
 1 of 6

Abstract 
 

A fast computation solution is required to analyze and infer 
large amount of data in various applications. In 
BioInformatics, DNA sequence information is critical to 
understanding genetic variations. DNA sequencing is the 
process of determining the exact order of the chemical 
building blocks in a sample. This computation requirement 
is the greatest technical challenge in the Human Genome 
Project. The Needleman-Wunsch algorithm is used for 
alignment of DNA Sequences under Global Alignment 
category. A fast computation solution is proposed through a 
parallel version of this algorithm and use of the Alchemi 
Grid as the processing engine.  

 
Keywords—DNA Sequence, Global Alignment, Grid, 
Needleman-Wunsch, Parallel Algorithm 
 
 
1.  Introduction 
 
The length of a normal DNA Sequence makes about 40KB 
to 60KB long string in FASTA format [5]. Aligning two 
DNA sequences [2][3][4][6] requires a long time on a single 
processor. The algorithm has a complexity of O(NxM) 
where N is length and M is depth of 2D array. The Parallel 
Needleman-Wunsch algorithm proposed is based on 
Needleman-Wunsch algorithm [9] to globally align [7] [8] 
two DNA Sequences using multiple processors, it reduces 
the time to O(N+M).  
 
Grid Computing [1] is an emerging technology to provide 
high performance computing in a virtual organization 
composed of a large number of computers connected 
through web based technologies. We have implemented a 
parallel version of the Needleman-Wunsch algorithm for 
handling the DNA matching and alignment problem. The 
Alchemi grid has been used to the run the algorithm in grid 
environment.  
 
2. Algorithm 

A sequence alignment is a scheme of writing one sequence 
on top of another where the residues in one position are 
deemed to have a common evolutionary origin. If the same 
letter occurs in both sequences then this position is 
conserved in evolution. If the letters differ it is assumed that 
the two derive from an ancestral letter (which could be one 
of the two or neither). Homologous sequences may have 

different lengths. Thus, a letter or a stretch of letters may be 
paired up with dashes in the other sequence to signify such 
an insertion or deletion. An insertion in one sequence can 
always be seen as a deletion in the other one, we use the 
term idel for such operation.  

In such a simple evolutionarily motivated scheme, an 
alignment mediates the definition of a distance for two 
sequences. One generally assigns 0 to a match, some 
negative number to a mismatch and a larger negative 
number to an indel. By adding these values along an 
alignment one obtains a score for an alignment. A distance 
function for two sequences can be defined by looking for the 
alignment, which yields the minimum score. By dynamic 
programming this minimization can be effected without 
explicitly enumerating all possible alignments of two 
sequences. 
 
A. Global Alignment [15] 
 

Global Alignment assumes that the two proteins are 
basically similar over the entire length of one another. The 
alignment attempts to match them to each other from end to 
end, even though parts of the alignment are not very 
convincing. : 

  NLGPSTKDFGKISESREFDNQ 
   |      ||||    |  
  QLNQLERSFGKINMRLEDALV 

 

B. Local Alignment [15] 
 
Local alignment searches for segments of the two sequences 
that match well. There is no attempt to force entire 
sequences into an alignment, just those parts that appear to 
have good similarity, according to some criterion are 
considered. Using the same sequences as above, one could 
get: 
 

  NLGPSTKDDFGKILGPSTKDDQ 
           |||| 
  QNQLERSSNFGKINQLERSSNN 

 
Most commonly used algorithm for local alignment is 
Smith-Waterman algorithm [16]. 
 
 
 
 

Parallel Needleman-Wunsch Algorithm for Grid 
 

Tahir Naveed1, Imitaz Saeed Siddiqui2, Shaftab Ahmed3 

tahir.naveed@gmail.com, imtiaz.saeed@gmail.com, shaftab@bci.edu.pk 
1, 2, 3 Department of Computer Sciences & Engineering, Bahria University Islamabad, Pakistan 



 2 of 6

3. Needleman-Wunsch algorithm [9][10][11] 
 
All possible pairs of residues (DNA bases or protein amino 
acids) - one from each sequence - are represented in a 2-
dimensional array. The sequences are written across the top 
and down the left side of the matrix, except that an extra row 
(row #0) and column (column #0) are added to allow the 
alignment to begin with a gap of any length in either 
sequence. The gap rows are filled with penalty scores for 
gaps of increasing lengths. Maximum possible values are 
calculated for all other boxes below, to the right of the top 
row and left column using the above scoring functions. All 
possible alignments are represented by pathways through 
this matrix. Each cell is the maximum possible score for an 
alignment ending at that point. For each cell, look at all 
possible pathways back to the beginning of the sequence 
(allowing gaps) and give that cell the value of the maximum 
scoring pathway. 
 
Figure 1 shows the matrix filled with values and pointers. In 
implementation there are two matrices, one to store the 
calculated values and another is used to store the pointers 
which will be used later to trace back for the optimal 
alignment  
 
 
        F(i,j)               i=0        1            2             3            4 

  A G T A 
 0 -1 -2 -3 -4 

A -1 1 0 -1 -2 
T -2 0 0 1 0 
A -3 -1 -1 0 2 

 
Figure 1 - Filled Needleman-Wunsch Matrix and Traceback Pointers 

 
Every non-decreasing path from (0, 0) to (M,N) corresponds 
to a global alignment of the two sequences. 
 
1. Initialization 

F(0, 0) = 0 
F(0, i) = −i * d 
F(j, 0) = −j * d 

 
2. Main Iteration 

For each i = 1 . . . M 
For each j = 1 . . . N 
 

 
F(i, j) = max 

{ F(i − 1, j − 1) + s(xi, yj), case 1 
F(i − 1, j) − d , case2 
F(i, j − 1) − d , case3 

 
 

Ptr(i, j) =  
{ DIAG , if case 1) 

LEFT , if case 2 
UP , if case 3 

 
 

3. Termination 
F(M,N) is the optimal score, and from Ptr(M,N), we can 
trace back the optimal alignment. The optimal global 
alignment is:   

    A G  T A 
    A  -  T  A 

 
4. Performance 
Time: O(NxM) (We need to fill out the whole matrix) 
Space: O(NxM) (We need a matrix to store all the trace back 
pointers) 
 
Needleman-Wunsch algorithm had used dynamic 
programming [11] approach to solve the problem in a small 
memory space, instead of making all combinations of DNA 
matching and using a big memory space. 
 
 
4. Parallel Needleman-Wunsch algorithm 
 
A parallel version of Needleman-Wunsch algorithm [9] has 
been developed; which uses multiple processors for 
initializing, Calculating and filling the DataMatrix (Stores 
the DNA Sequences and their calculated values) and the 
PointerMatrix (Stores DNA Sequences and the pointer 
values to be used later in backtracking). Our algorithm 
doesn’t include backtracking process to keep record for 
values to be calculated in each iteration on parallel 
machines. This algorithm has been implemented on Grid 
using Alchemi Framework [14].  
 
All the matrices in parallel version of Needleman-Wunsch 
algorithm are places in global memory space so that all 
available processors can access them at the same time to 
perform initialization and other calculations. 
 
A.  Parallel Initialization of Matrices using different CPUs 
 
In our example we will show the implementation of our 
algorithm on 3 CPUs. One of which contains global memory 
and rest of two are used for calculations. 
 
The DataMatrix and PointerMatrix are initialized with DNA 
Sequences and the gap values are inserted as shown in 
Figure 2 and Figure 3, mathematically. This step is handled 
in parallel on the participating machines. 
 
It is noticeable that this initialization of both matrices with 
DNA sequences can be performed in parallel, provided there 
are four CPUs available, which means that Step 1.1 and Step 
1.2 can be further performed in parallel. 
 
After above step, same is the case in initializing the two 
matrices with Gap values. Which means Step 1.4 and Step 
1.6 can be performed in parallel as well, provided four 
CPUs are available.  

 
j=0 

1 
2 
3



 3 of 6

1.1 
Parallel For-Loops to fill DataMatrix with two sequences 
Seq1 and Seq2 using two different CPUs executing each 
For-Loop 

For i=2 to Length of DataArray  
DataArray [0,i] = Seq1[i-2] 
 

For j=2 to Depth of DataArray  
DataArray [j,0] = Seq1[i-2] 

 
1.2 
Parallel For-Loops to fill PointerMatrix with two sequences 
(seq1 and seq2) using two different CPUs executing each 
For-Loop 

For i=2 to Length of PointerArray 
PointerArray [0,i] = Seq1[i-2] 
 

For j=2 to Depth of PointerArray 
PointerArray [j,0] = Seq1[i-2] 
 
 

 
 

Figure 2 - Initializing with DNA Sequences 
 
Figure 2 shows the initialization of DataMatrix and 
PointerMatrix with DNA sequence graphically. 
 
1.3 
Initializing the anchor point of the DataMatrix 
 DataArray [1,1] = 0 
 
1.4 
Parallel For-Loops to fill DataMatrix with GAP values using 
two different CPUs executing each For-Loop 
 Temp = 0 

For i=2 to Length of DataArray  
Temp = Temp + GAP 
DataArray [1,i] = Temp 

 
Temp = 0 
For j=2 to Depth of DataArray  

Temp = Temp + GAP 
  DataArray [j,1] = Temp 
 

1.5 
Initializing the anchor point of the PointerMatrix 
 PointerArray [1,1] = 0 
 
1.6 
Parallel For-Loops to fill PointerMatrix with GAP values 
using two different CPUs executing each For-Loop 
 Temp = 0 

For i=2 to Length of PointerArray  
Temp = Temp + GAP 
PointerArray [1,i] = Temp 

Temp = 0 
For j=2 to Depth of PointerArray 

Temp = Temp + GAP 
PointerArray [j,1] = Temp 

 

 
 

Figure 3 - Initializing with Gap Values 
 
Figure 3 shows the initialization of DataMatrix and 
PointerMatrix with Gap values graphically. 
 
B.  Preparation for Parallel Computing 
 

DataArray 
  A  C G T A A G T 
 0 -1 -2 -3 -4 -5 -6 -7 -8 

T -1 X X X X X X X X 
G -2 X X X X X X X X 
C -3 X X X X X X X X 
C -4 X X X X X X X X 
A -5 X X X X X X X X 
G -6 X X X X X X X X 
T -7 X X X X X X X X 
G -8 X X X X X X X X 

 
Figure 4 - Illustrating values to be calculated in parallel [12] 

 
Figure 4 shows the technique to calculate values in parallel. 
In first iteration, values at 2,2 will be calculated in parallel. 
In 2nd iteration 2,3 and 3,2 will be calculated in parallel and 
so on. Another matrix named MyMatrix, has been 
introduced which will keep track of indexes of DataMatrix 
to be calculated in parallel. 



 4 of 6

duration1 = 1 
For (loop1 = 0 ; loop1 < duration1 ; loop1++) 
 itemp = 2 
 jtemp = duration1 
 For a = 0 to loop1 
  str = itemp+,+jtemp 
  newArr[loop1, a] = str 
  itemp++ 
  jtemp-- 
 if (duration1 < length) 
  duration1++ 
 
iitemp = length/2 + 1 
duration2 = length/2 
newI = length 
 
For ( loop2 = duration2 ; loop2 >= 0 ; loop2--) 

itemp = iitemp 
       jtemp = length 
 
 For (int a = loop2 ; a >= 0 ; a--) 
  str = itemp+,+jtemp 
  newArr[newI-1, a] = str 
  itemp++ 
  jtemp— 
 
 newI++ 
 iitemp++ 
 if (duration2 >= length) 
  duration2— 
 
After Above calculation MyMatrix will look like 
 
2,2        
3,2 2,3       
4,2 3,3 2,4      
5,2 4,3 4,3 2,5     
6,2 5,3 4,4 3,5 2,6    
7,2 6,3 5,4 4,5 3,6 2,7   
8,2 7,3 6,4 5,5 4,6 3,7 2,8  
9,2 8,3 7,4 6,5 5,6 4,7 3,8 2,9 
9,3 8,4 7,5 6,6 5,7 4,8 3,9  
9,4 8,5 7,6 6,7 5,8 4,9   
9,5 8,6 7,7 6,8 5,9    
9,6 8,7 7,8 6,9     
9,7 8,8 7,9      
9,8 8,9       
9,9        

 
Figure 5 – MyMatrix 

 
The matrix MyMatrix shown in Figure 5, explains that in 
first iteration only 2,2 will be calculated, in 2nd iteration 3,2 
and 2,3 will be calculated in parallel and in third iteration 
4,2 , 3,3 and 2,4 will be calculated in parallel and so on. We 

can’t calculate 2,2 and 9,9 in parallel because 9,9’s result 
will not be available until 9,8 and 8,9 are not present. 
 
This MyMatrix clearly indicates that more CPUs means 
more parallel assigning, which will result in parallel 
calculation, biggest parallel calculation that can be 
performed in this step required eight CPUs for 8th iteration. 
Which means if less than eight processors (lets assume 5) 
are available then 5 values will be calculated in parallel and 
the remaining 3 values will be calculated in parallel to 
complete eighth iteration. 
 
C.  Sequential Assigning for Parallel Calculation 
 
This step of algorithm is assuming that 2 CPUs are 
available. 
 
CPU1 = 0 // shows CPU 1 is free 
CPU2 = 0 // shows CPU 2 is free 
 
For i=0 to Depth of MyArray  

For j=0 to Length of MyArray 
If MyArray [i,j] < > null 
 While ( CPU1 < > 0 OR CPU2 < > 0 ) 
 { 
 If CPU1 == 0 
 DataArray [i,j] = MaxofCPU1( MyArray [i,j] ) 
 Else 
 DataArray [i,j] = MaxofCPU2( MyArray [i,j] ) 
 } 
Else 

   Exit j Loop 
 
For-i loop check for Parallel Values to be calculated 
For-j assigns CPUs the indexes for which they will calculate 
values  
 
 
D.  Instructions on each CPU - int MaxofCPUn (int i,int j)  
 
The variables i and j are the coordinates of the DataMatrix’s 
value to be calculated. 
 
int max(int i, int j) 
 { 

//Getting previously calculated values 
  Diagonal = DataArray [i-1,j-1] 
  Up = DataArray [i-1,j] 
  Left = DataArray [i,j-1] 
   
  //Calculating all 3 values to compare 
  If ( DataArray [i,0] == DataArray[0,j] ) 
   Diagonal = Diagonal + MATCH 
  Else 
   Diagonal = Diagonal+ NoMATCH 
 



 5 of 6

  Up = Up + GAP 
  Left = Left + GAP 
 
  //Returning Max value and filling Pointer Matrix 
  If ( Diagonal > Left AND Diagonal > Up ) 
   PointerArray[i,j]="3" 
   return Diagonal 
  Else If( Up > Left ) 
   PointerArray[i,j]="2" 
   return Up 
 
  Else 
   PointerArray[i,j]="1" 
   return Left 
 } 
 
 
5. Implementation Problem 
 
All the matrices DataMatrix, PointerMatrix, MyMatrix are 
global and are accessible to the CPUs on a Grid. While 
implementing the above parallel Needleman-Wunsch 
algorithm using Alchemi framework [14], we faced the 
problem of increased network traffic. For small size of 
matrix it is not significant. However with typical sizes of 
DNA sequences the network traffic overhead has to be 
reduced. To handle this problem two formulas as under were 
used: 
 
No. of Threads  = Ceil  No. of values in the current diagonal     
                Threshold [Upper limit]   
 
  
Where Threshold is the range of values from which we 
select the number of values to be solved per thread.  
 
Workload =  Ceil   No. of values in the current diagonal 
           No. of Threads 
 
 
Workload is the number of values to be solved per thread. 
 
 
Sessions 
 
For each new diagonal a new session is created. Each 
session consists of one or more threads depending on the 
length of the diagonal and the threshold (range of values 
from which the workload is chosen with the help of 
formule). Each new session is dependant on the result of its 
previous session. As long as the threads of the a session are 
running, new session cannot be created.  
 
 
 

Threads  
 
A thread [13] is assigned a certain workload with respect to 
the number of values in the current diagonal and the 
threshold.  All the threads that belong to the same session 
are totally independent of each other and thus can be solved 
in a parallel fashion. 
 
6. Conclusion 
 
By developing Needleman’s parallel algorithm we have 
reduced the calculation time from O(NxM) to O(N+M) [12]. 
The Alchemi framework for grid computing has been used 
to demonstrate the usefulness of the concept for large 
sequences like DNA. 
 
Initialization steps are already parallel in this new algorithm 
and a slight change in algorithm can enhance initiation to 
double of current speed provided more processors are 
available. 
 
Preparation for parallel calculation step also indicates that 
more CPUs means more calculations to be performed in 
parallel as in the above example, eight CPUs are required to 
obtain the best of this algorithm. 
 
 

REFERENCES 
 
[1] Krishna N. and Akshay L. and Dr. Rajkumar B., 2002, Alchemi v0.6.1 
Documentation [online], University of Melbourne. Available: 
http://alchemi.net/doc/0_6_1/index.html 
 
[2] About the Human Genome Project [online], Oak Ridge National 
Laboratory. Available: 
http://www.ornl.gov/sci/techresources/Human_Genome/project/about.shtml 
 
[3] The Science Behind the Human Genome Project [online], Oak Ridge 
National Laboratory. Available: 
http://www.ornl.gov/sci/techresources/Human_Genome/project/info.shtml 
 
[4] Facts About Genome Sequencing [online], Oak Ridge National 
Laboratory.Available: 
http://www.ornl.gov/sci/techresources/Human_Genome/faq/seqfacts.shtml 
 
[5] FASTA Format Description [online], NGFN-BLAST by Nationale 
Genomforschungsnetz. Available: http://ngfnblast.gbf.de/docs/fasta.html 
 
[6] Source of DNA Sequences [online], National Center for Biotechnology 
Information. Available: http://www.ncbi.nlm.nih.gov/mapview 
 
[7] Pairwise Sequence Comparison [online], Lab of Bioinformatics, 
Institute of Computing Technology (ICT), Chinese Academia of Sciences 
(CAS). Available: http://www.bioinfo.org.cn/lectures/index-13.html 
 
[8] Introduction to Bioinformatics - Chapter 5 - Introductory Sequence 
Analysis [online], Human Genome Mapping Project Resource Centre 
(HGMP-RC) by UK Medical Research Council. Available: 
http://portal.rfcgr.mrc.ac.uk/Courses/Jemboss_3day/Chapter5.html#Global
%20sequence%20alignment  
 



 6 of 6

[9] Rong X, Jan 2003, Pairwise Alignment - CS262 - Lecture 1 Notes 
[online], Stanford University. Available: 
http://ai.stanford.edu/~serafim/cs262/Spring2003/Notes/1.pdf 
 
[10] Bin Wang, 2002, Implementation of a dynamic programming 
algorithm for DNA Sequence alignment on the Cell Matrix Architecture 
[online], Utah State University, Logan, Utah. Available: 
http://www.cellmatrix.com/entryway/products/pub/wang2002.pdf 
 
[11] Chand T. John, April 2004, CS273: Algorithms for Structure and 
Motion in Biology, Stanford University. Available: 
http://www.stanford.edu/class/cs273/scribing/8.pdf 
 
[12] DNA Sequence Comparison [online], The BioWall by Swiss Federal 
Institute of Technology in Lausanne (EPFL). Available: 
http://lslwww.epfl.ch/biowall/VersionE/ApplicationsE/SequenceE.html 
 
[13] Krishna N. and Akshay L. and Dr. Rajkumar B., 2002, Alchemi v0.6.1 
Documentation [online], University of Melbourne. Available: 
http://alchemi.net/doc/0_6_1/index.html 
 
[14] Krishna N. and Akshay L. and Dr. Rajkumar B., 2002, Alchemi v0.6.1 
Documentation [online], University of Melbourne. Available: 
http://alchemi.net/ 
 
[15] BioInformatics Educational Resources 
Documentation [online], European Bioinformatics Institute United 
Kingdom. Available: 
http://www.ebi.ac.uk/2can/tutorials/protein/align.html 
 
[16] Chitta Baral, Computational Molecular Biology, CSE 591 
Arizona State University, United States of America. Available: 
http://www.public.asu.edu/~cbaral/cse591-s03/classnotes/seq-align.pdf 


