
Real Face of János Bolyai
Tamás Dénes

On the 150th anniversary of the death of János Bolyai1

I
n Vol. 56, No. 11, of Notices, I saw a fascinat-
ing article with the title: Changing Faces—The
Mistaken Portrait of Legendre. The author, Pe-
ter Duren, writes with understandable bewil-
derment: “It seems incredible that such egre-

gious error could have gone undetected for so many
years.” This encouraged me to publish, in the same
journal, the story—no less fascinating—of the real
face of János Bolyai.

It should be explained that in the case of
János Bolyai two different interpretations of the
word “face” are justified: the “face” in terms of
the portrait (painting, drawing), and the “face” as
an abstract concept. The first part of the article
introduces the surprising story of his only portrait,
which, although universally accepted, turns out not
to be of him at all. The second part explores his
intellectual or “mind-face” (it is my own word
formation) and outlines a new approach to Bolyai’s
creative life and work.

The town of Marosvásárhely—which lies in the
heartof theCentral EuropeanTransylvania—fulfills
an important role in the history of the Bolyai fam-
ily: János lived most of his life there, and the local
library holds most of his manuscripts. The reader
might find it strange that while János Bolyai is well
known around the world as an eminent Hungar-
ian, Transylvania (and so Marosvásárhely) can be
found within the borders of Romania. This can be
explained by the unsettled history of Transylvania.
If we look back only to the nineteenth century, the
part of Transylvania that was populated mainly
by Hungarians was autonomous at times, whereas
at other times it belonged to Hungary. In 1947,
following World War II, the Treaty of Paris gave
this area to Romania, so that is where it is found
on today’s maps.

Tamás Dénes is a mathematician and cryptologist from
Hungary. His email address is tdenest@freemail.hu.
1Dedicated to the memory of Professor Elemér Kiss
(1929–2006).

The article entitled “The real face of János
Bolyai” originates from my conversations with
Professor Elemér Kiss. Unfortunately his serious
illness, followed by his death in 2006, thwarted
our writing of a shared article. This piece of work
is intended to fill this gap.

Only Two Pictures of János Bolyai Ever
Existed, Neither of Which Has Survived
János Bolyai (December 15, 1802–January 29, 1860)
emerges like a comet from the history of Hungarian
mathematics.

“He was an illustrious mathematician with a
great mind; the first amongst the first”—read the
record of his death in the book of the Reform
Church of Marosvásárhely in Transylvania. On
November 3, 1823, he had sent a letter to his father
from Temesvar, including the words that would
later become famous: “I created a new, different
world out of nothing.”

What he meant by this “new world” was the
idea of hyperbolic geometry, which was outlined
in 1832, as an appendix to the book Tentamen
by Farkas Bolyai,2 entitled “The absolute true sci-
ence of space” (Scientiam Spatii absolute veram
exhibens). This, under the name “Appendix”, has
become his best known piece of writing.

The theory outlined in this work has been
named “Bolyai-Lobachevsky geometry”, following
a decision made in 1894 at the International Bib-
liographic Congress of Mathematical Sciences. In
January 2009 the “Appendix” by János Bolyai was
added to UNESCO’s Memory of the World Register.

János Bolyai was the son of Farkas Bolyai—
himself a defining figure of nineteenth-century
Hungarian mathematics, who was in regular corre-
spondence with Gauss. As a result, it is perhaps
not surprising that Farkas Bolyai and his wife
Zsuzsanna Árkosi Benkö were immortalized by

2Father of János Bolyai.
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Figure 1. Title page of the “Appendix” by János
Bolyai.

contemporary artists in both drawings and oil
paintings. It might therefore be assumed that
their child, who had already become famous in
his lifetime, would be immortalized in a similar
manner.

But based on contemporary sources, only two
pictures of János Bolyai ever existed, neither of
which has survived. One of the “Vienna pictures”
was mentioned by Farkas Bolyai himself in a letter
written to his son on September 3, 1821. According
to other sources, by 1837 this picture could no
longer be found.

The other one was made while he was serving as
a lieutenant. The destruction of this was accounted
for by János Bolyai himself: “I tore up this picture,
which had been taken in a military parade, for I
was not worthy of my father. I wasn’t craving the
outward immortality so wildly promoted by others.”

The most recent research on Bolyai, by profes-
sors Tibor Weszely3 and Elemér Kiss,4 also supports
the idea that there is no surviving authentic image
of János Bolyai.

3Sapientia University, Tg-Mures, Romania.
4He had been a professor of mathematics until his death
(2006) at the Sapientia University, Tg-Mures, Romania.

The Portrait of János Bolyai That Isn’t
The question is: how has this—supposedly
authentic—portrait spread around the world with
the name of János Bolyai?

Well, exactly fifty years ago, on the centenary
of János Bolyai’s death, Hungarian and Romanian
stamps were published with Bolyai’s name on them.
Since then there has been an increased presence of
this portrait everywhere: in books, on postcards,
and most recently on the Internet, too. Today we
know for certain that this portrait is not that of
János Bolyai.

Figure 2. The portrait, not of János Bolyai (on
Hungarian and Romanian stamps in 1960),
that has been circulated around the world.

The year 2010 is the 150th jubilee of János
Bolyai’s death, so it’s about time that—after a latent
period of fifty years—we resolve this scandalous
mystery and bring to the public the results of
the latest Bolyai research. In order to do this, I
first need to briefly introduce the reader to two
contemporaries of Bolyai: two Hungarian painters
and a painting that plays a key role in the story.

Mór Adler (1826–1902) was one of the pioneers
of Hungarian painting. He stood out as a student of
some merit at the Weisenberger School of Graphic
Art, from which he went to the Vienna Academy.
There he was taught by the then well-known histor-
ical and religious painters, between 1842 and 1845.
He then traveled to Munich in 1845 to study the
works of Zimneirmann and Schnorr von Carolsfeld
and for further studies in 1846–1847 in Paris. Next
he settled in Pest in 1848, where he would become
a respected figure in the art world by the end of
his career. He took part in the Pest Artists Group
exhibition in 1851 and would take part in this
annually for the next fifty-eight years. He was best
known for his portraiture and still-life paintings,
which he executed in a fine realistic manner.

Mór Adler created the large oil painting above
(150 x 100cm) in 1864.

The name of the person depicted in this paint-
ing does not appear either on the front or the
back of the painting, nor is it mentioned in any
contemporary documents. One thing we know for
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Figure 3. Oil painting by Mór Adler from 1864.

certain is that a drawing by Károly Lühnsdorf
(1893–1958)5 was made, based on this painting.
He wrote the name János Bolyai at the bottom of
the drawing, accompanied by the following note:
“I have drawn this portrait based on the only re-
maining picture of János Bolyai, painted from life by
Mór Adler (1826–1902) artist from Óbuda in 1864—
Károly Lühnsdorf .” The original drawing by Károly
Lühnsdorf is now owned by the Bolyai family, but
the photo of it and Mór Adler’s painting can be
found on the walls of the János Bolyai Mathematical
Society.

To sum up, taking account of Mór Adler’s and
János Bolyai’s biographical data and the fact that
the painting is of a twenty-year-old man, we can
draw the following conclusion. If the painting was
of János Bolyai, it would have to have been created
around 1822, when Mór Adler wasn’t yet born.

Lühnsdorf states that he drew his picture “based
on Adler’s original painting from life”, a clear
assumption that Adler painted his picture of Bolyai
himself. However, we know from biographical data
that Mór Adler traveled around Europe until 1848.
Only then did he settle in Hungary—at which time
Bolyai was already forty-six years old.

To assume that the painter did not paint from
life but from memory would also be a mistake,
as in 1826, when Mór Adler was born, Bolyai was

5He studied at the Hungarian Academy of Arts between
1921 and 1928. His main interest was in painting por-
traits and biblical scenes; he acquired fame in the field
of portrait painting. These depicted scientists, historical
figures, and personalities from religious and public life.

Figure 4. Károly Lühnsdorf’s drawing of Mór
Adler’s painting. On it, his handwritten note
that has, until now, misled the world.

already twenty-four years old. If they met toward
the end of the 1840s, when Adler was beginning
his artistic career, János Bolyai would have already
been past forty.

Thus Mór Adler’s painting cannot be of János
Bolyai, and Károly Lühnsdorf must have written his
note based on false information, thereby mislead-
ing future generations. This is how this portrait,
that IS NOT OF JÁNOS BOLYAI, started its journey
around the world, being mistakenly recognized by
mathematicians, students, and institutions as the
only original portrait of him.

The Real Face of János Bolyai
“He was the first Hungarian mathe-
matician who (according to Loránd
Eötvös)6 created something world

6Loránd Eötvös (1848–1919) is remembered today for his
experimental work on gravity, in particular his study of
the equivalence of gravitational and inertial mass (the
so-called weak equivalence principle) and his study of
the gravitational gradient on the Earth’s surface. Eötvös’s
law of capillarity (weak equivalence principle) served as
a basis for Einstein’s theory of relativity, and the Eötvös
experiment was cited by Albert Einstein in his 1916 pa-
per “The foundation of the general theory of relativity”.
(Capillarity: the property or exertion of capillary attrac-
tion of repulsion, a force that is the resultant of adhesion,
cohesion, and surface tension in liquids that are in con-
tact with solids, causing the liquid surface to rise—or
be depressed.) The Eötvös torsion balance, an impor-
tant instrument of geodesy and geophysics throughout
the whole world, studies the Earth’s physical properties.
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Figure 5. Here is the picture of the only
authentic relief of János Bolyai on the front of

the Culture Palace in Marosvásárhely
(Romania).

famous. Unfortunately, of this
scientist-giant no picture survives,
his features being forever hidden
from future generations. The only
source describing his appearance
is his passport (made when he was
forty-eight): he was of average
build, blue-eyed and with a long
face.” (Elemér Kiss)

From contemporary descriptions we may learn
what he looked like. We know that he sported a
dark brown beard, that his hair was the same color,
that his eyes were dark blue. According to József
Koncz (historian of the College of Marosvásárhely),
János Bolyai looked very much like General György
Klapka.7 Another important fact: his son, Dénes
Bolyai, stated that there was a huge resemblance
between himself and his father.

I took this thinking further. On the facade of the
Culture Palace in Marosvásárhely, above the

mirror room windows, there are six carved stone
reliefs of nineteenth-century intellectual geniuses.
Underneath them, faded but readable subtitles
identify each figure.

It is used for mine exploration and also in the search for
minerals, such as oil, coal, and ores.
7György Klapka was a heroic general of the Hungarian
freedom fight in 1848–1849.

Figure 6. The only authentic relief of János
Bolyai.

The third one from the left is Farkas Bolyai, the
fourth one is János Bolyai. With the exception of
János Bolyai, we have authentic pictures of all of the
others. I compared these pictures with the reliefs,
and I found the features to be easily recognizable.

Then I looked at portraits of György Klapka and
Dénes Bolyai and placed them beside the János
Bolyai representation from the Culture Palace. I
was fascinated by the likeness: as if they were
showing the same person.

The Culture Palace in Marosvásárhely was built
between 1911 and 1913. At that time there were
people living in the town who knew or saw János
Bolyai, including his son Dénes Bolyai. He was a
retired judge who took part in the exhumation of
his father and grandfather on June 7, 1911. The
artist who set János Bolyai’s features in stone at
this time must have—naturally—consulted the son
(Dénes Bolyai) and his acquaintances regarding his
father’s looks.

Help of Computer Graphics
Based on the above reasoning, we have to accept
that there isn’t any authentic portrait of János
Bolyai. We have proved that Mór Adler’s and Károly
Lühnsdorf’s pictures aren’t of János Bolyai, and
there is little likelihood of ever coming upon
an authentic photo or painting in the back of
the archives. It is very important, however, that
we have authentic portraits of his father, Farkas
Bolyai, his mother, Zsuzsanna Benkö, and his son,
Dénes Bolyai.

From these data, with the help of computer
graphics (Meesoft SmartMorph software), Róbert
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Figure 7. Computer transformation of a face: János Bolyai—Dénes Bolyai.

Figure 8. Computer transformation of a face: Dénes Bolyai—Farkas Bolyai (The likeness of
grandson and grandfather can only be explained by the genetic mediation of János Bolyai
between the two generations.)

Figure 9. Computer transformation of a face: György Klapka—János Bolyai.

Oláh-Gál8 and Szilárd Máté9 have created a virtual
portrait of János Bolyai [20]. The aim of this
experiment was to reduce the subjective element
in deciding which portrait is more accurate, the
picture painted by Mór Adler in 1864 or János

8Sapientia University, Department of Mathematics and
Informatics, Miercurea-Ciuc, Romania.
9Sapientia University, Department of Mathematics and
Informatics, Miercurea-Ciuc, Romania.

Bolyai’s half-relief on the building of the Culture
Palace in Marosvásárhely.

After much experimentation, using the facial
transformation technique on the computer, the
following conclusion was drawn: in all probability,
only one of the pictures comes close to János
Bolyai’s real likeness, and it is the half-relief on the
Culture Palace.

After several decades of silence, attention needs
to be drawn to the fact that the face of János Bolyai
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in the public consciousness is not really his face.
The only authentic source of his real portrait is the
Culture Palace in Marosvásárhely (Figure 6). Being
a defining figure of mathematical history, in the
future he deserves to be associated with his real
facial features.

I present gladly to the reader the next two works
of art, which follow this mentality (see Figures 10
and 11).

Furthermore, this shocking statement, referring
to his appearance, may equally be applied to the
“well-known” facts about his professional activity
(“mind-face”).

János Bolyai’s Real “Mind-Face” as a Math-
ematician (Based on E. Kiss: Mathematical
Gems from the Bolyai Chests [16])
In his life János Bolyai’s only published work was
“The absolute true science of space”, better known
as the “Appendix”. This was enough to make him
world famous, but it also reduced his intellectual
creation to this single piece of work.

When János Bolyai died the military governor
seized all his manuscripts and had them put in
chests and transported to the castle so that they
could be examined for military secrets. Thus were
his papers preserved for posterity, approximately
14,000 pages of manuscripts. The task facing
researchers has not been easy. There are few
dates, no numbered pages, pages missing, notes
on envelopes and theater programs, idiosyncratic
mathematical notations, and newly invented words.

However, János Bolyai didn’t just leave us with
the “Appendix” but with a heritage, consisting
of 14,000 pages of letters to his father and
manuscripts which are now kept in chests in
the Teleki-Bolyai Library in Marosvásárhely. In
these chests one can find mathematical theories—
treasures in Bolyai’s words—that have been hidden
from the public for nearly 100 years. These pages
convince us that János Bolyai, who was known
purely as a geometer, was actually a universal math-
ematical genius who worked on many branches
of mathematics, at times preceding significant
inventions of other big names by decades.

The task Elemér Kiss took on, deciphering the
contents of the “Bolyai chests”, led to extraordinary
results. The expression “deciphering” describes
the tedious act of many decades by which it
has been possible to reconstruct the contents of
these materials. The contents, the grammar, the
mathematical symbols, which differed significantly
from those of present times, were often unreadable.
Today we know that the results of this hard work
have left us with a brand new “mind-face” of János
Bolyai.

Elemér Kiss’s book was published in 1999 in
Hungarian and in English, followed by an extended
second edition in 2005 by Typotex and Akadémia
Publishers [16].

Figure 10. Reconstructed portrait drawing with
India ink, made by Attila Zsigmond (a painter

who lived in Marosvásárhely in 1927–1999),
using Bolyai contemporary texts and other

sources. The picture can be found in the Bolyai
Museum, Marosvásárhely.

Figure 11. Bolyai Memorial Medal prepared for
the Bolyai anniversary (in 2002) by Kinga

Széchenyi, based on the relief on the Culture
Palace in Marosvásárhely.

The first chapter, “The life of János Bolyai
and the science of space”, gives a brief account
of the journey the scientist took in the creation
of a new geometry. In addition, there is a real
novelty in Chapter 1.6, considering the discovery
of non-Euclidean geometry based on facts from
Bolyai’s correspondence. The author comes up
with a convincing reasoning for the priority of
Bolyai in the Bolyai-Gauss-Lobacsevszky relation.

In the second chapter we can read a system-
atic and comprehensive description of the “Bolyai
chests”. Parts of this chapter explain the lan-
guage and symbols used by Bolyai, the result of
meticulous research, as some of the original texts
resemble complicated riddles.

In Chapter 4.3 we can read that in one of Bolyai’s
notes, he writes: “My long nourished expectations
and hopes had grown and mounted higher, namely,
that I can devise primes based solely on their order
in their series, independently or directly …, in other
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Figure 12. Elemér Kiss’s book reveals a
brand-new aspect of the mathematical work of
János Bolyai.

words, that it is possible to give a formula which will
define only primes.”

He could find no formula for rational integer
primes and neither could anyone else till this
day, but his investigations led János Bolyai to
an important discovery: he hit upon the first
pseudoprime.10

10Various composite numbers m for which the expres-
sion am−1 ≡ 1 (modm) is valid. The fact that the
number of pseudoprimes is infinite has been known since
1904 [5]. There are composite numbers m which sat-
isfy this congruence for each a, whenever a is a rela-
tive prime to m. These numbers are called Carmichael
numbers in honor of their discoverer [1]. One of the
most recent results of number theory is the proof that
Carmichael numbers exist beyond all boundaries (based
on a 1956 idea of the magnificent Hungarian mathe-
matician Paul Erdös (1913–1996)). J. Chernick proved a
theorem in 1939 that can be used to construct a subset
of Carmichael numbers. The number (6k + 1)(12k +
1)(18k + 1) is a Carmichael number if its three factors
are all prime. In 1994 it was shown by W. R. Alford, An-
drew Granville, and Carl Pomerance that there really do
exist infinitely many Carmichael numbers. Specifically,
they showed that for sufficiently large n, there are at least
n2/7 Carmichael numbers between 1 and n. The research
on the pseudoprime numbers was completed in the twen-
tieth century. and its more important application is in
cryptography [7]. I would like to add at this point that
Carmichael numbers have practical applications, namely
to attack RSA cryptosystems [21].

Bolyai believed he had discovered the formula
of primes in Fermat’s Little Theorem.11 Urged by
his father, he attempted to prove the inverse of
Fermat’s Theorem, but a few attempts convinced
him that proof was impossible and the inverse of
Fermat’s Little Theorem does not hold in general.12

He did not find the prime formula, but he discov-
ered the first pseudoprime. He communicated the
discovery of the smallest pseudoprime (relative
to 2), 341, in a letter to his father:

“…the most immediate and proper
main question, namely that it

may be the case that 2
m−1

2 ≡ 1
(modm), even though m is not
a prime (which can of course be
proven by even one example, such
as the following which I happened
to stumble on by chance, but not
without theoretical considerations):
2340 ≡ 1 (mod 341) is divisible by
341 = 11 · 31, which is infinitely
easy to ascertain from 210 = 1024,
which gives a remainder of 1 when
divided by 341, therefore the re-

mainder of 21017 = 2170 = 2
341−1

2

and 2341−1 ≡ 1 (mod 341) alike,
thus neither the Fermat theorem
nor the nice conjecture with regard

to 2
m−1

2 is valid (neither in the
general case, nor in the particular
one when a = 2), which is only
to be regretted, since they could
have supplied an excellent and
very comfortable new means of
identification (criterion) of primes
…”

From this letter, especially interesting is the
fragment: “but not without theoretical considera-
tions". What could those earlier notes include?
János Bolyai examined the question under what
conditions the congruence

(1) apq−1 ≡ 1 (modpq)

is satisfied, where p and q are primes, and a is
an integer not divisible by either p or q. His rea-
soning was as follows, according to Fermat’s Little
Theorem: ap−1 ≡ 1 (modp) and aq−1 ≡ 1 (mod q).
By raising both sides of the first congruence to the

11This theorem states that if p is a prime and a is an in-
teger not divisible by p, then the difference ap−1 − 1 is
divisible by p; a usual shorthand for this is: ap−1 ≡ 1
(modp).
12The inverse of Fermat’s Little Theorem is: If ap−1 ≡ 1
(modp) holds, it does not necessarily follow that p is a
prime.
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power of q − 1 and those of the second one to the
power of p− 1, we obtain:

(2)

a(p−1)(q−1) ≡ 1 (modp) and

a(p−1)(q−1) ≡ 1 (mod q)

⇒ a(p−1)(q−1) ≡ 1 (modpq).

Next Bolyai observes that if the congruence
ap+q−2 ≡ 1 (modpq) = ap−1 · aq−1 ≡ (modpq)
were true, then by multiplying the two expressions
obtained earlier, one could arrive at the desired
congruence (1).

The following step must be finding the con-
ditions that ensure the validity of the latter
congruence. Since ap−1 ≡ 1 (modp) and aq−1 ≡ 1
(modq), continues Bolyai, there must exist integers
h and k such that ap−1 = 1+hp and aq−1 = 1+ kq.
In other words the condition of the validity of (1)
is that

(3) hp+kq = (ap−1−1)+(aq−1−1) ≡ 0 (modpq).

It is satisfied if p is a divisor of k and q is a divisor
of h, according to Bolyai, this means that apq−1 ≡ 1

(modpq) is true of primes p and q for which ap−1−1
pq

and aq+1−1
pq

are integers, in which case

(4)
ap−1 − 1

q
and

aq−1 − 1

p
are also integers.

In the simple case when a = 2 Bolyai substitutes
some primes satisfying (4) and arrives at p = 11
and q = 31. This is how János Bolyai discovered
the smallest pseudoprime.

Although he emphasized in his letter quoted
above that “even one example” suffices, various
counterexamples emerge from the remaining
manuscripts. He constructed more congruences:

2340 ≡ 1 (mod 341), 414 ≡ 1 (mod 15),

2232 ≡ 1 (mod 232 + 1).
(5)

Bolyai says that if in the congruence (1) is a = 2,
then the congruence

(6) 2pq−1 ≡ 1 (modpq) follows.

This corresponds exactly to the theorem of James
Hopwood Jeans (1877–1940), which he published
in 1898 [15], decades after the death of János
Bolyai. This is the case with the Jeans theorem
as well. Bolyai’s discovery, like many others apart
from the “Appendix”, was not communicated even
to his father. This is why one of Bolyai’s beautiful
theorems does not bear the name of János Bolyai
but that of its rediscoverer.

Bolyai aimed to extend his method (6) to the
case in which n is a multiple of three prime
numbers: “…but it will be considerably more dif-
ficult with three factors.” Such congruences were
constructed by R. D. Carmichael in [1], [2]. Bolyai’s
attempt suggests the following idea of generalizing
Jeans’s theorem: Let p1, p2, . . . , pn be primes n ≥ 1

and let a be an integer not divisible by either of
these primes.

(7) If

ap1p2···pn−1
−1 ≡ 1 (modpn)

ap1p2···pn−2pn
−1 ≡ 1 (modpn−1)

·
·
·

ap2p3···pn−1pn
−1 ≡ 1 (modp1)








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














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

























then ap1p2···pn−1 ≡ 1 (modp1p2 · · ·pn).

Chapter 4.6 reveals that János Bolyai was also
captivated by Fermat numbers.13 In one of the
letters written to his father, he alludes to his
approach to Fermat numbers in two places: “By
the way, my previous demonstration of numerus
perfectus14 and that of concerning 22m +1 are good
and nice ….

“I intended to show that any number of the form
2p − 1 is a prime number if p is prime, at the same
time when I took pains over 22m + 1, since as my
writings show, I thought that 2p − 1 was always a
prime for any prime p. …”

This chapter represents a special value where
Bolyai’s theorem on Fermat numbers is introduced.
According to this “Fermat numbers are always of
the form of 6k−1, and therefore are never divisible
by 3.” He proves the proposition as follows:

22m−1 + 1 = (2+ 1)(. . . ); consequently, 22m−1 +
1 = 3n, and so 22m−1 = 3n− 1, thus 22m = 6n− 2,
that is, 2 raised to an even power, is of the form
6n−2. Then 22m+1 and thus 22m +1 is of the form
6n− 1, with m, n ≥ 0 being natural numbers.

The international significance of this theorem
and the weight of Elemér Kiss’s research have been
supported by the publication of [18], in which
Theorem 3.12 was called the “Bolyai Theorem”.

This is the first highly reputable source in which
János Bolyai’s name is mentioned in the field of
number theory as opposed to geometry, which is
a real milestone on the way to revealing the real
“mind-face” of János Bolyai.

In Chapter 4.7, Kiss pointed out that János
Bolyai was able to prove the converse of Wilson’s
Theorem,15 but he was unaware of the earlier proof

13Numbers of the form Fn = 22n + 1 where n is a natu-
ral number. Fermat firmly believed that all such numbers
were primes, even though he had only calculated F0 = 3,
F1 = 5, F2 = 17, F3 = 257, F4 = 65637. His conjec-
ture was disproven when Euler in 1732 showed that the
next Fermat number F5 = 641x6700417 is not a prime.
By the early 1980s Fn was known to be composite for all
5 ≤ n ≤ 32.
14Perfect number.
15In 1770 Edward Waring (1736–1798) announced the
following theorem by his former student John Wilson
(1741–1793): if p is prime, then (p − 1)! ≡ −1 (modp),
that is, (p − 1)! + 1 is divisible by p. The theorem
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of Lagrange. Gauss discusses Wilson’s theorem in
Disquisitiones Arithmeticae, but on its converse he
keeps silent. János Bolyai acquired the bulk of
their number theoretic knowledge from the work
of Gauss; thus Bolyai was unaware of the proof of
the inverse to Wilson’s theorem.

The inverse to the theorem was important for
János Bolyai, who was interested in the prime or
composite nature of various large numbers and
who also searched for the formula of primes. He
notes that “I have proven the inverse of the very
beautiful and significant Theorem of Wilson.” For
the reader’s delight I present Bolyai’s proof:

Suppose that

(8) (p − 1)! ≡ −1 modp.

Let q be a prime divisor of p, namely p = q · p1,
then

(9) (p− 1)! ≡ −1 mod q,

and according to Wilson’s theorem

(10) (q − 1)! ≡ −1 mod q.

It follows from (9) and (10) that
(11)

(q − 1)! ≡ (p− 1)! mod q ⇒ 1 ≡ (p− 1)!

(q − 1)!
mod q.

Assume now q < p, then q is a divisor of (p − 1)!
but not of (q − 1)!. Hence

(12) q < p ⇒ (p− 1)!
(q − 1)!

≡ 0 mod q.

The congruences (11) and (12) are contradictory;
consequently the assumption q < p is false. Thus
p = q is a prime.

From Chapter 4.8 we may find out that János
Bolyai obtained results on the general construction
of magic squares16 of small orders.

Bolyai wrote on the sheet containing the magic
square that a = 3b (see Figure 13); consequently
b = 5 is true.

At the end of his note Bolyai invites the reader
to generalize his 3x3 magic square to nxn squares:

was published by E. Waring, but he acknowledged that it
had first been formulated by J. Wilson without a proof.
The theorem was first proved by Joseph Louis Lagrange
(1736–1813) in 1771, and he proved the inverse to Wil-
son’s theorem as well: if n is a divisor of (n− 1)!+ 1, then
n is prime.
16A magic square of order n is an arrangement of n2

numbers, usually distinct integers, in a square, such that
the n numbers in all rows, all columns, and both diago-
nals sum to the same constant. A normal magic square
contains the integers from 1 to n2. The constant sum in
every row, column, and diagonal is called the magic con-
stant or magic sum, a. The magic constant of a normal
magic square depends only on n and has the value a =
n(n2+1)

2 .

Figure 13. János Bolyai’s general construction
of a 3x3 magic square.

Figure 14. Concrete solution of János Bolyai’s
3x3 magic square.

“Seek and search the way to construct general mag-
ical squares from a �17 divided into any number of
equal � − s, be it arithmetical, geometrical or har-
monic progression…” I would like to add that
Bolyai’s ideas were reinvented by Cayley [3] and
Chernick [4], and a survey on the general con-
struction of magic squares can be found in an
encyclopedic book [6].

Chapter 5 talks about a few results of Bolyai’s
work that have never been seen before: about com-
plex integers,18 into the research of which Bolyai
invested huge amounts of energy. These studies,
which Bolyai called the “theory of primes” or “imag-
inary number theory”, dealt with the arithmetic of
complex integers.

The theory of divisibility of complex integers
was founded and developed by Gauss [12], [13].
He proved the theorem corresponding to the
fundamental theorem of number theory inside
Gaussian integers and discussed congruences in-
volving complex numbers. János Bolyai elaborated
the arithmetic of complex integers independently
of Gauss and approximately at the same time.

17This is the original symbol on Bolyai’s sheet (see Figure
13).
18The complex or Gaussian integer is a complex number
whose real and imaginary parts are both integers. For-
mally, Gaussian integers are the set Z[i] = {a+bi | a,b ∈
Z}, i =

√
−1.
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The beginnings of Bolyai’s investigation of com-
plex numbers can be dated exactly, because in a
letter to his father he pinpoints the date: “I sought
the theory of imaginary quantities in their proper
place and fortunately found it in 1831.” Based on
his statements it can be asserted that János Bolyai
saw his own theory clearly at the beginning of the
1830s, even in the years prior to the publication of
the “Appendix”.

In his manuscripts it can be deciphered that he
clearly identified primes in the ring of complex
integers. He asserted that complex primes are
either

(13) the numbers 1+ i, 1− i, −1+ i, −1− i,
(14) rational primes of the form 4m+ 3,
(15) complex factors of rational primes of the

form 4m+ 1.

Bolyai merely enumerates the numbers (13) as
“perfect primes”, and he notes that 2 = (1+i)(1−i),
but he clearly indicates that 1+ i cannot be written
as the product of two complex integers.

About numbers (14) Bolyai presents various
proofs that they are “absolute primes”. One of his
proofs: “If a prime p is of the form 4m + 3, then
p = t2 + u2 is impossible, because if both t and u
are even or odd at the same time, then the sum of
their squares would yield an even number and such
a number is not a prime. If one of t and u is even
and the other is odd, then the sum of their squares is
a number of the form 4m+1. Then p is an absolute
prime.”

Bolyai showed that the complex integer m +
ni has no divisor different from its associates
provided thatp =m2+n2 is a prime. He relates this
property of numbers (15) to Fermat’s Christmas
theorem, and he writes: “Every prime p of the form
4m+1 is the product of two imaginary primes, since
all such numbers are the sum of two full squares.”
For example: 13 = (2+ 3i)(2− 3i).

János Bolyai also discussed unique factorization
of complex integers, and he proved the following
theorem: “Every number of the form a + bi can be
uniquely (up to the order of the factors) decomposed
into a product of finitely many primes.”

He not only elaborated the theory of complex
numbers, but its applications were also of impor-
tance to him. He skillfully applied his conclusions
on complex integers in proofs of various number
theoretic theorems.

Chapter 6, “The theory of algebraic equations”,
reveals Bolyai’s struggles in connection with the
solvability of algebraic equations of fifth and higher
order. His unpublished collection contains many
notes pertaining to this subject. It has been
summed up by Elemér Kiss at the end of this
chapter: “János Bolyai thought long about this im-
portant problem without knowing that it had been
resolved before.”

This is why the connection between Bolyai and
the theory of algebraic equations is especially in-
teresting. János Bolyai frequently mentions the
two-volume Vorlesungen über höhere Mathematik
by Andreas von Ettingshausen (1796–1878), which
was published in Vienna in 1827 (see [11]). In
this book the author devoted an entire chapter
to the impossibility of solving equations of a de-
gree higher than four and cited Paolo Ruffini’s
(1765–1822) proof of 179919 [22], [23]. Bolyai cites
Joseph Louis Lagrange’s (1736–1813) book [19],
which addresses the fundamental problem of why
the methods used for solving equations of a de-
gree equal to or lower than four are inapplicable
in equations of higher degree.20 On his reading
Bolyai writes: “…to give a proof of this impossi-
bility for degree 5 and for higher degrees as well:
this proof being given by Ruffini (as the deserved Et-
tingshausen writes) wittily enough, but with a great
many mistakes, in short, only in his fancies.”

This led him to conclude that the theorem was
not valid and consequently at first, he searched
for the solution of equations of degree higher than
four with great enthusiasm, and he wrote in 1844:
“By refuting the demonstration of impossibility (by
Ruffini) …it will be proven eo ipso (self-evidently) in
a new way .”

János Bolyai thought long about this important
problem without knowing that it had been resolved
before. On the other hand, the world didn’t know
about this nineteenth-century Hungarian scientist
who (perhaps late and only for its own sake) had
put an end to a centuries-long debate.

The above facts suggest the isolation Bolyai
worked in all his life and the enormous creative
power through which he was able to “create a new,
different world out of nothing”, not exclusively in
the field of geometry.

Acknowledgment
It is hard to overestimate the value of the work
of Elemér Kiss in the process of revealing János
Bolyai’s real face after 150 years of silence. What
makes it even more meaningful is the fact that
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as the famous image that has been circulated
around the world is certainly not his. To put
an end to this misconception, and also to pub-
licize essays and research in related areas, “The
Real Face of János Bolyai” has been created at:
http://www.titoktan.hu/Bolyai_a.htm.

19The 1826 article by Niels Henrik Abel (1802–1829)
could not have been included in this work published in
1827. The Abel-Ruffini theorem states that there is no
general solution in radicals to polynomial equations of
degree five or higher .
20This observation not only impelled Ruffini and Abel to
continue research in this direction but also led to Galois’s
conception of group theory.
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George Bruce Halsted (1853–1922), American
mathematician, translated the “Appendix” by
János Bolyai into English in 1896.

At this point it is necessary to remember the
American mathematician George Bruce Halsted
(1853–1922), who in 1896—before any other for-
eign Bolyai researcher—visited Marosvásárhely and
translated the main work of János Bolyai: the
“Appendix” [14]. With his activity he contributed
significantly to the international appreciation of
the two Bolyais.

I would like to sincerely thank the referees
who supported the publication of this essay, for
continuing the tradition initiated by G. B. Halsted.
By doing so they make a significant contribution to
the introduction of János Bolyai’s real face to the
world.

This essay could not have been written without
our personal discussions with Professor Elemér
Kiss, the written accounts of Professor András
Prékopa, and Róbert Oláh-Gál’s support with the
face animation.

I would like to say a special thank you to
Ildikó Rákóczi, the director of the János Bolyai
Mathematical Society, for making it possible for
me to photograph and publish pictures of key
importance for the purposes of this project.

I would also like to express my gratitude to my
daughter Eszter and Damien Bove for taking care
of the language aspect of this essay.
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