing DBMS and so to map moving object representations and predicates to
existing facilities of the DBMS, or (ii) to actually extend the DBMS by providing data
structures for moving objects, methods for evaluating operations, specialized indexes
and join algorithms, and so forth.

There are two major ways of looking at moving objects in databases: (i) to be interested
in maintaining continuously information about the current position and predict near
future positions, and (ii) to consider whole histories of movements to be stored in the
database and to ask queries for any time in the past or possibly the future (if we allow
“histories” to include the future). The course treats both perspectives in depth.

English

It is a bit unusual for a course at Fernuniversität Hagen to be in English, so why is that?
As we said above, this is a new research area and when we started to write the course,

II PREFACE

there did not yet exist books about it. Hence we planned to publish the course as a book,
too. Since this should be accessible to a world-wide audience, it made sense to write it in
English.

In the meantime, a book based on the course has indeed been published as follows:

R.H. Güting and M. Schneider, Moving Objects Databases. Morgan Kaufmann
Publishers, 2005.

The book has roughly the same contents as this course. Since you receive the course
materials, it does not make a lot of sense for you to buy the book additionally. More
details about the book and some additional material (such as slides for instructors) can be
found at the book Web site

http://www.informatik.fernuni-hagen.de/import/pi4/gueting/mod.html

We hope that you as mostly German-speaking students will nevertheless enjoy to partic-
ipate in a course in English. It should be a good practice for you, as in computer science
you need English anyway quite often, which you probably have noticed already.

To say this right away, even though also the assignments (“Einsendeaufgaben”) and their
solutions are formulated in English, it is fine if you write your solutions in German. If
you write in German, they will be corrected in German. However, there is no knowledge
of German required to participate in this course; you can also send your solutions in
English and will get back English corrections.

Prerequisites

We assume that you are familiar with the general concepts of database systems, as for
example given by the course 01665 “Datenbanksysteme” at the Fernuniversität. More
detailed knowledge of the implementation of database systems, as presented in the
course 01664 “Implementierungskonzepte für Datenbanksysteme” is helpful but not
required.

Exercises and Assignments

As usual we recommend that you not only read the material but try to work actively
yourself by solving the Exercises in the course text (corresponding to “Selbsttestaufga-
ben” in German) and by working on the Assignments (“Einsendeaufgaben”).

http://www.informatik.fernuni-hagen.de/import/pi4/gueting/mod.html

PREFACE III

Literature

The book based on this course is the first on the topic of moving objects databases, but of
course, there exist many research articles. Each chapter provides bibliographic notes at
the end, and every unit of the course (“Kurseinheit”) has its own “Bibliography” section.
The bibliographic notes at the end of Chapter 1 provide references to background litera-
ture on database systems in general as well as on spatial and on temporal databases.

Structure of the Course

The course 01675 “Moving Objects Databases” consists of seven units. It is possible to
study only the first part consisting of the first four units; this is offered as a course 01676
“Moving Objects Databases I”. If you have taken that course earlier, you can extend it to
the full course by studying course 01677 “Moving Objects Databases II”. Obviously, that
course consists of the last three units of 01675.

The table of contents for the whole course is given below. Since we might still do minor
changes and extensions to the various units (up to the deadline when they need to be sent
to printing), it is possible that the table of contents may slightly change, in particular the
page numbers. With the last unit we will provide a final version.

Version in the VU (“Virtuelle Universität”)

The course will be available in PDF for registered students in the VU. That version is in
colour and has active links (for cross references, index terms, table of contents). It may
be more suitable for searching through the text, and also the drawings are due to the
colours generally more beautiful than in the printed version.

Hagen/Gainesville Prof. Dr. Ralf Hartmut Güting

Prof. Dr. Markus Schneider

IV PREFACE

About the Authors

Dr. Ralf Hartmut Güting is (since 1989) a full professor in computer science at the Uni-
versity of Hagen, Germany. He received his Diplom and Dr. rer. nat. degrees from the
University of Dortmund in 1980 and 1983, respectively, and became a professor at that
university in 1987. From 1981 until 1984 his main research area was Computational
Geometry. After a one-year stay at the IBM Almaden Research Center in 1985, extensi-
ble and spatial database systems became his major research interests. His group has built
a prototype of an extensible spatial DBMS, the Gral-System. He is the author of two
(German) text books on data structures/algorithms and on compilers and has published
about 50 articles in computational geometry and database systems. He is also an associ-
ate editor of the ACM Transactions on Database Systems and an editor of GeoInformat-
ica. His major current research interests are extensible database architecture and moving
objects databases.

Web site: http://www.informatik.fernuni-hagen.de/import/pi4/gueting/home.html

Dr. Markus Schneider received the Diploma degree in computer science from the Uni-
versity of Dortmund, Germany, in 1990, and the Dr. rer. nat. degree in computer science
from the University of Hagen, Germany, in 1995. From 1996 to 2001 he worked as a
reasearch assistant (“Hochschulassistent”) at University of Hagen. Since January 2002
he is an Assistant Professor in the Department of Computer and Information Science and
Engineering (CISE) at the University of Florida in Gainesville, Florida. His research
interests were first related to the design and implementation of graphical user interfaces
for spatial database systems. Since then, he has worked on the design and implementa-
tion of spatial data types (geo-relational algebra, ROSE algebra, realms). His current
research interests are spatial, spatio-temporal and fuzzy spatial database systems.

Web site: http://www.cise.ufl.edu/~mschneid/

http://www.cise.ufl.edu/~mschneid/
http://www.informatik.fernuni-hagen.de/import/pi4/gueting/home.html

Contents of the Course

Unit 1

1 Introduction 1

1.1 Database Management Systems 1
1.2 Spatial Databases 4

1.2.1 Modeling Spatial Concepts 4
1.2.2 Extending Data Model and Query Language 6
1.2.3 Implementation Strategy 8

1.3 Temporal Databases 9
1.3.1 Managing Time in Standard Databases 9
1.3.2 The Time Domain 10
1.3.3 Time Dimensions 11
1.3.4 Extending the Data Model 13
1.3.5 Extending the Query Language: TSQL2 18

1.4 Moving Objects 21
1.4.1 The Location Management Perspective 21
1.4.2 The Spatio-Temporal Data Perspective 22
1.4.3 Moving Objects and Questions About Them 23
1.4.4 A Classification of Spatio-Temporal Data 24
1.4.5 Temporal Databases With Spatial Data Types 26
1.4.6 Spatio-Temporal Data Types 27

1.5 Bibliographic Notes 28

2 Spatio-Temporal Databases in the Past 31

2.1 Spatio-Bitemporal Objects 31
2.1.1 An Application Scenario 31
2.1.2 Bitemporal Elements 33
2.1.3 Spatial Objects Modeled as Simplicial Complexes 33
2.1.4 Spatio-Bitemporal Objects 37
2.1.5 Spatio-Bitemporal Operations 38
2.1.6 Querying 43

2.2 An Event-Based Approach 45
2.2.1 The Model 45
2.2.2 Query Processing Algorithms 47

2.3 Bibliographic Notes 50

VI CONTENTS OF THE COURSE

Unit 2

3 Modeling and Querying Current Movement 53

3.1 Location Management 53
3.2 MOST - A Data Model for Current and Future Movement 55

3.2.1 Basic Assumptions 55
3.2.2 Dynamic Attributes 56
3.2.3 Representing Object Positions 57
3.2.4 Database Histories 58
3.2.5 Three Types of Queries 58

3.3 FTL - A Query Language Based on Future Temporal Logic 61
3.3.1 Some Example Queries 61
3.3.2 Syntax 63
3.3.3 Semantics 64
3.3.4 Evaluating FTL Queries 67

3.4 Location Updates - Balancing Update Cost and Imprecision 73
3.4.1 Background 73
3.4.2 The Information Cost of a Trip 74
3.4.3 Cost Based Optimization for Dead-Reckoning Policies 76
3.4.4 Dead-Reckoning Location Update Policies 78

3.5 The Uncertainty of the Trajectory of a Moving Object 81
3.5.1 A Model of a Trajectory 81
3.5.2 Uncertainty Concepts for Trajectories 82
3.5.3 Querying Moving Objects with Uncertainty 84
3.5.4 Algorithms for Spatio-Temporal Operations and Predicates 88

3.6 Bibliographic Notes 91

CONTENTS OF THE COURSE VII

Unit 3

4 Modeling and Querying History of Movement 93

4.1 An Approach Based on Abstract Data Types 93
4.1.1 Types and Operations 93
4.1.2 Abstract vs. Discrete Models 96
4.1.3 Language Embedding of Abstract Data Types 98

4.2 An Abstract Model 99
4.2.1 Data Types 100
4.2.2 Formal Definition of Data Types 102
4.2.3 Overview of Operations 107
4.2.4 Operations on Non-Temporal Types 108
4.2.5 Operations on Temporal Types 116
4.2.6 Operations on Sets of Objects 126

4.3 A Discrete Model 129
4.3.1 Overview 130
4.3.2 Non-Temporal Types 132
4.3.3 Temporal Types 136

Bibliographic Notes 143

Unit 4

4.4 Spatio-Temporal Predicates and Developments 145
4.4.1 Motivation 146
4.4.2 Topological Predicates for Spatial Objects 146
4.4.3 The Problem of Temporally Lifting Topological Predicates 149
4.4.4 Temporal Aggregation 150
4.4.5 Basic Spatio-Temporal Predicates 152
4.4.6 Developments: Sequences of Spatio-Temporal Predicates 154
4.4.7 A Concise Syntax for Developments 157
4.4.8 An Algebra of Spatio-Temporal Predicates 160
4.4.9 Examples 166
4.4.10 A Canonical Collection of Spatio-Temporal Predicates 168
4.4.11 Querying Developments in STQL 171

4.5 Bibliographic Notes 175
4.6 Outlook and Further Reading 175

VIII CONTENTS OF THE COURSE

Unit 5

5 Data Structures and Algorithms for Moving Objects Types 177

5.1 Data Structures 177
5.1.1 General Requirements and Strategy 177
5.1.2 Non-Temporal Data Types 178
5.1.3 Temporal Data Types 180

5.2 Algorithms for Operations on Temporal Data Types 182
5.2.1 Common Considerations 182
5.2.2 Projection to Domain and Range 185
5.2.3 Interaction with Domain/Range 188
5.2.4 Rate of Change 193

5.3 Algorithms for Lifted Operations 194
5.3.1 Predicates 195
5.3.2 Set Operations 198
5.3.3 Aggregation 200
5.3.4 Numeric Properties 200
5.3.5 Distance and Direction 202
5.3.6 Boolean Operations 204

5.4 Bibliographic Notes 204

6 The Constraint Database Approach 207

6.1 An Abstract Model: Infinite Relations 208
6.1.1 Flat Relations 208
6.1.2 Nested Relations 213
6.1.3 Conclusion 214

6.2 A Discrete Model: Constraint Relations 215
6.2.1 Spatial Modeling With Constraints 215
6.2.2 The Linear Constraint Data Model 218
6.2.3 Relational Algebra for Constraint Relations 220

Bibliographic Notes 228

CONTENTS OF THE COURSE IX

Unit 6

6.3 Implementation of the Constraint Model 231
6.3.1 Representation of Relations 231
6.3.2 Representation of Symbolic Relations (Constraint Formulas) 231
6.3.3 Data Loading and Conversion 232
6.3.4 Normalization of Symbolic Tuples 242
6.3.5 Implementation of Algebra Operations 246

6.4 Bibliographic Notes 250

7 Spatio-Temporal Indexing 251

7.1 Geometric Preliminaries 252
7.1.1 Indexing Multi-Dimensional Space with the R-Tree Family 252
7.1.2 Duality 255
7.1.3 External Partition Tree 256
7.1.4 Catalog Structure 258
7.1.5 External Priority Search Tree 259
7.1.6 External Range Tree 260

7.2 Requirements for Indexing Moving Objects 262
7.2.1 Specifics of Spatio-Temporal Index Structures 262
7.2.2 Specification Criteria for Spatio-Temporal Index Structures 265
7.2.3 A Survey of STAMs in the Past 267

Bibliographic Notes 269

Unit 7

7.3 Indexing Current and Near Future Movement 271
7.3.1 General Strategies 271
7.3.2 The TPR-tree 272
7.3.3 The Dual Data Transformation Approach 281
7.3.4 Time-Oblivious Indexing 287
7.3.5 Kinetic B-Trees 289

7.4 Indexing Trajectories (History of Movement) 290
7.5 Bibliographic Notes 290

X CONTENTS OF THE COURSE

Contents of Unit 1

1 Introduction 1

1.1 Database Management Systems 1
1.2 Spatial Databases 4

1.2.1 Modeling Spatial Concepts 4
1.2.2 Extending Data Model and Query Language 6
1.2.3 Implementation Strategy 8

1.3 Temporal Databases 9
1.3.1 Managing Time in Standard Databases 9
1.3.2 The Time Domain 10
1.3.3 Time Dimensions 11
1.3.4 Extending the Data Model 13
1.3.5 Extending the Query Language: TSQL2 18

1.4 Moving Objects 21
1.4.1 The Location Management Perspective 21
1.4.2 The Spatio-Temporal Data Perspective 22
1.4.3 Moving Objects and Questions About Them 23
1.4.4 A Classification of Spatio-Temporal Data 24
1.4.5 Temporal Databases With Spatial Data Types 26
1.4.6 Spatio-Temporal Data Types 27

1.5 Bibliographic Notes 28

2 Spatio-Temporal Databases in the Past 31

2.1 Spatio-Bitemporal Objects 31
2.1.1 An Application Scenario 31
2.1.2 Bitemporal Elements 33
2.1.3 Spatial Objects Modeled as Simplicial Complexes 33
2.1.4 Spatio-Bitemporal Objects 37
2.1.5 Spatio-Bitemporal Operations 38
2.1.6 Querying 43

2.2 An Event-Based Approach 45
2.2.1 The Model 45
2.2.2 Query Processing Algorithms 47

2.3 Bibliographic Notes 50

Solutions to Exercises 1-A1

Bibliography 1-A9

Index 1-A13

Teaching Goals

After completing your work on this unit, you should

• be able to explain some limitations of database systems with respect to non-stan-
dard applications

• be able to explain basic concepts of spatial database systems, in particular the con-
cept of spatial data types

• be able to formulate some simple spatial queries, using SQL extended by SDTs

• be able to explain the basic ideas in temporal databases, such as

– tuple or attribute time-stamping

– valid time and transaction time

– different kinds of temporal databases and relations

• be able to explain the five temporal data models described (Sarda, Segev, HRDM,
Bhargava, BCDM)

• be able to construct a figure of bitemporal space based on a description of who
knew what at what time.

• be able to write some simple temporal queries in TSQL2

• be able to give examples of moving objects and spatio-temporal data and explain
how these data can be classified

• be able to describe several approaches to moving objects databases

• be able to explain the model of spatio-bitemporal objects, in particular

– explain the terms bitemporal element, simplex, simplicial complex

– explain ST-complexes and their operations

– be able to formulate some simple queries in this model

• be able to describe the event-based model for spatio-temporal databases

Chapter 1

Introduction

The topic of this course is the extension of database technology to support the represen-
tation of moving objects in databases, termed moving objects databases. This is an excit-
ing new research area that came up during the second half of the 1990s. Moving objects
are basically geometries changing over time; hence this is a specific flavor of spatio-tem-
poral databases which in turn have their roots in spatial databases, dealing with descrip-
tions of geometry in databases, and temporal databases, addressing the development of
data over time. The term “moving objects databases” emphasizes the fact that geometries
may now change continuously, in contrast to earlier work on spatio-temporal databases
that supported only discrete changes.

In this first chapter we provide some overview and background. We first review briefly
the role of database management systems. This is followed by short introductions to the
fields of spatial and temporal databases. We then describe the topic of this course in more
depth, explaining different views of moving objects databases and describing classes of
moving objects and applications.

1.1 Database Management Systems

Although we assume the reader to be familiar with the general concepts of database sys-
tems, let us briefly review their major aspects.

A database management system (DBMS) is a piece of software that manages a database,
a repository of interrelated data items which are often central for the working of some
enterprise or institution. A database is generally used by many diverse applications and
multiple users each of which may need only a fraction of the data. One role of the data-
base is to provide a single representation to all these applications, avoiding redundancies
and possible inconsistencies that would occur if each application managed its data sepa-
rately.

2 CHAPTER 1 INTRODUCTION

A DBMS provides to applications a high level data model and a related query and data
manipulation language. The data model is a logical view of how data are organized
which is generally very different from the way data are actually laid out on physical stor-
age media. One of the most popular data models is the relational model which provides
to users the view that data are organized in simple tables. The query language is based on
the concepts offered in the data model. For example, in the relational model it is possible
to derive new tables from given tables by selecting rows with certain properties, or a sub-
set of the columns.

The separation between the logical view of data given in the data model and the actual
physical representation is called the principle of data independence, one of the most fun-
damental contributions of DBMS technology. In the three level architecture for database
systems, a widely accepted architectural model, data independence actually occurs at
two different levels (Figure 1.1). Here the physical level describes how data are orga-

nized on storage media, the logical level defines data in terms of the data model men-
tioned above, and the top level offers for each application its own view of a part of the
data from the logical level, possibly transformed in some way. Physical data indepen-
dence means that we can reorganize the physical organization of data without affecting
the representation at the logical level, and logical data independence allows one to
change the logical level to some extent without affecting the view of data of specific
applications. It is the task of the DBMS to map efficiently between the levels. In particu-
lar, the query optimizer component needs to transform queries posed at the logical level
into efficient access plans at the physical level.

Data in a database are a valuable resource and one major functionality of the DBMS is to
protect data from being corrupted. To this end, changes to a database performed by an
application are encapsulated within transactions; either all of the changes within a trans-
action are applied to the database, or none of them is applied, so that a transaction trans-
forms a database from a consistent state to another consistent state. The DBMS manages
concurrent access to the database by multiple applications and isolates them from each

Figure 1.1: The three level architecture

physical level

logical level

external view 1 external view 2 external view n...

physical data
independence

logical data
independence

1.1 DATABASE MANAGEMENT SYSTEMS 3

other; changes performed within a transaction T become visible to all other applications
only after transaction T is completed. The DBMS also keeps track of all physical changes
performed during a transaction and is able to recover the consistent state before the trans-
action in most cases of failure, e.g. if the application software or even the DBMS itself,
crashes, and even in many cases of hardware failure.

Other aspects of data protection are facilities in the data model to formulate integrity
constraints, rules about certain relationships between data items that need to hold, and
the management of access rights for various user groups.

The classical database management systems were conceived for relatively simple busi-
ness applications. For example, the data types available for attribute types in the rela-
tional model are simple, basically integers or floating point numbers or short text strings.
One goal of the database research of the last two decades has been to widen the scope so
that as much as possible any kind of data used by any application can be managed within
a DBMS, described by a high level data model and accessed by a powerful query lan-
guage. For example, one would like to store images, geographic maps, music, videos,
CAD documents, data from scientific experiments, meteorological measurements, etc.
For all these kinds of data, one is interested in appropriate extensions of data model and
query language so that any kind of question about these data can be formulated in a man-
ner as simple as possible, and be answered efficiently (i.e. fast) by the DBMS. For exam-
ple, we would like to retrieve images containing shapes similar to a given one (“find the
images containing an air plane”) or produce a map of the distribution of rainfall over
some terrain.

With respect to the topic of this course, moving objects databases, we observe the fol-
lowing limitations of classical databases and the standard relational model.

1. We would like to represent geometric shapes such as the region belonging to a
country. There is no reasonable way to do this, except for very simple objects such
as points, for which the coordinates can be represented in numeric attributes.

2. We would like to represent the development of entities over time. But the data rep-
resented in a database generally reflect the current state of the world, there is no
easy way to talk about the past.

3. We would like to represent objects moving around right now or in the past. For
currently moving objects this would mean that positions are continuously updated
which is not really feasible.

These limitations are addressed in the following three subsections.

4 CHAPTER 1 INTRODUCTION

1.2 Spatial Databases

The goal of spatial database research has been to extend DBMS data models and query
languages to be able to represent and query geometries in a natural way. The implemen-
tation of a DBMS needs to be extended by corresponding data structures for geometric
shapes, algorithms for performing geometric computions, indexing techniques for multi-
dimensional space, and extensions of the optimizer (translation rules, cost functions) to
map from the query language to the new geometry-related components.

The major motivation for studying spatial databases are geographic information systems
(GIS). Early GIS systems made only limited use of DBMS technology, for example, by
storing non-spatial data in a DBMS but managing geometries separately in files. How-
ever, spatial database technology has matured so that now all the major DBMS vendors
(e.g. Oracle, IBM DB2, Informix) offer spatial extensions. Hence it is easier now to build
GIS entirely as a layer on top of a DBMS, i.e., store all the data in the DBMS.

Whereas GIS have been the major driving force, spatial databases have a wider scope.
Besides geographic space, there are other spaces of interest that may be represented in a
database such as

• the layout of a VLSI design (often a large set of rectangles)
• a 3D model of the human body
• a protein structure studied in molecular biology

An important distinction concerns image databases and spatial databases. Although
geographic space can be represented by images obtained by aerial photographs or satel-
lites, the focus of spatial DBMS is to represent entities in space with a clearly defined
location and extent. Image databases manage images as such. Of course, there exist con-
nections. For example, feature extraction techniques may be used to identify within an
image spatial entities that can be stored in a spatial database.

1.2.1 Modeling Spatial Concepts

What are the entities to be stored in a spatial database? Considering geographic space,
obviously anything qualifies that might appear in a paper map, for example, cities, rivers,
highway networks, landmarks, boundaries of countries, hospitals, subway stations, for-
ests, corn fields, and so forth.

To model these diverse entities, one can offer concepts to model single objects and spa-
tially related collections of objects.

1.2 SPATIAL DATABASES 5

For modeling single objects, three fundamental abstractions are point, line, and region. A
point represents (the geometric aspect of) an object, for which only its location in space,
but not its extent, is relevant. Examples of point objects are cities on a large scale map,
landmarks, hospitals, or subway stations. A line (in this context always meaning a curve
in space) is the basic abstraction for moving through space, or connections in space.
Examples of line objects are rivers, highways, or telephone cables. Finally, a region is
the abstraction for an entity having an extent in the 2D space. A region may in general
have holes and consist of several disjoint pieces. Examples of region objects are coun-
tries, forests, or lakes. The three basic abstractions are illustrated in Figure 1.2.

The two most important instances of spatially related collections of objects are partitions
(of the plane) and networks. A partition (Figure 1.3) can be viewed as a set of region
objects that are required to be disjoint. The adjacency relationship is of particular inter-
est, that is, there exist often pairs of region objects with a common boundary. Partitions
can be used to represent so-called thematic maps.

A network (Figure 1.4) can be viewed as a graph embedded into the plane, consisting of
a set of point objects, forming its nodes, and a set of line objects describing the geometry
of the edges. Networks are ubiquitous in geography, for example, highways, rivers, pub-
lic transport, or power supply lines.

Figure 1.2: The three basic abstractions point, line, and region

Figure 1.3: A partition

6 CHAPTER 1 INTRODUCTION

We have mentioned only the most fundamental abstractions to be supported in a spatial
DBMS. For example, other interesting spatially related collections of objects are nested
partitions (e.g. a country partitioned into provinces partitioned into districts etc.) or a dig-
ital terrain (elevation) model.

1.2.2 Extending Data Model and Query Language

We now consider how the basic abstractions can be embedded into a DBMS data model.
For the single object abstractions point, line, and region, it is natural to introduce corre-
sponding abstract data types, or spatial data types (SDTs). An SDT encapsulates the
structure, e.g. of a region, with operations. These may be (i) predicates, e.g. testing
whether two regions are adjacent or one is enclosed by the other, (ii) operations con-
structing new SDT values, e.g. forming the difference of two regions or the intersection
of a line with a region, (iii) numeric operations such as computing the area of a region or
the distance between a point and a line, or (iv) operations on sets of SDT values, e.g.
aggregating a collection of regions into a single region, or finding in a collection of
points the one closest to a query point.

A collection of spatial data types with related operations forms a spatial algebra. Impor-
tant issues in the design of such algebras are closure under operations and completeness.
The data types should be chosen carefully so that closure can be achieved. For example,
the intersection of two line values yields in general a set of points1, and the difference of
two regions, even if each argument is a simple region without holes, may yield a region
consisting of several disjoint components containing holes. An algebra with nice closure
properties, the ROSE algebra, offers data types called points, line, and region2 whose
structure is illustrated in Figure 1.5. Here type points offers a set of points, type line a set

Figure 1.4: A network

1. There may also be line values in the intersection, if there are overlapping parts of the argument
lines. These will normally be returned by another operation.

1.2 SPATIAL DATABASES 7

of polylines, and type region a set of polygons with holes. So one can offer operations
such as

intersection: line × line → points
minus: region × region → region
contour: region → line
sum: set(line) → line
length: line → real

Once spatial data types are defined, they can be embedded into a DBMS data model in
the role of attribute types. Hence in addition to the standard types such as int, real, string,
we may have spatial types points, line, and region. These types can be used in any kind
of DBMS data model; it does not matter whether it is relational, object-oriented, or
something else. In a relational setting we may have relations to represent cities, rivers,
and countries, for example:

cities (name: string, population: int, location: points)
rivers (name: string, route: line)
highways (name: string, route: line)
states (name: string, area: region)

Queries can then be formulated by using SDT operations on spatial attributes within a
standard query language such as SQL. Let us assume that predicates are available:

inside: points × region → bool
adjacent: region × region → bool

We can then formulate queries:

“What is the total population of cities in France?”

SELECT SUM(c.pop)
FROM cities AS c, states AS s
WHERE c.location inside s.area AND s.name = ’France’

2. Actually the names used for the second and third data type in the ROSE algebra are lines and
regions. We rename them here to be consistent with later parts of the course.

Figure 1.5: The spatial data types points, line, and region

a points value a line value a region value

8 CHAPTER 1 INTRODUCTION

“Return the part of the river Rhine that is within Germany.”

SELECT intersection(r.route, s.area)
FROM rivers AS r, states AS s
WHERE r.name = ’Rhine’ AND s.name = ’Germany’

“Make a list, showing for each country the number of its neighbour countries.”

SELECT s.name, COUNT(*)
FROM states AS s, states AS t
WHERE s.area adjacent t.area
GROUP BY s.name

Exercise 1.1: Formulate the following queries, using SQL and data type operations. In
each case, first define new SDT operations if necessary, and then write the query.

(a) How many people live within ten kilometers from the river Rhine? (Cities are
modeled as points, hence if the point is within that distance we count the whole
population.)

(b) With which of its neighbour countries does Germany have the longest common
border?

(c) Find the locations of all bridges of highways crossing rivers. Return them as a rela-
tion with the name of the highway, the name of the river, and the location.

You may use the following notations in formulating queries.

Assignments. The construct LET <name> = <query> assigns the result of a query to a
new object called name which can then be used in further steps of a query.

Multistep Queries. A query can be written as a list of assignments, separated by semico-
lons, followed by one or more query expressions. The latter are the result of the query.

Defining Derived Values. We assume that arbitrary ADT operations over new and old
data types may occur anywhere in a WHERE clause, and can be used in a SELECT
clause to produce new attributes, with the notation <expression> AS <new attrname>.

1.2.3 Implementation Strategy

To implement such a model, obviously one needs data structures for the types and algo-
rithms implementing the operations. Moreover, one needs to support selection and join
by spatial criteria. For selection, specialized index structures are needed. One popular
candidate is the R-tree which organizes hierarchically a set of rectangles. The actual SDT
values (e.g. region) are represented in such an index by their minimum bounding rectan-

1.3 TEMPORAL DATABASES 9

gle (MBR, also called bounding box). To support spatial join, there are also specialized
algorithms available some of which make use of spatial indexes.

To integrate these components into a DBMS, an extensible DBMS architecture is
needed. The DBMS should offer interfaces to register components such as the following:

• data structures for the types
• algorithms for the data type operations
• spatial index structures with appropriate access methods
• spatial join methods
• cost functions for all methods, for use by the query optimizer
• statistics about the distribution of objects in space, needed for selectivity estima-

tion
• extensions of the optimizer, e.g. in the form of translation rules
• registration of types and operations in the query language
• user interface extensions to handle presentation of spatial data, possibly input of

spatial values for querying

Such extensible architectures have been investigated in research since about the mid-
eighties. In the last years some of these capabilities have become available in commer-
cial systems. In particular, extensibility by attribute data types and operations is well
understood; one can add such an algebra as a data blade, cartridge, or extender in the
various systems. Extensibility by index structures and extensions of the query optimizer
are a much more thorny issue, but limited capabilities of this kind have also been real-
ized.

1.3 Temporal Databases

1.3.1 Managing Time in Standard Databases

The databases managed by standard DBMS normally describe the current state of the
world as far as it is known in the database. A change in the current state of the world will
be reflected a bit later in some update to the database after which the previous state is
lost.

Of course, for many (perhaps most) applications it is not sufficient to maintain just the
current state; they need to keep track of some kind of history. In a standard DBMS this is
possible if the application manages time itself, by adding explicit time attributes and per-
forming the right kind of computations in queries. For example, suppose a company has
an employee table of the form

10 CHAPTER 1 INTRODUCTION

employee (name: string, department: string, salary: int)

If the company wishes to keep track of previous departments and salaries for its employ-
ees, the table may be extended:

employee (name: string, department: string, salary: int, start:
date, end: date)

Standard DBMS offer a very limited support for this in the form of data types such as
date or time (see below).

However, dealing with time in this form by the application is difficult, error-prone, leads
to complex query formulations and often inefficient query execution. For example, in a
join of two tables extended by time attributes as above, it is necessary to make sure that
only tuples with overlapping time intervals are joined, by adding explicit conditions in
the query. These conditions are several inequalities on the time attributes. Standard
DBMS are often not very good at handling inequalities in query optimization (they focus
more on equi-joins), hence an inefficient execution may result. In contrast, if true tempo-
ral support is built into the DBMS, this can be done automatically; no conditions are
needed in the query, and execution will be tuned to perform this kind of join very effi-
ciently.

Hence the goal of temporal database research has been to integrate temporal concepts
deeply into the DBMS data model and query language and to extend the system accord-
ingly to achieve efficient execution. We address the basic ideas for this in the sequel.

1.3.2 The Time Domain

First of all, let us consider how time itself can be modeled. Time is generally perceived
as a one-dimensional space extending from the past to the future. There are some
options:

The time space can be viewed as bounded or infinite. A bounded model assumes some
origin and also an end of time.

Time can be viewed as discrete, dense, or continuous. Discrete models are isomorphic to
the natural numbers or integers. Dense models are isomorphic to either the rationals or
the reals: between any two instants of time another instant exists. Continuous models are
isomorphic to the real numbers. Whereas most people will perceive time as being contin-
uous, for practical reasons temporal database models often use discrete representations
of time. In contrast, later in this course continuous models will be used, since this is more
appropriate for dealing with moving objects.

1.3 TEMPORAL DATABASES 11

In the continuous model, each real number corresponds to a “point in time”; in the dis-
crete model, each natural number corresponds to an “atomic” time interval called a chro-
non. Consecutive chronons can be grouped into larger units called granules (e.g. hours,
weeks, years).

One can also distinguish between absolute and relative time (also called anchored and
unanchored time, respectively). For example, “January 22, 2002, 12pm” is an absolute
time, and “three weeks” is a relative time.

These concepts of time can be captured in a number of data types:

• instant, a particular chronon on the time line in the discrete model, or a point on the
time line in a continuous model.

• period, an anchored interval on the time line.
• periods, a set of disjoint anchored intervals on the time line, usually called a tem-

poral element in the literature. We call the type periods to be consistent with later
parts of the course.

• interval, a directed, unanchored duration of time. That is, a time interval of known
length with unspecified start and end instants.

Some additional more “practical” data types, present in the SQL-92 standard, are

• date, a particular day from a year in the range 1 through 9999 AD
• time, a particular second within a range of 24 hours
• timestamp, a particular fraction of a second (usually a microsecond) of a particular

day

1.3.3 Time Dimensions

We now turn to the semantics of the time domain. Whereas many different semantics can
be thought of, the two most important “kinds” of time are the so-called valid time and
transaction time. The valid time refers to the time in the real world when an event occurs,
or a fact is valid. The transaction time refers to the time when a change is recorded in the
database, or the time interval during which a particular state of the database exists.

In this context, standard databases are called snapshot databases, those dealing with
valid time only are called valid-time or historical databases, those handling only transac-
tion time transaction-time or rollback databases, and those treating both kinds of time
bitemporal databases. The term temporal database refers to a model or system offering
any kind of time support.

12 CHAPTER 1 INTRODUCTION

The various kinds of databases are illustrated in Figures 1.6 through 1.9. Figure 1.6
shows a simple standard relation with three tuples and three attributes, now called a
snapshot relation.

Figure 1.7 introduces the valid-time dimension. One can see that for each of the three
tuples there are different versions for certain valid-time intervals in the past. Indeed,
there is a fourth tuple that is not valid at the current time.

Figure 1.8 shows the transaction-time dimension. Here a first transaction has inserted
three tuples into the relation. A second transaction has added a fourth tuple. Then, the
third transaction has deleted the second and inserted yet another tuple.

Finally, Figure 1.9 shows a bitemporal relation. Here, an initial transaction creates two
tuples valid from now on. The second transaction modifies the value of the second tuple
and inserts a third one, also valid from now on. The third transaction deletes the second
and the third tuple from the database (indicated by the gray shading, so these tuples are
no longer valid). In addition it changes the start time of the second tuple (presumably the
previous start time was wrong). The first tuple is still valid.

Note that what is represented in the figures is the content of the respective database at the
current time. For example, in the transaction-time figures we can access all the previous
states of the database.

Figure 1.6: A snapshot relation

Figure 1.7: A valid-time relation

Figure 1.8: A transaction-time relation

valid
time

transaction time

1.3 TEMPORAL DATABASES 13

1.3.4 Extending the Data Model

The question is now how time can be incorporated into the DBMS data model. The gen-
eral approach in temporal databases has been to consider elements of the DBMS data
model (e.g. tuples) as facts and to associate elements of the time domain with them to
describe when facts are valid (timestamps). There are some choices:

• The data model extended: the most important choices are relational and object-ori-
ented models.

• The granularity of facts: the most relevant are tuples/objects and attributes.
• The kind of timestamp used: a single chronon (instant), single time interval

(period), set of time intervals = temporal element (periods).
• The time dimension: support of valid time or transaction time or bitemporal.

A vast number of data models has been proposed in the literature (around 40 according
to (Zaniolo et al. 1997, Part II: Temporal Databases)) that can be classified along these
criteria. We can show only a few of them in Table 1.1. Most of these models are rela-
tional. Some of them are mentioned only in one field of the table even though they do
address both time dimensions. The name mentioned in the table is either the name of the
model or of the author proposing it; details can be found in the bibliographic notes at the
end of the chapter.

We now discuss a few representative models using a very simple example. The first
model by Segev timestamps tuples with the instant when they became valid. The exam-
ple in Table 1.2 describes the history of two employees Lisa and John working in differ-
ent departments during a particular month, say, January 2002. On the 1st, Lisa started to
work in the toys department. On the 8th, she moved to the books department. She
returned to the toys department on January 14, and quit the company on January 16. John
started to work on the 11th in the books department and still works there. In this model, a

Figure 1.9: A bitemporal relation

valid
time

transaction time

14 CHAPTER 1 INTRODUCTION

separate tuple with null values in all non-key attributes is required to record termination
of a valid time interval.

The next model by Sarda uses period time stamps. In this model the same information
looks as shown in Table 1.3. Here null values are not needed any more. The symbol “∞”
denotes “forever” in valid time, i.e., an end of the valid time period is not yet known.

Instead of tuples, it is also possible to timestamp attribute values. In the historical rela-
tional data model HRDM, attribute values are functions from time into some domain
(Table 1.4). Here the whole employment history can be represented in two tuples, one for
each value of the key attribute.

Exercise 1.2: Mr. Jones takes a trip from London to Edinburgh on the 5th of December
where he stays at the Grand Hotel for three nights. On the 8th he decides that the Grand
Hotel is too expensive and moves to a cheaper place called Traveler’s Inn where he

instant period temporal
element

valid time timestamped
attribute
values

Lorentzos Tansel HRDM

timestamped
tuples

Segev Sarda BCDM

transaction
time

timestamped
attribute
values

Caruso Bhargava

timestamped
tuples

Ariav Postgres BCDM

Table 1.1: Classification of temporal data models

Name Department Time

Lisa Toys 1

Lisa Books 8

Lisa Toys 14

Lisa Null 17

John Books 11

Table 1.2: Model by Segev

1.3 TEMPORAL DATABASES 15

spends a further week. On the 15th, after the business part of his trip is finished, he starts
a short skiing vacation in the ski resort of Aviemore where he spends a weekend, staying
at the Golf Hotel. On Sunday, the 17th of December, he goes back home.

In the meantime, his wife Anne finds it boring to stay at home alone, so on the 7th she
visits her friend Linda in Brighton and stays with her for 5 days. On the 12th she goes
back home. On the 16th she visits her parents and stays with them for a while. Today, on
the 20th of December, she is still there.

Represent this information in the data models by Segev, Sarda, and the HRDM, starting
on the 5th of December.

These three models have dealt with valid time only. We extend our previous example to a
bitemporal one by considering how information about Lisa and John was recorded in the
database. This happened in the following transactions:

Name Department Time

Lisa Toys [1-7]

Lisa Books [8-13]

Lisa Toys [14-16]

John Books [11-∞]

Table 1.3: Model by Sarda

Name Department

1 → Lisa
...

16 → Lisa

1 → Toys
 ...

7 → Toys
8 → Books
 ...

13 → Books
14 → Toys

 ...
16 → Toys

11 → John
12 → John

...

11 → Books
12 → Books

...

Table 1.4: HRDM

16 CHAPTER 1 INTRODUCTION

1. On the 6th of January, the administration was informed that Lisa had started to
work in the toys department on the 1st and was going to work there until the 15th.

2. On the 10th it became known and entered into the database that Lisa had moved to
the books department on the 8th. She was still expected to work until the 15th.

3. On the 12th it was decided that Lisa would move back to toys on the 14th and
would stay there a while longer, until the 20th. Also it became known that a new
employee John had started the day before in the books department.

4. On the 20th, it was entered that Lisa had actually quit the company on the 16th.

This is illustrated in a drawing of the bitemporal space in Figure 1.10. Here transaction
time is on the horizontal and valid time on the vertical axis. The left part of the figure

shows the state of the database after the second transaction, the right side the final state.
An arrow to the right indicates that this information is valid w.r.t. transaction time “until
changed”. An upward arrow indicates an unknown end of interval w.r.t. the valid time.
Note that by drawing a vertical line in such a diagram we can see what was known in the
database at that particular time. For example, at the current time (say the 20th) we have
the same information about employment history as in the valid time tables before.

The model by Bhargava is a bitemporal model using attribute value timestamping. A
timestamp is a rectangle in the bitemporal space. Here our example (Figure 1.10 right)
looks as shown in Table 1.5. The value uc (“until changed”) denotes an open-ended
interval in transaction time.

Figure 1.10: Bitemporal space

4 8 12 16

4

8

12

16

VT

TT

(Lisa,
Toys)

(Lisa, Toys)

(Lisa, Books)

(Lisa,
Toys)

(Lisa, Toys)

(Lisa, Books)

4

8

12

16

VT

4 8 12 16 TT

(Lisa, Books) (Lisa,

(John, Books)

Toys) (Lisa,
Toys)

0
0 0

0

1.3 TEMPORAL DATABASES 17

Exercise 1.3: We extend the example from Exercise 1.2 by considering what Anne’s
mother Jennifer knew about the locations of her daughter and her son-in-law (of course
she calls him by his first name, Keith). We start on December 1. On this day Jennifer
assumed both of them to be at home as they had been before. Her knowledge was then
changed by the following events:

1. On the 6th, Anne called her on the phone and told her that Keith had yesterday
gone on a business trip to Edinburgh. He would stay there for two weeks. She her-
self was planning to visit Linda for a week, starting tomorrow.

2. On the 13th, Anne called again and told her that she was already back home since
yesterday.

3. On the 16th, Anne arrived. What a pleasant surprise!
4. On the 19th she received a postcard by Keith from Aviemore, describing his skiing

vacation. He wrote that he had arrived on Friday (yesterday), and would go home
tomorrow.

Draw figures of the bitemporal space corresponding to Jennifer’s knowledge, as of the
13th and as of the 19th of December. Draw separate figures for Keith and Anne, since
otherwise figures get too crowded.

The last model we mention here is the bitemporal conceptual data model BCDM. This
model uses tuple timestamping. Timestamps are bitemporal elements which are finite
sets of bitemporal chronons. No two value-equivalent tuples are allowed in a relation
instance, hence the complete history of any given fact is represented in a single tuple. In
this model, our example bitemporal database looks as shown in Table 1.6.

So the BCDM simply enumerates all the bitemporal chronons forming the bitemporal
element of a tuple. This seems like an unnecessarily large representation. However, the
purpose of the BCDM is not to determine an efficient representation but rather to have

Name Department

[6, 9] × [1, 15] Lisa
[10, uc] × [1, 13] Lisa
[10, 11] × [14, 15] Lisa
[12, 19] × [14, 20] Lisa
[20, uc] × [14, 16] Lisa

[6, 9] × [1, 15] Toys
[10, uc] × [1, 7] Toys
[10, uc] × [8, 13] Books
[10, 11] × [14, 15] Books
[12, 19] × [14, 20] Toys
[20, uc] × [14, 16] Toys

[12, uc] × [11, ∞] John [12, uc] × [11, ∞] Books

Table 1.5: Bhargava’s model

18 CHAPTER 1 INTRODUCTION

simple semantics. The idea is that this model is then mapped in an implementation to
some more space-efficient representation. For example, one can compute a minimal
decomposition of the temporal element into rectangles, similar to Bhargava’s model.

If you look at the translation from Figure 1.10 to Table 1.6 in detail, some questions
come up. How is the translation of open-ended time intervals involving the symbols “∞”
(in valid time) and “uc” (in transaction time) done? We have stated above that temporal
elements are finite sets of chronons, so how can this be achieved?

The answer is as follows. The BCDM uses a bounded model of time. For valid time this
is a set of chronons {t1, ..., tk} where t1 is the origin of time and tk the end of time,
assumed to lie in the past and the future, respectively. For transaction time it is the set of
chronons {t’1 , ..., t’l } ∪ {uc}. A valid-time interval [tj, ∞] is therefore interpreted as a set
of chronons {tj, ..., tk}. For transaction time, things are slightly more subtle. The value uc
is assumed to move with the current time. At time t’m = now a transaction time interval
[t’j , uc] is interpreted as the interval [t’j , ..., t’m-1 , uc]. At every tick of the clock, the
bitemporal elements in a relation instance are updated by adding new chronons for the
current time. Therefore it is important to state in Table 1.6 that we consider the relation
instance at time 20. For the tuple (John, Books), at this time the transaction time chro-
nons are {12, 13, ..., 19, uc}. At time 21 they will be {12, 13, ..., 19, 20, uc}.

1.3.5 Extending the Query Language: TSQL2

As an example of a temporal query language we consider TSQL2 which is based on the
BCDM data model. It was designed jointly by a committee of 18 researchers who had
proposed temporal models and query languages earlier. TSQL2 is a superset of SQL-92
and has also been incorporated into the SQL3 standard.

Name Dept. Time

Lisa Toys {(6, 1), ..., (6, 15), ..., (9, 1), ..., (9, 15),
(10, 1), ..., (10, 7), ..., (19, 1), ..., (19, 7), (uc, 1), ..., (uc, 7),
(12, 14), ..., (12, 20), ..., (19, 14), ..., (19, 20),
(uc, 14), ..., (uc, 16)}

Lisa Books {(10, 8), ..., (10, 13), ..., (19, 8), ..., (19, 13), (uc, 8), ..., (uc, 13),
(10, 14), (10, 15), (11, 14), (11, 15)}

John Books {(12, 11), (12, 12), ..., (12, ∞), (13, 11), ..., (13, ∞), ..., (19, 11),
..., (19, ∞), (uc, 11), ..., (uc, ∞)}

Table 1.6: BCDM (at time 20)

1.3 TEMPORAL DATABASES 19

In TSQL2 a bitemporal relation can be defined as follows. As a richer example, let us
assume we wish to represent prescriptions in a doctor’s database, recording for each
patient which drugs were prescribed for which period of time. This can be done by a data
definition command:

CREATE TABLE prescription (
name char(30),
drug char(30),
dosage char(30),
frequency interval minute)

AS VALID STATE DAY AND TRANSACTION

Here name is the name of the patient, frequency the number of minutes between drug
administrations. The clause as valid state day and transaction says this is a
bitemporal state relation where the granularity w.r.t. the valid time is one day. For the
transaction time, the granularity is system dependent, something like milliseconds.

There are six different kinds of relations in TSQL2:

• snapshot relations
• valid-time state relations (specified: as valid state)
• valid-time event relations (as valid event)
• transaction-time relations (as transaction)
• bitemporal state relations (as valid state and transaction)
• bitemporal event relations (as valid event and transaction)

The difference between state and event relations is that a state relation records facts that
are true over certain periods of time whereas an event relation records events that
occurred at certain instants of time. Each tuple records a kind of event and is time-
stamped with the instants when this event occurred. An event relation might record the
days when a patient visited the doctor:

CREATE TABLE visit (
name char(30))

AS VALID EVENT DAY AND TRANSACTION

Let us now formulate a few queries. First of all, it is possible to get an ordinary relation
from a (bi)temporal relation by using the keyword snapshot.

“Who has ever been prescribed any drugs?”

SELECT SNAPSHOT name
FROM prescription

This returns an ordinary (snapshot) relation containing the names of all patients that ever
were prescribed drugs.

20 CHAPTER 1 INTRODUCTION

In contrast, the normal behaviour of queries is to return the complete history with respect
to valid time, assuming a version of the database (transaction time) as of now. In other
words, the evaluation is based on our current knowledge of the past.

“Which drugs were prescribed to Lisa?”

SELECT drug
FROM prescription
WHERE name = ’Lisa’

will return a valid-time relation containing one tuple for each drug that Lisa was pre-
scribed, associated with one or more maximal periods when Lisa was taking that drug.
Note that in the prescription relation, after selecting for the name Lisa and the current
time, there may be several tuple instances for a given drug, with different dosage and fre-
quency values. These are all merged into a single tuple, joining their respective periods
of valid time. This is an important operation in temporal databases called coalescing.

“Which drugs have been prescribed together with Aspirin?”

SELECT p1.name, p2.drug
FROM prescription AS p1, prescription AS p2
WHERE p1.drug = ’Aspirin’ AND p2.drug <> ’Aspirin’

AND p1.name = p2.name

Here the correlation variables p1 and p2 can be bound to pairs of tuples from prescrip-
tion; it is automatically ensured that the valid time intervals of these tuples overlap. The
result is a set of tuples containing the name of a patient and a drug, together with the
maximal periods of time when both that drug and Aspirin were prescribed to the patient.

So far, the timestamp of result tuples was determined by the intersection of the time-
stamps of the argument time-stamp. This default can be overridden by a valid-clause:

“Which drugs was Lisa prescribed during 1999?”

SELECT p.drug
VALID INTERSECT(VALID(p), PERIOD ’[1999]’ DAY)
FROM prescription AS p
WHERE p.name = ’Lisa’

The intersect operation is applied to two intervals, namely the valid-time interval of
the tuple and the year 1996, specified as an interval of days. Result tuples will have valid
time intervals restricted to the time interval of that intersection.

We can also go back to some earlier state of the database:

“What did the physician believe on September 10, 1998, was Lisa’s prescription his-
tory?”

1.4 MOVING OBJECTS 21

SELECT drug
FROM prescription AS p
WHERE name = ’Lisa’

AND TRANSACTION(p) OVERLAPS DATE ’1998-09-10’

In fact, there is a default predicate on transaction time that was implicitly appended to all
the earlier queries:

TRANSACTION(p) OVERLAPS CURRENT_TIMESTAMP

This may suffice to illustrate a few of the capabilities of a temporal query language like
TSQL2. The language is powerful and quite complex queries are possible.

1.4 Moving Objects

The goal of research on moving objects databases is to extend database technology so
that any kind of moving entity can be represented in a database and powerful query lan-
guages are available to formulate any kind of questions about such movements. In this
section we look at the motivation for this research in more detail, and consider examples
of moving objects and questions one might ask about them.

There are actually two different approaches leading to the idea of moving objects data-
bases which can be described as the location management perspective and the spatio-
temporal data perspective.

1.4.1 The Location Management Perspective

This approach considers the problem of managing the positions of a set of entities in a
database, for example, the positions of all taxi-cabs in a city. At a given instant of time,
this is no problem. We might have a relation with a taxi-ID as a key and attributes for x-
and y-coordinates to record the position. However, taxis are moving around. To keep the
location information up to date, for each taxi-cab the position has to be updated fre-
quently. Here we encounter an unpleasant trade-off. If updates are sent and applied to the
database very often, the error in location information in the database is kept small, yet
the update load becomes very high. Indeed, for a large set of entities to keep track of, this
is not feasible any more. Conversely, if updates are sent less frequently, the errors in the
recorded positions relative to the actual positions become large.

This led to the idea of storing in the database for each moving object not the current posi-
tion, but rather a motion vector which amounts to describing the position as a function of
time. That is, if we record for an object its position at time t0 together with its speed and
direction at that time, we can derive expected positions for all times after t0. Of course,

22 CHAPTER 1 INTRODUCTION

also motion vectors need to be updated from time to time, but much less frequently than
positions.

Hence, from the location management perspective, one is interested in maintaining
dynamically the locations of a set of currently moving objects, and be able to ask queries
about the current positions, the positions in the near future, or any relationships that may
develop between the moving entities and static geometries in the next time.

Note that from the point of view of temporal databases, what is stored in such a location
management database is not a temporal database at all; it is a snapshot database main-
taining the current state of the world. No history of movement is kept. We will consider
moving objects databases based on the location management perspective in Chapter 3.

1.4.2 The Spatio-Temporal Data Perspective

Here the approach is to consider the various kinds of data that might be stored in a
(static) spatial database and to observe that clearly such data may change over time. We
wish to describe in the database not only the current state of the spatial data, but rather
the whole history of this development. We would like to be able to go back in time to any
particular instant and to retrieve the state at that time. Moreover, we would like to under-
stand how things changed, analyze when certain relationships were fulfilled, and so
forth.

Two basic questions come up:

1. What kinds of data are stored in spatial databases?
2. What kinds of change may occur?

For the first question, in Section 1.2.1 we have seen that spatial databases support
abstractions for single objects such as point, line, or region, as well as spatially related
collections of objects among which networks and partitions are the most relevant.

Regarding kinds of change, a major distinction concerns discrete changes and continu-
ous changes.

Classical research on spatio-temporal databases has focused on discrete changes for all
the spatial entities mentioned above. In contrast, continuous changes are the topic of this
course, and this is what is usually meant by the term “moving object”.

Whereas discrete changes occur on any kind of spatial entity, continuous changes seem
most relevant for point and region.3 Hence, a moving point is the basic abstraction of a
physical object moving around in the plane or a higher-dimensional space, for which
only the position, but not the extent, is relevant. The moving region abstraction describes

1.4 MOVING OBJECTS 23

an entity in the plane that changes its position as well as its extent and shape, i.e., a mov-
ing region may not only move, but also grow and shrink.

1.4.3 Moving Objects and Questions About Them

Let us look at some examples of moving entities and possible questions about them. We
consider moving points (Table 1.7) and moving regions (Table 1.8). With the exception

of countries, all of them change continuously. Whether they have been or can be
observed continuously is a different issue discussed later.

3. It seems much harder to think of examples of continuously moving lines, networks, or partitions,
although such examples can certainly be found.

Moving Point Entities Questions

People: politicians, terrorists,
criminals

• When did Bush meet Arafat?
• Show the trajectory of Lee Harvey Oswald on November 22,

1963.

Animals • Determine trajectories of birds, whales, ...
• Which distance do they traverse, at which speed? How often

do they stop?
• Where are the whales now?
• Did their habitats move in the last 20 years?

Satellites, spacecraft, planets • Which satellites will get close to the route of this spacecraft
within the next 4 hours?

Cars: taxi-cabs, trucks • Which taxi is closest to a passenger request position?
• Which routes are used regularly by trucks?
• Did the trucks with dangerous goods come close to a high

risk facility?

Air planes • Were any two planes close to a collision?
• Are two planes heading towards each other (going to crash)?
• Did planes cross the air territory of state X?
• At what speed does this plane move? What is its top speed?
• Did Iraqi planes pass the 39th degree?

Ships • Are any ships heading towards shallow areas?
• Find “strange” movements of ships indicating illegal dump-

ing of waste

Military vehicles: rockets, mis-
siles, tanks, submarines

• All kinds of military analyses

Table 1.7: Moving Points and Questions

24 CHAPTER 1 INTRODUCTION

Clearly there exist many kinds of interesting moving entities and one can ask questions
about them ranging from simple to very complex. The goal of moving object database
research is to design models and languages that allow one to formulate these questions in
a simple yet precise way.

1.4.4 A Classification of Spatio-Temporal Data

In Tables 1.7 and 1.8 we have emphasized entities capable of continuous movement.
Nevertheless, there exist also many applications involving spatial data that change only

Moving Region Entities Questions

Countries • What was the largest extent ever of the Roman empire?
• On which occasions did any two states merge? (e.g. reunifi-

cation)
• Which states split into two or more parts?
• How did the Serb-occupied areas in former Yugoslavia

develop over time? When was the maximal extent reached?

Forests, lakes • How fast is the Amazon rain forest shrinking?
• Is the dead sea shrinking?
• What is the minimal and maximal extent of river X during

the year?

Glaciers • Does the polar ice cap grow? Does it move?
• Where must glacier X have been at time Y (backward pro-

jection)?

Storms • Where is the tornado heading? When will it reach Florida?

High / low pressure areas • Where do they go? Where will they be tomorrow?

Scalar functions over space, e.g.
temperature

• Where has the 0-degree boundary been last midnight?

People • Movements of the celts in the second century B.C.

Troops, armies • Hannibal traversing the Alps. Show his trajectory. When did
he pass village X?

Cancer • Can we find in a series of X-ray images a growing cancer?
How fast does it grow? How big was it on June 1, 1995?

Continents • History of continental shift

Diseases • Show the area affected by mad cow disease for every month
in 1998.

Oil spills • Which parts of the coast will be touched tomorrow?

Table 1.8: Moving Regions and Questions

1.4 MOVING OBJECTS 25

in discrete steps. To understand the scope of the more traditional spatio-temporal data-
base research let us introduce a classification of time-dependent point and region data.

Spatio-temporal data can be viewed in a natural way as being embedded in a space that is
the cross-product of the original spatial domain and of time. Here we consider 2D space
and restrict attention to a single time dimension, namely valid time. Hence data “live” in
a 3D space, as illustrated in Figure 1.11.

We now characterize application data with respect to their “shape” in this 3D space,
obtaining the following categories:

1. Events in space and time – (point, instant). Examples are archeological discover-
ies, plane crashes, volcano eruptions, earthquakes (at a large scale where the dura-
tion is not relevant).

2. Locations valid for a certain period of time – (point, period). Examples are: cities
built at some time, still existing or destroyed; construction sites (e.g. of buildings,
highways); branches, offices, plants, or stores of a company; coal mines, oil wells,
being used for some time; or “immovables”, anything that is built at some place
and later destroyed.

3. Set of location events – sequence of (point, instant). Entities of class (1) when
viewed collectively. For example, the volcano eruptions of the last year.

4. Stepwise constant locations – sequence of (point, period). Examples are: the capi-
tal of a country; the headquarter of a company; the accomodations of a traveler
during a trip; the trip of an email message (assuming transfer times between nodes
are zero).

5. Moving entities – moving point. Examples are people, planes, cars, etc., see Table
1.7.

6. Region events in space and time – (region, instant). E.g., a forest fire at large scale.

Figure 1.11: (a) Discretely changing point and region (b) Continuously
changing point and region

x

y

t

x

y

t

(a) (b)

26 CHAPTER 1 INTRODUCTION

7. Regions valid for some period of time – (region, period). For example, the area
closed for a certain time after a traffic accident.

8. Set of region events – sequence of (region, instant). For example, the Olympic
games viewed collectively, at a large scale.

9. Stepwise constant regions – sequence of (region, period). For example, countries,
real estate (changes of shape only through legal acts), agricultural land use, etc.

10. Moving entities with extent – moving region. For example, forests (growth); forest
fires at small scale (i.e. we describe the development); people in history; see Table
1.8.

These classes of data will be useful to characterize the scope of two approaches to spatio-
temporal modeling which are described next.

1.4.5 Temporal Databases With Spatial Data Types

A straightforward idea to deal with spatio-temporal applications is the following: Use
any temporal DBMS with its system-maintained tuple timestamps and enhance it by spa-
tial data types. For example, assuming the TSQL syntax from Section 1.3.5 and the spa-
tial data types from Section 1.2.2, we might create a table for real estate:

CREATE TABLE real_estate (
owner char(30),
area region)

AS VALID STATE DAY

Such a table would manage discretely changing regions as shown in Figure 1.11 (a). We
can ask queries combining the features of the temporal query language with operations
on spatial data types:

“Show the properties adjacent to the property of Charles Smith as of March 17, 1977.”

SELECT r2.area
FROM real_estate AS r1, real_estate AS r2
WHERE r1.owner = ’Charles Smith’ AND

VALID(r1) OVERLAPS DATE ’[1977-03-17]’ AND
r1.area ADJACENT r2.area

This is something like the cross-product of spatial and temporal databases. Capabilities
of spatial and temporal systems are combined without any specific integration effort.
This approach is natural and it appears that its technology is already well-understood,
since techniques from both fields can be used. Considering the classification of Section
1.4.4, this approach can support classes (1) through (4) and (6) through (9) of spatio-tem-
poral data. However, it cannot deal with moving objects, i.e., classes (5) and (10).

1.4 MOVING OBJECTS 27

In Chapter 2 we consider this approach in more detail, studying two representative data
models.

1.4.6 Spatio-Temporal Data Types

An alternative idea is to extend the strategy used in spatial databases to offer abstract
data types with suitable operations: In this case we offer spatio-temporal data types such
as moving point (type mpoint for short) or moving region (mregion). A value of such a
data type captures the temporal development of a point or a region over time. Hence, a
value of type mpoint is a continuous function f: instant → point, and a value of type mre-
gion is a continuous function g: instant → region. Geometrically, such values correspond
to the 3D shapes shown in Figure 1.11 (b). As in spatial databases, such types can be
embedded into relational or other DBMS data models. Here we can describe the real
estate data of the previous subsection as

real_estate (owner: char(30), area: mregion)

This is possible since, of course, a data type capable of describing continuous movement
can also describe discrete changes. However with this approach it is also possible to
describe truly continuous changes and have relations describing the movements of air
planes or storms:

flight (id: string, from: string, to: string, route: mpoint)
weather (id: string, kind: string, area: mregion)

The data types include suitable operations such as:

intersection: mpoint × mregion → mpoint
distance: mpoint × mpoint → mreal
trajectory: mpoint → line
deftime: mpoint → periods
length: line → real
min: mreal → real

One discovers quickly that in addition to the main types of interest, mpoint and mregion,
related spatial and temporal as well as other time-dependent types are needed. For exam-
ple, the distance between two moving points is a real valued function of time, captured
here in a data type mreal (“moving real”). The operations above have the following
meaning: Intersection returns the part of a moving point whenever it lies inside a mov-
ing region which is a moving point (mpoint) again. Distance was mentioned already
above. Trajectory projects a moving point into the plane, yielding a line value. Deftime
returns the set of time intervals when a moving point is defined, a periods value, as intro-

28 CHAPTER 1 INTRODUCTION

duced in Section 1.3.2. Length returns the length of a line value, and min yields the min-
imal value assumed over time by a moving real.

Given such operations, we may formulate queries:

“Find all flights from Düsseldorf that are longer than 5000 kms.”

SELECT id
FROM flights
WHERE from = ’DUS’ AND length(trajectory(route)) > 5000

“Retrieve any pairs of air planes that during their flight came closer to each other than
500 meters!”

SELECT f.id, g.id
FROM flights AS f, flights AS g
WHERE f.id <> g.id AND min(distance(f.route, g.route)) < 0.5

“At what times was flight BA488 within the snow storm with id S16?”

SELECT deftime(intersection(f.route, w.area))
FROM flights AS f, weather AS w
WHERE f.id = ’BA488’ AND w.id = ’S16’

Clearly, the approach using spatio-temporal data types can manage continuous as well as
discrete changes and support all 10 classes of spatio-temporal data discussed in Section
1.4.4. On the other hand, time is not managed “automatically” by the system as in the
temporal databases of Section 1.3. We will consider this approach in more detail in
Chapter 4.

1.5 Bibliographic Notes

In Section 1.1 we have briefly discussed database systems in general. Of course, there
exist many good books of which we can mention only a few. Some good English books
are (Garcia-Molina et al. 2002, Elmasri and Navathe 2003, Kifer et al. 2005). If you wish
to read in German, we recommend (Vossen 2000, Kemper and Eickler 1999) and espe-
cially regarding the implementation of database systems (Härder and Rahm 1999).

A very good book on spatial databases has appeared recently (Rigaux et al. 2002); other
good books include (Shekhar and Chawla 2003, Worboys and Duckham 2004, Laurini
and Thompson 1992). Section 1.2 is based on the survey article (Güting 1994). The
ROSE algebra and its implementation is described in (Güting and Schneider 1995,
Güting et al. 1995). Spatial database technology as available in the Oracle System is
described in (Kothuri et al. 2004).

1.5 BIBLIOGRAPHIC NOTES 29

A good book that summarizes many of the research results in temporal databases up to
1993 is (Tansel et al. 1993). A nice, shorter introduction to temporal databases, on which
Section 1.3 is based, can be found in (Zaniolo et al. 1997, Part II: Temporal Databases).
The language TSQL2 is described in detail in (Snodgrass 1995). There exists also a sur-
vey article on temporal databases (Özsoyoglu and Snodgrass 1995).

A classical paper that established the distinction between valid time and transaction time
is (Snodgrass and Ahn 1986). The data models by Segev and Sarda are described in
(Segev and Shoshani 1987) and (Sarda 1990), respectively. The HRDM model is pre-
sented in (Clifford and Croker 1987). Bhargava’s model can be found in (Bhargava and
Gadia 1993). The bitemporal conceptual data model BCDM is the model underlying
TSQL2; it is described in detail in (Snodgrass 1995, Chapter 10). Details on the other
models mentioned in Table 1.1 can be found also in (Snodgrass 1995, Chapter 10) or in
(Özsoyoglu and Snodgrass 1995).

Section 1.4, introducing the basic ideas of moving objects databases, is based on papers
by Wolfson and colleagues, e.g. (Wolfson et al. 1998) for the location management per-
spective and by Güting and colleagues, e.g. (Erwig et al. 1999) for the spatio-temporal
data type perspective. Later chapters will examine these approaches in more depth and
provide further references.

There exists an edited book covering many aspects of moving objects databases
(Koubarakis et al. 2003). It summarizes the results of the CHOROCHRONOS project, in
which also the authors participated.

Another book related to moving objects is (Schiller and Voisard 2004) which focuses on
location-based services, that is, services depending on the current location of a user.
Some chapters of the book do also address database issues; others provide case studies of
applications, or the technology of capturing position data, e.g. by GPS.

30 CHAPTER 1 INTRODUCTION

Chapter 2

Spatio-Temporal Databases in the Past

Classical research on spatio-temporal databases has focused on discrete changes of spa-
tial objects over time. Applications here in mind predominantly have a “man-made”
nature. For example, cadastral applications deal with the management of land parcels
whose boundaries can change from time to time due to specific legal actions like split-
ting, merging, or land consolidation. Political boundaries suddenly disappear as the
reunification of West and East Germany shows. Road networks are extended by new
streets.

In the following, we give two representative examples of early spatio-temporal models
dealing with this kind of application. In the sense of Section 1.3.5, the first model leads
to bitemporal state relations while the second model supports bitemporal event relations.

2.1 Spatio-Bitemporal Objects

The basic idea of the first model to be presented is to provide a unified approach for spa-
tial and temporal information. This is achieved by combining concepts of purely spatial
modeling based on so-called two-dimensional simplicial complexes with concepts of
purely temporal modeling incorporating the two orthogonal time dimensions of transac-
tion and valid time (Section 1.3.3).

2.1.1 An Application Scenario

As a motivating example, let us consider a highly simplified and fictitious scenario of
land ownership.1 Information related to land ownership usually comprises spatial, tem-
poral, legal, and other aspects. Spatial aspects refer to the geometry of land parcels. Tem-
poral aspects relate to the duration of ownership. Legal and other aspects of ownership
are affected by contracts, death and inheritance, legal proceedings, fire, etc. Figure 2.1

1. The scenario is taken from a very similar description in (Worboys 1994, Section 2.3). Used with
permission of the author.

32 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

shows the spatial and ownership variation of a land area through some decades of the
century. The chronology of these changes is as follows:

• 1908: The land area under consideration consists of a street, a land parcel owned
by Bill Smith (parcel 1), a land parcel owned by Jane Benson (parcel 2), and fur-
ther parcels.

• 1920: Jane Benson has bought parcel 3, which together with her old parcel 2 is
now named parcel 5.

• 1938: Jane Benson has sold a part of her parcel in favor of the construction of a
new school on parcel 4.

• 1958: Jane Benson’s house has been destroyed by fire, and she has died. Jack
Meyer now owns the land and the buildings of parcel 1.

• 1960: The council announces to build a path through parcel 5 in 1962 in order to
give better access to the school.

• 1962: The construction of the path on the new parcel 7 is postponed until 1964.
• 1964: Jack Meyer has built an extension which partly trespasses on parcel 5. The

council has built the path through parcel 5.
• 1974: Jack Meyer has included a part of parcel 5 by illegal possession into his

ownership. Jill Mason has bought the remaining part of parcel 5, which is now
named parcel 6, and built a house on it.

Figure 2.1: Spatio-temporal change of land ownership
[Worboys 1994 Fig. 3, used with permission.]

4

street
1 2 3

1908

Smith Benson

4

street
1 5

1920

Smith Benson

4

street
1 5

1938

Smith Benson

school

4

street
1 5

1958

Meyer

school
4

street
1 5

1964

Meyer

school

pa
th

5

4

street
1

1974

Meyer

school

pa
th

6 Mason7 7

2.1 SPATIO-BITEMPORAL OBJECTS 33

This scenario incorporates both transaction time and valid time. For example, in 1962
(transaction time) the information is available that the path, originally forecast in 1960
(transaction time) to be built in 1962 (valid time), is postponed until 1964 (valid time).

2.1.2 Bitemporal Elements

Formally, the model is based on bitemporal elements (Section 1.3.4) and simplicial com-
plexes. With bitemporal elements, transaction times and valid times are measured along
two orthogonal time axes. We assume that the domain TV of valid time contains the spe-
cial elements -∞ and ∞ indicating the indefinite past (or initial state) and indefinite future
(or final state), respectively. TT shall denote transaction time.

Definition 2.1: (bitemporal element). A bitemporal element (BTE) is defined as the
union of a finite set of disjoint Cartesian products of periods of the form IT × IV, where IT
is a period of TT and IV is a period of TV.

The notion of period is here used in the sense of Section 1.3.2. Using a geometric inter-
pretation, this definition specifies a BTE as a point set in the plane rather than a finite set
of rectangles, where each rectangle corresponds to the point set formed by the cross
product of a transaction time period and a valid time period. The semantics expressed by
a BTE T is that (tT, tV) ∈ T if, and only if, at transaction time tT the database contains the
information that the object bitemporally referenced by T exists at valid time tV.

As an example, Figure 2.2 shows the graphical representation of a BTE T for a fictitious
boundary part b of a parcel. The horizontal axis denotes transaction time and the vertical
axis denotes valid time. In transaction time 1990, there is no valid time in which b exists.
In transaction time 1991, b exists from valid time 1991 into the indefinite future, since a
transaction has taken place providing information about the determination of b. The
validity up to the indefinite future (∞) is not specially marked in the graphical represen-
tation of a BTE. In transaction time 1992, it turns out that the knowledge at transaction
time 1991 about b was erroneous and that b exists from valid time 1992 into the definite
future. That is, the determination of the boundary part b was postponed to 1992. Alto-
gether, T = (1991 × 1991) ∪ (1991 × 1992) ∪ (1992 × 1992), where a year is regarded,
for example, as a period of days, weeks, or months.

2.1.3 Spatial Objects Modeled as Simplicial Complexes

The geometric part of the model is based on algebraic topology. Algebraic topology, also
called combinatorial topology, plays an important role in the mathematical field of alge-
bra. It investigates topological structures for classifying and formally describing point

34 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

sets by using algebraic means. Its techniques rest on problem translation and algebraic
manipulation of symbols that represent spatial configurations and their relationships. The
basic method consists of three steps: (1) conversion of the problem from a spatial envi-
ronment to an algebraic environment, (2) solving the algebraic form of the problem, and
(3) conversion of the algebraic solution back to the spatial environment. The intersection
of two lines, for example, becomes the search for common nodes. The coincidence of
two line objects, the neighborhood of two region objects, and the neighborhood of a line
and a region object result in a search for common edges or common nodes (depending on
the definition of neighborhood) of the lines and the boundaries of regions.

Spatial objects, which are assumed to be embedded in two-dimensional Euclidean space,
are represented as simplicial complexes, which themselves are composed of simplexes.

Definition 2.2: (simplex). Given k + 1 points v0, ..., vk ∈ IR n where the k vectors {v1 −
v0, v2 − v0, ..., vk − v0} are linearly independent. Then the set {v0, ..., vk} is called geo-
metrically independent, and the point set

σ = σk = {p ∈ IR n | p = λivi with λi = 1, λi ∈ IR , λ0, ..., λk ≥ 0} ⊂ IR n

is called the (closed) simplex of dimension k (or the k-simplex) with the vertices v0, ..., vk,
or the k-simplex spanned by {v0, ..., vk}.

The above formula collects all points that together form σ. The condition that the sum of
all λi’s has to be equal to 1 ensures that only those points are captured for σ which are
located on the boundary of σ or within the interior of σ.

For a given dimension k, a k-simplex is the minimal and elementary spatial object, i.e., a
building block from which all more complex spatial objects of this dimension can be
constructed. In three-dimensional space, a 0-simplex is a single point or a node, a

Figure 2.2: Example of a bitemporal element (BTE)
[Worboys 1994 Fig. 4, used with permission.]

1990 1991 1992

transaction time

1990

1991

1992

va
lid

 ti
m

e

i 0=

k

∑
i 0=

k

∑

2.1 SPATIO-BITEMPORAL OBJECTS 35

1-simplex is a straight line or an edge between two distinct points including the end
points, a 2-simplex is a filled triangle connecting three non-collinear points, and a 3-sim-
plex is a solid tetrahedron connecting four non-coplanar points (Figure 2.3).

Any k-simplex is composed of k + 1 geometrically independent simplexes of dimension
k − 1. For example, a triangle, a 2-simplex, is composed of three 1-simplexes which are
geometrically independent if no two edges are parallel and no edge has length 0. A face
of a simplex is any simplex that contributes to the composition of the simplex. For exam-
ple, a node of a bounding edge of a triangle and a bounding edge itself are faces.

Definition 2.3: (simplicial complex). A (simplicial) k-complex C is a finite set of sim-
plexes so that each face of a simplex in C is also in C, and the intersection of two sim-
plexes in C is either empty or a face of both simplexes. The dimension k of C is the
largest dimension of the simplexes in C.

This definition is the first of two so-called completeness principles. The principle it
describes is called completeness of incidence. It implies that no two distinct simplexes in
C exist which (partially) occupy the same space and that the intersection of lines at
points which are neither start nor end points of lines is excluded. Figure 2.4 shows some
examples of allowed and forbidden spatial configurations of simplicial complexes.

The second principle, which we will not assume here, is called completeness of inclu-
sion. It requires that every l-simplex in C with l < k is a face (boundary simplex) of an
(l+1)-simplex in C. This avoids geometric anomalies. For example, for k = 2, every point
is then a start or end point of a line (no isolated points exist), and every line is part of the
boundary of a triangle (no dangling lines exist).

Definition 2.4: (oriented simplex, oriented complex). An oriented k-simplex is obtai-
ned from a k-simplex σ with vertices v0, ..., vk by choosing an order for the vertices. We
write an oriented k-simplex as an ordered sequence σ = 〈v0v1v2...vk〉. An oriented simpli-
cial complex is obtained from a simplicial complex by assigning an orientation to each of
its simplexes.

Figure 2.3: Simplex structures of different dimensions

3-simplex2-simplex1-simplex0-simplex

36 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

We now distinguish different parts of a simplex and complex, respectively, and specify
what their boundary and interior is.

Definition 2.5: (boundary, interior). The boundary of a k-simplex σk, denoted by ∂σk,
is the union of all its k+1 (k−1)-simplexes. The boundary of a k-complex C, denoted by
∂C, is the smallest complex that contains the symmetric difference of the boundaries of
its constituent k-simplexes. The interior of a k-complex C, denoted by C°, is the union of
all (k−1)-simplexes which are not part of the boundary of C.

For instance, the boundary of a 2-simplex (triangle) σ = 〈v0v1v2〉 is ∂σ ={〈v0v1〉, 〈v1v2〉,
〈v2v0〉} which is a set of three 1-simplexes (edges). The boundary of a 2-complex C =
{〈x1y1z1〉, ..., 〈xnynzn〉} is ∂C = ∆(∂〈x1y1z1〉, ..., ∂〈xnynzn〉) where ∆ denotes the symmetric
difference operation with ∆(A, B) = (A \ B) ∪ (B \ A) for two sets A and B. The common
edges of the 2-dimensional simplexes of C form the interior of C.

As an example, which also demonstrates how algebraic computation works in algebraic
topology, the computation of the boundary of a 2-complex C2 consisting of two adjacent
oriented 2-simplexes σ2 = 〈v1v2v4〉 and τ2 = 〈v2v3v4〉 is illustrated in Figure 2.5. We
obtain ∂σ2 = 〈v2v4〉 − 〈v1v4〉 + 〈v1v2〉 and ∂τ2 = 〈v3v4〉 − 〈v2v4〉 + 〈v2v3〉. Then ∂C2 = ∂σ2 +
∂τ2 = 〈v2v4〉 − 〈v1v4〉 + 〈v1v2〉 + 〈v3v4〉 − 〈v2v4〉 + 〈v2v3〉 = 〈v1v2〉 + 〈v2v3〉 + 〈v3v4〉 − 〈v1v4〉
= 〈v1v2〉 + 〈v2v3〉 + 〈v3v4〉 + 〈v4v1〉.

For later operation definitions, we will need the concept of common refinement of two
simplicial complexes, which corresponds to a special kind of geometric union and identi-
fies common parts, i.e., two simplicial complexes become acquainted with each other. Its
definition makes use of the notion of planar embedding, which we define first.

Definition 2.6: (planar embedding). For a given simplicial complex C = {s1, ..., sn}, its
planar embedding is given as emb(C) = si.

Figure 2.4: Examples of a 1-complex (a), a 2-complex (b), and three configurations
which are not simplicial complexes, because the intersection of some of their simplexes

is either not a face ((c), (d)), or not a simplex (e).

(e)(d)(c)(b)(a)

i 1=

n
∪

2.1 SPATIO-BITEMPORAL OBJECTS 37

Definition 2.7: (common refinement). A common refinement of two simplicial com-
plexes C1 and C2, denoted by refine(C1, C2), is a simplicial complex which has the same
planar embedding as the union of the embeddings of C1 and C2, i.e., emb(refine(C1, C2))
= emb(C1) ∪ emb(C2).

This construction is in general not unique due to possible different decompositions into
simplex structures (see Figure 2.6).

2.1.4 Spatio-Bitemporal Objects

The combination of bitemporal elements and simplicial complexes leads us to spatio-
bitemporal objects. The main idea is to attach BTEs (Definition 2.1) as labels to compo-
nents of simplicial complexes (Definition 2.3).

Definition 2.8: (ST-simplex). An ST-simplex is an ordered pair (S, T) where S is a sim-
plex and T is a BTE. For an ST-simplex R = (S, T) let πs(R) = S and πt(R) = T.

An ST-simplex R indicates that a spatial configuration S exists over a given range T of
transaction and valid times. πs and πt are spatial and bitemporal projection functions.

The concept of ST-complex is introduced now for describing the structure of a general,
bitemporally referenced spatial configuration.

Figure 2.5: Example of a complex consisting of two simplexes

Figure 2.6: Complexes abc and de (a) and two possible common refinements ((b), (c)).
[Worboys 1994, Fig. 7, used with permission.]

v1

v2

v4

v3σ2
τ2

a b

c

d
e

a b

c

d
egf

a b

c

d
egf

(a) (b) (c)

38 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

Definition 2.9: (ST-complex). An ST-complex C is a finite set of ST-simplexes fulfilling
the following properties:

1. The spatial projections of ST-simplexes in C are pairwise disjoint.
2. Taken together, these spatial projections form a simplicial complex.
3. ∀ R, R’ ∈ C : πs(R) is a face of πs(R’) ⇒ πt(R) ⊇ πt(R’).

Condition 1 implies in particular that the same simplex may not occur with different
BTEs in the same ST-complex. Condition 2 requires that the underlying geometric struc-
ture is a simplicial complex. The reason for condition 3 is that a simplex cannot exist
without its faces.

As an example, in the left part of Figure 2.7 we consider the temporal development of the
boundary of parcel 4 in Figure 2.1 as an ST-complex. Areal properties are not
represented here; they would require a representation of the parcel by triangular
simplexes. The right part of Figure 2.7 shows which BTEs are associated with which
boundary segments and vertices. Remember that in the graphical representation of each
BTE, the horizontal axis denotes transaction time and the vertical axis valid time.

2.1.5 Spatio-Bitemporal Operations

Besides purely spatial and purely temporal operations, which we will not mention here,
spatio-bitemporal operations can be defined on ST-complexes. Some of them will be
introduced and explained in the following. We first list their signatures (Table 2.1):

For the predicate definitions of the subset-relationship and the equality of two ST-com-
plexes C and C’, we consider C and C’ as embedded in four-dimensional space compris-
ing two spatial and two temporal dimensions.

Figure 2.7: ST-complex example: boundary and face annotation with BTEs of parcel 4
[Worboys 1994 Fig. 6, used with permission.]

parcel 4

f

a
b
c k l

p q
d

n

e

m

bm,
mn,
m

kp,
lq,
p,
q

1960 1962 1964

19
62

19
64

1908 1938

19
38

ab, af,
fe, en,
a, b,
e, f, n

nd, dl,
lk, kc,
cb, d,
l, k, c

1908

1908 1938

19
38

new boundary

old boundary

2.1 SPATIO-BITEMPORAL OBJECTS 39

Definition 2.10: (ST-subset, ST-equal). Let C and C’ be two ST-complexes. Then

1. C ⊂ST C’ ⇔ ∀ (x, y, w, z) ∈ (S, T) ∈ C ∃ (S’, T’) ∈ C’ : (x, y, w, z) ∈ (S’, T’)
2. C =ST C’ ⇔ C ⊂ST C’ ∧ C’ ⊂ST C

For defining the boundary of an ST-complex, we make use of the purely spatial bound-
ary operation ∂ (Definition 2.5).

Definition 2.11: (ST-boundary). For an ST-complex C let ∂C = {(S, T) | S ∈ ∂(πs(C))}.

Projection operators are needed to map either to the spatial or to the temporal domain
and then to continue computation purely in that domain. Intuitively, the spatial projec-
tion of an ST-complex is a complex representing the whole knowledge one has ever had
about the spatial extent of the ST-complex over all transaction and valid times. The
bitemporal projection of an ST-complex is a BTE gathering all transaction and valid
times at which parts of the ST-complex have existed. The projection operators extend the
ones on simplexes.

Definition 2.12: (spatial projection, bitemporal projection). Let ST-complex C =
{(S1, T1), ..., (Sn, Tn)}. Then

1. πs(C) = {S1, ..., Sn}
2. πt(C) = Ti

The next operation we discuss is the so-called spatio-bitemporal β-product. It allows the
composition of two ST-complexes which is parameterized by a so-called β-operation. A
β-operation is a binary operation with the signature β: BTE × BTE → BTE.

Table 2.1: A collection of spatio-bitemporal operations

=: ST-complex × ST-complex → boolean (ST-equal)
⊂ST: ST-complex × ST-complex → boolean(ST-subset)
∂: ST-complex → ST-complex(ST-boundary)
πs: ST-complex → S-complex(S-project)
πt: ST-complex → BTE(T-project)
×β: ST-complex × ST-complex → ST-complex(ST-β-product)
∪ST: ST-complex × ST-complex → ST-complex(ST-union)
∩ST: ST-complex × ST-complex → ST-complex(ST-intersection)
\ST: ST-complex × ST-complex → ST-complex(ST-difference)
σs

X: ST-complex → ST-complex(S-select)
σt

φ: ST-complex → ST-complex(T-select)

1 i n≤ ≤
∪

40 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

Definition 2.13: (ST-β-product). Let us assume two ST-complexes C1 and C2 and a β-
operation on BTEs. Let simplicial complex R be a common refinement of πs(C1) and
πs(C2). We define C1 ×β C2 to be the smallest ST-complex (with respect to the ST-subset
relationship introduced in Definition 2.10) which contains the set of ST-simplexes {(S,
β(T1

S, T2
S)) | S ∈ R} where T1

S and T2
S are the BTEs associated with the smallest faces

of πs(C1) and πs(C2), respectively, which contain S.

This “dense” definition can be explained by giving an algorithm computing C1 ×β C2. In
a first step, we compute the spatial part of the result which is given as a common refine-
ment R of the spatial projections of C1 and C2. In a second step, for each constituent face
(simplex) S of R, we determine the pertaining BTE as follows: We know that S must
explicitly exist either in the spatial projection of C1, or in the spatial projection of C2, or
in both. Otherwise, it would not be part of R. If this is the case, then we can directly take
the pertaining BTE T1

S, or T2
S, or both. If S does not explicitly exist in one of the spatial

projections of C1 or C2, the BTE of the smallest face containing S is taken as T1
S or T2

S,
respectively. We then apply β to T1

S and T2
S. In a third step, we remove all those faces S

from the result with an empty BTE. The definition will also become clearer below where
we look at some examples for β.

The result of C1 ×β C2 depends on the choice of the common refinement R, which in gen-
eral is not unique. But because all possible common refinements have the same planar
embedding, i.e., comprise the same point set, the different results will all be ST-equal2.
The reason is that different common refinements of πs(C1) and πs(C2) only produce dif-
ferent subdivisions (for example, triangulations, splitting of edges) of πs(C1) and πs(C2)
with the same planar embedding. This fact does not affect the BTE attached to the same
point of each possible common refinement. In other words, a point can belong to differ-
ent faces due to different common refinements, but the pertaining BTE does not change.

We now consider a few important applications of the ST-β-product. With β ∈ {∪ST, ∩ST,
\ST}, the ST-β-product can be used to define set-theoretic union, intersection, and differ-
ence operations on two ST-complexes.

Definition 2.14: (ST-union, ST-intersection, ST-difference). Let C1 and C2 be two
ST-complexes. Then

1. C1 ∪ST C2 = C1 ×∪ C2
2. C1 ∩ST C2 = C1 ×∩ C2
3. C1 \ST C2 = C1 ×\ C2

2. More precisely, these operations act on equivalence classes of ST-equal ST-complexes and not on
single ST-complexes. For notational simplicity, we allow operations to act on single ST-complexes.

2.1 SPATIO-BITEMPORAL OBJECTS 41

Figure 2.8 illustrates these definitions for union (d) and intersection (e) on the basis of

two ST-complexes C1 (a) and C2 (b) with the common refinement of their spatial projec-
tions (c) and the BTEs attached to their single spatial simplexes. The union contains all
the elements of the refined spatial projections of C1 and C2 where each spatial simplex
has associated with it the union of the BTEs associated with that element in C1 and C2.
The intersection yields an ST-complex whose spatial simplexes are shared by the refined
spatial projections of C1 and C2 with a non-empty intersection of corresponding BTEs in
C1 and C2. If an empty BTE is calculated for a common spatial simplex, the spatial sim-
plex is omitted from the resulting complex.

The set of ST-simplexes {(S, β(T1
S, T2

S)) | S ∈ R} does not necessarily form an ST-com-
plex. However, there is always a unique minimum ST-complex which contains this set.
An example is the difference of the two ST-complexes C1 and C2 in Figure 2.8a and b.
The faces of interest are the 1-simplex de and the two 0-simplexes d and e which (the
reader should check this) all are associated with the empty BTE. This means that all three

Figure 2.8: ST-complex C1 (a), ST-complex C2 (b), a common refinement of πs(C1) and
πs(C2) (c), the ST-union of C1 and C2 (d), and the ST-intersection of C1 and C2 (e).

[Worboys 1994, Figures 8-11, used with permission.]

(a) (b) (c)

a b

c

d e f

a, ad, dc

d

e, f, de, ef

c

(d)

d e d

e, de

b, ab, bd,
be, ce, abd,

bde, cde

(e)

42 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

simplexes should be omitted from the resulting complex. Whereas this is correct for de
and e, this is incorrect for d, since d is also the bounding node of the simplex de which
becomes incomplete. Consequently, d has to be maintained and obtains the BTE as
the maximum BTE of all its incident edges.

The spatial selection σs
X(C) is another operation that can be expressed using the ST-β-

product. It allows one to choose from an ST-complex C all those ST-simplexes whose
spatial projection is contained in a given simplicial complex X.

Definition 2.15: (S-select). Let X = {S1, ..., Sn} be a simplicial complex, and let DX =
{(S1, TT × TV), ..., (Sn, TT × TV)} be the ST-complex where each simplex of X is associ-
ated with the universal BTE TT × TV. The spatial selection on an ST-complex C with
respect to X is then defined as σs

X(C) = C ∩ST DX.

For example, the spatial selection on C1 in Figure 2.8a with respect to the spatial projec-
tion of C2 in Figure 2.8b is again shown in Figure 2.8e.

For the definition of the next and last operation considered here we need the two auxil-
iary notions of ST-comparable and ST-minimum.

Definition 2.16: (ST-comparable). The elements of a set {C1, ..., Cn} of ST-complexes
are comparable, if and only if ∀ 1 ≤ i < j ≤ n : Ci ⊂ST Cj ∨ Cj ⊂ST Ci.

Definition 2.17: (ST-minimum). The minimum of a set {C1, ..., Cn} of comparable ST-
complexes is defined as minST({C1, ..., Cn}) = C such that

1. C ∈ {C1, ..., Cn}
2. ∀ 1 ≤ i ≤ n : C =ST Ci ∨ C ⊂ST Ci

We are now able to define the temporal selection σt
φ(C) which selects from an ST-com-

plex C the smallest ST-complex, each of whose simplicial components fulfils a temporal
condition specified by a formula φ.

Definition 2.18: (T-select). Let φ(t) be a first-order formula which may contain BTEs as
constants, β-operations for functions, and a single free variable t. The temporal selection
on an ST-complex C with respect to φ is then defined as σt

φ(C) = minST({C’ | C’ = {(S, T)
∈ C | φ(T)}}).

For example, if we take the ST-complex C1 in Figure 2.8a and the BTE B in Figure 2.9a,
the result of the temporal selection σt

t ⊇ B(C1) is shown in Figure 2.9b.

2.1 SPATIO-BITEMPORAL OBJECTS 43

2.1.6 Querying

An essential feature of a (spatio-temporal) database system is that it provides a language
for posing queries. The spatio-temporal data model described so far can be taken as the
basis of a query algebra. We will illustrate this by integrating the spatio-bitemporal data
type ST-complex into the relational setting and by incorporating the spatio-bitemporal
operations (Table 2.1) into the well-known standard database query language SQL. For
reasons of user-friendliness, readability, and compatibility with SQL, we will not employ
the mathematical notations for the operations but replace them by the purely textual
terms given in parentheses in Table 2.1.

Again we take the land owner scenario and assume that the land parcel data are stored in
a relation with the scheme

parcels (parcel-id: integer, owner: string,
 area: ST-complex, building: ST-complex)

This schema stores information about the parcel identifier, the owner of a parcel, and the
development of the parcel area as well as the building on the parcel over space and time.
Parcel identifier and owner together form the key of the schema. It is striking that the
non-standard spatio-bitemporal data type ST-complex is used in the same way as an
attribute type as the standard data types integer and string. This is possible, because the
type ST-complex is modeled and used as an abstract data type, that is, only its name is
visible outwards but its internal, complex structure is hidden from the user in the data
type representation.

We are now able to formulate some queries:

“How did the building on parcel 1 look like in 1958?”

Figure 2.9: BTE B (a) and the temporal selection σt
t ⊇ B(C1) (b).

[Worboys 1994, Figures 12-13, used with permission.]

(a) (b)

44 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

SELECT S-project(T-select((_, 1958), building))
FROM parcels
WHERE parcel-id = 1 AND (_, 1958) IN T-project(building)

In the where-clause, the first part selects all those tuples belonging to parcel 1. The sec-
ond part identifies that tuple with a building attribute value whose BTE contains 1958 as
a valid time. The underscore “_” serves as a wildcard for transaction time here. In the
select-clause we first determine the spatio-bitemporal complex for the year 1958 by tem-
poral selection and then compute the spatial projection. Note that we have slightly
changed the signature of T-select and positioned the temporal selection condition as the
first operand.

“How has the building on parcel 1 been extended during 1958 and 1974?”

SELECT S-project(ST-difference(T-select((_, 1974), building),
 T-select((_, 1958), building)))

FROM parcels
WHERE parcel-id = 1

The where-clause selects parcel 1. By temporal selection, the select-clause first deter-
mines the snapshots of the building on parcel 1 in the years 1974 and 1958 as an ST-
complex each, then computes their difference yielding an ST-complex again, and finally
calculates the spatial projection of the result which just describes the geometric differ-
ence of the building.

“Does the path currently pass through land that was ever part of Jane Benson’s house?”

SELECT NOT isempty(S-intersection(
S-project(T-select((nowDB, _), p.area)),
S-project(q.building))) AS is_part

FROM parcels AS p, parcels AS q
WHERE p.parcel-id = 7 AND p.owner = ’public’ AND
 q.owner = ’Jane Benson’

The where-clause joins parcel 7, which belongs to the path, with all properties Jane Ben-
son ever had. The select-clause computes a boolean value for the new attribute is_part as
follows: First, the ST-complex belonging to the area of the path is temporally restricted
to nowDB, which indicates a BTE respresenting all bitemporal times with database time
now, and afterwards its spatial projection is determined. Then, the spatial projection of
the ST-complex describing the buildings owned by Jane Benson is computed. The result-
ing two spatial complexes are intersected by the operation S-intersection. Finally, the
assumed predicate isempty checks whether the intersection result is empty. If the result is
not empty, the path and the building under consideration have shared a part in the past.

“Has Jack Meyer’s house ever shared a common boundary with the path?”

2.2 AN EVENT-BASED APPROACH 45

SELECT NOT isempty(ST-intersection(
ST-boundary(p.area),
ST-boundary(q.building))) AS is_part

FROM parcels AS p, parcels AS q
WHERE p.parcel-id = 7 AND p.owner = ’public’ AND
 q.owner = ’Jack Meyer’

The select-clause determines the boundaries of the two ST-complexes that describe the
path area and Jack Meyer’s building and computes their intersection.

Exercise 2.1: Where exactly becomes the “discrete” nature of this approach visible?

Exercise 2.2: Formulate the following queries in the SQL-like style presented above and
design extensions to the language if necessary:

(a) When was a parcel owned by a specific person not a developed real estate?
(b) When was the school (as the first building) constructed on parcel 4?

2.2 An Event-Based Approach

The second model to be presented propagates the event-based approach. In this time-
based approach, location in time becomes the primary organizational basis for recording
change. An event represents a change in state at some instant like the change of a value
associated with a location in space at some time t. In this model, only valid time is of
importance. The treatment of transaction time is not included.

2.2.1 The Model

The time associated with each change (i.e., each event) is stored in increasing order from
an initial time t0 (for example, March 1, 1963) to the latest recorded change at time tn.
This means that the representation of change is organized as a function of a discrete time
domain to some codomain of interest. Mostly, the length of any temporal period, i.e., the
temporal distance between ti-1 and ti, and any other such period will vary. The idea now
is to associate with each timestamp ti only the changes (the “deltas”) that occurred
between ti-1 and ti but not the complete changed snapshot. All changes between ti-1 and ti
are collected in a set ci. The only exception is at time t0 when the initial scenario or base
map BM has to be recorded once. This is illustrated in the event list in Figure 2.10a.
Figure 2.10b gives more insight how changes are recorded at time ti. In this approach, the
geometry is stored as a bitmap or image so that changes at time ti relate to a set of indi-
vidual locations (xik, yik) with altered values vik.

46 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

From a representation point of view, a main drawback of this method is that the number
of triplets (x, y, v) to be stored in ci depends directly on the total number of discrete loca-
tions whose values changed between ti-1 and ti. An improvement is to group together all
individual locations that share the same common value v. Such a value-specific group is
called a component and the shared value v is called its descriptor. Instead of once for
every location per event, each new value is stored only once per event with all locations
that map to this value. This leads to a separate component for each new value.

A further improvement is to apply raster run-length encoding within each component in
order to reduce the amount of storage space required for recording locations. This means
that, if in a row of the image with the same x-coordinate several consecutive y-coordi-
nates share the same value v, these y-coordinates can be summarized by an interval
which usually leads to a much shorter representation. Figure 2.11 gives an example. In
Figure 2.11a a simplified map consists of light shaded and dark shaded locations. Each
location is labeled with a numerical value. The light shaded locations visualize the
development of the base map BM after the changes at the times t1, ..., ti-1. The dark
shaded locations represent the changes at time ti. Figure 2.11b shows the event
components for the changes at time ti including their descriptors.

The temporal ordering of events in the event list enables search and retrieval of particular
time periods, but also of change to specific values in these time periods. Such an order-
ing also facilitates the comparison of different temporal sequences for different thematic

Figure 2.10: Example of an event list where ti contains a time value (for example, day,
month, and year), BM is the base map, and ci contains all changes that occurred between
the times ti-1 and ti (a), structure of the changes in ci which comprises a collection of trip-
lets (xik, yik, vik), each of which describes the new value vik at ti for location (xik, yik) (b).

(a) (b)

t0 t1 t2 ti... ... tn

BM c1 c2 ci cn

ti... ...

47 13 16
47 14 16
47 15 16

78 35 7
78 34 7

78 36 7
78 37 7

...

x y v

2.2 AN EVENT-BASED APPROACH 47

domains, or of the same thematic domain in different geographic areas. A comparison of
only the times at which events occur (i.e., looking for temporal patterns) can be per-
formed by retrieving the times alone directly from the event list; it is not necessary to
retrieve associated values and locations. Due to the grouping according to values, the
spatial locations carrying this new value can be easily determined. In particular, we can
pose the following queries dealing with a single temporal sequence:

1. Retrieve all locations which changed at a given time ti.
2. Retrieve all locations which changed at a given time ti to a given value.
3. Retrieve all locations which changed at a given time ti with their new values.
4. Retrieve all locations which changed between ti and tj.
5. Retrieve all locations which changed between ti and tj to a given value.
6. Retrieve all locations which changed between ti and tj with their new values.
7. Calculate the total change in an area to a given value between ti and tj.
8. Did location (x, y) change to a new value at a given time ti?
9. Did location (x, y) change to a new value between ti and tj?

10. When did location (x, y) change to a new value?

2.2.2 Query Processing Algorithms

This time, we will not show how these queries can be formulated in a database query lan-
guage like in Section 2.1.6 but demonstrate how algorithms can be designed for execut-

Figure 2.11: Status of a simplified map (light shaded) after applying the “deltas” at times
t1, ..., ti-1 to a base map BM and the changed (dark shaded) locations at time ti (a), and the

corresponding event components (b).

(a) (b)

com
ponent

0

5

10

15

20

25

5 10 15 20 25

65 65

17 17x

y

ti... ...

15 15 17
16 15 18
17 15 19

x y1 y2

65

...

3 18 20
4 16 20
5 16 20

x y1 y2

17

...

23

89

48 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

ing them during the query processing stage. We will also determine the run time com-
plexity of these algorithms.

We begin with the design of an algorithm for evaluating query 2 from above which
requires a two-stage search. The first stage of the search is to find the event with the
desired time-stamp t within the event list el (see Figure 2.10), which is arranged in
increasing temporal order. If the entire event list occurred after the desired time, i.e.,
t0 > t, the search returns the empty list. Otherwise, the search continues until the time te
associated with an event e is larger than or equal to the desired time t, i.e., te ≥ t. Here,
the assumption is that t need not necessarily match any time-stamp stored in the event
list. If te ≠ t for all events e, we use the simple rule of closest temporal distance as to
whether te or te-1 is selected. This decision can, of course, change depending on the
application. The second stage is to determine the component c associated with this event
whose descriptor matches the given value gv. All xy-locations within that component are
then returned by a function xylist. This leads us to the following algorithm:

algorithm GetChangedLocsAtInstantForValue(el, t, gv)
input: event list el, time t, value gv;
output: list xylist of locations changing to value gv at time t;
begin

if t0 > t then return null fi;
foreach event e in el do

if te >= t then
if t <= (te + te-1)/2 then ev = e-1 else ev = e fi;
foreach component c of event ev do

if descriptor(c) == gv then return xylist(c) fi
od

fi
od

end GetChangedLocsAtInstantForValue.

Both the search of the event list and the search of the component descriptors within the
desired event once found are linear searches. Hence, the worst time complexity is
O(ne + ce + kc), where ne is the total number of events in the event list, ce is the maxi-
mum number of components for any given event, and kc is the maximum number of
changes stored in any component c. Note that ne and ce are input parameters while kc is
an output parameter. This result can be improved to O((log ne) + ce + kc) by using any
O(log n) search, where n denotes the total number of elements to be searched.

Exercise 2.3: A snapshot model would store the complete map including the changes for
each event at a time ti. Describe roughly (without algorithmic notation) an algorithm per-
forming the same task as above and utilizing the snapshot model. What are the differ-
ences? What is the runtime behavior of the algorithm?

2.2 AN EVENT-BASED APPROACH 49

Next, we deal with an algorithm for query 5 asking for changes to a given value in a
given temporal interval.

algorithm GetChangedLocsInIntervalForValue(el, t1, t2, gv)
input: event list el, start time t1, end time t2, value gv;
output: list xylist of locations changing to value gv in [t1, t2];
begin

if t0 > t2 then return null fi;
foreach event e in el do

if t1 <= te <= t2 then
foreach component c of event do

if descriptor(c) == gv then return xylist(c) fi
od

fi
od

end GetChangedLocsInIntervalForValue.

This algorithm is a slight variation of the preceding one that uses a range of temporal val-
ues at the first stage of search and that retrieves all locations stored in components with a
descriptor gv for all events from a starting time t1 to a finishing time t2. For the sake of
simplicity, we assume that the temporal interval [t1, t2] is wide enough so that at least
one event will be found in between.

The runtime complexity of this algorithm is O((log ne) + nf ⋅ (ce + kc)), where log ne is
the amount of time needed to search the event list for the starting event, nf is the number
of events retrieved sequentially up to the finishing event so that t1 ≤ te ≤ t2, ce is the max-
imum number of components for any event e, and kc is the maximum number of changes
stored in any component c. Note that ne, nf, and ce are input parameters while kc is an
output parameter. The worst-case scenario in terms of efficiency is the case where the
starting time coincides with the first event in the event list and the finishing time coin-
cides with the last event in the event list. In this case, the run time complexity is
O(ne ⋅ (ce + kc)).

Finally, we discuss an algorithm evaluating query 7 asking for the total change to a given
value gv in an area during a given temporal interval. The amount of areal change for a
given value at some time ti is determined by the total number of areal units represented
within the corresponding component or within an xylist(c) returned, e.g., by either of the
algorithms above. Since run-length coding is employed for both of these, counting the
total number of changed areal units is rather simple as the following algorithm shows.
This algorithm assumes an input xylist as a run-length-encoded list of (x, y)-locations
associated with our desired value gv of interest.

50 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

algorithm Area(xylist)
input: run-length-encoded list xylist of (x, y)-locations;
output: area as an integer value
begin

area = 0;
foreach entry (x, y1, y2) in xylist do

area = area + (y2 - y1 + 1)
od;
return area

end Area.

Obviously, the run time complexity is a linear function of the number of entries in the list
xylist.

Exercise 2.4: Discuss algorithms for the evaluation of the remaining queries listed
above. Determine their runtime complexity.

2.3 Bibliographic Notes

The presentation of the spatio-temporal model in Section 2.1 is based on (Worboys
1994). We have especially added a more detailed discussion of spatial complexes as one
of the two main underlying pillars of this model and the description of an embedding of
the query algebra into an SQL-like query language context. Literature about algebraic
topology can be found in (Armstrong 1983, Croom 1978). Here, only the basic concepts
are of interest.

A number of papers exploit algebraic topology for spatial modeling. Frank and Kuhn
(1986) propose a topological model which is based on simplicial complexes (cell com-
plexes). An algebra for complexes is introduced which provides a variety of operations
like creating an initial complex, adding a point or line to a complex, connecting two
points in a complex with a line, deleting a point, or deleting a line. These operations can,
e.g., be used for computing a common refinement or the spatial part of a spatio-bitempo-
ral operation. In a continuation of this work, Egenhofer et al. (1989) show the simplicity
of an implementation of simplicial structures. They present a simplicial algebra with
only a small set of operations that fulfill closure properties, i.e., an operation manipulat-
ing one or more simplicial complexes can produce only a simplicial complex. Update
operations are consistent, and the completeness principles are ensured after each modifi-
cation. Algorithms proposed relate to the insertion of a node, a line, and a polygon into a
simplicial decomposition. Finally, in (Egenhofer 1989, Egenhofer 1991) simplicial
topology is applied for the definition of topological relationships.

2.3 BIBLIOGRAPHIC NOTES 51

The presentation of the spatio-temporal model in Section 2.2 is based on (Peuquet and
Duan 1995). The authors denote their approach as an event-based spatio-temporal data
model (ESTDM).

Two survey articles summarizing the earlier work on spatio-temporal databases like the
models presented in this chapter are (Abraham and Roddick 1999, Peuquet 2001). The
latter already includes some of the work on moving objects.

52 CHAPTER 2 SPATIO-TEMPORAL DATABASES IN THE PAST

Solutions to Exercises

Solution 1.1:

(a)

How many people live within ten kilometers from the river Rhine? (Cities are modeled
as points, hence if the point is within that distance we count the whole population.)

Obviously we need to be able to measure the distance between a point and a line, hence
need an operation:

distance: points × line → real

This will return the minimal distance between any of the points in the first argument and
the second argument line. The query is:

SELECT SUM(c.pop)
FROM rivers AS r, cities AS c
WHERE r.name = ’Rhine’ and distance(c.location, r.route) < 10

(b)

With which of its neighbour countries does Germany have the longest common border?

We use an operation

common_border:region × region → line

which returns the intersection of two region boundaries. The query is:

LET border_lengths =
SELECT t.name AS name, length(common_border(s.area, t.area))

AS length
FROM states AS s, states AS t
WHERE s.name = ’Germany’ AND s.area adjacent t.area;

SELECT name, length
FROM border_lengths
WHERE length =

SELECT MAX(length)
FROM border_lengths

1-A2 SOLUTIONS TO EXERCISES

(c)

Find the locations of all bridges of highways crossing rivers. Return them as a relation
with the name of the highway, the name of the river, and the location.

We introduce a predicate

intersects: line × line → bool

The query is:

SELECT r.name, h.name, intersection(r.route, h.route)
FROM rivers AS r, highways AS h
WHERE r.route intersects h.route

Solution 1.2:

Name Location Time

Mr. Jones Edinburgh, Grand Hotel 5

Mr. Jones Edinburgh, Traveler’s Inn 8

Mr. Jones Aviemore, Golf Hotel 15

Mr. Jones Home 17

Anne Home 5

Anne Brighton, Linda 7

Anne Home 12

Anne Parents 16

Table 1: Model by Segev

Name Location Time

Mr. Jones Edinburgh, Grand Hotel [5-7]

Mr. Jones Edinburgh, Traveler’s Inn [8-14]

Mr. Jones Aviemore, Golf Hotel [15-16]

Mr. Jones Home [17-∞]

Table 2: Model by Sarda

SOLUTIONS TO EXERCISES 1-A3

Anne Home [5-6]

Anne Brighton, Linda [7-11]

Anne Home [12-15]

Anne Parents [16-∞]

Name Location

5 → Mr. Jones
...

5 → Edinburgh, Grand Hotel
 ...

7 → Edinburgh, Grand Hotel
8 → Edinburgh, Traveler’s Inn
 ...

14 → Edinburgh, Traveler’s Inn
15 → Aviemore, Golf Hotel
16 → Aviemore, Golf Hotel
17 → Home

 ...

5 → Anne
...

5 → Home
6 → Home
7 → Brighton, Linda

...
11 → Brighton, Linda
12 → Home

...
15 → Home
16 → Parents

...

Table 3: HRDM

Name Location Time

Table 2: Model by Sarda

1-A4 SOLUTIONS TO EXERCISES

Solution 1.3:

We also show all intermediate steps to make it easier to follow.

Figure 1: Jennifer’s knowledge, December 1st

Figure 2: Jennifer’s knowledge, December 6

5 10 15 20

5

10

15

20

TT

VT

5 10 15 20

5

10

15

20

TT

VT

(a) Keith (b) Anne

home home

5 10 15 20

5

10

15

20

TT

VT

5 10 15 20

5

10

15

20

TT

VT

(a) Keith (b) Anne

home homehome

Edinburgh

home

home

Linda

home

SOLUTIONS TO EXERCISES 1-A5

Figure 3: Jennifer’s knowledge, December 13

Figure 4: Jennifer’s knowledge, December 16

5 10 15 20

5

10

15

20

TT

VT

5 10 15 20

5

10

15

20

TT

VT

(a) Keith (b) Anne

home homehome

Edinburgh

home

home

Linda

home
home

home

Linda

5 10 15 20

5

10

15

20

TT

VT

5 10 15 20

5

10

15

20

TT

VT

(a) Keith (b) Anne

home homehome

Edinburgh

home

home

Linda

home

home

home

Linda

home

Linda

home

parents

1-A6 SOLUTIONS TO EXERCISES

Solution 2.1:

The “discrete” nature of this approach becomes visible in Definition 2.8, which defines
an ST-simplex as an ordered pair (S, T) where S is a simplex and T is a BTE. In other
words, a specific spatial configuration S exists and is constant over a given range T of
transaction and valid times. There is no change within the duration of T.

Solution 2.2:

(a)

When was a parcel owned by a specific person not a developed real estate?

We introduce an operation

T-difference: BTE × BTE → BTE

which returns the temporal difference of two BTE values. The query is:

SELECT parcel-id, owner,
 T-difference(T-project(area), T-project(building))
 AS undeveloped-area
FROM parcels

Figure 5: Jennifer’s knowledge, December 19

5 10 15 20

5

10

15

20

TT

VT

5 10 15 20

5

10

15

20

TT

VT

(a) Keith (b) Anne

home homehome

Edinburgh

home

home

Linda

home

home

home

Linda

home

Linda

home

parents

home

Edinburgh

Aviemore

home

SOLUTIONS TO EXERCISES 1-A7

(b)

When was the school (as the first building) constructed on parcel 4?

We use an operation

min: BTE → BTE

which according to some order on the Cartesian product of periods of a BTE returns the
single-valued, minimum BTE of a BTE value. The query is:

SELECT min(T-project(building))
FROM parcels
WHERE parcel-id = 4

Solution 2.3:

The same task utilizing the snapshot model requires the following three steps:

1. Find the map with the right timestamp in the map sequence.
2. Create a difference map between that map and the preceding map. This difference

map represents the “deltas”, i.e., it contains the new values in all cells whose val-
ues have changed from the preceding map and zero or null in all cells whose values
have not changed. During this computation, for each cell check if its contents
matches the given value.

This algorithm necessarily requires n = nx ⋅ ny cell-by-cell comparisons between two
adjacent snapshots where n is the total number of cells. This means that the entire task is
performed in O(n) time for a complete snapshot image.

Solution 2.4:

The algorithms for queries 1 and 3 are similar to the algorithm for query 2. The algo-
rithm for query 1 outputs all locations of components of the event found for time ti. The
worst time complexity is O(ne + ce ⋅ kc) resp. O((log ne) + ce ⋅ kc). The algorithm for
query 3 in addition yields the new values of the changed cells. Analogously, the algo-
rithms for queries 4 and 6 are slight variations of query 5 with the worst time complexity
O((log ne) + nf ⋅ ce ⋅ kc).

Query 8 asks for a lookup operation and can be answered in time O(ne + ce ⋅ kc) resp.
O((log ne) + ce ⋅ kc). If the right event has been found, we check all its corresponding
components for location (x, y). Similarly, query 9 does the same for a time interval and

1-A8 SOLUTIONS TO EXERCISES

has the time complexity O((log ne) + nf ⋅ ce ⋅ kc). The algorithm for query 10 is even more
exhaustive. In the worst case, we have to check all ne events in the event list and for each
event all maximum ce components for location (x, y). Hence, the worst time complexity
is O(ne ⋅ ce ⋅ kc).

Bibliography

Abraham, T., and Roddick, J.F. (1999). Survey of Spatio-Temporal Databases. GeoIn-
formatica, 3, 61-99.

Armstrong, M.A. (1983). Basic Topology. Springer-Verlag, Berlin.

Bhargava, G. and Gadia, S.K. (1993). Relational Database Systems with Zero Informa-
tion Loss. IEEE Transactions on Knowledge and Data Engineering 5 (1), 76-87.

Clifford, J. and Croker, A. (1987). The Historical Relational Data Model (HRDM) and
Algebra Based on Lifespans. Proc. Int. Conf. on Data Engineering (ICDE, Los
Angeles, CA), 528-537.

Croom, F.H. (1978). Basic Concepts of Algebraic Topology. Springer-Verlag, Berlin.

Egenhofer, M.J. (1989). A Formal Definition of Binary Topological Relationships. 3rd
Int. Conf. on Foundations of Data Organization and Algorithms (FODO, Paris,
France), 457-472.

Egenhofer, M.J. (1991). Reasoning about Binary Topological Relations. 2nd Int. Symp.
on Advances in Spatial Databases (SSD, Zürich, Switzerland), 143-160.

Egenhofer, M.J., Frank, A.U., and Jackson J.P. (1989). A Topological Data Model for
Spatial Databases. 1st Int. Symp. on the Design and Implementation of Large Spa-
tial Databases (SSD, Santa Barbara, CA), 271-286.

Elmasri, R. and Navathe, S.B. (2003). Fundamentals of Database Systems. 4th Ed., Add-
ison-Wesley Publ. Co., Reading, MA.

Erwig, M., Güting, R.H., Schneider, M., and Vazirgiannis, M. (1999). Spatio-Temporal
Data Types: An Approach to Modeling and Querying Moving Objects in Data-
bases. GeoInformatica 3, 265-291.

Frank, A.U. and Kuhn, W. (1986). Cell Graphs: A Provably Correct Method for the Stor-
age of Geometry. 3rd Int. Symp. on Spatial Data Handling, 411-436.

Garcia-Molina, H., Ullman, J.D., and Widom, J. (2002). Database Systems: The Com-
plete Book. Prentice-Hall, Upper Saddle River, NJ.

Güting, R.H. (1994). An Introduction to Spatial Database Systems. VLDB Journal 4 (3),
357-399.

Güting, R.H. and Schneider, M. (1995). Realm-Based Spatial Data Types: The ROSE
Algebra. VLDB Journal 4, 100-143.

Güting, R.H., de Ridder, T., and Schneider, M. (1995). Implementation of the ROSE
Algebra: Efficient Algorithms for Realm-Based Spatial Data Types. Proc. of the
4th Intl. Symposium on Large Spatial Databases (Portland, Maine), 216-239.

1-A10 BIBLIOGRAPHY

Härder, T. and Rahm, E. (1999). Datenbanksysteme: Konzepte und Techniken der Imple-
mentierung. Oldenbourg Verlag, München.

Kemper, A. and Eickler, A. (1999). Datenbanksysteme. 3rd ed., Oldenbourg Verlag,
München.

Kifer, M., Bernstein, A., and Lewis, P.M. (2005). Database Systems: An Application-
oriented Approach. Introductory Version, 2nd Ed., Addison-Wesley Publ. Co,
Boston.

Kothuri, R., Godfrind, A., and Beinat, E. (2004). Pro Oracle Spatial: An Essential Guide
to Developing Spatially-Enabled Business Applications. Apress L.P., Berkeley,
CA.

Koubarakis, M., Sellis, T.K., Frank, A.U., Grumbach, S., Güting, R.H., Jensen, C.S.,
Lorentzos, N.A., Manolopoulos, Y., Nardelli, E., Pernici, B., Schek, H.-J., Scholl,
M., Theodoulidis, B., and Tryfona, N., eds. (2003). Spatio-Temporal Databases:
The CHOROCHRONOS Approach. Lecture Notes in Computer Science 2520.
Springer-Verlag, Berlin.

Laurini, R. and Thompson, D. (1992). Fundamentals of Spatial Information Systems.
Academic Press, London.

Özsoyoglu, G. and Snodgrass, R.T. (1995). Temporal and Real-Time Databases: A Sur-
vey. IEEE Transactions on Knowledge and Data Engineering 7 (4), 513-532.

Peuquet, D. (2001). Making Space for Time: Issues in Space-Time Data Representation.
GeoInformatica, 5, 11-32.

Peuquet, D. and Duan, N. (1995). An Event-Based Spatiotemporal Data Model
(ESTDM) for Temporal Analysis of Geographic Data. Int. Journal of Geographi-
cal Information Systems 9 (1), 7-24.

Rigaux, P., Scholl, M., and Voisard, A. (2002). Spatial Databases: With Application to
GIS. Morgan Kaufmann Publishers, San Francisco.

Sarda, N. (1990). Extensions to SQL for Historical Databases. IEEE Transactions on
Knowledge and Data Engineering 2 (2), 220-230.

Schiller, J. and Voisard, A. (2004). Location-Based Services. Morgan Kaufmann Pub-
lishers, San Francisco.

Segev, A. and Shoshani, A. (1987). Logical Modeling of Temporal Data. Proc. ACM
SIGMOD Conf. (San Francisco, CA), 454-466.

Shekhar, S. and Chawla, S. (2003). Spatial Databases: A Tour. Prentice-Hall, Upper
Saddle River, NJ.

Snodgrass, R.T. and Ahn, I. (1986). Temporal Databases. IEEE Computer 19 (9), 35-42.

Snodgrass, R.T., ed. (1995). The TSQL2 Temporal Query Language. Kluwer Academic
Publishers, Boston.

BIBLIOGRAPHY 1-A11

Tansel, A.U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass, R.T., eds.
(1993). Temporal Databases: Theory, Design, and Implementation. Benjamin/
Cummings Publ. Co., Redwood City, CA.

Vossen, G. (2000). Datenmodelle, Datenbanksprachen und Datenbankmanagementsy-
steme. 4th ed., Oldenbourg Verlag, München.

Wolfson, O., Xu, B., Chamberlain, S., and Jiang, L. (1998). Moving Objects Databases:
Issues and Solutions. Proc. 10th Int. Conf. on Scientific and Statistical Database
Management (Capri, Italy), 111-122.

Worboys, M.F. (1994). A Unified Model for Spatial and Temporal Information. The
Computer Journal 37 (1), 26-34.

Worboys, M.F. and Duckham, M. (2004). GIS: A Computing Perspective. 2nd Ed., CRC
Press, Boca Raton, FL.

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrahmanian, V.S., and Zicari, R.
(1997). Advanced Database Systems. Morgan Kaufmann Publishers, San Fran-
cisco.

1-A12 BIBLIOGRAPHY

Index

A

abstract data type 6
adjacency relationship 5
adjacent 7
Ahn 29
Armstrong 50
assignment 8

B

BCDM 17, 29
Bhargava 16, 29
Bhargava’s model 29
bitemporal 15, 16
bitemporal conceptual data model 17, 29
bitemporal space 16
boundary operation 36
bounding box 9

C

cartridge 9
Chawla 28
CHOROCHRONOS 29
chronon 11, 18
cities 7
Clifford 29
closure 6
completeness 6
contour 7
Croker 29
Croom 50

D

data blade 9
data independence 2

logical 2
physical 2

data model 2, 4, 6, 13
database 1

bitemporal 11
historical 11
rollback 11
snapshot 11
temporal 11
transaction-time 11
valid-time 11

database management system 1
date 10, 11
DBMS 1
deftime 27
derived value 8
digital terrain model 6
dimension 35
distance 27
Duan 51

E

Egenhofer 50
Eickler 28
Elmasri 28
employee 10
Erwig 29
ESTDM 51
extender 9

F

face 35
fact 13
flight 27
Frank 50

1-A14 INDEX

G

Gadia 29
Garcia-Molina 28
GIS 4
GPS 29
granularity 19
granule 11
graph 5
Güting 28

H

Härder 28
highways 7
historical relational data model 14
HRDM 14, 29

I

image database 4
index structure 8
inside 7
instant 11
interior operation 36
intersection 7, 27
interval 11

K

Kemper 28
Kuhn 50

L

Laurini 28
length 7, 27
line 5
line 6
location management 21
location-based services 29
logical level 2

M

MBR 9
min 27
minimum bounding rectangle 8
minus 7
motion vector 21
moving 29
moving objects database 1
moving point 27
moving region 27
mpoint 27
mregion 27
multistep query 8

N

Navathe 28
network 5

O

Özsoyoglu 29

P

partition 5
period 11
periods 11
Peuquet 51
physical level 2
point 5
points 6
prescription 19

Q

query language 2, 4
query optimizer 2

INDEX 1-A15

R

Rahm 28
real_estate 26, 27
region 5
region 7
relation

bitemporal event 19
bitemporal state 19
snapshot 19
transaction-time 19
valid-time event 19
valid-time state 19

relational model 2
Rigaux 28
rivers 7
ROSE algebra 28
R-tree 8

S

Sarda 14, 29
Schneider 28
SDT 6
Segev 13, 29
Shekhar 28
Shoshani 29
simplex, k-simplex 34

oriented 35
simplicial complex 35

oriented 35
Snodgrass 29
spatial algebra 6
spatial data type 6
spatial database 4
spatial join 9
spatio-temporal data 21
spatio-temporal data types 27
SQL-92 11
states 7
sum 7

T

Tansel 29
thematic maps 5
Thompson 28
time

absolute 11
anchored 11
bounded 10
continuous 10
dense 10
discrete 10
infinite 10
relative 11
unanchored 11

time 10
timestamp 13
timestamp 11
trajectory 27
transaction 2
transaction time 11, 29
TSQL2 18

U

uc 16

V

valid time 11, 29
vector

geometrically independent vectors 34
visit 19
Vossen 28

W

weather 27
Wolfson 29
Worboys 28, 50

1-A16 INDEX

Z

Zaniolo 29

	Contents of the Course
	Chapter 1
	Introduction
	1.1 Database Management Systems
	1.2 Spatial Databases
	1.2.1 Modeling Spatial Concepts
	1.2.2 Extending Data Model and Query Language
	1.2.3 Implementation Strategy

	1.3 Temporal Databases
	1.3.1 Managing Time in Standard Databases
	1.3.2 The Time Domain
	1.3.3 Time Dimensions
	1.3.4 Extending the Data Model
	1.3.5 Extending the Query Language: TSQL2

	1.4 Moving Objects
	1.4.1 The Location Management Perspective
	1.4.2 The Spatio-Temporal Data Perspective
	1.4.3 Moving Objects and Questions About Them
	1.4.4 A Classification of Spatio-Temporal Data
	1.4.5 Temporal Databases With Spatial Data Types
	1.4.6 Spatio-Temporal Data Types

	1.5 Bibliographic Notes

	Chapter 2
	Spatio-Temporal Databases in the Past
	2.1 Spatio-Bitemporal Objects
	2.1.1 An Application Scenario
	2.1.2 Bitemporal Elements
	2.1.3 Spatial Objects Modeled as Simplicial Complexes
	2.1.4 Spatio-Bitemporal Objects
	2.1.5 Spatio-Bitemporal Operations
	2.1.6 Querying

	2.2 An Event-Based Approach
	2.2.1 The Model
	2.2.2 Query Processing Algorithms

	2.3 Bibliographic Notes

	Solutions to Exercises
	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

