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Abstract. Let D be an integral domain which is not a field. If either D is
Noetherian or D is a Prüfer domain, then Int(D) is a treed domain if and only if

it is a going-down domain. Suppose henceforth that (D, m) is Noetherian local

and one-dimensional, with D/m finite. Then Int(D) is a going-down domain if
and only if D is unibranched (inside its integral closure); and Int(D) is locally

divided if and only if D is analytically irreducible. Thus, if D is unibranched

but not analytically irreducible, then Int(D) provides an example of a two-
dimensional going-down domain which is not locally divided. Also, Int(D) is

a locally pseudo-valuation domain if and only if D is itself a pseudo-valuation

domain. Thus, Int(D) also provides an example of a two-dimensional locally
divided domain which is not an LPVD.

Introduction

Among the generalizations of Prüfer domains introduced in the decade 1974-
1983, one finds the locally pseudovaluation domains or LPVDs (introduced in [11]),
the locally divided domains [7, 9], the going-down domains [5, 12] and the treed
domains [5].

Let us first recall the corresponding definitions.
— A pseudovaluation domain is a quasilocal domain D with maximal ideal m and
quotient field K such that, for all x, y ∈ K, xy ∈ m implies either x ∈ m or y ∈ m.
Equivalently, D is a quasilocal domain sharing its maximal ideal m with an overring
V which is a valuation domain. (By an overring of a domain D, we mean a ring
contained between D and the quotient field of D.)
— A divided domain is a domain D such that, for every prime ideal p of D, one
has p = pDp.
— A locally pseudovaluation (resp., locally divided) domain is a domain D such
that, for each maximal ideal m of D, Dm is a pseudovaluation (resp., divided)
domain.
— A ring extension R ⊆ T satisfies going-down if, whenever p, q ∈ Spec(R) and
q1 ∈ Spec(T ) satisfy p ⊂ q and q1 ∩ R = q, there is p1 ∈ Spec(T ) such that
p1 ∩R = p and p1 ⊂ q1.
— A going-down domain is a domain D such that, for each overring T of D, the
extension D ⊂ T satisfies going-down.
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— A treed ring is a ring R such that Spec(R) as a partially ordered set under
inclusion is a tree, that is, no maximal ideal of R contains incomparable prime
ideals.

In general, one has the implications
Prüfer =⇒ LPVD =⇒ locally divided =⇒ going-down =⇒ treed.

For arbitrary integral domains, none of these implications can be reversed : see
[15, Example 2.1]; [8, Remark 4.10 (b)]; [7, Example 2.9]; and [13, Example 4.4],
[10, Example 2.3], respectively. Nevertheless, for some prominent classes of integral
domains, some of these implications are reversible. For instance, any Noetherian
treed domain is locally divided since, on the one hand, the dimension of a Noe-
therian treed domain is at most one (for instance, apply [16, Theorem 144]), and,
on the other hand, a one-dimensional domain is obviously locally divided. One
impetus for the present work is to provide new counterexamples; of course, we have
to consider non-Noetherian domains with dimension at least two.

For an integral domain D with quotient field K, our focus is on the domain of
integer-valued polynomials

Int(D) = {f ∈ K[X] : f(D) ⊆ D}.
Of course, if D = K, then Int(D) = K[X] is a Prüfer domain and so has all the
properties in question; for this reason, we suppose throughout that D is not a field.

In the first section, Propositions 1.2 and 1.4 show that if either D is a Prüfer
domain or D is a Noetherian integral domain, then Int(D) is treed if and only if
Int(D) is a going-down domain. A key tool, Proposition 1.1, establishes that if
Int(D) is treed, then D is an interpolation domain (in the sense of [2]), and so D
has (Krull) dimension one and finite residue fields. In the Noetherian case, as all
the issues are local, we may suppose (D,m) is local. It follows in particular that
Int(D) is treed (or going-down) if and only if dim(D) = 1, D/m is finite, and D is
unibranched (that is, the integral closure D′ of D is local). These results show that
this class of domains supports again some converse implications; hence, they may
serve to explain the complexity in the above-cited constructions in [13] and [10] of
quasilocal treed domains which are not going-down domains.

In the next and last section, however, we show that domains of the form Int(D)
do provide some interesting counterexamples. Our main result, Theorem 2.1, gives
a characterization of the Noetherian (local) domains D such that Int(D) is locally
divided: D is analytically irreducible, dim(D) = 1, and D/m is finite. Thus, if
Int(D) is a going-down domain, it is locally divided if and only if D′ is a finitely
generated D-module. One consequence is an infinite family of two-dimensional
quasilocal going-down domains which are not divided domains; such localizations
of integral domains of the form Int(D) seem more natural constructions than the
one resorted to in [7, Example 2.9]. Finally, Theorem 2.4 establishes that (for a
Noetherian local domainD) Int(D) is an LPVD if and only ifD is a pseudovaluation
domain. By choosing (D,m) to be an analytically irreducible integral domain such
that D/m is finite and D is not a pseudovaluation domain, one thus has an example
of a two-dimensional locally divided domain with infinitely many maximal ideals
which is not an LPVD.

We adopt standard usage throughout. In particular, dim denotes Krull dimen-
sion. For background on the classes of integral domains being studied, we refer the
reader to the references cited in this introduction. For additional background on
integral domains of the form Int(D), see [1].
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1. Interpolation domains

Throughout, D denotes an integral domain which is properly contained in its
quotient field K. We begin by showing that significant conditions are imposed on
D by the requirement that Int(D) be treed. It is convenient to recall the following
from [2]:
— The domain D is called an interpolation domain if, for each finite set (a1, . . . , an)
of distinct elements of D, and each corresponding set of “values” (c1, . . . , cn) in D,
there exists f ∈ Int(D) such that f(ai) = ci, for 1 ≤ i ≤ n.
— D is an interpolation domain if and only if, for each pair of distinct elements
a 6= b in D, and for each maximal ideal m of D, there exists f ∈ Int(D) such that
f(a) ∈ m and f(b) /∈ m [2, Proposition 1.1].

Now it is clear that, for each a ∈ D, and each maximal ideal m of D,

Mm,a = {f ∈ Int(D) | f(a) ∈ m}

is a maximal ideal of Int(D) containing m (with residue field isomorphic to D/m).
Hence D is an interpolation domain if and only if, for each a 6= b in D, and each
maximal ideal m of D, the ideals Mm,a and Mm,b of Int(D) are distinct (as noted
in [2, Corollary 1.2]). On the other hand, the prime ideal

< X − a > = (X − a)K[X] ∩ Int(D) = {f ∈ Int(D) | f(a) = 0}

is clearly contained in Mm,a. We thus derive the following necessary conditions:

Proposition 1.1. Suppose that Int(D) is a treed domain. Then D is an interpola-
tion domain. In particular, dim(D) = 1 and, for each maximal ideal m of D, D/m
is finite and

⋂
n mn = (0).

Proof. Suppose thatD is not an interpolation domain. Then there exist two distinct
elements a and b ∈ D such that Mm,a = Mm,b. On the other hand, the prime
ideals < X − a > and < X − b > are incomparable (since X − b /∈< X − a > and
X−a /∈< X−b >), but they are both contained in the maximal ideal Mm,a . Thus,
Int(D) cannot be treed. Moreover, if D is an interpolation domain, it follows from
[2, Proposition 1.7] that dim(D) = 1 and, for each maximal ideal m of D, D/m is
finite and

⋂
n mn = (0). �

For many classes of integral domains, it is known that “treed” is in fact equivalent
to “going-down”. For instance, this is the case for GCD domains [4, Corollary 4.3]
or, as indicated in the introduction, for Noetherian domains [5, Theorem 2.2]. We
shall see that the same often holds for Int(D). We may immediately deal here
with the case where D is a Prüfer domain. Indeed, we know from [2, Corollary
3.2] that, in this case, D is an interpolation domain if and only if Int(D) is itself
a Prüfer domain. From the implications that we recalled in the introduction, it
clearly follows that all the properties considered in this paper are then equivalent:

Proposition 1.2. Suppose that D is a Prüfer domain. Then the following condi-
tions are equivalent:

(1) D is an interpolation domain,
(2) Int(D) is a treed domain,
(3) Int(D) is a going-down domain,
(4) Int(D) is a locally divided domain,
(5) Int(D) is an LPVD,
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(6) Int(D) is a Prüfer domain.

For the rest of this note, we focus on the case of Noetherian D. The next result
permits reduction to the local case.

Lemma 1.3. Let C denote any of the four classes of integral domains: treed do-
mains, going-down domains, locally divided domains, LPVDs. If D is Noetherian,
then the following conditions are equivalent:

(1) Int(D) is in C,
(2) Int(Dm) is in C for each maximal ideal m of D.

Proof. It is straightforward from the definitions that each of the properties are local
properties, that is, for each class C and each domain R:
– if R ∈ C, then S−1R ∈ C for each multiplicative subset S of R,
– if Rm ∈ C for each maximal ideal m of R, then R ∈ C.

Moreover, with the Noetherian hypothesis on D, Int(D)m = Int(Dm) for each
maximal ideal m of D. Thus (1) ⇒ (2).

Suppose now that (2) holds. It follows from Proposition 1.1 that D is one-
dimensional. If M is a maximal ideal of Int(D) lying over a maximal ideal m of D,
then Int(D)M is a localization of Int(D)m = Int(Dm) and thus, belongs to C. On
the other hand, if M is a maximal ideal of Int(D) lying over the ideal (0) of D, then
(in fact, without any hypothesis on D) M = qK[X]∩ Int(D), where q is irreducible
in K[X], and (Int(D))M = K[X](q) is a discrete valuation domain. Thus Int(D)M

belongs again to C. Hence, Int(D) itself belongs to C. �

From now on, we thus suppose that (D,m) is a Noetherian local domain, with
maximal ideal m. Moreover, if we want Int(D) to be treed, it follows from Proposi-
tion 1.1 that D must be one-dimensional. With such hypotheses, we note that the
dimension of Int(D) is two.

Recall that an integral domainA with integral closureA′ is said to be unibranched
(in the extension A ⊆ A′) if the canonical map Spec(A′) → Spec(A) is a bijection.
Following [18], we also say that A is an i-domain if, for each overring B of A,
the canonical map Spec(B) → Spec(A) is an injection, or equivalently, if A′

m is a
valuation domain for each maximal ideal m of A [18, Corollary 2.15]. Both notions
are local properties and it is known that:
— a domain A is an i-domain if and only if A is unibranched (in A′) and A′ is a
Prüfer domain [18, Proposition 2.14];
— each i-domain is a going-down domain (cf. [6, Corollary 2.5], [18, Corol-
lary 2.13]).

Proposition 1.4. Let (D,m) be a Noetherian local integral domain. Then the
following conditions are equivalent:

(1) D is an i-domain,
(2) dim(D) = 1, D/m is finite, and D is unibranched,
(3) D is an interpolation domain,
(4) Int(D) is a treed domain,
(5) Int(D) is a going-down domain,
(6) Int(D) is an i-domain.

Proof. It follows from general principles that (6) ⇒ (5) ⇒ (4), and by Proposi-
tion 1.1, that (4) ⇒ (3). It follows from [2, Theorem 2.4] that (3) ⇒ (2). Finally, if
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D is local, Noetherian, unibranched, and one-dimensional, then D′ is a (rank-one
discrete) valuation domain, thus (2) ⇒ (1) follows from the above characterization
of i-domains. It then remains to prove that (1) ⇒ (6), using the same characteri-
zation.

Since D is Noetherian, the integral closure of Int(D) is the ring Int(D,D′) of
polynomials f ∈ K[X] such that f(D) ⊆ D′ [1, Theorem IV.4.7]. Since D is
unibranched, Int(D,D′) is a radical extension of Int(D), that is, for each f ∈
Int(D,D′) there is an integer n such that fn ∈ Int(D) [1, Proposition IV.4.5]; and
hence, Int(D) is unibranched. Moreover, Int(D′) is a Prüfer domain, since D′ is a
discrete valuation domain with finite residue field [1, Lemma VI.1.4]. Consequently,
Int(D,D′), which is an overring of Int(D′), is also a Prüfer domain. We may
conclude that Int(D) is an i-domain. �

In view of Propositions 1.2 and 1.4, we ask the following:

Question 1.5. Are the following conditions always equivalent?
(1) D is an interpolation domain,
(2) Int(D) is a treed domain,
(3) Int(D) is a going-down domain.

2. Locally divided and pseudovaluation domains

The next result addresses what happens when “unibranched” is sharpened to
“analytically irreducible”. Recall that the local domain (D,m) is said to be analyt-
ically irreducible if its completion D̂ in the m-adic topology is an integral domain.
Recall also that this condition implies that D is unibranched [17, (43.20)] and that
the integral closure D′ of D is a finitely generated D-module [17, (32.2)]. In fact,
when D is one-dimensional, the following statements are equivalent [1, Proposition
III.5.2]:
— D is analytically irreducible,
— D is unibranched and D′ is a finitely generated D-module,
—D is unibranched and, if m′ denotes the maximal ideal ofD′, the m′-adic topology
on D′ induces the m-adic topology on D.

Theorem 2.1. Let (D,m) be a Noetherian local integral domain. Then the follow-
ing conditions are equivalent:

(1) Int(D) is a locally divided domain.
(2) dim(D) = 1, D/m is finite, and D is analytically irreducible.

Proof. (1) ⇒ (2) If Int(D) is a locally divided domain, then it is treed. Thus, by
Proposition 1.4, dim(D) = 1, D/m is finite, and D is unibranched. Under these
conditions, we assume, by way of contradiction, that the m′-adic topology on D′

does not induce the m-adic topology (that is, that D is not analytically irreducible);
we then show that Int(D) is not locally divided. Clearly we have the containment
mn ⊆ m′n ∩D, for each n; thus, if the m′-adic topology does not induce the m-adic
topology, there is an integer k, such that, for each positive integer n, m′n ∩ D is
not contained in mk. Considering a nonzero element b ∈ mk, we can thus produce
a sequence {αn} in D such that, for each n, αn ∈ m′n ∩D, but (αn/b) /∈ D. We let
M be the maximal ideal

M = {f ∈ Int(D) | f(0) ∈ m}
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and P be the prime ideal

P = < X > = {f ∈ Int(D) | f(0) = 0}.

Clearly, P is contained in M, and we complete the proof by showing that PInt(D)P

is not equal to PInt(D)M. More precisely, letting f = X/b, then f ∈ PInt(D)P,
and we show that f /∈ PInt(D)M. For this, we claim that, if g ∈ Int(D) is such
that gf ∈ Int(D), then g ∈ M. Indeed, if gf ∈ Int(D), then, for each n, we have
gf(αn) = g(αn)(αn/b) ∈ D. Since (αn/b) /∈ D, we then have g(αn) ∈ m, and
a fortiori, g(αn) ∈ m′. Now g is a polynomial and D′ is a one-dimensional local
Noetherian domain, hence g is a continuous function in the m′-adic topology [1,
Proposition III.2.1]. The sequence {αn} converges to 0 in this topology, therefore
g(0) ∈ m′. Since g ∈ Int(D), we obtain g(0) ∈ m′ ∩D = m, that is, g ∈ M.

(2) ⇒ (1) Suppose that dim(D) = 1, D/m is finite, andD is analytically irreducible.
Let us first describe the prime ideals of Int(D) [1, Corollary V.1.2, Theorem V.2.10,
and Proposition V.3.3].
— The nonzero prime ideals of Int(D) above (0) are in one-to-one correspondence
with the monic polynomials irreducible in K[X]: to the irreducible polynomial q
corresponds the prime ideal

< q > = qK[X] ∩ Int(D).

— The prime ideals of Int(D) above m are maximal and in one-to-one correspon-
dence with the elements of the completion D̂ of D in the m-adic topology: to each
α ∈ D̂, corresponds the maximal ideal

Mm,α = {f ∈ Int(D) | f(α) ∈ m̂}.

— The prime ideal < q > is contained in the maximal ideal Mm,α if and only if
q(α) = 0.

Obviously a one-dimensional domain is a locally divided domain. The only case
we then have to consider is that of a prime ideal P = < q >, contained in a maximal
ideal M = Mm,α (and hence, such that q(α) = 0), for which we must show that
PInt(D)P = PInt(D)M. In fact, it is enough to show that ϕ ∈ PInt(D)P implies
ϕ ∈ Int(D)M, since we have the equality Int(D)M ∩PInt(D)P = PInt(D)M. This
follows immediately from the next lemma, since ϕ ∈ PInt(D)P implies ϕ(α) = 0.
�

Lemma 2.2. Assume (D,m) is a local Noetherian, one-dimensional, analytically
irreducible domain with finite residue field. Let M be a maximal ideal of the form
M = Mm,α, where α is an element of the completion D̂ of D. We then have the
following:

(1) The localization Int(D)M is the set of rational functions ϕ ∈ K(X) such
that ϕ(α) ∈ D̂.

(2) The ideal MInt(D)M is the set of rational functions ϕ ∈ K(X) such that
ϕ(α) ∈ m̂.

Proof. 1. It is obvious that ϕ ∈ Int(D)M implies ϕ(α) ∈ D̂. Conversely, we suppose
that ϕ(α) ∈ D̂ and we show there is h ∈ Int(D), h /∈ M, such that hϕ ∈ Int(D).
We may write ϕ = f/g, where f and g are integer-valued polynomials, g(α) 6= 0,
and f(α) ∈ g(α)D̂. Considering f and g as continuous functions from D̂ to D̂ in
the m-adic topology, there is a clopen neighborhood U of α such that, for x ∈ U,
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we have f(x) ∈ g(α)D̂, and g(x) ∈ g(α)(1 + m̂). Consider the continuous function
ψ defined on D̂ by

ψ(t) =

 1 if t ∈ U

g(α) otherwise
Since D is analytically irreducible, we may apply the Stone-Weierstrass theorem
[1, Theorem III.5.3]: ψ can be approximated by an integer-valued polynomial.
Consequently, there exists h0 ∈ Int(D), such that h0(t) is a unit if t ∈ U, and
h0(t) ∈ g(α)D̂, otherwise. Choose b ∈ D of the form b = g(α)(1 + m), where
m ∈ m̂ (that is, b = g(α)u, where u is a unit in D̂). Then (fh0)/b and (gh0)/b
are integer-valued polynomials (the values of fh0 and gh0 are always divisible by
b), and (gh0/b)(α) is a unit in D̂. Letting h = (gh0)/b, it follows that h ∈ Int(D),
h /∈ M, and hϕ = (fh0)/b ∈ Int(D).
2. As above, ϕ ∈ Mm,αInt(D)M obviously implies ϕ(α) ∈ m̂. Assume conversely
that ϕ(α) ∈ m̂. Choose b ∈ D so that b = ϕ(α)u, where u is a unit in D̂ (of the form
u = 1 +m, where m ∈ m̂). Letting ψ = ϕ/b, it follows from 1 that ψ ∈ Int(D)M;
hence ϕ = bψ belongs to mInt(D)M, and thus a fortiori to MInt(D)M. �

Remark 2.3. Let (D,m) be a one-dimensional Noetherian local integral domain,
with finite residue field. If D is unibranched but not analytically irreducible, it
follows from Proposition 1.4 and Theorem 2.1 that Int(D) is a two-dimensional
going-down domain which is not locally divided. In particular, we could derive from
the proof of Theorem 2.1 that, for each a ∈ D, (Int(D))Mm,a

is a two-dimensional
quasilocal going-down domain which is not a divided domain. Examples of uni-
branched but not analytically irreducible domains D, with arbitrary nonzero char-
acteristic, appear in [3, pp. 54–55]). We thus obtain infinitely many pairwise
nonisomorphic examples of the desired phenomenon. This construction should be
contrasted with the arguably more complicated example in [7, Example 2.9] of the
first quasilocal going-down domain which is not divided.

In closing, we determine the Noetherian domains D such that Int(D) is a locally
pseudovaluation domain (or LPVD).

Theorem 2.4. Let D be a Noetherian integral domain. Then the following condi-
tions are equivalent:

(1) Int(D) is an LPVD,
(2) D is an LPVD with finite residue fields.

Moreover, if the above conditions hold, then dim(D) = 1 and dim
(
Int(D)

)
= 2.

Proof. In view of Lemma 1.3, we may assume that (D,m) is is a Noetherian local
domain (and, as usual, not a field).
(1) ⇒ (2) Assume that Int(D) is an LPVD. It follows from Proposition 1.1 that
D/m is finite, and from [11, Proposition 2.8] that D = K ∩ (Int(D))Mm,0 is a
pseudovaluation domain.
(2) ⇒ (1) Assume that D is a pseudovaluation domain. Then D shares its maximal
ideal with a valuation overring V. If t is a nonzero element of m, we thus have
tV ⊆ D. Since D is Noetherian, it follows that V is a finitely generated D-module.
Hence, V is itself Noetherian. Therefore V is a discrete rank-one valuation domain,
dim(D) = 1, V is the integral closure of D, and in particular, D is analytically
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irreducible. If we assume moreover that D/m is finite, then V/m is also finite.
Note also that the m-adic topology of V induces the m-adic topology in D, and
that the completion m̂ of m is both the maximal ideal of the completion D̂ of D
and of the completion V̂ of V. We proceed to conclude that Int(D) is an LPVD.
We recalled above that the maximal ideals M of Int(D) are either of the form
< q >, where q is irreducible in K[X], or Mm,α, where α ∈ D̂. If M =< q >,
then Int(D)M = K[X](q) is a valuation domain. It remains to prove that, for
M = Mm,α, Int(D)M is a pseudovaluation domain. Let f, g ∈ K(X) be such that
fg ∈ M(Int(D))M, then f(α)g(α) ∈ m̂. Since the completion V̂ of V is a valuation
domain, either f(α) ∈ m̂, or g(α) ∈ m̂. It follows from Lemma 2.2 that either f or
g belongs to M(Int(D))M.

�

Remarks 2.5. 1. As stated in the introduction, by choosing (D,m) to be analytically
irreducible, with finite residue field, but not a pseudovaluation domain, we obtain a
two-dimensional locally divided domain with infinitely many maximal ideals which
is not an LPVD. For instance, letting D = k[[X2, X3]], where k is a finite field, we
obtain such examples in every nonzero characteristic.
2. Recall from [11, Theorem 2.9] that each overring of a domain R is an LPVD if
and only if R is an LPVD and an i-domain (or equivalently R is an LPVD and the
integral closure R′ of R is a Prüfer domain). In general it is not sufficient that R
be an LPVD. However, note that in the case where D is Noetherian, if Int(D) is
an LPVD, then each overring of Int(D) is also an LPVD. Indeed, if Int(D) is an
LPVD, it is a fortiori a treed domain, and hence, from Proposition 1.4, an i-domain.

References

[1] P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Amer. Math. Soc.
Surveys and Monographs, 48, Providence, 1997.

[2] P.-J. Cahen, J.-L. Chabert and S. Frisch, Interpolation domains, LAMFA
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