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Abstract. Let π denote a partition into parts λ1 ≥ λ2 ≥ λ3 . . .. In a 2006

paper we defined BG-rank(π) as

BG-rank(π) =
∑
j≥1

(−1)j+1 1− (−1)λj

2
.

This statistic was employed to generalize and refine the famous Ramanujan
modulo 5 partition congruence. Let pj(n) denote the number of partitions of

n with BG-rank = j. Here, we provide a combinatorial proof that

pj(5n+ 4) ≡ 0 (mod 5), j ∈ Z,
by showing that the residue of the 5-core crank mod 5 divides the partitions
enumerated by pj(5n + 4) into five equal classes. This proof uses the orbit
construction from our previous paper and a new identity for the BG-rank.
Let at,j(n) denote the number of t-cores of n with BG-rank = j. We find

eta-quotient representations for∑
n≥0

a
t,
⌊
t+1
4

⌋(n)qn and
∑
n≥0

a
t,−
⌊
t−1

4

⌋(n)qn,

when t is an odd, positive integer. Finally, we derive explicit formulas for the
coefficients a5,j(n), j = 0,±1.

1. Introduction

A partition π is a nonincreasing sequence

π = (λ1, λ2, λ3, . . .)

of positive integers (parts) λ1 ≥ λ2 ≥ λ3 ≥ . . .. The norm of π, denoted |π|, is
defined as

|π| =
∑
i≥1

λi.

If |π| = n, we say that π is a partition of n. The (Young) diagram of π is a
convenient way to represent π graphically: the parts of π are shown as rows of unit
squares (cells). Given the diagram of π we label a cell in the i-th row and j-th
column by the least nonnegative integer ≡ j − i (mod t). The resulting diagram is
called a t-residue diagram [7]. We can also label cells in the infinite column 0 and
the infinite row 0 in the same fashion and call the resulting diagram the extended
t-residue diagram [5]. And so with each partition π and positive integer t we can

Date: April 27, 2007.
2000 Mathematics Subject Classification. Primary 11P81, 11P83; Secondary 05A17, 05A19.
Key words and phrases. partitions, t-cores, BG-rank, eta-quotients, Lambert series, theta

series, even–odd dissections.
Research of both authors was supported in part by NSA grant MSPF-06G-150.

1



2 ALEXANDER BERKOVICH AND FRANK G. GARVAN

associate the t-dimensional vector

~r(π, t) = (r0(π, t), r1(π, t), . . . , rt−1(π, t))

with
ri(π, t) = ri, 0 ≤ i ≤ t− 1

being the number of cells colored i in the t-residue diagram of π. If some cell of π
shares a vertex or edge with the rim of the diagram of π, we call this cell a rim cell
of π. A connected collection of rim cells of π is called a rim hook if (diagram of
π)\(rim hook) represents a legitimate partition. We say that a partition is a t-core,
denoted πt-core, if its diagram has no rim hooks of length t [7].

The Durfee square of π is the largest square that fits inside the diagram of π.
Reflecting the diagram of π about its main diagonal, one gets the diagram of π′

(the conjugate of π). More formally,

π′ = (λ′1, λ
′
2, λ
′
3, . . .)

with λ′i being the number of parts of π that are ≥ i. In [2] we defined a new
partition statistic

(1.1) BG-rank(π) :=
∑
j≥1

(−1)j
(−1)λj − 1

2
.

It is easy to verify that

(1.2) BG-rank(π) = r0(π, 2)− r1(π, 2)

and

(1.3) BG-rank(π) ≡ |π| (mod 2).

In [2] we proved the following (mod 5) congruences

pj(5n) ≡ 0 (mod 5) if j ≡ 1, 2 (mod 5),(1.4)

pj(5n+ 1) ≡ 0 (mod 5) if j 6≡ 1, 2 (mod 5),(1.5)

pj(5n+ 2) ≡ 0 (mod 5) if j 6≡ 0, 3 (mod 5),(1.6)

pj(5n+ 3) ≡ 0 (mod 5) if j ≡ 0, 3 (mod 5),(1.7)

pj(5n+ 4) ≡ 0 (mod 5) for all j ∈ Z.(1.8)

Here pj(n) denotes the number of partitions of n with BG-rank = j. Clearly,

p(5n+ 4) =
∑
j

pj(5n+ 4)

with p(n) denoting the number of unrestricted partitions of n. And so (1.8) implies
the famous Ramanujan congruence [11]

p(5n+ 4) ≡ 0 (mod 5).

In this paper, we build on the developments in [2] to provide a combinatorial proof
of (1.8).

For t-odd it is surprising that the BG-rank(πt−core) assumes only finitely many
values. In fact, we will show that if t is an odd, positive integer, then

(1.9) −
⌊
t− 1

4

⌋
≤ BG-rank(πt−core) ≤

⌊
t+ 1

4

⌋
.

Here bxc denotes the integer part of x.
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We will establish the following identities. For odd t > 1

C
t,(−1)

t−1
2
⌊
t−1

4

⌋(q) = q
(t−1)(t−3)

8 F (t, q2),(1.10)

C
t,(−1)

t+1
2
⌊
t+1
4

⌋(q) = q
t2−1

8
Et(q4t)
E(q4)

,(1.11)

where
Ct,j(q) =

∑
n≥0

at,j(n)qn,

at,j(n) denotes the number of t-cores of n with BG-rank = j and

E(q) =
∞∏
j=1

(1− qj),

F (t, q) =
Et−4(q2t)E2(qt)E3(q2)

E2(q)
.

We observe that (1.3) suggests that Ct,j(q) is an even (odd) function of q if j is
even (odd).

It is instructive to compare (1.10, 1.11) with the well-known identity [5] for
unrestricted t-cores

(1.12)
∑
n≥0

at(n)qn =
Et(qt)
E(q)

.

Here at(n) denotes the number of t-cores of n.
The rest of this paper is organised as follows.
In Section 2 we discuss the Littlewood decomposition of π in terms of t-core and

t-quotient of π. We describe the Garvan, Kim, Stanton bijection for t-cores and use
a constant term technique to provide a simple proof of the Klyachko identity [8]

(1.13)
∑
~n∈Zt
~n·~1t=0

q
t
2~n·~n+~bt·~n =

Et(qt)
E(q)

.

Here ~1t = (1, 1, . . . , 1) ∈ Zt, ~bt = (0, 1, 2, . . . , t− 1).
In Section 3 we establish a fundamental identity connecting BG-rank and the

Littlewood decomposition.
In Section 4 we discuss a combinatorial proof of (1.8).
Section 5 is devoted to the proof of the identities (1.10, 1.11).
Section 6 deals with 5-cores with prescribed BG-rank. There we derive the

explicit formulas for the coefficients a5,j(n), j = 0,±1.
In Section 7 we give a generalization of the BG-rank and state a number of

results.

2. Two Bijections

In this section we will follow closely the discussion in [4], [5] to recall some basic
facts about t-cores and t-quotients. A region r in the extended t-residue diagram of
π is the set of cells (i, j) satisfying t(r−1) ≤ j− i < tr. A cell of π is called exposed
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if it is at the end of a row. One can construct t bi-infinite words W0,W1, . . . ,Wt−1

of two letters N,E as

The r-th letter of Wi =

{
E, if there is an exposed cell labelled i in the region r

N, otherwise.

It is easy to see that the word set {W0,W1, . . . ,Wt−1} fixes π uniquely.
Let P be the set of all partitions and Pt-core be the set of all t-cores. There is

a well-known bijection

φ1 : P → Pt-core × P × P × P . . .× P

which goes back to Littlewood [9]

φ1(π) = (πt-core, π̂0, π̂1, . . . , π̂t−1)

such that

|π| = |πt-core|+ t
t−1∑
i=0

|π̂i|.

Multipartition (π̂0, π̂1, . . . , π̂t−1) is called the t-quotient of π. We remark that (1.12)
is the immediate corollary of the Littlewood bijection. We describe φ1 in full detail
a bit later.

The second bijection

φ2 : Pt-core → {~n : ~n ∈ Zt, ~n ·~1t = 0}

was introduced in [5]. It is for t-cores only

φ2(πt-core) = ~n = (n0, n1, . . . , nt−1)

where for 0 ≤ i ≤ t− 2

(2.1) ni = ri(πt-core, t)− ri+1(πt-core, t)

and

(2.2) nt−1 = rt−1(πt-core, t)− r0(πt-core, t).

Clearly,
t−1∑
i=0

ni = ~n ·~1t = 0.

Moreover,

(2.3) |πt-core| =
t

2
~n · ~n+~bt · ~n,

as shown in [5]. And so

(2.4)
∑
n≥0

at(n)qn =
∑
~n∈Zt
~n·~1t=0

q
t
2~n·~n+~bt·~n.

Note that (1.12), (2.4) imply the Klyachko identity (1.13). The reader may wonder
if (2.1, 2.2) can be used to define φ2(π) = ~n for any partition π. This, of course,
can be done. However, in general φ2 is not a 1 − 1 function and so φ−1

2 can’t be
defined. Indeed, if π1 6= π2, but πt-core is a t-core of both π1 and π2 then

φ2(π1) = φ2(π2) = φ2(πt-core).
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When a partition is a t-core, φ2 can be inverted. To do this we recall that the
partition is a t-core iff for 0 ≤ i ≤ t− 1

Region : · · · · · · · · · ni − 1 ni ni + 1 ni + 2 · · · · · · · · ·
Wi : · · · · · · · · · E E N N · · · · · · · · ·

as explained in [5]. For example, the word image of φ−1
2 ((2,−1,−1)) is

Region : · · · · · · − 1 0 1 2 3 · · · · · ·
W0 : · · · · · · E E E E N · · · · · ·
W1 : · · · · · · E N N N N · · · · · ·
W2 : · · · · · · E N N N N · · · · · · .

This means that

(2.5) φ−1
2 ((2,−1,−1)) = (4, 2).

More generally, if
φ1(π) = (πt-core, π̂0, π̂1, . . . , π̂t−1)

with
π̂i = (λ(i)

1 , λ
(i)
2 , . . . , λ(i)

mi), 0 ≤ i ≤ t− 1,
then cells colored i are not exposed only in the regions

ni + j − λ(i)
j , 1 ≤ j ≤ mi

and
ni +mi + k, k ≥ 1.

For example, if π̂i = (λ1, λ2, λ3) then

Region : · · · · · · ni + 1− λ1 · · · · · · ni + 2− λ2 · · · · · · ni + 3− λ3 · · · · · · ni + 4 · · · · · ·
Wi : · · · · · · E N E · · · · · · E N E · · · · · · E N E · · · · · · E N · · · · · ·

Clearly, one can easily determine ~n and (π̂0, π̂1, . . . , π̂t−1) from the word set {W0,W1, . . . ,Wt−1}.
And so

φ1(π) = (φ−1
2 (~n), π̂0, . . . , π̂t−1).

We illustrate the above with the following example. If t = 3 and π = (7, 5, 4, 3, 2)
then

Region : · · · · · · − 2 − 1 0 1 2 3 4 5 · · · · · ·
W0 : · · · · · · E E E N E E N N · · · · · ·
W1 : · · · · · · E N N E N N N N · · · · · ·
W2 : · · · · · · E N E N N N N N · · · · · · .

We have

n0 = 2, π̂0 = (2),

n1 = −1, π̂1 = (1, 1),

n2 = −1, π̂2 = (1).

Using (2.5), we obtain

φ1((7, 5, 4, 3, 2)) = ((4, 2), (2), (1, 1), (1)).

To proceed further we recall some standard q-hypergeometric notations [6]:

(a1, a2, a3, . . . ; q)N = (a1; q)N (a2; q)N (a3; q)N . . .
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where

(a; q)N = (a)N =


∏N−1
j=0 (1− aqj), N > 0

1, N = 0∏−N
j=1(1− aq−j)−1, N < 0.

We shall also require the Jacobi triple product identity [6, (II.28)]

(2.6)
∞∑

n=−∞
qn

2
zn = (q2,−zq,−q

z
; q2)∞.

We are now ready to prove the Klyachko identity (1.13). We will employ a so-called
constant term technique. To this end we rewrite the left hand side of (1.13) as

LHS (1.13) = [z0]
∑
~n∈Zt

q
t
2~n·~n+~bt·~nz~n·

~1t = [z0]
t−1∏
i=0

∞∑
ni=−∞

q
t
2n

2
i+inizni

where [zi]f(z) is the coefficient of zi in the expansion of f(z) in powers of z. With
the aid of (2.6) we derive

LHS (1.13) = [z0]
t−1∏
i=0

(
qt,−qi+ t

2 z,− q
t
2

qiz
; qt
)
∞

= [z0]
Et(qt)
E(q)

(
q,−q t2 z,− q

q
t
2 z

; q
)
∞

= [z0]
(
Et(qt)
E(q)

∞∑
n=−∞

q
n2
2 + t−1

2 nzn
)

=
Et(qt)
E(q)

,

as desired. The above proof is just a warm-up excercise to prepare the reader for a
more sophisticated proof of (1.10) discussed in Section 5.

3. The Littlewood decomposition and BG-rank

The main goal of this section is to establish the following identities for BG-rank.
If t is even and (n0, . . . , nt−1) = φ2(π), then

(3.1) BG-rank(π) =

t−2
2∑
i=0

n2i.

If t is odd then

(3.2) BG-rank(πt-core) = bg(~n),

where ~n = φ2(πt-core) and

(3.3) bg(~n) :=
1−

∑t−1
j=0(−1)j+nj

4
.

Moreover, if t is odd and φ1(π) = (πt-core, π̂0, . . . , π̂t−1) then

(3.4) BG-rank(π) = BG-rank(πt-core) +
t−1∑
j=0

(−1)j+njBG-rank(π̂j).
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The proof of (3.1) is straightforward. It is sufficient to observe that if some cell is
colored i in the t-residue diagram of π, then it is colored 1−(−1)i

2 in the 2-residue
diagram of π. And so we obtain with the aid of (1.2)

BG-rank(π) = (r0 + r2 + r4 + · · ·+ rt−2)− (r1 + r3 + r5 + · · ·+ rt−1)

= (r0 − r1) + (r2 − r3) + · · ·+ (rt−2 − rt−1)
= n0 + n2 + · · ·+ nt−2,

as desired. Next, let D(π) = D denote the size of the Durfee square of π. To prove
(3.2) we begin by rewriting (1.1) as

(3.5) BG-rank(π) =
1
2

par(ν) +
ν∑
j=1

(−1)λj−j

 .

Here π = (λ1, λ2, . . . , λν) and par(x) is defined as

par(x) :=
1− (−1)x

2
.

Next, let π1, π2 denote the partitions constructed from the first D = D(πt-core)
rows, columns of πt-core, respectively. Let π3 denote a partition whose diagram is
the Durfee square of πt-core. It is plain that

BG-rank(πt-core) = BG-rank(π1) + BG-rank(π2)− BG-rank(π3)

= BG-rank(π1) + BG-rank(π2)− par(D).(3.6)

We shall also require the following sets

P+ : = {i ∈ Z : 0 ≤ i ≤ t− 1, ni > 0},
P− : = {i ∈ Z : 0 ≤ i ≤ t− 1, ni < 0}.

Here ni’s are the components of φ2(πt-core). Note that if i ∈ P+, then i is exposed
in all positive regions ≤ ni of π1. This observation together with (3.5) implies that

BG-rank(π1) =
1
2

par(D) +
∑
i∈P+

ni∑
k=1

(−1)t(k−1)+i


=

1
2

par(D) +
∑
i∈P+

(−1)ipar(ni)

(3.7)

In [5], the authors showed that under conjugation φ2(πt-core) transforms as

(n0, n1, n2, . . . , nt−1)→ (−nt−1,−nt−2,−nt−3, . . . ,−n0).

Also it is easy to see that

BG-rank(π2) = BG-rank(π′2).

It follows that

(3.8) BG-rank(π2) =
1
2

par(D) +
∑
i∈P−

(−1)ipar(ni)

 .
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Combining (3.6, 3.7, 3.8) and taking into account that par(0) = 0 we get

BG-rank(πt-core) =
1
2

∑
i∈P−∪P+

(−1)ipar(ni)

=
1
2

t−1∑
i=0

(−1)ipar(ni) =
1−

∑t−1
i=0(−1)i+ni

4
,

as desired. Note that formula (3.2) implies that BG-rank of odd t-core is bounded,
as stated in (1.9). Next, let ∼π0,i,

∼
π2,i,

∼
π3,i, . . . denote the partitions constructed

from φ1(π) = (πt-core, π̂0, π̂1, . . . , π̂t−1), for odd t as follows
∼
π0,i = φ−1

1 (πt-core, π̂0, π̂1, . . . , π̂i−1, (0), π̂i+1, . . . , π̂t−1),
∼
π1,i = φ−1

1 (πt-core, π̂0, π̂1, . . . , π̂i−1, (λ1), π̂i+1, . . . , π̂t−1),
∼
π2,i = φ−1

1 (πt-core, π̂0, π̂1, . . . , π̂i−1, (λ1, λ2), π̂i+1, . . . , π̂t−1),
· · · · · · · · · .

Here π̂i = (λ1, λ2, . . . , λν). Note that the Wi word of ∼π0,i is

Region : · · · · · · · · · ni ni + 1 · · · · · · · · ·
Wi : · · · · · · · · · E N · · · · · · · · · .

To convert ∼π0,i into ∼π1,i we attach a rim hook of length tλ1 to ∼π0,i so that Wi

becomes

Region : · · · · · · · · · ni + 1− λ1 · · · · · · · · · ni + 2, · · · · · · · · ·
Wi : · · · · · · · · · E N E · · · · · · · · · E N N · · · · · · · · · .

It is not hard to verify that the color of the head (north-eastern) cell of the added
rim-hook in the 2-residue diagram of ∼π1,i is given by par(tni + i) = par(ni + i).
Observe that zeros and ones alternate along the added hook rim. This means that
BG-rank does not change if λ1 is even. If λ1 is odd then the change is determined
by the color of the added head cell, i.e.

BG-rank(∼π1,i) = BG-rank(∼π0,i) + par(λ1)(1− 2par(ni + i))

= BG-rank(∼π0,i) + par(λ1)(−1)ni+i,

Next, we convert ∼π1,i into ∼π2,i by adding the new hook rim of length tλ2 to ∼π1,i so
that Wi becomes

Region : · · · · · · ni + 1− λ1 · · · · · · ni + 2− λ2 · · · · · · ni + 3 · · · · · ·
Wi : · · · · · · E N E · · · · · · E N E · · · · · · E N · · · · · · .

The color of the new head cell is given by

par(t(ni + 1) + i) = par(ni + 1 + i),

and so

BG-rank(∼π2,i) = BG-rank(∼π1,i) + par(λ2)(1− 2par(ni + 1 + i))

= BG-rank(∼π0,i) + (−1)ni+i(par(λ1)− par(λ2)).
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Proceeding as above we arrive at

BG-rank(π) = BG-rank(∼π0,i) + (−1)ni+i
ν∑
j=1

(−1)j+1par(λj)

= BG-rank(∼π0,i) + (−1)ni+iBG-rank(π̂i).(3.9)

Formula (3.4) follows easily from (3.9). Let us now define ~Bt,
~̃Bt ∈ Zt as

~Bt =

{∑ t−1
2

i=0 ~e2i, if t ≡ 1 (mod 4)∑ t−3
2

i=0 ~e1+2i, if t ≡ −1 (mod 4)

and

~̃Bt = ~Bt +
t−1∑
i=0

~ei =

{∑ t−3
2

i=0 ~e1+2i, if t ≡ 1 (mod 4)∑ t−1
2

i=0 ~e2i, if t ≡ −1 (mod 4)

Here ~ei’s are standard unit vectors in Zt defined as e0 = (1, 0, . . . , 0), . . . , ~et−1 =
(0, . . . , 0, 1).

We conclude this section with the following important observation. If odd t > 1,
k = 0, 1, . . . , t−1

2 and ~n ∈ Zt, ~n ·~1t = 0, then

(3.10) bg(~n) = (−1)
t−1

2

(⌊
t

4

⌋
− k
)

iff ~n ≡ ~Bt+~ei0 +~ei1 +· · ·+~ei2k (mod 2) for some 0 ≤ i0 < i1 < i2 < · · · < i2k ≤ t−1.
In particular, if ~n ∈ Zt, ~n ·~1t = 0, then

(3.11) bg(~n) = (−1)
t+1
2

⌊
t+ 1

4

⌋
iff ~n ≡ ~̃Bt (mod 2). We leave the proof as an exercise for the interested reader.

4. Combinatorial proof of pj(5n+ 4) ≡ 0 (mod 5)

Throughout this section we assume that

|π| ≡ 4 (mod 5)

and

|π5-core| ≡ 4 (mod 5).

To prove (1.8) we shall require a few definitions. Following [5], we define the 5-core
crank as

(4.1) c5(π) := 2(r0(π, 5)− r4(π, 5)) + (r1(π, 5)− r3(π, 5)) + 1 (mod 5).

Note that if |π5-core| ≡ 4 (mod 5), then obviously

n0 + n1 + n2 + n3 + n4 = 0,(4.2)

n1 + 2n2 + 3n3 + 4n4 ≡ 4 (mod 5).(4.3)
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Here, ~n = (n0, n1, n2, n3, n4) = φ2(π5-core). Let’s introduce a new vector ~α(~n) =
(α0, α1, α2, α3, α4), defined as

α0 =
n0 − 3n1 − 2n2 − n3 + 1

5
,(4.4)

α1 =
−3n0 − n1 − 4n2 − 2n3 + 2

5
,(4.5)

α2 =
−3n0 − n1 + n2 − 2n3 + 2

5
,(4.6)

α3 =
n0 + 2n1 + 3n2 + 4n3 + 1

5
,(4.7)

α4 =
4n0 + 3n1 + 2n2 + n3 − 1

5
.(4.8)

Using (4.2, 4.3) it is easy to verify that ~α(~n) ∈ Z5 and that

(4.9) (α0 + α1 + α2 + α3 + α4) = 1.

Inverting (4.4–4.8) we find that

n0 = α0 + α4,(4.10)

n1 = −α0 + α1 + α4,(4.11)

n2 = −α1 + α2,(4.12)

n3 = −α2 + α3 − α4,(4.13)

n4 = −α3 − α4,(4.14)

Note that in terms of these new variables we have

(4.15) c5(π) ≡
4∑
i=0

iαi (mod 5),

(4.16) |π| = 5Q(~α)− 1 + 5
4∑
i=0

|π̂i|,

and

BG-rank(π) =
1− (−1)α0+α1 − (−1)α1+α2 − · · · − (−1)α4+α0

4
+ (−1)α0+α4BG-rank(π̂0)

+ (−1)α2+α3BG-rank(π̂1)

+ (−1)α1+α2BG-rank(π̂2)

+ (−1)α0+α1BG-rank(π̂3)

+ (−1)α3+α4BG-rank(π̂4).(4.17)

Here φ1(π) = (π5-core, π̂0, . . . , π̂4) and Q(~α) := ~α · ~α− (α0α1 +α1α2 + · · ·+α4α0).
It is convenient to combine φ1, φ2, ~α into a new invertible function Φ, defined as

Φ(π) = (~α(φ2(π5-core)), ~̂π),
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where ~̂π := (π̂0, . . . , π̂4). Following [2] we define

Ĉ1(~α) = (α4, α0, α1, α2, α3),

Ĉ2(~̂π) = (π̂4, π̂2, π̂3, π̂0, π̂1),

Ô(π) = Φ−1(Ĉ1(~α), Ĉ2(~̂π)).

We observe that operator Ô has the following properties∣∣Ô(π)
∣∣ = |π|,

Ô5(π) = π,

BG-rank
(
Ô(π)

)
= BG-rank(π),

c5

(
Ô(π)

)
≡ 1 + c5(π) (mod 5).(4.18)

Clearly, Ô preserves the norm and the BG-rank of the partition. And so we can
assemble all partitions of 5n+ 4 with BG-rank = j into disjoint orbits:

π, Ô(π), Ô2(π), Ô3(π), Ô4(π).

Here, π is some partition of 5n+4 with BG-rank = j. Formula (4.18) suggests that
all five members of the same orbit are distinct. Clearly,

pj(5n+ 4) = 5 · (number of orbits).

Hence, pj(5n+ 4) ≡ 0 (mod 5), as desired. In fact, we have the following
Theorem 4.1. Let j be any fixed integer. The residue of the 5-core crank mod 5
divides the partitions enumerated by pj(5n+ 4) into five equal classes.

We note that this theorem generalizes Theorem 4.1 [2, p.717].

5. Identities for odd t-cores with extreme BG-rank values

The main object of this section is to provide a proof of formulas (1.10) and (1.11).
Thoughout this section t is presumed to be a positive odd integer. We will prove
(1.11) first. To this end we employ the observation (3.10) together with (2.3) to
rewrite it as

(5.1)
∑

~n∈Zt,~n·~1t=0

~n≡
~
B̃t (mod 2)

qQ̃(~n) = q
t2−1

8
Et(q4t)
E(q4)

,

where

(5.2) Q̃(~n) :=
t

2
~n · ~n+~bt · ~n.

Next we introduce new summation variables ~̃n = (ñ0, . . . , ñt−1) ∈ Zt as follows

(5.3) ~n = 2~̃n+
b t−3

4 c∑
i=0

(
~e t−3

2 −2i − ~e t+1
2 +2i

)
.

Obviously, ~̃n is subject to the constraint

(5.4) ~̃n ·~1t = 0.
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Note that in terms of new variables we have

(5.5) Q̃(~n) = Q̃(~n) + (t− 1)~1t · ~̃n =
t2 − 1

8
+ 4
{ t

2
~̃n · ~̃n+ σ1 + σ2 + σ3

}
,

where

σ1 =
b t−3

4 c∑
i=0

(t− 1− i)ñ t−3
2 −2i,

σ2 =
b t−3

4 c∑
i=0

iñ2i+ t+1
2
,

σ3 =
b t−1

4 c∑
i=−b t−1

4 c

(
t− 1

2
+ i)ñ t−1

2 +2i.

At this point it is natural to perform further changes:

ñ t−3
2 −2i → ñt−1−i, 0 ≤ i ≤

⌊
t− 3

4

⌋
ñ t+1

2 +2i → ñi, 0 ≤ i ≤
⌊
t− 3

4

⌋
ñ t−1

2 +2i → ñ t−1
2 +i, −

⌊
t− 1

4

⌋
≤ i ≤

⌊
t− 1

4

⌋
.

This way we obtain

Q̃(~n) =
t2 − 1

8
+ 4Q̃(~̃n),

~̃n ∈ Zt, ~̃n ·~1t = 0.

And so with the aid of the Klyachko identity (1.13) we find that

(5.6) C
t,(−1)

t+1
4 b t+1

4 c
(q) =

∑
~
ñ∈Zt
~
ñ·~1t=0

q
t2−1

8 +4Q̃(
~
ñ) = q

t2−1
8
Et(q4t)
E(q4)

,

as desired. To prove (1.10) we shall require the following lemma.
Lemma 5.1. For a positive odd t

(5.7) ψ2(q2) = q
t−1

2 ψ2(q2t) +
E3(q4t)

f(−qt,−q3t)

t−3
2∑
i=0

qi
f(qt−1−2i,−q1+2i)
f(−q4i+2,−q4t−2−4i)

holds.
In the above we employed the Ramanujan notations

ψ(q) :=
E2(q2)
E(q)

=
∑
n≥0

q(
n+1

2 ),(5.8)

f(a, b) := (ab,−a,−b; ab)∞.(5.9)

Using (2.6) we can easily show that

(5.10) f(a, b) =
∞∑

n=−∞
a
n(n+1)

2 b
n(n−1)

2 .
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Setting a = qt−1−2i, b = −q1+2i, 0 ≤ i ≤ t−3
2 in (5.10) and dissecting we obtain

f(qt−1−2i,−q1+2i) = f(−q2+t+4i,−q3t−2−4i)

+ qt−1−2if(−q2−t+4i,−q5t−2−4i).(5.11)

To prove the above lemma we start with the Ramanujan 1ψ1-summation formula
[6, II.29]

(5.12)
∞∑

n=−∞

(a)n
(b)n

zn =
(az, qaz , q,

b
a ; q)∞

(z, baz , b,
q
a ; q)∞

, | b
a
| < |z| < 1.

We set b = aq to obtain

(5.13)
∞∑

n=−∞

zn

1− aqn
=

(az, qaz , q, q; q)∞
(z, qz , a,

q
a ; q)∞

=
E3(q)f(−az,− q

az )
f(−z,− qz )f(−a,− q

a )
, |q| < |z| < 1.

If we replace q → q4, z = q, a = q2 in (5.13) we find that

(5.14)
∞∑

n=−∞

qn

1− q2+4n
= ψ2(q2).

Next we split the sum on the left of (5.14) as

(5.15) ψ2(q2) =
t−1∑
i=0
i 6= t−1

2

∞∑
mi=−∞

qi
qtmi

1− q2+4iq4tmi
+

∞∑
m=−∞

q
t−1

2
qtm

1− q2tq4tm
.

Using (5.14) with q → qt it is easy to recognize the last sum in (5.15) as q
t−1

2 ψ2(q2t).
And so we have

(5.16) ψ2(q2) = q
t−1

2 ψ2(q2t) +
E3(q4t)

f(−qt,−q3t)

t−1∑
i=0
i 6= t−1

2

qi
f(−q2+4i+t,−q3t−2−4i)
f(−q2+4i,−q4t−2−4i)

,

where we have made a multiple use of (5.13). Finally, folding the last sum in half
and using (5.11) we arrive at

ψ2(q2) = q
t−1

2 ψ2(q2t) +

t−3
2∑
i=0

E3(q4t)qi

f(−qt,−q3t)f(−q2+4i,−q4t−2−2i)

×
{
f
(
−q2+4i+t,−q3t−2−4i

)
+ qt−1−2if

(
−q5t−2−4i,−q2−t+4i

) }
= q

t−1
2 ψ2(q2t) +

E3(q4t)
f(−qt,−q3t)

t−3
2∑
i=0

qi
f(qt−1−2i,−q1+2i)
f(−q2+4i,−q4t−2−4i)

.(5.17)

This concludes the proof of Lemma 5.1.
We now move on to prove (1.10). Again, using the observation (3.10), we can

rewrite it as

(5.18)
t−1∑
j=0

∑
~n∈Zt,~n·~1t=0

~n≡ ~Bt+~ej (mod 2)

qQ̃(~n) = q
(t−1)(t−3)

8 F (t, q2).
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Remarkably, (5.18) is just the constant term in z of the following more general
identity

t−1∑
j=0

∑
~n∈Zt

~n≡ ~Bt+~ej (mod 2)

qQ̃(~n)z
~n·~1t

2

= q
(t−1)(t−3)

8 F (t, q2)
∞∑

n=−∞
q2n2+(t−1)nzn.(5.19)

To prove (5.19) we observe that its right hand side satisfies the first order functional
equation

(5.20) D̂t,q(f(z)) = f(z),

where
D̂t,q(f(z)) := zqt+1f(zq4).

After a bit of labor one can verify that for 0 ≤ i ≤ t− 1

(5.21) D̂t,q

 ∑
~n∈Zt

~n≡ ~Bt+~ei (mod 2)

qQ̃(~n)z
~n·~1t

2

 =
∑
~n∈Zt

~n≡ ~Bt+~ei+2 (mod 2)

qQ̃(~n)z
~n·~1t

2 ,

where ~et := ~e0 and ~et+1 := ~e1. Clearly, (5.21) implies that the left hand side of
(5.19) satisfies (5.20), as well. It remains to verify (5.19) at one nontrivial point.
To this end we set

z =

{
1, if t ≡ −1 (mod 4),
q2, if t ≡ 1 (mod 4)

in (5.19), and then replace q2 → q to get with the help of (2.6)

q
t−1

2 ψ(q2t)

t−3
2∏
j=0

f2
(
q1+2j , q2t−1−2j

)

×
{

1 +

t−1
2∑
i=1

q−i
f(qt, qt)f(q2i, q2t−2i)
ψ(q2t)f(qt+2i, qt−2i)

}
= ψ(q2)F (t, q).(5.22)

To proceed further we need to verify two product identities

ψ(q2)

t−3
2∏
j=0

f2
(
q1+2j , q2t−1−2j

)
= ψ(q2t)F (t, q)

and

ψ(q2t)
f(qt, qt)f(q2i, q2t−2i)

f(qt+2i, qt−2i)
= E3(q4t)

f(q2i,−qt−2i)
f(−qt,−q3t)f(−q2t+4i,−q2t−4i)

, i ∈ N.

Next, we multiply both sides of (5.22) by ψ(q2)
F (t,q) and simplify to arrive at

(5.23) q
t−1

2 ψ2(q2t) +
E3(q4t)

f(−qt,−q3t)

t−1
2∑
i=1

q
t−1

2 −i
f(q2i,−qt−2i)

f(−q2t+4i,−q2t−4i)
= ψ2(q2),
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which is essentially the identity in Lemma 5.1. This concludes our proof of (5.19).
It follows that (5.18), (1.10) hold true.

6. 5-cores with prescribed BG-rank

Formula (1.9) suggests that BG-rank(π5-core) can assume just three values:
0,±1. This means that

(6.1) a5(n) = a5,−1(n) + a5,0(n) + a5,1(n).

The generating function of version (6.1) is

(6.2)
E5(q5)
E(q)

= C5,−1(q) + C5,0(q) + C5,1(q).

In the last section we proved (1.10), (1.11). These identities with t = 5 state that

C5,−1(q) = q3E
5(q20)
E(q4)

,(6.3)

C5,1(q) = qF (5, q2).(6.4)

By (1.3) we observe that Ct,j(q) is either an odd or an even functions of q with
parity determined by the parity of j. Therefore, C5,0(q) is an even function of q,
and C5,±1(q) are odd functions of q. Consequently, we see that

(6.5) ep
(
E5(q5)
E(q)

)
= C5,0(q)

where

ep(f(x)) :=
f(x) + f(−x)

2
.

In this section we will show that C5,0(q) can be expressed as a sum of two infinite
products

(6.6) C5,0(q) = R(q2),

where

(6.7) R(q) :=
E4(q10)E(q5)E2(q4)

E2(q20)E(q)
+ q

E2(q20)E3(q5)E6(q2)
E2(q10)E2(q4)E3(q)

.

It is easy to rewrite (6.7) in a manifestly positive way as

R(q) = f(q, q4)f(q2, q3)
{
ϕ(q5)ψ(q2) + qϕ(q)ψ(q10)

}
,

where

ϕ(q) := f(q, q) =
∞∑

n=−∞
qn

2
=

E5(q2)
E2(q4)E2(q)

,

and ψ(q) is defined in (5.8). Formula (6.6) enabled us to discover and prove the
new Lambert series identity

(6.8) R(q) =
1∑
i=0

∞∑
n=−∞

(−1)iq5n+i 1 + q1+2i+10n

(1− q1+2i+10n)2
.

In what follows we will require three identities:

(6.9)
[
ux,

u

x
, vy,

v

y
; q
]
∞ =

[
uy,

u

y
, vx,

v

x
; q
]
∞ +

v

x

[
xy,

x

y
, uv,

u

v
; q
]
∞,
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([6, ex. 5.21])

(6.10) f(a, b)f(c, d) = f(ac, bd)f(ad, bc) + af

(
b

c
,
c

b
(abcd)

)
f

(
b

d
,
d

b
(abcd)

)
,

provided ab = cd ([1]) and

(6.11)
E5(q5)
E(q)

=
2∑
i=1

∞∑
n=−∞

(−1)i+1 q5n+i−1

(1− q5n+i)2
,

([6, ex. 5.7], [5, p.8]). Here

[a; q]∞ =
(
a,
q

a
; q
)
∞
,

[a1, a2, . . . , an; q]∞ =
n∏
i=1

[ai; q]∞.

Next, we wish to establish the validity of

(6.12) F (5, q) =
E(q10)E2(q5)E3(q2)

E2(q)
=
E5(q5)
E(q)

+ q
E5(q10)
E(q2)

.

To this end we multiply both sides of (6.12) by[
q, q3; q10

]2
∞

[
q2, q4; q10

]
∞

E4(q10)

to obtain after simplification that

(6.13) [q2, q2, q4, q6; q10]∞ = [q, q3, q5, q5; q10]∞ + q[q, q, q3, q3; q10]∞.

But the last equation is nothing else but (6.9) with q replaced by q10 and u =
q2, v = q5, x = 1, y = q. We now combine

ep
(
q
E5(q5)
E(q)

)
= qC5,−1(q) + qC5,1(q),

with (6.3), (6.5), and (6.12) to obtain

(6.14) ep
(
q
E5(q5)
E(q)

)
= 2q4E

5(q20)
E(q4)

+ q2E
5(q10)
E(q2)

.

This can be stated as the following eigenvalue problem

(6.15) T2

(
q
E5(q5)
E(q)

)
= q

E5(q5)
E(q)

,

where for prime p the Hecke operator Tp is defined by its action as

Tp

∑
n≥0

anq
n

 =
∑
n≥0

apnq
n + p

(
p

5

)∑
n≥0

anq
pn,

with
(
a
b

)
being the Legendre symbol. We remark that (6.15) is the p = 2 case of

the more general formula

(6.16) Tp

(
q
E5(q5)
E(q)

)
=
(
p+

(
p

5

))(
q
E5(q5)
E(q)

)
,



THE BG-RANK OF A PARTITION AND ITS APPLICATIONS 17

which can be deduced from (6.11). We shall not supply the details. Instead, we
note that (6.16) together with (6.3, 6.4, 6.5) implies that

(6.17) Tp̃(qC5,j(q)) =
(
p̃+

(
p̃

5

))
(qC5,j(q)), j = 0± 1.

Here, p̃ is an odd prime.
To prove (6.6) we use (6.12) to deduce that

(6.18) ep
(
E5(q5)
E(q)

)
= ep(F (5, q)) = E(q10)E3(q2) · ep

(
E2(q5)
E2(q)

)
.

To proceed further we employ (6.10) with a = q, b = q9, c = q3, d = q7 to get

E(q5)
E(q)

=
E(q4)

E(q20)E2(q2)
f(q, q9)f(q3, q7)

=
E(q4)

E(q20)E2(q2)
{f(q4, q16)f(q8, q12) + qf(q6, q14)f(q2, q18)}

=
E2(q20)E(q8)
E(q40)E2(q2)

+ q
E(q40)E(q10)E3(q4)
E(q20)E(q8)E3(q2)

.(6.19)

It is clear that

(6.20) ep
(
E2(q5)
E2(q)

)
=
E4(q20)E2(q8)
E2(q40)E4(q2)

+ q2E
2(q40)E2(q10)E6(q4)
E2(q20)E2(q8)E6(q2)

.

Combining (6.18) and (6.20) we find that

(6.21) ep
(
E5(q5)
E(q)

)
= R(q2).

The last formula together with (6.5) implies (6.6). Next, we rewrite (6.11) as

E5(q5)
E(q)

=
2∑
i=1

∞∑
n=−∞

(−1)i+1 q
5n+i−1(1 + 2q5n+i + q10n+2i)

(1− q10n+2i)2
.

Clearly,

ep
(
E5(q5)
E(q)

)
=

2∑
i=1

∞∑
n=−∞

n≡i−1 (mod 2)

(−1)i+1 q
5n+i−1(1 + q10n+2i)

(1− q10n+2i)2

=
1∑
i=0

∞∑
n=−∞

(−1)i
q10n+i(1 + q20n+4i+2)

(1− q20n+4i+2)2
.(6.22)

Formula (6.8) with q → q2 follows easily from (6.21) and (6.22). Before we move
on we wish to summarize some of the above observations in the formula below

E5(q5)
E(q)

=
{E4(q20)E(q10)E2(q8)

E2(q40)E(q2)
+ q2E

2(q40)E3(q10)E6(q4)
E2(q20)E2(q8)E3(q2)

}
+ q
{E5(q10)
E(q2)

+ 2q2E
5(q20)
E(q4)

}
.(6.23)

In [5], the authors used (6.11) to find explicit formulas for the coefficients

(6.24) a5(n) =
2d+1 + (−1)d

3
· 5c ·

s∏
i=1

pai+1
i − 1
pi − 1

t∏
j=1

q
bj+1
j + (−1)bj

qj + 1
.
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Here

(6.25) n+ 1 = 2d5c
s∏
i=1

paii

t∏
j=1

q
bj
j

is the prime factorization of n + 1 and pi ≡ ±1 (mod 5), 1 ≤ i ≤ s and qj ≡ ±2
(mod 5), 1 ≤ j ≤ t are odd primes. Formulas (6.3), (6.4), (6.5) and (6.12) suggest
the following relations. For n ∈ N and r = 0, 1, 2, 3 one has

a5,0(n) =

{
a5(n), if n ≡ 0 (mod 2),
0, otherwise,

(6.26)

a5,−1(4n+ r) =

{
a5(n), if r = 3,
0, otherwise,

(6.27)

a5,1(4n+ r) =


a5(2n), if r = 1,
a5(n) + a5(2n+ 1), if r = 3,
0, if r = 0, 2.

(6.28)

These relations together with (6.24) enabled us to derive explicit formulas for a5,j(n)
with −1 ≤ j ≤ 1. In particular, if the prime factorization of n+1 is given by (6.25),
then

(6.29) a5,1(4n+ 3) = 2d+15c
s∏
i=1

pai+1
i − 1
pi − 1

t∏
j=1

q
bj+1
j + (−1)bj

qj + 1
.

We would like to conclude this section with the following discussion. It is easy to
check that (6.17) implies that

(6.30) a5,j(pn+p−1)+p
(
p

5

)
a5,j

(
n+ 1
p
− 1
)

=
(
p+

(
p

5

))
a5,j(n), j = 0,±1,

where p is odd prime, n ∈ N and a5,j(x) = 0 if x 6∈ Z. Setting p = 5 we find that

(6.31) a5,j(5n+ 4) = 5a5,j(n), j = 0,±1.

This is a refinement of the well-known result

(6.32) a5(5n+ 4) = 5a5(n),

proven in [5]. We can prove (6.31) by adapting the combinatorial proof in [5].
Let’s define

~n = (n0, n1, n2, n3, n4) = φ2(π5-core)

for some π5-core with BG-rank(π5-core) = j and |π5-core| = n. Consider map
~n→ ~̃n = (ñ0, ñ1, ñ2, ñ3, ñ4) with

ñ0 = n1 + 2n2 + 2n4 + 1,
ñ1 = −n1 − n2 + n3 + n4 + 1,
ñ2 = 2n1 + n2 + 2n3,

ñ3 = −2n2 − 2n3 − n4 − 1,
ñ4 = −2n1 − n3 − 2n4 − 1.
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Obviously ~̃n ∈ Z5 and ~̃n ·~15 = 0 and so we can define π̃5-core = φ−1
2 (~̃n). It is easy

to check that
|π̃5-core| = 5n+ 4,

and that
BG-rank(π̃5-core) = j,

and
c5(π̃5-core) ≡ 4 (mod 5).

Recall that the orbit {π̃5-core, Ô(π̃5-core), . . . , Ô4(π̃5-core)} contains just one mem-
ber with c5 ≡ 4 (mod 5). And so each 5-core of n with BG-rank j is in 1− 1 corre-
spondence with an appropriate 5-member orbit of t-cores of 5n + 4 with BG-rank
j. This observation yields a combinatorial proof of (6.31).

7. Outlook

Given our combinatorial proof of

pj(5n+ 4) ≡ 0 (mod 5), j ∈ Z
one may wonder about a combinatorial proof of the other mod 5 congruences (1.4-
1.7). We strongly suspect that such proof will be dramatically different from the one
discussed in Section 4. In addition, one would like to have combinatorial insights
into (6.30) for p 6= 5.

In this paper we found “positive” eta-quotient representations for C5,j(q),−1 ≤
j ≤ 1. In the general case (odd t, −b t−1

4 c ≤ j ≤ b t+1
4 c), we established such

representation only for Ct,±b t±1
4 c

(q). Clearly, one wants to find “positive” eta-
quotient representations for other admissible values of BG-rank. (See [3] for a
fascinating discussion of the t = 7 case).

Finally, we observe that (1.2) is the s = 2 case of the following more general
definition

gbg-rank(π, s) =
s−1∑
j=0

rj(π, s)ωjs

with
ωs = ei

2π
s .

Many identities, proven here, can be generalized further. For example, we can
prove that if (s, t) = 1 then

(7.1) gbg-rank(πt-core, s) =
∑t−1
i=0 ω

i+1
s (ωtnis − 1)

(1− ωts)(1− ωs)
and for 1 ≤ i ≤ s− 1 that

(7.2)
∑

gbg-rank(πt-core,s)=g(i)

q|πt-core| = qa(i)Fi(qs).

Here,
(n0, n1, . . . , nt−1) = φ2(πt-core),

a(i) =
(t2 − 1)(s2 − 1)

24
− (t− 1)(s− i)i

2
,

g(i) =
1

(1− ωs)(1− 1
ωs

)
− ω

t−1
2

s

1 + t−1
ωis

(1− ωts)(1− 1
ωs

)
,
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Fi(q) = E(qs)E(qst)t−2 [qit; qst]∞
[qi; qs]∞

.

Setting s = 2 in (7.1), (7.2) we obtain (3.2), (1.10), respectively.
In addition we can show that

(7.3)
∑

gbg-rank(πt-core,s)=g(0)

q|πt-core| = qa(0)E(qs
2t)t

E(qs2)
.

Setting s = 2 in (7.3) we get (1.11).
In [10] Olsson and Stanton defined so-called (s, t)-good partitions. Surprisingly,

t-cores with gbg-rank = g(0) coincide with (t, s)-good partitions.
Let ν(t, s) denote a number of distinct values that gbg-rank(πt-core, s) may as-

sume. Then it can be shown that

ν(s, t) ≤
(
t+s
t

)
t+ s

,

provided that (s, t) = 1. Morever, if s is prime or if s is a composite number and
t < 2p then

ν(s, t) =

(
t+s
t

)
t+ s

.

Here, p is a smallest prime divisor of s and (s, t) = 1.
Details of these and related results will be left to a later paper.
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