
Bringing Semantics to Web Services with OWL-S

David Martin & Mark Burstein & Drew McDermott &
Sheila McIlraith & Massimo Paolucci & Katia Sycara &

Deborah L. McGuinness & Evren Sirin &

Naveen Srinivasan

Received: 17 July 2005 /Revised: 2 March 2006 /
Accepted: 30 March 2007 / Published online: 3 July 2007
# Springer Science + Business Media, LLC 2007

Abstract Current industry standards for describing Web Services focus on ensuring
interoperability across diverse platforms, but do not provide a good foundation for
automating the use of Web Services. Representational techniques being developed for the
Semantic Web can be used to augment these standards. The resulting Web Service
specifications enable the development of software programs that can interpret descriptions
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of unfamiliar Web Services and then employ those services to satisfy user goals. OWL-S
(“OWL for Services”) is a set of notations for expressing such specifications, based on the
Semantic Web ontology language OWL. It consists of three interrelated parts: a profile
ontology, used to describe what the service does; a process ontology and corresponding
presentation syntax, used to describe how the service is used; and a grounding ontology,
used to describe how to interact with the service. OWL-S can be used to automate a variety
of service-related activities involving service discovery, interoperation, and composition. A
large body of research on OWL-S has led to the creation of many open-source tools for
developing, reasoning about, and dynamically utilizing Web Services.

Keywords Web Services . SemanticWeb . SemanticWeb Services . OWL . OWL-S .
service discovery . service composition

1 Introduction

An important trend in the evolution of the World Wide Web (WWW) has been the
development of standardized Web Service technologies, by which a service provider can
make a service available to consumers through an advertised protocol. The function of a
Web Service is often to supply information, but can also involve exchange or sale of goods
or obligations. Web Services provide a basis for interoperability between service providers
and consumers, based on the reliable exchange of messages.

Compiler-based tools make it easy for programmers to incorporate Web Services in their
applications. To call a Web Service, a program must send it a message, or a series of
messages, normally encoded in XML (extensible markup language), which contain(s) the
information or request to be sent to the service; the program then receives XML replies
containing the returned values. The datatypes for the information passed between the service
consumer and provider, and its encoding using the XML-based simple object access protocol
(SOAP) [12], can be described using the Web Services description language (WSDL) [15].
Existing compilers for languages like Java [33] and C# [42] can automatically produce code
to convert from the datatypes of a language to their SOAP equivalents, making it almost as
easy to call a Web Service as to use a standard library component.

One thing WSDL does not supply, however, is a specification of what happens when a
Web Service is used. A human programmer is supposed to figure that out from reading a
natural-language description. Suppose you want an automated software agent [60] to solve
problems such as the following:

& Given Web Service interfaces to access the current prices of two parts suppliers, make a
periodic decision as to which of those suppliers to acquire raw materials from, while
monitoring for the appearance of new alternative suppliers so that you can be informed
if one offers the same materials at a lower price.

& Given Web Service interfaces to a variety of networked capabilities that are available in
a meeting room, send a copy of your slides to everyone attending an invited
presentation that you are giving in that room.

& Given Web Service interfaces for the catalogs of various online vendors, find products
described using one or more controlled vocabularies (which might not be the same as
the vocabularies used in the vendors’ catalogs).

Without a description of what happens when a Web Service is used—a description that
can be processed by computer software—a human must always be involved in solving such
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problems. Thus, the question arises of how to provide software agents with the information
they need about Web Services to solve problems such as these.

A second trend in the evolution of the Web, known as the Semantic Web, can provide
some answers. The Semantic Web is a set of technologies for representing, and publishing
on the Web, computer-interpretable structured information [10]. Semantic Web Services [56]
is a research field that endeavors to apply these technologies to the description and use of
Web Services. Whereas interoperability is the primary motivation for Web Services,
automation of information use and dynamic interoperability are the primary objectives of
Semantic Web Services. These goals are based on the idea of adopting standard languages
for asserting relationships among entities that are declared to belong to classes. The
information about the classes and the relationships among their members is captured in
ontologies. The definitions encoded there allow programs to make inferences about the
relationships among the objects that they discover at Web sites. A key step in the realization
of the Semantic Web has been the development of standard languages for recording
relationships and ontologies, including the resource description framework (RDF), RDF
schemas (RDFS), and the Web ontology language (OWL) [52], all of which have
completed the standardization process at the World Wide Web Consortium (W3C).

The central question facing Semantic Web Services, then, is: “Can we use Semantic Web
techniques to automate dealings with Web Services?” The goal of the OWL-S Coalition
[61] is to show that the answer is yes. To move towards the realization of this vision,
members of this coalition and other Semantic Web Service researchers have been
developing languages, ontologies, algorithms, and architectures. In this paper, we describe
OWL-S version 1.2 [46], an ontology for services expressed in OWL.1 It provides a
framework for describing both the functions and advertisements for Web Services,
including a process specification language, a notation for defining process results, and a
vocabulary for connecting these descriptions in OWL with syntactic specifications of
service message structure in WSDL (and in other existing notations).

OWL-S can be used to solve the problems presented above (although some of the Web
infrastructure and reasoning tools required for complete solutions are still the subject of
ongoing work). In each case, one would likely have a form-based interface between the
human user and the automated software agent doing the required reasoning.

& To support a regular choice between suppliers, a purchasing software agent could first
use automated planning technology [58, 80] to access a registry and find vendors
potentially satisfying the user’s objectives, then use OWL-S descriptions of those
vendors’ service interfaces to create an OWL-S process to poll those vendors. The agent
would also periodically recompute the set of known vendors and notify the user when
new vendors were found.

& To send a document to everyone currently in a particular room requires searching for a
resource-management service for the building containing it, then querying it for people
who have made their whereabouts in that building known (perhaps just to other people
in the building) [48].

& To find a vendor of, say, “cutlery,” it would be necessary to include companies that
advertise the sale of “kitchenware.” A software agent using OWL and OWL-S could
apply ontological knowledge to broaden its search to include requests for providers of
kitchenware, as this would be annotated as a superClass of cutlery. If a vendor used a
different vocabulary where “knives” took the place of “cutlery,” cross-ontological

1 Prior to version 1.0, this work was known as DAML-S, so named for DAML+OIL, the precursor of OWL.
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statements involving the equivalentClass construct of OWL would enable the agent to
translate between the two.

This paper describes OWL-S and selected tools, technologies and research directions based
upon it. The rest of the paper is organized as follows. In Section 2, we discuss the high-level
objectives of OWL-S and the overall structure of the framework in terms of service profiles,
process models, and groundings. In Section 3, we discuss key concepts for describing services:
their inputs, outputs, preconditions, and results. In Section 4, we describe the structure and
content of the profile ontology designed for use in advertising services. In Section 5, we present
the process model ontology and a more human-readable notation. The latter allows the model to
be viewed more easily as a recursive syntax for describing service processes rather than simply
as an ontology. In Section 6, we discuss the ontology for describing groundings of services,
enabling service calls to be translated into and out of message transport protocol languages such
as SOAP (and its partner WSDL). In Section 7, we discuss how OWL-S can be used in various
Web Service applications, focusing on service discovery and service composition. In Section 8,
we survey a broad range of tools and prototypes that have been developed based on OWL-S
and extensions of OWL-S. In Section 9, we discuss related efforts to model aspects of Web
Services. The paper ends with a brief summary and directions for future work in Section 10.

2 Overview of OWL-S

In this section, we provide some context for understanding OWL-S. After presenting the
objectives that motivate this work, we give a brief overview of its logic foundations, ways
in which it can be used, and its overall structure.

The principal high-level objectives of OWL-S are (1) to provide a general-purpose
representational framework in which to describe Web Services; (2) to support automation of
service management and use by software agents; (3) to build, in an integral fashion, on
existing Web Service standards and existing Semantic Web standards; and (4) to be
comprehensive enough to support the entire lifecycle of service tasks.

2.1 Logic foundations

OWL-S starts off as an ontology, i.e. a vocabulary plus axioms constraining its terms [51].
The axioms are stated in OWL, so they involve things like class descriptions, subclass
hierarchies, and definitions of the kinds of relationships that may hold between different
classes. OWL includes three sublanguages: OWL-lite, OWL-DL, and OWL full. The first
two, but not the third, correspond to decidable description logics (DLs) [5]. Decidability, in
this context, means that certain fundamental questions about an ontology are guaranteed to
be answerable. An example of this is the question of subsumption [5], i.e. whether one
particular class A is a superclass of another class B (in other words, whether A subsumes B).
To preserve decidability, we had a design objective to keep OWL-S expressible in OWL-DL.

Nevertheless, we have discovered that for some purposes OWL-DL is not expressive
enough. For example, to specify the preconditions and results of processes, we need
expressiveness comparable to that of first-order logic [26]. Thus, while many aspects of
processes can be represented in OWL-DL (and are in OWL-S), we have found it necessary
to allow for preconditions and results to be expressed in other logical languages.

In addition, we have found that the language elements and syntax provided by OWL-DL
are not particularly well suited to provide process descriptions that can be easily
comprehended by humans. For this reason, we have provided a “presentation syntax” for
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developers to use when writing their process models, which can be expanded into OWL
and associated rule representations for publication on the Semantic Web.

2.2 Applicability

As an ontology, OWL-S does not make any assumption with respect to the processing
environment or Web Service architecture. Indeed, OWL-S has been used in very different
configurations, from traditional Web Service architectures that adopt the service-oriented
architecture (SOA) ‘triangle’ set of interactions [11] (among a service registry, producer, and
consumer), to peer-to-peer (P2P) systems [23] using a Gnutella-based architecture [67], to
multicast-based universal plug and play (UPnP) [48] systems used with wireless devices, to
architectures that exploit a centralized mediator [44, 87] to manage the interaction with
services and perform different forms of translation between service consumers and providers
[68, 69].

OWL-S is not intended to replace existing Web Services or Semantic Web standards. Our
goal is to enhance their utility by remaining compliant with existing standards and adding
explicit semantics that is operational and understandable to computer programs. In our opinion,
the Web Services community needs a little push to get to the point where it feels comfortable
with descriptions of entities outside current Web Service specifications. OWL-S provides that
push, right in the direction of the space that the Semantic Web community already inhabits.

2.3 Overall structure of OWL-S

The OWL-S ontology includes three primary sub-ontologies: the service profile, process
model, and grounding. The service profile is used to describe what the service does; the
process model is used to describe how the service is used; and the grounding is used to
describe how to interact with the service. The service profile and process model are thought
of as abstract characterizations of a service, whereas the grounding makes it possible to
interact with a service by providing the necessary concrete details related to message
format, transport protocol, etc. Figure 1 shows the relationships between the top-level
classes of the ontology. In this figure, an oval represents an OWL class, and an arc
represents an OWL property. For example, the presents property represents a relationship
that can hold between a service and a profile.

Each service described using OWL-S is represented by an instance of the OWL class
service, which has properties that associate it with a process model (an instance of the class

Figure 1 Top level of the service
ontology.
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process), one or more groundings (each an instance of the class grounding), and optionally
one or more profiles (each an instance of the class profile).2 A process model provides the
complete, canonical description of how to interact with the service at an abstract level, and
the grounding supplies the details of how to embody those interactions in real messages to
and from the service. Each service profile may be thought of as a summary of salient
aspects of the process model plus additional information that is suitable for the purposes of
advertising and selection. OWL-S allows a service to have multiple profiles so as to allow
for tailoring of advertisements for different contexts. Similarly, a service may have multiple
alternative groundings, which can even be added dynamically.

These notions are explained more thoroughly in the following sections. Additional
details may be found in the OWL-S technical overview [46].

3 Inputs, outputs, preconditions, and results

Understanding all three components of an OWL-S service model requires understanding
inputs, outputs, preconditions, and results. The inputs are the object descriptions that the
service works on; the outputs are the object descriptions that it produces. These descriptions
are of course not known when the process is defined; all we can expect is the specification
of their types (as OWL classes, at the most abstract level).

A precondition is a proposition that must be true in order for the service to operate
effectively. Results consist of effect and output specifications. An effect is a proposition that
will become true when the service completes. In general, these propositions are not
statements about the values of the inputs and outputs, but about the entities referred to in
the inputs and the outputs. For example, a service that requires a user to have an account
and a credit card might have inputs User and CreditCard and precondition:

hasAcctID(User, AcctID)
& validity(CreditCard, Valid))

(AcctID and Valid are local variables. This concept will be explained in Section 5.2). The
precondition requires the user to actually have an account with the service, with the account
identifier AcctID. It also requires the credit card to have a known status Valid.

In general, the effects of a service vary depending on conditions. In the case at hand, if
the credit card is in fact valid, then let us suppose the service will replenish one’s E–Z Pass
balance to $25.3 If the credit card is not valid, then there is no change in the account
balance. These are two separate results. The first might be indicated as:

Valid = OK |–>
output(Outcome<=Success)
& AcctBalance(25)

The second might be written:

Valid = Not-OK |−>
output(Outcome<=Failure)

2 For ease of exposition, Figure 1 presents a slight simplification. In particular, it omits an organizational
layer of classes named ServiceProfile, ServiceGrounding, and ServiceModel.
3 E–Z Pass is the organization in the New York vicinity that runs the toll-booth lanes that use Radio
Frequency IDentification (RFID) technology to check off your car and charge your account every time you
use a toll road or bridge.
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Here, OK and Not-OK are values defined as elements of an OWL class AccountValidity.

<owl:Class rdf:ID="AccountValidity">
<owl:oneOf rdf:parseType="Collection">

<AccountValidity rdf:ID="OK"/>
<AccountValidity rdf:ID="Not-OK"/>

</owl:oneOf>
</owl:Class>

This example is overly simple but illustrates some key points:

& The value of the output Outcome depends on events or tests that occur during the
execution of the process, as does the effect AcctBalance(25). They cannot in general be
predicted in advance, which is why we bundle them as results gated by conditions such
as Valid=OK. (Note that this test is performed by the service provider, not the service
consumer, although if the consumer knew the credit-card status, it could use that
knowledge to predict what the provider would do.)

& The values of variables are described as abstract OWL objects such as Not-OK. These
objects must be connected to more concrete messages in order to be sent or received by
an implemented software agent.

& The propositions referred to in preconditions and effects can refer to arbitrary facts
about the world, and are not confined to talking about data structures. Although this is
not entirely obvious in the example above, which refers to statuses and balances, it will
be discussed further in Section 5.

The last point deserves emphasis. The purpose of OWL-S is to allow software agents to use
Web Services to accomplish real-world goals. The idea is to have the ability to ask a software
agent to make reservations, purchase items, schedule meetings, and make other similar
arrangements. Goals are stated in terms of propositions wewant to make true, constraints on the
actions and resources to be used, and objective functions to be optimized. Because the goals are
described in terms of real-world entities, the services must be as well, with connections down to
concrete messages whose transmission will accomplish what the user wants.

Inputs, outputs, preconditions, and results are referred to, in different ways, by each of
the three components of an OWL-S service model: the service profile, the process model,
and the grounding. We will discuss them in more detail in that order.

4 The service profile subontology

The OWL-S profile provides a set of concepts to specify capabilities of services [11], with the
goal of supporting capability-based discovery. Specifically, the OWL-S profile allows service
providers to advertise what their services do, and service requesters to specify what
capabilities they expect from the services they need to use. Crucially, the profile provides an
explicit description of those capabilities, so that they do not have to be extracted from
incidental properties such as the name of the service, or the company that provides it. By
exploiting the structure of OWL-S profiles and their references to OWL concepts, a discovery
process can find those services that are most likely to satisfy the needs of a requester.

The overall structure of the OWL-S profile is shown in Figure 2, in which ovals represent
OWL classes and arcs represent OWL properties. A profile is an instance of the class Profile
(or an instance of a subclass of Profile). The principal elements defined in a profile are the
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profile type, which is the particular subclass of Profile that is being instantiated, and the
inputs, outputs, preconditions, and results associated with the service. (The profile is not
required to list all inputs, outputs, preconditions, and effects; it can omit some if they are
deemed to be unimportant for the sake of advertisement and discovery.) In addition, a profile
may include a product type, where appropriate; service categories that may be used to refer to
existing business taxonomies that may not be codified in OWL, such as the North American
Industry Classification System (NAICS) [59]; and a variety of service parameters that may
be used to specify additional features of the service. Subclasses of Profile may be created for
particular domains or types of service, and specialized with appropriate properties. For
example, for shipping services, there might be a ShippingServiceProfile subclass with the
additional property geographicRegionServed, with GeographicRegion (from an appropriate
online ontology) as its range.

Broadly speaking, an OWL-S service profile describes three aspects of that service. The
first one is the functional aspect, which is represented using inputs, outputs, preconditions,
and effects. The functional aspect represents (1) the information transformation computed
by the service, from the inputs that the service expects to the outputs it generates; and (2)
the transformation in the domain, from a set of preconditions that need to be satisfied for
the service to execute correctly, to the effects that are produced during the execution of the
service. A purchase in an online store illustrates a typical set of these transformations: the
inputs are the name of the desired product and a credit card number; the output is a receipt
of purchase; the preconditions specify that the credit card is valid; and the effects specify
that the credit card will be charged and that the goods will change ownership.

The second aspect, the classification aspect, supports the description of the type of service
as specified in a taxonomy of businesses (or other suitable domain-specific ontologies). The
classification of the service is indicated by the profile type and/or the service categories.
Using these elements, the service provider can specify explicitly what type of service it
provides, and the service consumer can specify the type of service with which it would like to
interact.

Figure 2 Top-level structure of the OWL-S profile.
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The third aspect of the profile is the non-functional aspect, which makes distinctions
between services that do the same thing but in different ways or with different performance
characteristics. Examples of non-functional aspects of a service include security and privacy
requirements, the precision and timeliness (Quality of Service, or QoS) of the service
provided, the cost structure, and aspects of provenance such as those captured in the Proof
Markup Language [72]. As it is impossible to provide a complete set of attributes for the
representation of service parameters (many of which are domain-specific), the solution
adopted by OWL-S is to provide an extensible mechanism that allows the providers and
consumers to define the service parameters they need.

A partial example of a profile for a fictitious airline booking service, expressed in the RDF/
XML syntax of OWL, is shown in Listing 1. The profile, an instance of FlightReservation-
Profile (a subclass of Profile), describes inputs specifying the departure and arrival airports, and
a reservation as output. The crucial aspect of this example is that the values used to specify the
types of the OWL-S inputs and outputs are the uniform resource identifiers (URIs) of concepts
defined in some ontology. The ontology used in this example is the fictitious ontologyhttp://fly.
com/Onto. The advantage of using concepts from Web-addressable ontologies, rather than
XML schemas, is that the descriptions use terms whose provenance is globally available,
which refer to entities such as airports instead of, say, three-letter codes. This, together with
the fact that these terms are arranged in a semantic abstraction hierarchy, enables the
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discovery process to avoid matching failures due to syntactic differences and to verify that the
terms used by service providers and consumers are drawn from the same vocabulary. If the
vocabularies are different, the discovery process may still be able to find appropriate services
as long as the different terms are suitably related by their ontologies.

5 The process model subontology

Once a software agent has identified a service as likely to be relevant to its goals, it needs a
detailed model of the service to determine whether this service can meet the agent’s needs,
and, if so, what constraints must be satisfied and what pattern of interactions are required to
make use of the service.

An OWL-S process specifies, among other things, the possible patterns of interaction
with a Web Service. Two sorts of processes can be invoked: atomic and composite
processes. An atomic process is one that has no internal structure. It corresponds to a single
interchange of inputs and outputs between a consumer and a provider. A composite process
consists of a set of component processes linked together by control flow and data flow
structures. The control flow is described using typical programming language or workflow
constructs such as sequences, conditional branches, parallel branches, and loops. Data flow
is the description of how information is acquired and used in subsequent steps in this
process. A third type of process, the simple process, can be used to provide abstracted, non-
invocable views of atomic or composite processes [46].

The concepts used to describe a process are themselves terms in the OWL-S ontology. The
OWL-S definition of Process has a set of associated features (inputs, outputs, preconditions,
results) linked to the Process concept by OWL properties (hasInput, hasOutput, etc.).
Composite processes are related to their top-level control structure using the composedOf
property, and other properties, such as components, are used to show the relationships between
control structures. In addition, there are properties that relate the process model to
corresponding messages (referenced by the grounding), and to advertised capabilities
descriptions in the corresponding OWL-S profile. Figure 3 shows some of the principal
elements of the process model.

5.1 OWL-S process model presentation syntax

Machine interpretation of OWL-S process models relies on systems that read the process
definitions expressed in OWL’s RDF/XML serialization syntax, which is not designed for
human consumption. Even simple processes can become swamped in reefs of angle brackets
that make it hard for people to read and understand what each process does. For this reason, we
have provided a presentation syntax (sometimes also called “surface syntax”) that makes
OWL-S processes look like programs in a high-level language. This more procedural
presentation syntax for OWL-S is easily translatable into the canonical RDF/XML syntax. In
the following discussion of the process model, features are introduced using the presentation
syntax, with illustrations of how that can be translated into the RDF/XML syntax.

For example, namespaces are a crucial feature of most XML applications, and OWL-S,
which directly utilizes OWL, is no exception. In the presentation syntax, we use the notation:

with_namespaces
(uri "http://www.daml.org/services/owl-s/1.2/congo.owl",
service: uri "http://www.daml.org/services/owl-s/1.2/Service.owl",
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owlproc: uri "http://www.daml.org/services/owl-s/1.2/Process.owl",
profile: uri "http://www.daml.org/services/owl-s/1.2/Profile.owl",
rdf: uri "http://www.w3.org/1999/02/22-rdf-syntax-ns")

{
define atomic process ExpressCongoBuy ...
define ...

}

In the RDF/XML version, these declarations get attached to the outermost RDF element
in the usual way:

<rdf:RDF
xmlns="http://www.daml.org/services/owl-s/1.2/congo.owl"
xmlns:service = "http://www.daml.org/services/owl-s/1.2/Service.owl"
xmlns:owlproc = "http://www.daml.org/services/owl-s/1.2/Process.owl"
xmlns:profile = "http://www.daml.org/services/owl-s/1.2/Profile.owl"
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<process:AtomicProcess rdf:ID = "ExpressCongoBuy" ...>
...
</process:AtomicProcess>
<...>
</...>

</rdf:RDF>

The with-namespaces expression can be used at any level, and it always gets translated
into xmlns declarations, attached to whatever RDF description is most convenient. Once a
namespace has been declared, we can then use prefixes with colons according to the XML
convention. However, there are fewer places in the presentation syntax where names

Figure 3 Top-level structure of the OWL-S process model.
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qualified by namespace prefixes are needed. For instance, reserved words of the notation
are always assumed to be in the OWL-S namespace.

5.2 Atomic processes

A process model is a description of what a service consumer must do in order to cause a
service, or a collection of services, to do something. Here is a specific, although somewhat
artificial, example of an atomic process, extracted from a larger example that represents a
book-buying service. The complete example, known as “CongoBuy,” is described in [46].
Listing 2 gives a partial example of an atomic process, with a few details filled in.

Atomic processes are defined entirely by their inputs, outputs, local variables,
preconditions, and results. All these fields are optional. Colons are used to separate
variable names from their conceptual types, which should be OWL concepts. For example,
the input parameter ISBN is of type books:ISBN, which is a concept defined in the
namespace books, an OWL domain ontology. Local variables are those bound by occurring
in preconditions rather than by being passed to the process explicitly.

The results of a process are specifications of its possible outcomes, gated by result
conditions. As explained in Section 3, the distinction between preconditions and result
conditions is that preconditions are things that the service consumer must verify before
deciding to request the service, whereas result conditions are things that are checked by the

254 World Wide Web (2007) 10:243–277



service provider in the course of execution and that impact the outcome produced. As noted
earlier, results consist of effect and output specifications. Effects are simply propositions that
become true. Values conveyed to output parameters are indicated by the special notation:

output( output−parameter <= rdf−description )

Result conditions are specified by the notation p |−> r (read "when p, then r"), which means
that if p is true in the situation checked by the service provider before it returns an answer,
then it will have result r, where r consists of a set of outputs and effects. Note that from the
perspective of a service consumer reading this process description and reasoning about it
when interacting with the service provider, the only thing that is observable is the output
message that is returned by the service provider. Based on the contents of that message, the
service consumer can infer, based on the process description, that a particular result condition
p is true, and that the listed effects of the process for that result condition should be true.

Our CongoBuy example might have the following outputs and conditional results:

define atomic process ExpressCongoBuy
(...,

preconditions:
(hasAcctID(SignInInfo, AcctID)
& credit_card_number(CardUsed, CC_Number)
& validity(CardUsed, valid))

outputs (Status − CongoBuyOutputType),
result:

(forall (book − books:Book)
(hasISBN(book, ISBN) and inStockBook(book)

|–> output(Status <= OrderShippedAcknowledgement)
& shippedTo(addressOf(AcctID), book))

&
(hasISBN(book, ISBN) and ~inStockBook(book)

|–> output(Status <= NotifyOutOfStockBook(ISBN)))))

Here, two result conditions are described: one where the book is in stock and another
where it is not (∼inStockBook(book)). In the first case, the output OrderShippedAcknowl-
edgement is produced, which is the presentation syntax version of an RDF expression
representing the meaning of the associated WSDL output message. When the client sees
this message, it is licensed to infer that the associated shippedTo expression is true, and also
that the condition inStockBook was true when the service executed. In the other case, a
different message is sent by the service, whose meaning is captured by the OWL concept
NotifyOutOfStockBook.

The equivalent representation of this process in OWL’s RDF/XML syntax is as follows:

<process:AtomicProcess rdf:ID="ExpressCongoBuy">
<process:hasInput>

<process:Input rdf:ID="ExpressCongoBuyBookISBN">
<process:parameterType rdf:datatype=" and xsd;#anyURI">

& profileHierarchy;#ISBN
</process:parameterType>

</process:Input>
...
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<process:hasPrecondition>
...
</process:hasPrecondition>
...

<process:AtomicProcess>

In the RDF/XML version, instead of results being produced by a recursive grammar, each
result is a separate object with associated when—conditions indicated using the inCondition
property. For reasons that will become clear in a moment, we omit the details of these
properties. But for the RDF/XML equivalent of output, we can be a bit more complete:

<process:AtomicProcess rdf:ID="ExpressCongoBuy">
...
<process:hasResult>

<process:Result>
<process:inCondition>

...
</process:inCondition>
<process:hasEffect>

...
</process:hasEffect>
<process:withOutput>

<process:OutputBinding>
<process:toParam rdf:resource="#ExpressCongoBuyStatus"/>
<process:valueData

rdf:resource="#OrderShippedAcknowledgement"/>
</process:OutputBinding>

</process:withOutput>
</process:Result>

</process:hasResult>

</process:AtomicProcess>

This is considerably more verbose than Status <= OrderShippedAcknowledgement, but
the reduction of the process notation to OWL descriptions allows us to be clear about how
entities in the process model are linked to entities in the service profile and the grounding. It
also allows process descriptions to be serialized in the standard RDF/XML notation of OWL.

We have left blanks in the RDF fragments wherever the presentation syntax includes a logical
formula. There are many alternative approaches to expressing formulas and inserting them
inside RDF, including N3 [9], RuleML [85], SWRL [32], SWRL-FOL [70], and SPARQL
[73]. Some of these use the idea of “layering” the notation “on top of” RDF by encoding its
syntax in RDF, whereas others embed the formulas as strings or quoted-XML constants.

The mention of formula representation brings us to the key question of what sorts of
inference we expect the OWL-S process models to support. Some of these questions depend on
the interpretation of composite processes, which we will discuss shortly. But many tasks can be
supported using purely atomic models of processes. Given a set of goals and a set of process
specifications, one can find or check a described sequence of process instances to determine if it
can accomplish those goals. Finding one is an example of the classic planning problem in
Artificial Intelligence [75], often called AI planning, which in this context is called dynamic
service composition. (See Section 7 for a discussion of approaches to composition.) Another
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form of inference we expect OWL-S to be useful for is plan recognition [75]: given one or
more actions by a software agent, infer what goals the agent might have.

5.3 Composite processes

The possibilities for reasoning about processes broaden considerably when we allow
processes to have internal structure. Such processes are called composite processes:

define composite process P
(inputs: (...)
outputs: (...)
preconditions: (...)
results: (...)
)

{
—body—
}

In the simplest case, the body of a composite process consists of a sequence of actions,
separated by semicolons. The simplest sort of action is to execute another process. This
kind of act is called a perform act.

define composite process P(inputs–outputs–preconditions–results)
{

perform Q(V <= E, ...);
perform R(X <= F,...);

...

}
This notation indicates that the first step of the composite process P is to perform

the process Q (which may or may not be atomic) with some specific parameters. Input
parameter V of process Q should get value E, and so forth. Inputs to these steps may be
the same as (or derived from) an input to the composite process, or they may be constant
values. For steps other than the first, they may also be the result of an earlier step in the
process. Here is a very simple composite process in our presentation syntax. The XML/
RDF serialization of this simple process would take nearly a full page to show [46].

define composite process BuyBook
(inputs: (ISBN−books:ISBN, user−access:UserID))

{ perform Login(UID<=user);
perform requestBuyBook(BookID <= ISBN) }

If a planning system is given a set of composite processes that describe standard ways
for interacting with Web Services, it can generate a set of instances of those processes that
will accomplish its objectives. This paradigm is called hierarchical planning [75]; we will
come back to that in Section 9.

Another process reasoning problem, related to AI planning, is known as
nondeterminism reduction [74]. To solve this problem, a reasoner must verify that in a
particular circumstance, there is a set of choices of actions and their orderings that will
allow a plan with underdetermined structure to be executed successfully. Nondeterminism
reduction is often more efficient than AI planning because the search space, i.e. the
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number of process choices that the planner must make, is significantly reduced. In other
words, all the possibilities are laid out in advance and the system must merely narrow
them to the point that all remaining execution traces result in a situation satisfying the goal.

There are a couple of OWL-S control constructs for expressing nondeterminism. One is
the choice construct, which appears in the presentation syntax as:

P1 ;? P2 ;? ... ;? Pk

and is executed properly when one of the Pj is executed. Another sort of nondeterminism is
embodied in the any order construct:

P1 ||; P2 ||; ... ||; Pk

which means that all of the Pj are to be executed in some order. Other constructs in OWL-S
include conditional execution:

If P1 then P2 else P3

split-join:

P1 ||> P2 ||> ... ||> Pk

and split:

P1 ||< P2 ||< ... ||< Pk

The last two indicate parallel (interleaved) execution of the Pj. The difference between
them is that split-join is finished when all the Pj finish, whereas split terminates
immediately after the subprocess instances are spawned.

5.4 The semantics of OWL-S

As we saw in Section 2.1, OWL-S is an OWL-DL ontology. As OWL-DL has a well-
defined semantics, so too does OWL-S, with respect to those things that are expressed in
the ontology. However, there is more to be desired.

OWL-DL is a reasonably expressive language, whose expressive power was limited by
design in order to balance expressiveness against the desire for decidability and the
computational complexity of the description logic inferences it must support [71]. As a result,
many sophisticated definitions and inter-relationships between OWL concepts cannot be
described using the OWL language. For example, the OWL-S process model sub-ontology
states that Split (or “||<” in the presentation syntax) is a class with certain basic relationships
to other classes, such as ControlConstruct, Sequence, Split-Join, etc. However, the formal
representation of the execution behavior associated with these terms is missing, because it
cannot be adequately expressed in OWL-DL.

We have explored several solutions to this problem. The intended interpretation of the
process vocabulary was defined in the Technical Overview of OWL-S [46]. It has also been
defined by translation to first-order logic using the situation calculus [74], a language for
reasoning about action and change; by using Petri nets [57]; and by using an execution
semantics that incorporates subtype polymorphism [3]. More recently, the semantics of
OWL-S was described in the Process Specification Language (PSL) [28], a formally
axiomatized process ontology. The existence of these specifications makes it possible to use
automated systems for reasoning about processes that are built around first-order logic,
Petri nets, or other popular formal frameworks.

258 World Wide Web (2007) 10:243–277



6 The grounding subontology

The grounding subontology of OWL-S is used to specify how the abstract information
exchanges that are detailed by atomic-process descriptions are realized by concrete information
exchanges between the consumer requesting a service and the service provider (i.e., the
deployed Web Service) that it has chosen to use. A grounding maps each OWL-S atomic
process (in a collection of processes associated with a service) to a WSDL operation (defining
input and output messages), and relates each OWL-S process input and output to elements of
the XML serialization of the input and output messages of that operation. The purpose of this
mapping is to enable the translation of semantic inputs generated by a service consumer into the
appropriate WSDL messages for transmission to the service provider, and the translation of
service output messages back into appropriate semantic descriptions (i.e., OWL descriptions)
for interpretation by the service consumer.4

It should be noted that a grounding can be supplied at runtime, so as to allow for dynamic
binding to a service provider. This frees the developer (or user) of service consumer code
from having to select a specific service provider when that code is written (or deployed).

We emphasize that an OWL-S/WSDL grounding involves a complementary use of the
two languages in a way that is in accord with the intentions of the authors of WSDL. Both
languages are required for the full specification of a grounding, because the two languages
do not cover the same conceptual space. WSDL, by default, specifies message types using
XML Schema, whereas OWL-S allows for the definition of abstract types as OWL classes
based on description logic. Thus, it is natural that an OWL-S/WSDL grounding uses OWL
classes as the abstract types of message parts declared in WSDL, and then relies on WSDL
binding constructs to specify the formatting of the messages.

Figure 4 Overview of the rela-
tionship between OWL-S and
WSDL.

4 OWL-S allows for groundings to other interoperability frameworks besides WSDL; for example, at least
one project has utilized a grounding that is based on UPnP. Here, we discuss only the WSDL grounding as it
is included in the online releases and is by far the most widely used.
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Figure 4 shows the essence of the relationship between OWL-S and WSDL. In this figure,
the dark arrows represent explicit mappings declared in an OWL-S grounding. The clear
arrows represent other relationships between elements that exist within OWL-S and WSDL
specifications. WSDL operations correspond to OWL-S atomic processes. The inputs and
outputs of an OWL-S atomic process correspond to messages (or parts of messages) in
WSDL. Atomic processes and inputs/outputs are given meaning by their relationships with
the larger process model of OWL-S and the type system of OWL, respectively. Operations
and messages are given utility by their relationships with bindings and other elements of
WSDL. By declaring these correspondences, the grounding in effect provides a bridge
between the syntax- and protocol-oriented world of WSDL, and the world of OWL that relies
on semantic elements defined using description logics.

On the WSDL5 side, the most abstract description of a Web Service is in terms of
messages, operations and port types. For a service supplying information about book
availability, the WSDL port type is of the “request/response” variety, meaning that the service
consumer sends one message and receives one reply (just as an OWL-S atomic process).

<portType name="CongoCheckPortType">
<operation name="CheckBook"

owl-s:owl-s-process = "congoOwl:CongoCheck">
<input message="CongoCheckInput"/>
<output message="CongoCheckOutput"/>

</operation>
</portType>

The bold-face attributes are extensions to WSDL that were required to connect it to
OWL-S.6 The input and output attributes declare the presence and types of the request to
and response from the Web Service.

The messages are described in message elements:

<message name="CongoCheckInput">
<part name="BookISBN"

type="xsd:string"
owl-s:owl-s-parameter = "congoOwl:In-BookISBN"/>

<part name="AcctID"
type="xsd:string"
owl-s:owl-s-parameter = "congoOwl:In-AcctID"/>

</message>
<message name="CongoCheckOutput">

<part name="Availability"
type="xsd:Boolean"
owl-s:owl-s-parameter = "congoOwl:Out-Avail"/>

</message>

5 OWL-S release 1.2, and the example that follows, use WSDL 1.1, as do existing OWL-S tools. Due to
limitations on development time, and a concern for maintaining compatibility with existing uses of OWL-
S, we have not yet updated the grounding for use with WSDL 2.0. We plan to provide such an update in a
subsequent release.
6 Fortunately, WSDL is extensible at various points, so almost all the changes we require are just a matter of
defining new namespaces. The few exceptions are described in [45].
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For simplicity, we use the type xsd:string here for both inputs to the process; in practice,
numeric or structured types can also be used.

These XML fragments are written in WSDL, not RDF, extended to indicate the
correspondence of WSDL message parts with OWL-S parameters. On the OWL-S side, we
must also specify the grounding of the Web Service, which tells OWL-S tools which
messages the inputs and outputs of a process correspond to, and how to translate the values.
A partial example is given in Listing 3.

This WsdlAtomicProcessGrounding, an excerpt from a hypothetical OWL-S grounding,
defines the grounding of a particular atomic process named congoCheck. It expresses
related, but complementary, information to the WSDL declarations related to Congo-
CheckPortType. The wsdlOperation property of a WsdlAtomicProcessGrounding object
specifies the {portType, operation} pair from the WSDL specification. The wsdlInputMes-
sage and wsdlOutputMessage properties specify how the atomic process maps into a
request/response pattern. The wsdlInput and wsdlOutput properties specify message maps,
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i.e. associations between OWL-S parameters and WSDL message parts. This information
allows an OWL-S service consumer to find in the WSDL specification the information
about the concrete embodiment of the abstract parameters.

Further details about OWL-S groundings may be found in [45] and in the Technical
Overview [46].

7 Technology based on OWL-S

OWL-S has been employed in a wide range of research efforts aimed at achieving the kind
of automation we described in Section 1. In this section, we describe some of the
explorations that have taken place.

7.1 Architecture and service enactment

OWL-S can be used in Web Service interactions in which the service consumer formulates
a request based on its goals, queries a registry such as UDDI to find a service provider, and
finally interacts with the service provider. Typical participants and their roles are shown in
Figure 5. The main steps in this process are:

1. Formulation of a request: The service consumer needs to meet a goal, and would like
to find a Web Service that can satisfy this goal. To find such a Web Service, the
consumer expresses its goal as an OWL-S service profile. The translation of this goal
into a service profile is an abstraction process from a goal to the capabilities that are
required to satisfy that goal. Such capabilities are expressed in terms of the results and

Figure 5 Typical OWL-S Semantic Web Service interaction model.
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information produced, as well as the QoS that the consumer expects from a provider.
An algorithm for generating these abstractions with OWL-S was described by Paolucci
et al. [68].

2. Service Request: The service consumer uses the service profile that it constructed to
query a registry that contains a collection of offered services.

3. Matching: The registry compares the request to its library of service profiles and returns
URIs for candidates (i.e., potential service providers) that might achieve that goal. The
matching process relies on the relationships between the terms used to specify the
advertisements and those in the request, both of which are defined using OWL ontologies
[41, 43, 64].

4. Selection: The service consumer analyzes the candidates returned by the registry and selects
a Web Service to interact with. As it is possible that none of the service providers found will
precisely satisfy all the requirements and objectives of the consumer, the selection process
may require consideration of a number of trade-offs [6].

5. Invocation: The service consumer determines how to make a request to the selected
service provider by unifying its goals and preferences with the effects specified in the
service process model, to determine a semantically valid set of inputs to the service.
These inputs are then mapped onto a WSDL input message pattern using the OWL-S
service grounding, and the resulting message is sent.

6. Reply: The service provider receives the request and determines whether it can perform
it. It may acknowledge the request, send an error, request additional information, or
(generally, on completion) send a reply with the service results.

7. Reply interpretation: Upon receiving the reply, the service consumer parses it, in
accordance with its WSDL specification, and uses the grounding specification to map it
into the abstract outputs specified in the process model [62]. If the invocation of the
service has been successful, the results of the service (as expressed in OWL-S) are
known to hold true. From the service consumer’s perspective, this additional knowledge
may satisfy preconditions for other services.

8. Goal satisfaction: The service consumer uses the outputs to decide whether its goal has
been achieved successfully, or whether there is a need for additional interactions with
the Web Service or for searching for another Web Service [84].

When the process model of a service is a composite process, steps 5, 6 and 7 may be
repeated a number of times, for the interaction between the client and the server may
require numerous information exchanges. For example, any interaction with a business to
consumer (B2C) Web site (e.g., an online bookshop) requires the buyer to fill out multiple
forms specifying such things as which book to buy, selecting the appropriate edition,
specifying where to ship the book, describing which credit card to use, etc. In this case, the
service consumer may need to interact with multiple Web Services concurrently to find out
which one will provide the best result, or the best QoS. Detailed information about the
semantics and invocation of composite processes can be found in Paolucci et al. [62].

This interaction process is consistent with the SOA interaction protocols that are used with
UDDI,WSDL and SOAP. It reflects the similar roles played by the service profile representation
of Web Services in OWL-S and the UDDI representations of Web Services [65, 82].

The difference here is that UDDI interactions require human software developers to do
the job of interpreting the registry results and creating the calls to the services. Figure 5
shows how the process is implemented using OWL-S for more dynamic Web Service
interactions. An application using OWL-S should not require a programmer to query
UDDI, read the WSDL models found there, and implement those interfaces. The software
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agent (service consumer) is responsible for the interaction with the OWL-S registry, for the
determination of which candidate services are most appropriate, for the determination of the
information required to invoke each service, and for the interpretation and response to
messages returned by the service provider. This execution model has been implemented in
the OWL-S virtual machine [62], and a variation on it was described by Sirin et al. [80].

7.2 Ontology-based service discovery

The first few phases of the process described in the previous section are areas where
Semantic Web Service discovery based on the OWL-S profile subontology may be
expected to provide value-added over existing Web Service discovery standards.
Capability-based matching enables service consumers to find service providers that aptly
match their requirements for particular results, while semantic matching allows flexibility in
identifying the service parameters needed (and available to the service consumer) to specify
the criteria of the requested service.

UDDI provides a number of means of searching its registry of services; services can be
searched by name, by business, by bindings, or by tModels (technical models in UDDI
parlance [17]). Unfortunately, the search mechanism supported by UDDI is limited to
keyword matches and does not support any inference based on the taxonomies referred to
by the tModels. For example, a car-selling service may describe itself as “New Car
Dealers”, which is an entry in the North American Industry Classification System (NAICS);
but a search for “Automobile Dealers” services will not identify the car-selling service,
despite the fact that “New Car Dealers” may be regarded as a subtype of “Automobile
Dealers”. As OWL-S uses OWL ontologies to describe functional and non-functional
properties, it overcomes the limitations of syntactic search by providing semantic search
based on subclass, or subsumption [5] relationships.

Broadly speaking, there are two ways of representing capabilities of Web Services. The
first approach provides an extensive class hierarchy, with each class representing a set of
similar services. Using such a hierarchy, services may be defined as instances of classes that
represent their capabilities. An online bookshop, for example, may advertise itself as a
member of an OWL class for bookselling services. (For advertising purposes, such a class
would be a subclass of Profile.) The second way to represent a service’s capabilities is to
provide a generic description of its functionality in terms of the state transformations that it
produces. For instance, an online bookshop may specify that it provides a service that takes as
input a book title, author, address and a valid credit card number, and produces a state transition
such that the book is delivered to that address, the credit card is charged the book price, and the
book delivered changes its ownership. Despite their differences, both ways to represent
capabilities use domain-specific ontologies to provide the connection between what the Web
service does and the general description of the environment in which theWeb Service operates.

There are trade-offs between these two styles of representation in service discovery. The
use of an explicit ontology of capabilities facilitates the discovery process, because the
matching process is reduced to subsumption tests between the capabilities expressed in
service profiles and those expressed in a service discovery query. Both descriptions
reference concepts in the ontologies of the domain covered by the service. On the other
hand, enumerating all possible capabilities may be difficult, even in restricted domains. For
example, consider the problem of representing translation services from a source language
to a target language. Assuming n possible languages, there are n2 possible types of
translation services. A service taxonomy might have different classes of service for each
pair of languages that could be translated, or it might just represent “translation services” as
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one general category, with explicit properties that allow particular services to describe the
languages that they can translate from and to. The latter approach is consistent with
describing the capability in terms of a state transformation. It distinguishes the translators
by describing how they produce different kinds of results. OWL-S provides support for
both styles of service description.

A number of capability matching algorithms using OWL-S service profile descriptions
have been proposed. In general, they exploit one of the two views of the capabilities
described above. Matching algorithms such as the one described by Li and Horrocks [41]
assume the availability of ontologies of functionalities to express capabilities. Matching
between a request and the available advertisements is reduced to a subsumption test.
Different degrees of matching are detected depending on whether the advertisement and the
request describe the same capability or whether one subsumes the other.

Other matching algorithms [23, 64, 82] assume that capabilities are described by the
state transformation produced by the Web Service. Paolucci et al. [64] describe a
matchmaking algorithm that compares the state transformations described in the request
to the ones described in the advertisements. More specifically, subsumption relationships
between the requested and provided types of inputs and outputs are examined to generate
flexible matches, which are beyond the abilities of existing text-based matching engines.
This algorithm performs two matches: one comparing outputs and another comparing
inputs. If the output required by the service consumer is of a kind covered (subsumed) by
the advertisement, then the inputs are checked. If the inputs specified in the request are
subsumed by the input types acceptable to the service, then the service is a candidate to
accomplish the requester’s requirements.

Numerous extensions have been proposed to improve the matching algorithms by
exploiting more features of subsumption relationships [41]. Instead of looking at only the
parameter types, these algorithms treat the whole OWL-S profile description as one OWL
concept and go beyond equality and subsumption matching. Researchers have also pointed
out the need to have a ranking mechanism to evaluate the matches produced. Benatallah et
al. [8] describe one such ranking method based on the algorithms derived from hypergraph
theory. Cardoso et al. [14] compute the syntactic, operational and semantic similarities
expressed in OWL-S profiles to generate a ranking function.

Using OWL-S for Web Service discovery has not been limited to matching algorithms,
however. Several researchers have also investigated how OWL-S can be integrated into
existing Web Service discovery architectures. The OWL-S/UDDI matchmaker [82]
integrates OWL-S capability matching into the UDDI registry. This integration is based
on the mapping of OWL-S service profiles into UDDI Web Service representations [65].
Akkiraju et al. [1] improved this coupling by providing additional extensions to the UDDI
inquiry API, and enhancing the service discovery of UDDI by performing semantic
matching and automatic service composition using planning algorithms. Other efforts show
how to integrate OWL-S with different network protocols and P2P infrastructure. For
instance, Paolucci et al. [67] presented an approach for using OWL-S based discovery in
Gnutella P2P environments. Elenius and Ingmarsson [24] achieved similar functionality in
Juxtapose (JXTA) P2P infrastructure. Masuoka et al. [48] presented discovery methods
using the UPnP protocol [86] in pervasive environments.

7.3 Composition

The automation of Web Service composition was introduced in Section 5.2. Automated
composition is the process of automatically selecting, combining, integrating and executing
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Web Services to achieve a user’s objective. “Make the travel arrangements for my WWW2007
conference trip” or “Buy me an iPod at the best available price” are examples of possible user
objectives addressed by composition. Industrial standards provide tools for specifying a
manually generated composition so that it can be executed automatically; WS-BPEL (Web
Service Business Process Execution Language) [4] is an example of such a tool. Human
beings perform manual Web Service composition by exploiting their cultural knowledge of
what a Web Service does (e.g., that http://www.apple.com will debit your credit card and send
you an iPod), as well as information provided by the service provider, in order to compose and
execute a collection of services to achieve some objective. To automate Web Service
composition, all this information must be encoded in a computer-interpretable form. None of
the existing industrial standards for Web Service description encode this kind of information.

One key advantage of automating Web Service composition is that it allows service
consumers to change the composition structure on the fly to adapt to changing conditions. For
example, if aWeb Service that is needed within a composition is no longer available, or does not
have the product that the service consumer needs, the overall composition does not fail; instead,
it can be modified by introducing other Web Services that solve the problem at hand (e.g., by
dynamically discovering services that are substitutable to the one that does not have the required
product). As a result, OWL-S has the potential to support a form of dynamic Web Service.

Automated Web Service composition is akin to both an AI planning problem and a
software synthesis problem [55], and draws heavily on both of these areas of research.
There are several different approaches to Web Service composition based on OWL-S
descriptions. For example, the OWL-S process model has been used to construct high-level
generic procedures or plans that approximately describe how to achieve some objective.
Then these high-level plans are expanded and refined using automated reasoning machinery
(this is the task of nondeterminism reduction, discussed in Section 5.3). The first such
system was based on Golog [55, 56]. This system interleaves the execution of information—
providing services with the simulation of world—altering services to generate a sequence
of Web Services customized to user’s preferences and constraints. In a similar spirit, other
researchers [39, 80] have used the paradigm of Hierarchical Task Network (HTN) planning
[58] to perform automated Web Service composition. HTN planning has also been used to
compose Web Services in the travel domain [66] and in the organization of a Business to
Business (B2B) supply chain [80]. Other planning techniques that have been applied to the
composition of OWL-S services, range from simple classical STRIPS-style planning [78] to
extended estimated-regression planning [49], to Planning as Model Checking (PMC) [81]
that deals with non-determinism, partial observability, and complex goals. Some of these
systems limit themselves to dealing only with atomic processes, as operator-based planning
systems are unable to represent composite processes. McIlraith and Fadel [54] propose a way of
compiling a large class of composite process specifications into atomic process specifications.

There are many systems that deal with a relaxed service composition problem where
preconditions and results (effects) are ignored. Constantinescu et al. [18] present a system
that constructs chains of services based on partial matches of input/output types determined
at runtime. These have great utility for information integration. Web Service composer [81]
uses an interactive composition method based on parameter types to put services together,
and filters the potential matches using information from the compositional context. An
improved version of this approach is an end-user interactive composition system, STEER
[47], which helps the average user to find, select, compose and execute local, pervasive and
remote Web Services to achieve common tasks. The STEER system combines services that
adhere to different ontologies by utilizing semantic mappings and transformation functions
that are also published as Web Services.
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OWL-S can also be used to augment the standard WS-BPEL execution engine with an
ontology to enable run-time discovery and binding of services. This is the case, for
instance, in the semantic discovery service (SDS) [43], which performs semantic integration
and interoperation in the context of dynamic customization of existing Web Service
compositions (WS-BPEL workflows). Customizing constraints specified by the user
enables the dynamic binding of user-customized services in the workflow. However, this
dynamic binding sometimes requires further semantic integration. SDS uses OWL-S to
describe the services and customize user constraints, and to perform Web Service discovery
and semantic integration.

The SDS system was more recently extended to add an explanation facility that enables
rich explanations of the system success or failure at creating an integrated composition [50].
The explainable system integrates Inference Web [53] with the existing discovery system to
add explanation, abstraction, and browsing capabilities along with a provenance registry
infrastructure. Composition steps are registered using the Inference Web and both
successful and failed composition efforts are explained, thereby providing transparency
and audit information. This work provides an example of the use of non-functional
parameters in describing Web Services with OWL-S. The information provided by these
parameters is used to provide more meaningful explanations.

While all of this work is promising, we are still some distance from the goal of fully
automating Web Service composition. With adoption of approaches to Web Service
description such as OWL-S and advances in planning-related and program synthesis
technologies, we believe that broad-scale automated Web Service composition will be
feasible in the not-too-distant future.

8 Tools and extensions

The release of OWL-S has stimulated much work in the Semantic Web Services area.
Applications from industry are appearing as the need for extra semantics becomes
increasingly evident. As a result, a wide variety of OWL-S applications and tools are now
available. OWL-S has also been extended by researchers to support various application-
specific requirements. In this section, we review a number of applications, tools and
extensions that build on or support OWL-S.

The OWL-S Editor [25], a plug-in to the popular ontology development tool Protégé
[38], provides a comprehensive set of capabilities for creating and maintaining OWL-S
service descriptions. In particular, this editor allows the user to build complex process
models using a graphical user interface. Another OWL-S editor [76] developed by
University of Malta provides functionality to create, validate and visualize OWL-S services.
DINST [37] is another graphical tool to visually build OWL-S services. The service
creation process sets up a layered service ontology where OWL-S is used as an upper
service ontology.

The OWL-S development environment (CODE) [83], developed by Carnegie Mellon
University, is based on Eclipse [19] and supports developers of Semantic Web Services
from the generation of Java code to the compilation of OWL-S descriptions, to the
deployment and registration with UDDI. CODE includes modules such as a WSDL to
OWL-S translator (WSDL2OWL-S) [63], an Eclipse-based editor for creating and editing
OWL-S profiles, process models and groundings, and the OWL-S Virtual Machine [62].
The Mindswap OWL-S API [79] provides a Java API for programmatic access to read,
execute and write OWL-S service descriptions. The API provides functionality for parsing,
serializing, validating, reasoning, and executing services for various versions of OWL-S.
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Certain tools primarily focus on the generation of OWL-S descriptions from WSDL files.
Besides the WSDL2OWL-S converter included in CODE, we can also mention Assam
(Automated Semantic Service Annotation with Machine learning) [31], which assists the
user to semantically annotate legacy WSDL services. The tool uses a combination of
different machine learning techniques such as iterative relational classification and
ensemble learning to semi-automate the annotation process. OntoLink (Ontology Linker)
[47] is another tool that helps users to generate executable OWL-S descriptions from
WSDL files. The emphasis of this tool is on semi-automating the generation of grounding
specifications by letting the user define mappings between ontologies and XML schema
definitions through a graphical user interface. An extensible stylesheet language
transformation (XSLT) [16] file is automatically generated based on the mappings that
the user defined; the resulting OWL-S grounding is directly executable. OntoLink also
facilitates the specification of semantic and syntactic mappings or transformations between
concepts defined in different ontologies (in a similar fashion), so that services defined using
disjoint ontologies can interoperate. Mappings between ontologies are generated using
XSLT and automatically wrapped inside a so-called translator service. These translator
services transform the output of one service into a compatible format that another service
can consume, so that two previously incompatible services can be composed together.

In addition to developing tools for OWL-S, researchers have proposed several
extensions to the OWL-S framework. For example, Denker et al. [22] present security
annotations for OWL-S services to enable secure exchanges between service consumers
and providers. These annotations are expressed using an ontology that describes credentials,
security mechanisms and privacy options. Kagal et al. [35] extend this framework to
express such annotations in Rei [36], a policy language that can be used for defining rules
and constraints over domain-specific ontologies. The OWL-S Matchmaker system [64] is
also extended for policy matching, and the OWL-S Virtual Machine (VM) [62] has been
extended to enforce policies and security mechanisms. Similar extensions to OWL-S are
proposed by Srinivasan et al. [82] to support policy and contract management using KAoS
[87] services and tools. Other extensions to OWL-S have been developed for augmenting the
process ontology to model Web Service brokers [68], for describing concrete application
servers that facilitate reusing and combining Semantic Web software modules (e.g., ontology
stores or reasoners), for describing Web Services in the bioinformatics domain [89], for
enriching OWL-S with speech acts to describe agent-based Web Services [27], for modeling
processes for learning software to assist and train U.S. Air Force planners [34], etc.

For more details, readers are referred to the OWL-S Web site [46], the Semantic Web
Central Repository ([77]), and the public mailing list of the W3C’s Semantic Web Services
Interest Group (public-sws-ig; http://www.w3.org/2002/ws/swsig/).

9 Related work

In this section, we review related work and compare OWL-S to alternate approaches to
linking Web Services and the Semantic Web. Because a thorough presentation of related
work would require too much space, we limit our discussion to six of the main technologies
to date: WS-BPEL, ebXML, CDL, SWSF, WSMO, and WSDL-S.

9.1 Web Services Business Process Execution Language (WS-BPEL)

WS-BPEL [4] enables the specification of executable business processes (including Web
Services) and business process protocols in terms of execution logic and control flow.
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Executable business processes specify the behavior of individual participants within Web
Service interactions and can be invoked directly, whereas business process protocols (also
called abstract processes) describe the messages exchanged by the various Web Services
within an interaction.

Business process protocols only consider protocol-relevant data and ignore process-
internal data and computations. The effects of such computations on the business protocol
are then described using nondeterministic data values. Executable processes, on the other
hand, are described using a process description language that deals with both protocol-
relevant and process-internal data. WS-BPEL also defines several mechanisms for
recovering from faults, such as catching and handling of faults, and compensation handlers
for specifying compensatory activities (in the event of actions that cannot be explicitly undone).

The area of greatest overlap between WS-BPEL and OWL-S is in the process model, but
there are some crucial differences. In OWL-S, the process notation includes preconditions
and results that enable automated tools to select and compose Web Services. The WS-BPEL
notation includes more elaborate control structures and exception-recovery protocols. It
would be fairly easy to add such features to OWL-S, but we are reluctant to do so without
further research on how to automate reasoning about them.

The OWL-S process model and WS-BPEL attempt to cover similar territory, but in
complementary ways. The emphasis in OWL-S is on making process descriptions
computer-interpretable, i.e. described with sufficient information to enable the
automation of a variety of tasks, including Web Service discovery, invocation, and
composition. WS-BPEL provides a language primarily intended for manually construct-
ing processes and protocols. The two design goals are not really incompatible. For
instance, recent work [43] has shown how WS-BPEL can use OWL-S descriptions of
services to augment its functionality to include tasks such as dynamic partner binding and
semantic integration.

9.2 Electronic Business Using Extensible Markup Language (ebXML)

The ebXML language [40] addresses the broad problem of B2B interactions from a
workflow perspective. Business interactions are described through two views: a Business
Operational View and a Functional Service View. The Business Operational View deals
with the semantics of business data transactions, and includes operational conventions,
agreements, and mutual obligations between businesses. The Functional Service View deals
with the supporting services: their capabilities, interfaces and protocols. Although ebXML
does not restrict the means of B2B interaction to Web Services per se, it addresses many of
the same issues as Web Services technology.

The ebXML language enables Web Services to describe the business processes they
support and the services they offer using collaboration protocol profiles. A business process
in ebXML is considered to be a set of business document exchanges between a set of Web
Services. This is akin to the Web Services message exchange as commonly described in Web
Services standards. Collaboration protocol profiles contain industry classification, contact
information, supported business processes, interface requirements, etc. They are registered
within an ebXML registry [13] (similar to a UDDI registry) in which other Web Services
and their business processes can be discovered. However, the format in which the business
documents are specified is not in the scope of ebXML. The interacting Web Services have
to agree upon this format a priori by creating a collaboration protocol agreement. As OWL-S
provides a language for describing the behavior ofWeb Services, its scope is complementary to
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that of ebXML. In fact, OWL-S descriptions could themselves be used within ebXML to
describe the business processes of interacting Web Services [40].

9.3 Web Service Choreography Description Language (CDL)

CDL describes Web Service interactions in terms of externally observable behavior,
typically exposed through message exchanges. Each participant in an interaction
specifies an interface that describes the temporal ordering and logical dependence of
messages it sends and receives. In addition, a global model can be specified to
describe the collective message exchange of interacting Web Services. Unlike WS-
BPEL, CDL does not describe the executable details of individual Web Services. It
focuses on the problem of collaboration (message exchange between distributed peers)
rather than orchestration (creation of executable Web Services). Consequently, it does
not assume the presence of a central process managing the interactions between Web
Services. For the same reason, the control flow constructs in CDL are considerably
simpler than those of WS-BPEL. CDL documents are formal specifications intended
for explication, (automated) verification, and conformance testing, although they can
be used to automatically generate code skeletons.

CDL corresponds most closely to the OWL-S process model. Both share the goals of
describing the message exchange between participating Web Services. However, unlike
CDL, OWL-S markup is also meant to support the execution and generation of executable
service compositions (e.g., using AI planning techniques). Also, CDL specifically
eschews any description of the significance (e.g., the business significance) of interactions,
whereas OWL-S is specifically intended to support the description of everything from the
real-world preconditions and results of an invocation to the classification of services by
their primary purpose.

9.4 Semantic Web Services Framework (SWSF)

SWSF [7], published online in 2005 by the Semantic Web Services Initiative, builds loosely
on OWL-S to provide a more comprehensive framework, in the sense of defining a larger
set of concepts. It also builds on a mature pre-existing formal approach to process
modeling, the process specification language [29]. SWSF specifies the Semantic Web
Services language (SWSL) [7], a Web-oriented language with a logic programming layer
and a first-order logic layer. SWSF uses SWSL to define the Semantic Web Services
ontology (SWSO) [7], an ontology of service concepts that takes advantage of SWSL’s
greater expressiveness (relative to OWL) to more completely axiomatize the concepts. As
SWSO is completely axiomatized in first-order logic, it avoids the need for using hybrid
reasoning (based on both description logics and first-order logic) as in OWL-S.

9.5 Web Services Modeling Ontology (WSMO)

WSMO [88] shares with OWL-S and SWSF the vision that ontologies are essential to
support automatic discovery, interoperation, and composition of Web Services. As SWSF,
the WSMO effort defines an expressive Web-oriented language, the Web Service modeling
language (WSML) [20], which provides a uniform syntax for subdialects ranging from
description logics to first-order logic. Like OWL-S, WSMO declares inputs, outputs,
preconditions, and results (although using a somewhat different terminology) associated with
services. Unlike OWL-S, WSMO does not provide a notation for building up composite
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processes in terms of control flow and data flow. Instead, it focuses on specifying internal and
external choreographies, using an approach based on abstract state machines. Other
distinguishing characteristics include WSMO’s emphasis on the production of a reference
implementation of an execution environment, the Web Service modeling execution
environment (WSMX) [30], and on the specification of mediators (i.e., mapping programs
that solve interoperability problems between Web Services).

In the WSMO approach, mediators perform tasks such as translating between ontologies,
or between the messages that one Web Service produces and the messages that another Web
Service expects. WSMO includes a taxonomy of possible mediators that helps to classify
the different tasks that mediators are supposed to fulfill. The definition of mediators in
WSMO draws attention to some important translation tasks associated with Web Services.
Unsurprisingly, these same translation tasks are needed in support of interactions with Web
Services described in OWL-S. Some OWL-S based systems also make use of mediator
components. However, rather than requiring the existence of a distinguished type of entity
in the Web Services infrastructure, OWL-S takes the view that mediators are services, and
as such these mediation services can use the mechanisms provided by OWL-S for
discovery, invocation and composition. In addition, mediators can be constructed through
OWL-S enabled composition [69].

9.6 WSDL-S

WSDL-S [2] (the final ‘S’ of the acronym indicates the addition of semantics to WSDL) is a
small set of proposed extensions to WSDL, by which semantic annotations may be
associated with WSDL elements (e.g., operations, input and output type schemas, and
interfaces). WSDL-S aims to support the use of “semantic concepts analogous to those in
OWL-S while being agnostic to the semantic representation language” [2]. The way in
which WSDL-S allows one to specify a correspondence between WSDL elements and
semantic concepts is very similar to how the OWL-S grounding works; indeed, a notation
resembling OWL-S declarations could be used to specify the referents of the WSDL-S
attributes. The most notable difference between WSDL-S and the OWL-S grounding is that
with WSDL-S, the correspondence must be given in the WSDL specification, whereas with
OWL-S, it is given in a separate OWL document. (The OWL-S grounding also proposes
some WSDL extension elements, but they are regarded as optional for most purposes.)
Thus, the aims of WSDL-S are compatible with those of OWL-S, but WSDL-S focuses on
the practical advantages of a more lightweight, incremental approach.

10 Conclusions

In this paper, we have described OWL-S, a representational framework that provides for
more complete specifications of the capabilities and behavior of Web Services, so as to
support greater automation of service-related activities (notably discovery and composition)
than current representational frameworks for Web Services.

OWL-S consists of three parts. The first part is a vocabulary for describing service profiles,
which are high-level descriptions of Web Services suitable for advertising them and
supporting reasoning about their usefulness for achieving a given goal. The second part of
OWL-S consists in a subontology and a presentation language for specifying process models
in detail. The models describe services primarily in terms of inputs, outputs, preconditions,
and results. The preconditions and results are fine-grained and precise enough to be matched
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to the user’s formally specified goals and descriptions of available resources. Composite
processes add information about process structure, behavior, and interactions. The third part
of OWL-S is a subontology for describing groundings of Web Services, which map their
inputs and outputs to messages at the communication-protocol level. Although other
protocols have been used, SOAP messaging, as described by WSDL, has been the most
popular choice for use with OWL-S. The subontology includes a vocabulary for describing
mappings to WSDL ports and messages.

After describing OWL-S, we showed that it has already encountered a large success in
the research community. We are encouraged by all the projects, tools, and extensions that
are building on it, including efforts carried out by non-members of the OWL-S Coalition.

OWL-S could still be improved in a number of ways. First, there is currently no way of
describing desirable security and QoS properties for Web Services; there is a dire need for
both in the community, and promising work is underway. Second, the process model lacks
exception handling, which would allow for a closer alignment with WSDL faults. Third, we
plan to update the grounding subontology so that it works with WSDL 2.0. Fourth, further
work is needed on algorithms that effectively support discovery, selection, and composition
of services in large-scale, complex settings. Fifth, to encourage the community to develop
OWL-S extensions, we are contemplating the prospect of adopting an open-source style of
code evolution. Finally, as in other areas of the Semantic Web, we need more domain-level
ontologies; there is a need to develop specializations of OWL-S profiles for a variety of
domains, and for broad categories of services; in addition, for services that sell goods, ontology
modules are needed for specifying cost models, negotiations, contracts, and guarantees.
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