FLORIDA MOSQUITO CONTROL 2009

The state of the mission as defined by mosquito controllers, regulators, and environmental managers

Florida Coordinating Council on Mosquito Control

This report was funded in part by a grant from the Florida Department of Agriculture and Consumer Services, FDACS \#012902, University of Florida Project \#00068572. The report was initiated, reviewed, and approved by the Florida Coordinating Council on Mosquito Control (FCCMC). The FCCMC was created and mandated by the Legislature in Chapter 388 Florida Statues in 1986 to develop and implement guidelines to assist the Florida Department of Agriculture and Consumer Services (FDACS) in resolving disputes arising over the control of arthropods on publicly owned lands, to identify and recommend research priorities and technologies, to develop and recommend to FDACS a request for proposal process for arthropod control research, to identify potential funding sources for research and implementation projects, and to evaluate and rank proposals upon request by the funding source. A final mandate is to prepare and present reports, such as this one, on arthropod control activities in the state to appropriate agencies.

To oversee the development of the report, the FCCMC appointed a Steering Committee that selected contributors and reviewers for this publication.

This publication is a public document that can be used for educational purposes.
The front and back cover (cypress wetlands) are the copyright of James M. Newman, the inset is the copyright of Alan Curtis, and all rights are reserved.

Acknowledgments: The editorial assistance of Janice Broda is much appreciated. Special thanks to James M. Newman and Alan Curtis for generously donating the color transparencies used for the cover.

Printed copies are available from: Dr. Roxanne Connelly
Florida Medical Entomology Laboratory
University of Florida/IFAS
200-9 ${ }^{\text {th }}$ Street SE
Vero Beach, Florida 32962

Telephone: 772-778-7200 Fax: 772-778-7205
The document can be downloaded from the Florida Medical Entomology Laboratory web page: h ttp://fmel.ifas.ufl.edu or http://mosquito.ifas.ufl.edu

URL's referenced in this document may not remain valid over time.
When referencing this document use:
Connelly, C.R. and D.B. Carlson (Eds.). 2009. Florida Coordinating Council on Mosquito Control. Florida Mosquito Control: The state of the mission as defined by mosquito controllers, regulators, and environmental managers. Vero Beach, FL: University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory.

Printed in 2009

Table of Contents

Florida Coordinating Council on Mosquito Control. 11
White Paper Steering Committee. 13
Contributors 14
Preface 18
Chapter 1: Introduction 19
1.1 Purpose of this Document. 19
1.2 Mission Statement 19
1.3 Brief Introduction to Mosquito Biology 19
1.4 Integrated Pest Management as it Applies to Mosquito Control. 20
Chapter 2: History of Florida Mosquito Control 21
2.1 Introduction 21
2.2 State Involvement 22
2.3 Organized Programs. 22
2.4 Research 23
2.5 Training and Professionalism 25
2.6 Interagency Conflict and Cooperation 25
2.7 Conclusion. 26
2.8 A Published History of Florida Mosquito Control 27
2.9 Reference 27
Chapter 3: Integrated Mosquito Surveillance and Environmental Monitoring 28
3.1 Introduction. 28
3.2 Developing an Integrated Mosquito Surveillance Program 29
3.3 Defining Area-specific Mosquito Problems and Control Strategies. 29
3.4 Designing a Mosquito Surveillance Program 30
3.4.1 Telephone or Website Service Requests. 30
3.4.2 Monitoring Adult Mosquitoes 31
3.4.2.1 Landing Rates 32
3.4.2.2 Mechanical Traps 32
3.4.3 Monitoring Immature Mosquitoes 34
3.4.3.1 Inventory of Mosquito Developmental Sites 34
3.4.3.2 Sampling Immature Stages 35
3.4.3.3 Collecting Eggs 35
3.4.3.4 Collecting Larvae and Pupae 36
3.5 Monitoring Environmental Parameters. 36
3.6 References and General Reading 37
Chapter 4: Mosquito Control through Source Reduction. 38
4.1 Introduction. 39
4.2 Mosquito Producing Habitats Appropriate for Source Reduction. 39
4.2.1 Containers. 39
4.2.2 Freshwater Lakes, Ponds, and Retention Areas 39
4.2.3 Freshwater Swamps and Marshes. 39
4.2.4 Temporarily Flooded Locations 40
4.2.5 Salt Marshes 40
4.3 Source Reduction for Saltmarsh Mosquito Control 40
4.3.1 Description of Florida's Salt Marshes. 40
4.4 Historical Methods of Source Reduction in Salt Marsh Habitats 41
4.4.1 Ditching. 41
4.4.2 Filling 42
4.4.3 Impounding. 42
4.5 Current Salt Marsh Source Reduction Techniques. 42
4.5.1 Environmental Considerations 42
4.5.2 Ditching. 43
4.5.2.1 Benefits of a Properly Designed Rotary Ditching Plan. 43
4.5.2.2 Environmental Risks of Rotary Ditching. 44
4.5.2.3 Rotary-ditching Applications. 44
4.5.3 Impoundments. 45
4.5.3.1 Environmental Risks of Impounding. 45
4.5.3.2 Benefits of a Properly Designed Impoundment Management Plan 45
4.5.4 Current Efforts in Salt Marsh Management 47
4.6 Source Reduction in Freshwater Habitats 47
4.7 Stormwater and Wastewater Management. 49
4.7.1 Conclusions. 50
4.8 Mosquitoes Associated with Wastewater. 51
4.8.1 Domestic Wastewater. 51
4.8.1.1 Septic Systems 51
4.8.1. 2 Package Plants 51
4.8.1.3 Large Treatment Facilities 52
4.8.1.4 Spray-irrigation Systems 52
4.8.1.5 Rapid-dry Ponds Versus Holding Ponds 52
4.8.1.6 Wastewater/aquatic Plant Systems 52
4.8.1.7 Wetlands 52
4.8.2 Agricultural and Industrial Wastewater. 53
4.8.3 Major Pest and Disease-vectoring Species. 53
4.8.3.1 Culex 53
4.8.3.2 Aedes and Psorophora. 54
4.8.3.3 Mansonia and Coquillettidia 54
4.8.4 Mosquito Control 54
4.8.4.1 Operating Capacity 55
4.8.4.2 Water Quality. 55
4.8.4.3 Wet-detention Ponds. 55
4.8.4.4 Dry-retention Areas: Rapid-dry Ponds and Spray-irrigation Fields 55
4.8.4.5 Wetlands 56
4.8.4.6 Larvicides 56
4.9 Aquatic Plant Management and the Effects on Mosquito Populations. 57
4.9.1 Mosquitoes 57
4.9.2 Aquatic Plants 58
4.9.3 Surveillance. 58
4.9.4 Mosquito Control Measures 59
4.9.5 Aquatic Plant Management Measures 59
4.10 Waste Tire Program in Florida. 60
4.10.1 Tires as Mosquito Producers 60
4.10.2 Waste Tire Disposal Regulations 60
4.11 References and General Reading 62
Chapter 5: Larvicides and Larviciding. 65
5.1 Introduction 65
5.1.1 History 67
5.1.2 Regulation 68
5.2 Larvicides Available 70
5.2.1 Insect Growth Regulators 71
5.2.1.1 Methoprene 71
5.2.2 Microbial Larvicides 72
5.2.2.1 Bacillus thuringiensis israelensis. 72
5.2.2.2 Bacillus sphaericus 73
5.2.3 Organophosphates 74
5.2.3.1 Temephos 75
5.2.4 Surface Oils and Films. 75
5.2.4.1 Larviciding Oils 75
5.2.4.2 Monomolecular Surface Films 76
5.2.5 On-site Formulations and Combining Larvicides. 76
5.3 Reporting Organizations and Recent Larvicide Use. 78
5.4 Equipment Available. 78
5.4.1 Ground Application Equipment 79
5.4.1.1 Advantages of Ground Application. 79
5.4.1.2 Disadvantages of Ground Application 80
5.4.2 Aerial Application Equipment 80
5.4.2.1 Selecting Larvicide Formulations for Aerial Applications 81
5.4.2.2 Measuring and Perfecting Aerial Larvicide Applications 84
5.4.2.3 Advantages of Aerial Larvicide Applications. 86
5.4.2.4 Disadvantages of Aerial Larvicide Applications 86
5.5 Choosing When to Larvicide. 86
5.6 Managing Larvicide Resistance. 87
5.7 Understanding Larvicide Non-target Effects. 88
5.8 References and General Reading 89
Chapter 6: Adulticides and Adulticiding. 93
6.1 Introduction. 93
6.1.1 Surveillance and Thresholds. 94
6.1.2 Timing. 95
6.1.3 Choosing the Chemical. 96
6.2 Adulticides Used in Florida. 96
6.2.1 Organophosphates - General Description. 97
6.2.1.1 Malathion 97
6.2.1.2 Naled. 98
6.2.1.3 Chlorpyrifos 99
6.2.2 Pyrethroids - General Description 99
6.2.2.1 Pyrethrum 100
6.2.2.2 Permethrin. 100
6.2.2.3 Resmethrin 101
6.2.2.4 Lambda-cyhalothrin. 101
6.2.2.5 Cyfluthrin 102
6.2.2.6 Bifenthrin 102
6.2.2.7 D-phenothrin. 103
6.3 Meteorology 103
6.4 Droplet Size. 104
6.5 Ground Adulticiding 105
6.5.1 Barrier Treatments. 105
6.5.2 Space Spray. 106
6.5.2.1 Thermal Fog. 106
6.5.2.2 Ultra Low Volume. 107
6.5.2.3 Risks and Benefits of Thermal Fogging and ULV 107
6.5.3 Equipment. 108
6.5.4 Training and Maintenance. 110
6.6 Aerial Applications 110
6.6.1 Equipment. 114
6.6.1.1 Fixed Wing Aircraft. 115
6.6.1.2 Helicopters 115
6.6.1.3 Inventory of Aerial Adulticiding Aircraft in Florida. 116
6.6.2 Training and Requirements. 116
6.7 Technological Improvements, Guidance Systems, and Documentation. 117
6.8 Drift and Deposition Management. 119
6.9 References and General Reading. 121
Chapter 7: Biological and Alternative Control. 123
7.1 Introduction. 123
7.2 Development and Use of Biological Control Agents in Florida. 124
7.3 Alternative Control Techniques 126
7.3.1 Removal Trapping Techniques 126
7.3.2 Mechanical Traps and Bug Zappers 127
7.3.3 Biotechnology. 127
7.3.4 Socio-cultural Changes. 128
7.4 Conclusions. 129
7.5 References and General Reading 129
Chapter 8: Disease Surveillance, Outbreaks, and Control in Florida 131
8.1 History of Disease Outbreaks 132
8.1.1 West Nile Fever. 132
8.1.2 St. Louis Encephalitis. 133
8.1.3 Eastern Equine Encephalitis. 133
8.1.4 Dengue 134
8.1.5 Yellow Fever. 134
8.1.6 Venezuelan Equine Encephalitis 134
8.1.7 Malaria 135
8.1.8 Dog Heartworm. 135
8.1.9 Mosquito Annoyance and Discomfort 136
8.2 Economic Costs of Surveillance, Prevention, and Control. 136
8.3 Surveillance for Mosquito-borne Disease in Florida. 137
8.4 Organization of Disease Surveillance in Florida. 137
8.5 General Approaches to Surveillance of Encephalitis 139
8.6 Overview of Current Surveillance Methods for Encephalitis. 142
8.7 Control of Disease Epidemics 143
8.8 References and General Reading. 144
Chapter 9: Mosquito Control Benefits and Risks. 145
9.1 Introduction. 145
9.2 Integrated Pest Management. 147
9.3 Mosquito Control Insecticides: Past and Present 148
9.4 Benefits of Mosquito Control. 150
9.4.1 Nuisance Benefits. 150
9.4.2 Economic Benefits. 151
9.4.3 Public Health Benefits 152
9.5 Costs of Mosquito Control. 152
9.5.1 Human Health Concerns. 152
9.5.2 Chemical Trespass. 154
9.5.3 Potential Problems of Chronic Chemical Exposure. 154
9.5.4 Environmental Costs of Adulticiding. 156
9.5.4.1 Non-target Insect Mortality 156
9.5.4.2 Impacts on Insectivores 157
9.5.4.3 Fish 158
9.5.4.4 Aquatic Crustacea. 158
9.5.5 Environmental Costs of Larviciding. 158
9.5.6 Adulticiding versus Larviciding. 159
9.6 Source Reduction. 160
9.7 Mosquito Control on Biologically Productive State-owned Lands. 161
9.8 Mutual Accommodation. 161
9.9 References and General Reading. 162
Chapter 10: Insecticide Resistance Management. 177
10.1 Introduction. 177
10.2 History of Insecticide Resistance in Florida Mosquitoes 177
10.3 Definition of Resistance 179
10.4 Resistance Mechanisms. 179
10.4.1 Behavioral Resistance 180
10.4.2 Metabolic Resistance. 180
10.4.3 Target Site Insensitivity. 180
10.4.4 Cross Resistance. 181
10.5 Detection of Resistance. 181
10.5.1 Median Lethal Concentration. 181
10.5.2 Bioassay 182
10.5.3 Biochemical Tests. 182
10.6 Current Research. 183
10.7 Strategies of Resistance Management. 185
10.7.1 Management by Integrated Pest Management 186
10.8 Resistance Surveillance. 187
10.9 State-wide Resistance Management Program 187
10.10 Future Research 188
10.11 Conclusion 188
10.12 References and General Reading 188
Chapter 11: Mosquito Control Research 193
11.1 Introduction. 194
11.2 Research Organizations. 196
11.2.1 Federal. 196
11.2.1.1 U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology 196
11.2.1.2 U.S. Navy Entomology Center of Excellence 201
11.2.2 State 202
11.2.2.1 Florida Agricultural and Mechanical University, John A. Mulrennan, Sr. Public Health Entomology Research and Education Center. 202
11.2.2.2 Florida Department of Health, Tampa Branch Laboratory, Virology Section. 208
11.2.2.3 Florida Institute of Technology 208
11.2.2.4 University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory. 208
11.2.2.5 University of Florida, Whitney Laboratory for Marine Bioscience 217
11.2.2.6 University of Miami. 217
11.2.2.7 University of North Florida. 217
11.2.2.8 University of South Florida. 217
11.2.3 Local. 218
11.2.4 Private 221
11.2.4.1 Harbor Branch Oceanographic Institution, Inc 221
11.2.4.2 Mote Marine Laboratory. 221
11.3 The Need for Competitive Extramural Funding for Florida's Research Laboratories to Support Mosquito Control. 221
Chapter 12: Education, Extension, and Outreach. 224
12.1 Introduction. 224
12.2 Education. 224
12.2.1 Florida Department of Agriculture and Consumer Services, Bureau of Entomology and Pest Control. 225
12.2.2 Florida Mosquito Control Association 225
12.2.3 University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory 227
12.2.4 Florida Agriculture and Mechanical University, John A. Mulrennan, Sr. Public Health Entomology Research and Education Center. 228
12.2.5 Industry Short Courses 228
12.3 Extension. 228
12.4 Assistance to Mosquito Control Programs. 229
12.5 Outreach. 229
Chapter 13: How Florida Mosquito Control is Regulated
13.1 Agency Involvement and Enforcement. 231
13.1.1 Florida Department of Agriculture and Consumer Services. 231
13.1.2 United States Environmental Protection Agency. 232
13.2 Registration. 232
13.3 Authority. 233
13.4 Enforcement Actions and Violations. 234
13.5 Storage and Handling Requirements. 234
13.6 Other Regulations and Initiatives 236
13.6.1 Clean Air Act. 236
13.6.2 Comprehensive Environmental Response Compensation and Liability Act. 236
13.6.3 Department of Transportation. 236
13.6.4 Resource Conservation and Recovery Act 236
13.6.5 Reduced Risk Pesticides Initiative. 236
13.6.6 Public Lands 237
13.7 Recommendations for Storage and Handling of Pesticides 237
13.8 Certification and Training 238
13.9 Aerial Regulations. 239
13.9.1 Aircraft Registration, Security, and Storage 241
Appendix I: Acknowledgments and Awards. 242
Appendix II: Best Management Practices for Mosquito Control in Stormwater Management Facilities 244
Design. 244
Construction 245
Maintenance 246
Appendix III: History of Resistance. 247
References. 249
Appendix IV: Acronym List. 250
Index. 252

Florida Coordinating Council on Mosquito Control

E. John Beidler
Private citizen
Carina Blackmore, DVM, Ph.D.
State of Florida Public Health Veterinarian

Dana Bryan

Florida Department of Environmental Protection

David Cook

Florida Fish and Wildlife Conservation Commission
Steve Dwinell, Chair
Florida Department of Agriculture and Consumer Services
Bureau of Entomology and Pest Control
Christine Fortuin
United States Environmental Protection Agency
Robert Frakes
United States Fish and Wildlife Service
Edsel M. Fussell, MPH
Florida Keys Mosquito Control District
Patricia T. Harden
Florida Defenders of the Environment
William Howell
Florida Department of Environmental Protection, Division of State Lands
Board of Trustees of the Internal Improvement Trust Fund
Mark Latham
Manatee County Mosquito Control District
Ken Linthicum, Ph.D.
United States Department of Agriculture
Center for Medical, Agricultural, and Veterinary Entomology

Lenore N. McCullagh, Ph.D.

Audubon of Florida

John A. Mulrennan, Jr., Ph.D.
Private Citizen
John P. Smith, Ph.D.
Florida Agricultural and Mechanical University
John A. Mulrennan, Sr. Public Health Entomology Research and Education Center
Walter Tabachnick, Ph.D.
University of Florida, Institute of Food and Agricultural Sciences
Florida Medical Entomology Laboratory

WHITE PAPER STEERING COMMITTEE

Roxanne Connelly, Ph.D., Co-Editor
University of Florida, Institute of Food and Agricultural Sciences
Florida Medical Entomology Laboratory
Doug Carlson, Co-Editor
Indian River Mosquito Control District
Peter Connelly
AMVAC Environmental Products
Larry Hribar, Ph.D.
Florida Keys Mosquito Control District
Ken Linthicum, Ph.D.
United States Department of Agriculture Center for Medical, Agricultural, and Veterinary Entomology

Jack Petersen, Ph.D.

Florida Agricultural and Mechanical University
John A. Mulrennan, Sr. Public Health Entomology Research and Education Center

CONTRIBUTORS

Dr. Arshad Ali
University of Florida
Mid-Florida Research and Education Center
Dr. Jane Bonds
Florida Agricultural and Mechanical University
John A. Mulrennan, Sr. Public Health Entomology Research and Education Center
Marin Brouillard
Collier Mosquito Control District
\section*{Dana Bryan}
Florida Department of Environmental Protection
Doug Carlson
Indian River Mosquito Control District
James Clauson
Florida Department of Agriculture and Consumer Services
Bureau of Entomology and Pest Control
Joe Conlon
American Mosquito Control Association
Dr. Roxanne Connelly
University of Florida, Institute of Food and Agricultural Sciences
Florida Medical Entomology Laboratory
Peter Connelly
AMVAC Environmental Products
Alan Curtis
Indian River Mosquito Control District
Dr. David Dame
Entomological Services
\section*{Dr. Jaret C. Daniels}
University of Florida
Department of Entomology and Nematology
Dr. Jonathan Day
University of Florida, Institute of Food and Agricultural Sciences
Florida Medical Entomology Laboratory

Tom Floore
Florida Agricultural and Mechanical University
John A. Mulrennan, Sr. Public Health Entomology Research and Education Center
Dr. Robert Frommer
Manatee County Mosquito Control District

Elmer Gray

University of Georgia
Department of Entomology
Dr. Larry Hribar
Florida Keys Mosquito Control District

Michael Hudon

Indian River Mosquito Control District
Mark Latham
Manatee County Mosquito Control District
Dr. Ken Linthicum
United States Department of Agriculture
Center for Medical, Agricultural, and Veterinary Entomology

Flo Jones

Florida Mosquito Control Association

Dr. Dan L. Kline
United States Department of Agriculture
Center for Medical, Agricultural, and Veterinary Entomology

Dr. Wayne Kramer
Louisiana State University
Department of Entomology

Dr. Sharon Lawler

University of California, Davis

Dr. Janet McAllister

Centers for Disease Control and Prevention
Dr. Robert Mickle
REMSpC Spray Consulting
Dennis Moore
Pasco County Mosquito Control District

Dr. John A. Mulrennan, Jr.
Florida Coordinating Council on Mosquito Control
Dr. George O'Meara
University of Florida, Institute of Food and Agricultural Sciences
Florida Medical Entomology Laboratory
Bill Opp
Florida Mosquito Control Association
Dr. Jack Petersen
Florida Agricultural and Mechanical University
John A. Mulrennan, Sr. Public Health Entomology Research and Education Center
Dr. Jorge Rey
University of Florida, Institute of Food and Agricultural Sciences
Florida Medical Entomology Laboratory
Candace Royals
Valent Biosciences
Dr. Eric Schreiber
Sarasota Mosquito Management Services
Dr. Chelsea Smartt
University of Florida, Institute of Food and Agricultural Sciences
Florida Medical Entomology Laboratory
Dr. John P. Smith
Florida Agricultural and Mechanical University
John A. Mulrennan, Sr. Public Health Entomology Research and Education Center
\section*{Dr. Jeff Stivers}
Collier Mosquito Control District
Gail Stout
Manatee County Mosquito Control District
\section*{Dr. Walter Tabachnick}
University of Florida, Institute of Food and Agricultural Sciences
Florida Medical Entomology Laboratory
\section*{Dr. D. Scott Taylor}
Brevard County Environmentally Endangered Lands Program

Dr. William Walton
University of California, Riverside
Department of Entomology
Doug Wassmer
Pasco County Mosquito Control District
Dr. Dawn Wesson
Tulane University School of Public Health

George Wichterman

Lee County Mosquito Control District
Neil Wilkinson
Florida Gulf Coast University
Dr. Rui-de Xue
Anastasia Mosquito Control District

PREFACE

$\mathbf{1}^{\text {st }}$ EDITION. During the Spring of 1994 at a meeting of the Florida Coordinating Council on Mosquito Control (FCCMC), a legislatively established interagency committee, Carlton Layne of the U.S. Environmental Protection Agency (EPA) requested that the Florida mosquito control community develop a "White Paper" on its control practices. Originally, it was intended that this document could help define the current state of mosquito control in Florida with the goal of developing recommendations on how mosquito control chemical use and risk could be reduced in the future. This goal of reduced chemical use and risk is a goal of the EPA's Pesticide Environmental Stewardship Program (PESP) of which the Florida Mosquito Control Association is a "PESP partner under the auspices of the American Mosquito Control Association". While this request probably was first intended as a brief overview of Florida's mosquito control programs and practices, it stimulated great interest in the mosquito control community and "took on a life of its own" resulting in the $1^{\text {st }}$ Edition of the White Paper published by the University of Florida in 1998.
$\mathbf{2}^{\text {ND }}$ EDITION. In the Spring of 2006, we saw that the inventory of the White Paper's $1^{\text {st }}$ Edition was running low. Recognizing that some significant developments had occurred over the past eight years, we felt that an update was in order rather than simply a reprint the document. At the June 2006 FCCMC meeting, the Committee authorized the development of a $2^{\text {nd }}$ Edition. As was the case for the $1^{\text {st }}$ Edition, a Steering Committee was formed, and Chapter Coordinators were solicited. Over the next approximately sixteen months with the expertise of numerous individuals, each chapter was revised and updated. The revisions were first reviewed by the Steering Committee, and any significant modification requests were forwarded to the Chapter Coordinators. Next, each chapter was peer-reviewed by several individuals knowledgeable about the chapter's specific topic. Again, any significant modification requests were forwarded to the Chapter Coordinators. In January 2008 the entire document was provided to the FCCMC for their review, and it was adopted at their February 2008 meeting.

APPRECIATION. The Steering Committee would like to thank all the participants in this report. While it has not been easy to achieve a consensus on the wording of some of the chapters, compromises were made, resulting in what we believe is a fair, accurate, and important look at mosquito control in Florida in the first decade of the $21^{\text {st }}$ Century.

C. Roxanne Connelly and Douglas B. Carlson
Co-Editors

Chapter 1

INTRODUCTION

Chapter Coordinators:
Doug Carlson, Dr. Roxanne Connelly, Peter Connelly, Dr. Larry Hribar, Dr. Ken Linthicum, and Dr. Jack Petersen

1998 Coordinators: Dr. Richard Baker and Doug Carlson

1.1 PURPOSE OF THIS DOCUMENT

The purpose of this document is to illustrate the intricacies of mosquito control and the relationships of mosquito control activities to other environmental management strategies. This project explores the benefits and risks of these strategies, particularly the various activities or environmental management strategies that may benefit or adversely affect each other.

1.2 MISSION STATEMENT

The Florida Legislature declares in Chapter 388 of the Florida Statues (F.S.) that it is the public policy of this State to achieve and maintain such levels of arthropod control as will protect human health and safety, foster the quality of life of the people, promote the economic development of the state, and facilitate the enjoyment of its natural attractions by reducing the number of pestiferous and disease-carrying arthropods. The Legislature also declares in the statute that it is the policy of the State to conduct arthropod control in a manner consistent with protection of the environmental and ecological integrity of all lands and waters throughout the State. In addition to the legislative declaration, mosquito control programs in Florida have established policies through the Florida Mosquito Control Association (FMCA), which enables mosquito control operations to offer maximum protection to the environment based on a need to control mosquitoes and recommendations of the Florida Department of Agriculture and Consumer Services (FDACS).

1.3 BRIEF INTRODUCTION TO MOSQUITO BIOLOGY

Mosquitoes are insects with long slender bodies, narrow wings with a fringe of scales on the hind margins and along the veins, and long, very thin legs. In females, the elongate proboscis is firm and usually adapted for piercing and sucking blood; the males cannot suck blood, but both sexes feed on nectar of various plants.

There are four life stages: egg, larva, pupa, and winged adult. Eggs may be oviposited (laid) singly or in rafts, deposited in water, on the sides of containers where water will
soon cover them, or on damp soils where they must undergo a maturing process before they can hatch when flooded by rainfall or high tides. After the tiny eggs hatch, the larvae (commonly called wigglers) begin to feed on very small plant and animal particles, going through four growth stages (called instars) before becoming pupae. Most larvae, except in the genera Mansonia and Coquillettidia, must breathe at the surface of the water. The two named genera have a sharp pointed siphon with which to pierce the roots and stems of aquatic plants to get their oxygen from the plant. The pupal stage is comparatively brief. The pupa does not feed and is active generally only if disturbed. When it has matured, the pupa remains at the surface, the chitinous pupal skin splits, and the adult emerges from the skin, briefly dries its wings, and flies away. Only the female mosquitoes bite, using blood protein for the development of their eggs. The flight range of mosquitoes varies greatly, from several hundred feet in some species to more than 20 miles in others (excerpted from Public Health Pest Control Applicator Training Manual, FDACS, 1994, 30 pp).

1.4 INTEGRATED PEST MANAGEMENT AS IT APPLIES TO MOSQUITO CONTROL

In order to accomplish long-range, intelligent, and environmentally sound pest control, the management and manipulation of pests must be accomplished using not just one but all available pest control methods. This combination of methods into one thoughtful, ecologically-valid program is referred to as Integrated Pest Management (IPM) (paraphrased from The Pesticide Book by G.W. Ware, Thomson Publications, 1994, 386 $\mathrm{pp})$.

A typical mosquito control program employing IPM principles first determines the species and abundance of mosquitoes through larval and adult surveys and then uses the most efficient and effective means of control. In some situations, water management programs or sanitation programs can be instituted to reduce larval habitats. When this approach is not practical, a larviciding program then is used so that specific larval habitats can be treated. Where larviciding is not effective, adulticides are used. The choice of larvicides and adulticides used is based on the species targeted for control and environmental concerns.

An important part of an IPM program is public education. Public participation can do much to reduce the breeding sites of domestic mosquitoes. Public education can be most effective during disease epidemics to educate the public concerning mosquito habits and ways individuals can protect themselves from mosquito attack.

Some mosquito control professionals prefer to use the term Integrated Mosquito Management (IMM) or Integrated Vector Management (IVM) in place of Integrated Pest Management (IPM). However, for the purposes of this publication, in particular because people outside of the mosquito control community who read this may not be familiar with the terms IMM or IVM, we have chosen to use the term IPM throughout this publication when appropriate.

Chapter 2

HISTORY OF FLORIDA MOSQUITO CONTROL

Chapter Coordinator: Dr. Roxanne Connelly
1998 Coordinator: John Beidler

Abstract

Summary Since the days of the early European explorers, writings show that mosquitoes have played a prominent role in Florida's history both as pest and disease problems. Spanish, English, and French explorers told tales of mosquitoes in such abundance that they were forced to sleep on the beach covered with sand. In the 1870s and 1880s, outbreaks of Yellow Fever in the Panhandle, Jacksonville, Key West, Tampa, Plant City, and Manatee County took a tremendous toll in human suffering and death. These events led to the formation of the Florida State Board of Health in 1889. Dr. J. Y. Porter, a physician and a noted mosquito expert, was chosen as the first head of the Board.

The Florida Anti-Mosquito Association was formed in 1922. The Florida Legislature created the first mosquito control district, the Indian River Mosquito Control District, in 1925 in conjunction with the formation of Indian River County. The St. Lucie Mosquito Control District was formed a year later in 1926. Early permanent control efforts focused on hand ditching, some diking and dewatering, and proposed some dredge and fill work. The Work Projects Administration constructed 1500 miles of ditches in Florida's salt marshes by hand or with explosives. Perhaps the most significant mosquito control event in Florida was the creation of State funds through the efforts of Dr. John Mulrennan, Sr. in 1953. This legislatively established program was designated for permanent control work which included dredge and fill, ditching, and impoundment and also established the Entomological Research Center, now known as the University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory in Vero Beach. In 2004, Dr. Gordon Patterson published The Mosquito Wars: A History of Mosquito Control in Florida, a book that details the history of mosquito control in Florida.

2.1 INTRODUCTION

Since the days of the early European explorers, mosquitoes have played a prominent role in Florida's history, both as pests and carriers of disease. Various Spanish, English, and French accounts tell of mosquito abundance sufficient to force early explorers to sleep on
the beach and cover themselves with sand. In the 1870 and 1880 outbreaks of yellow fever (YF) in such widespread locations as Pensacola, Fernandina, Jacksonville, Key West, Tampa, Plant City, and Manatee County, there was a tremendous toll in human suffering and death. In Jacksonville, with a population of 26,800, the 1888 epidemic killed 400 people, sickened 5,000 people, and caused 10,000 people to flee the city. Of the 16,400 people remaining in the city, 14,000 citizens were left unemployed as a result of the breakdown of commerce.

2.2 STATE INVOLVEMENT

These events, especially those in Jacksonville, led to the formation of the Florida State Board of Health (FSBH) in 1889. J.Y. Porter, a physician and noted YF expert from Key West, was chosen as the first head of the FSBH. The first efforts to prevent epidemics included fumigation of ships and quarantine of passengers. When the FSBH was created, the relationship between mosquitoes and YF was unknown. Not until 1898 was it determined that mosquitoes transmit malaria, and, in 1900, the same association was made for YF. In Florida, the last case of YF occurred in 1905. Dengue was last reported in 1932. Malaria was eradicated from Florida by 1948. There was one locally acquired case of malaria in Gulf County in 1990, the first case in 42 years, and several cases were reported in Palm Beach County in 1996 and in 2003 by patients who had never lived in or visited a malaria endemic area.

Although not documented, the first organized mosquito control efforts probably were directed at Aedes aegypti. During World War I, drainage and larviciding efforts were directed toward malaria control in the area that is now the Jacksonville Naval Air Station. The first FSBH involvement was a malaria control project in the city of Perry in 1919. The costs were born by the city, Taylor County, and the Burton-Swartz Cypress Company. The project was so successful that the manager of Burton-Swartz stated that it was the best money that the company had ever spent.

In 1941, the Bureau of Malaria Control was formed within the FSBH and was used primarily to train malariologists to serve Florida and other malarious areas during World War II. In 1946, the Bureau of Malaria was abolished, and the Division of Entomology was created within the Bureau of Sanitary Engineering, State Board of Health. In 1953, the Division of Entomology was upgraded to bureau status, and state aid to county mosquito control programs was established and administered by the new bureau. In 1976, the Bureau of Entomology became the Office of Entomology in the newly created Florida Department of Health and Rehabilitative Services (FDHRS). In 1992 the office was transferred to the Florida Department of Agriculture and Consumer Services (FDACS) as a bureau.

2.3 ORGANIZED PROGRAMS

The Florida Anti-Mosquito Association (FAMA), now known as the Florida Mosquito Control Association (FMCA), was formed in 1922, followed shortly by legislation allowing the creation of mosquito control Special Taxing Districts. The first district formed was the Indian River Mosquito Control District (MCD) in 1925. The St. Lucie

MCD and Martin MCD were formed shortly thereafter, and by 1935, five districts had been created. Early control efforts focused on hand and dynamite ditching, diking, and dewatering. Some districts proposed dredge and fill work, which was never implemented. During the Depression, the Work Projects Administration (WPA) constructed 1,500 miles of ditches in Florida's salt marshes by hand or with explosives. Many of these ditches became a liability when the program ended and maintenance ceased. World War II brought a temporary end to all of Florida's organized mosquito control efforts. However, the State of Florida, through the Bureau of Malaria Control, helped to train malaria control workers for the armed forces. Mosquito Control in War Areas was established in Tallahassee and throughout malarious areas of Florida and the United States.

At the end of World War II, dichloro-diphenyl-trichloroethane (DDT) became available and was the material of choice for mosquito control. Almost all existing mosquito control districts embarked upon a program of aerial and ground use of DDT for both adult and larval control. A number of new programs were formed to take advantage of this new insecticide. Beginning in 1949, the State provided funds, known as State I funds, on a dollar-for-dollar annual matching basis for the first $\$ 15,000$ of the local budget, for the purchase of chemicals and supplies. Results with DDT were amazingly good, and there was widespread belief that DDT had answered Florida's mosquito control problems. This euphoria lasted only a few short years, long enough for resistance to develop to DDT and many of the other chlorinated hydrocarbon insecticides.

Early scientists and administrators, among them Drs. Maurice W. Provost and John A. Mulrennan, Sr., recognized that chemical control alone was doomed to failure for many reasons. Dr. Mulrennan, Sr. approached the legislature and in 1953 obtained additional funding, known as State II funds, to encourage permanent control (source reduction) with a money matching program in which the state would provide $\$ 75$ for each $\$ 100$ in a program's local budget. State II funds were instrumental in eliminating thousands of acres of saltmarsh mosquito oviposition sites and prompted the creation of many new mosquito control programs. In addition, Dr. Mulrennan, Sr. obtained funds to build and staff a mosquito research laboratory subsequently constructed in Vero Beach and headed by Dr. Provost. State II funds were dropped in 1993.

2.4 RESEARCH

Several research facilities in Florida have been instrumental in the scientific guidance of mosquito control programs in Florida and the rest of the world. The first research facility was a United States Department of Agriculture (USDA) field laboratory established at New Smyrna (Volusia County) in early 1930. This laboratory emphasized the study of saltmarsh mosquito biology and the control of these mosquitoes by ditching.

In 1942, the USDA's Insects Affecting Man and Animals research group established a laboratory in Orlando with the responsibility of developing measures for control of and protection from insects of medical importance to the armed forces. During World War II
and the Korean War, this laboratory furnished valuable information on the control of medically important insects including mosquitoes. This laboratory was the first to adapt DDT to medical entomology. Many of the methods that are used today for mosquito control, such as the Ultra Low Volume (ULV) adulticiding techniques and the development of the repellent N,N-diethyl-meta-toluamide (DEET), came from this USDA laboratory. In 1963, the laboratory was moved to Gainesville and in 1993 was renamed the Medical and Veterinary Entomology Research Laboratory. In 1996, it became the Center for Medical, Agricultural, and Veterinary Entomology (CMAVE).

In 1947, Dr. Mulrennan, Sr., Chief of the Bureau of Malaria Control, State Board of Health, took the first step by the State of Florida toward research on the biology and control of mosquitoes by hiring Dr. Maurice W. Provost to organize such a program. This research effort was centered in Orlando and consisted entirely of field investigations into various problems in the Florida Keys, Lakeland, Leesburg, Ft. Pierce, New Smyrna Beach, and Panama City. The most significant of these studies was conducted on Sanibel Island, where the salt marsh and its role in mosquito production was investigated for several years. For seven years (1947-1954), this work was conducted without laboratory facilities. However, this deficiency was remedied in 1954.

The state established in 1954 at Vero Beach the Entomological Research Center (ERC), which is now called the Florida Medical Entomology Laboratory (FMEL). The ERC was created to study mosquito control problems with emphasis on mosquito biology and related subjects. All aspects of mosquito biology were studied and included such work as flight behavior, larval development, and salt marsh management. Now under the University of Florida's Institute of Food and Agricultural Sciences, FMEL is still operating in Vero Beach with many new facilities and programs designed to provide answers for and disseminate information to mosquito control agencies and the public.

In 1955, a Control Research Section was added to the ERC to study chemical and physical control problems. This section, headed by Dr. A. J. Rogers, was moved in 1964 to Panama City and named the West Florida Arthropod Research Laboratory as part of FSBH. The name was changed to the John A. Mulrennan, Sr. Arthropod Research Laboratory (JAMSARL) in 1986, while under FDHRS. In 1992, it was transferred to Florida Agricultural and Mechanical University (FAMU) and renamed the John A. Mulrennan, Sr. Public Health Entomology Research and Education Center (PHEREC). The Center's research involves adulticiding, larviciding, mosquito resistance, non-target effects, biological/alternative control, and arbovirus ecology designed to meet the needs of Florida mosquito control programs. The Center provides other useful information on mosquitoes and other arthropods of medical importance (e.g., dog flies, yellow flies, and ticks).

In 1963, the Encephalitis Research Center (ERC) was established in Tampa to study the epidemiology of arboviruses. This center has been renamed twice, first to the Epidemiological Research Center and finally, in 1991, to the Tampa Branch Laboratory, FDHRS. By the time of the last name change, the laboratory's mission had evolved to emphasize the diagnosis of more common infectious diseases that are not mosquito-
borne. The laboratory still performs diagnostic serology for encephalitis viruses on sera from sentinel chickens. This work is now a minor function of the laboratory.

In addition to the work of the formal governmental laboratories, a great deal of research is done by mosquito control programs. Most projects are on a cooperative basis with the above-mentioned laboratories and include such subjects as water management, chemical formulations, dispersal equipment, and surveillance. Some mosquito control programs have developed ideas of their own which have been quickly adopted by their colleagues, such as ULV application devices and formulas for more efficient insecticide dispersal. Cooperation and the sharing of ideas among mosquito control programs are a hallmark of the mosquito control profession, and many new advances have resulted from these efforts.

Private organizations also have studied mosquito control activities. Chief among these are the Harbor Branch Oceanographic Institution in St. Lucie County, the Mote Marine Laboratory in Sarasota County, and the Florida Institute of Technology in Brevard County. These institutions have conducted research on topics such as insecticidal effects on non-target organisms and ecosystem effects of salt marsh management practices (see Chapter 11 for more details).

2.5 TRAINING AND PROFESSIONALISM

In 1984, under the leadership of the late Glennon Dodd, former Assistant Director of the Indian River Mosquito Control District, a series of round table discussions was held on topics such as surveillance, larviciding techniques, and adulticiding methods. With the help of Jim Robinson, Director of the Pasco County Mosquito Control District, and Bill Opp, then with the Office of Entomology, FDHRS, a formal set of courses was developed and used to train mosquito control personnel with the aim of certifying all workers with a prerequisite of the Environmental Protection Agency's (EPA) CORE examination in public health pest control.

Today, the Dodd Short Courses are sponsored by the FMCA and held annually. Courses are offered in fields as wide-ranging as personnel management and droplet size analysis. More than 25 topics were presented at the 2008 session. This program aims to assure that Florida mosquito control programs are staffed with well-trained individuals (see Chapter 12 for more details).

2.6 INTERAGENCY CONFLICT AND COOPERATION

In 1980, considerable disagreement concerning some mosquito control practices existed between mosquito control interests, represented by the Office of Entomology, FDHRS, and the Florida Department of Natural Resources (DNR), two state agencies with conflicting mandates. Governor Graham intervened to resolve this and future problems by forming a committee representing these various concerns. This committee was the beginning of the Governor's Working Group on Mosquito Control, which had its first meeting in May 1980. It was from this beginning that the Florida Coordinating Council
on Mosquito Control (FCCMC) was created by the Legislature in Chapter 388 F.S. in 1986.

The membership of FCCMC essentially followed that of the Governor's Working Group. The original members represented each of the following agencies: DNR, FDACS, the Florida Department of Environmental Regulation (DER), the Florida Game and Fresh Water Fish Commission (FGFWFC), the UF, the EPA, the U.S. Fish and Wildlife Service (USFWS), and the USDA. Also included were two mosquito control directors and two representatives from FDHRS, an epidemiologist and the Director of the Office of Entomology, who would serve as chairman. Added in 1986 were two at-large environmentalists and two property owners whose lands were subject to mosquito control activities. The membership has been modified since 1986 to reflect changes in agencies, such as the creation of the Florida Department of Environmental Protection (FDEP) from the DNR and DER, the change resulting in the transfer of the entomology program from FDHRS to FDACS, and the JAMSARL transfer to FAMU.

Currently, the FCCMC meets three times a year and is specifically mandated to assist FDACS in resolving disputes arising over the control of arthropods on publicly owned lands, to identify and recommend to FAMU research priorities for arthropod control practices and technologies, to develop and recommend to FDACS a request-for-proposal process for arthropod control research, to identify potential funding sources for research on implementation projects, and to evaluate and rank proposals upon request by the funding source. A final mandate is to prepare and present reports, as needed, on arthropod control activities in the state to the Pesticide Review Council, the Florida Coastal Management Program Interagency Management Committee, and other governmental organizations as appropriate.

One of the most important activities of the FCCMC was the creation of the Subcommittee on Managed Marshes (SOMM), originally named the Technical Subcommittee on Mosquito Impoundments, in 1983. Like the FCCMC, it was formally established as SOMM in Chapter 388 F.S. in 1986. This interagency committee, with a membership makeup similar to FCCMC, was established to provide technical assistance and guidance on salt marsh management plans and to develop and review research proposals for source reduction techniques.

2.7 CONCLUSION

This history of mosquito control in Florida and the institutions that have influenced it are all too brief and leaves out many facets of mosquito control history that should be recorded. Section 2.8 provides a reference for such a record. Additional history appears elsewhere in this report.

2.8 A PUBLISHED HISTORY OF FLORIDA MOSQUITO CONTROL

Dr. Richard Baker, during his tenure as Director of the FMEL, encouraged Dr. Gordon Patterson, professor of history at Florida Institute of Technology, to write a history of mosquito control in Florida. Dr. Patterson was then introduced to John Beidler and a host of entomologists, mosquito control and public health workers, state officials, librarians, and others who provided assistance, information, and anecdotes about the early years of mosquito control in Florida. The result of Dr. Patterson's research was the 2004 publication of The Mosquito Wars: A History of Mosquito Control in Florida. This work is an eloquent read that details the stories, names, and the faces of those who have influenced mosquito control in Florida.

2.9 REFERENCE

Patterson, G. 2004. The Mosquito Wars: A History of Mosquito Control in Florida. Gainesville, FL: University Press of Florida.

Chapter 3

INTEGRATED MOSQUITO SURVEILLANCE AND ENVIRONMENTAL MONITORING TO ASSESS CHANGES IN MOSQUITO POPULATIONS

Chapter Coordinator: Dennis Moore

1998 Coordinator: Dr. Charlie Morris

Abstract

Summary This chapter discusses the importance and legal obligations regarding mosquito and environmental surveillance systems. Included are discussions of how to develop, design, and implement mosquito surveillance systems. Commonly used methods to inventory mosquito habitats, collect immature and adult mosquitoes, and monitor environmental parameters that can be used to predict mosquito emergences are discussed.

3.1 INTRODUCTION

Mosquito surveillance is a prerequisite to an effective, efficient, and environmentally sound mosquito control program. Surveillance is used to define the nature and extent of the mosquito problem and to gauge daily mosquito control operations. It provides a basis for evaluating the effectiveness of control operations, the data needed to comply with state rules and regulations regarding the justification for treatments, and a basis for evaluating the potential for transmission of mosquito-borne diseases (see Chapter 8).

Mosquito surveillance is most effective when combined with an ongoing program for monitoring meteorological, astronomical, and environmental factors that may influence mosquito population change. For example, rainfall and ground water levels, temperature, relative humidity, wind direction and velocity, tidal changes, lunar cycles, stormwater and wastewater management, and land use patterns are all factors that may influence mosquito population levels and adult mosquito flight behavior and dispersal.

The objectives of this chapter are to characterize mosquito and environmental surveillance systems and to provide a general review of Florida mosquito control programs.

3.2 DEVELOPING AN INTEGRATED MOSQUITO SURVEILLANCE PROGRAM

Ideally, the structure and implementation of an integrated mosquito surveillance program should be based on the needs of the local mosquito control agency. Moreover, these needs should define the components of the control program, as well as the budget required to implement them. In fact, this process is often reversed. Mosquito control programs are funded at a specific level, generally without a needs-assessment process. The program director is then required to meet all mosquito control needs within the constraints of a fixed budget. If funding for this process is inadequate, the result is incomplete mosquito surveillance with reliance upon undesirable and less effective control methods.

The steps in developing an integrated mosquito surveillance program as part of an overall mosquito control effort are to:

- Define area-specific mosquito problems
- Define area-specific mosquito control strategies
- Design a mosquito surveillance program to be used as a decision-making aid to help determine when and where mosquito control efforts are needed

3.3 DEFINING AREA-SPECIFIC MOSQUITO PROBLEMS AND CONTROL STRATEGIES

There are at least 80 mosquito species in Florida, and every Florida county has several species that are dangerous disease vectors and several more species that create a major nuisance during most months of the year.

The first step in determining which mosquito species must be monitored is to determine which species cause problems. Control efforts can be justified when a mosquito poses a nuisance or is an economic or health-related pest or vector. A nuisance mosquito bothers people, typically in and around homes or in recreational areas. An economically important mosquito reduces property values, slows economic development of an area, reduces tourism, or adversely affects livestock and poultry production. A health-related mosquito problem is the ability of a mosquito species to transmit pathogens that cause disease. In Florida, this definition currently includes only mosquito species that transmit dog heartworm, St. Louis encephalitis virus, West Nile virus, and eastern equine encephalitis virus. However, nearby in the Caribbean and Central America, other mosquito-transmitted diseases are common (e.g., dengue, malaria). Any mosquito that bites or annoys people can be considered a health problem, particularly for individuals who are allergic to mosquito bites or suffer from entomophobia (an unreasonable fear of insects).

A list of important nuisance and vector mosquito species can be compiled from a review of the literature. The geographic and temporal distributions of these species also can be
found in the published literature. Once target species have been identified, selected areas can be sampled frequently to determine the abundance of adults and larvae of the species of interest. Mosquito surveys should be conducted as needed throughout the mosquito activity season. Data from mosquito surveys can be used to determine the abundance and seasonal distribution of each species.

Control strategies can be developed based on surveillance data. Since mosquito collection methods differ in their effectiveness for sampling different species, more than one collection method may be used to accurately determine the seasonality and abundance of all the important mosquito species in an area. Multiple surveillance techniques for larvae and adult mosquitoes should be used to accurately quantify mosquito abundance.

3.4 DESIGNING A MOSQUITO SURVEILLANCE PROGRAM

Once a list of local targeted mosquito species has been compiled, two additional questions must be answered:

- Which mosquito species will be targeted for control efforts?
- What is the geographic and temporal distribution of each targeted mosquito species?

In Florida, temporal and geographical changes in mosquito populations and the problems that mosquitoes cause are measured by monitoring three factors:

- Telephone or website requests for mosquito control services
- Adult mosquito populations as measured by trapping and landing counts
- Immature mosquito populations as measured by larval inspections

Not all mosquito control programs in Florida monitor all of these variables. Most mosquito surveillance programs rely on the years of experience of district personnel and are usually a compilation of surveillance techniques that have been shown - usually by trial and error - to work for a specific program. Some of the basic mosquito surveillance techniques used in Florida are discussed below.

3.4.1 Telephone or Website Service Requests

One method for quantifying local nuisance mosquito problems is through telephone or website service requests. Most Florida mosquito control programs have a telephone number that citizens can call to request mosquito control services. Several programs have developed their own websites where citizens can go to enter a complaint on-line. Service requests are generally related to specific mosquito species. The mosquitoes responsible for service requests vary considerably from region to region and often change
during the year. Although service requests are accepted as a way to meet State requirements for monitoring mosquito problems to justify control, these requests always should be verified by other surveillance techniques prior to any treatment.

Service requests can be handled in a variety of ways. Most programs record the information on data sheets, while some programs record complaint data via software programs linked to a Geographic Information System (GIS). The service requests can be displayed on a map using a GIS software program to assist in displaying clusters or patterns of potential mosquito problems. The service request data are ultimately used to determine where to concentrate control efforts once the requests are verified. Typically, an inspector will be sent to verify the service request in areas where high mosquito population densities are not indicated by other surveillance techniques. In some cases, changes in the numbers of requests from one day to the next are used to evaluate the effectiveness of control operations.

Service requests that are generated by the presence of container-inhabiting mosquito species, such as the Asian tiger mosquito (Aedes albopictus), Ae. aegypti, or certain Culex species, may require an inspection to identify potential larval habitats. Inspectors also can assist homeowners with point-source reduction of containers that hold water. If the service request results from floodwater mosquitoes (saltwater or freshwater) or permanent water mosquitoes such as Anopheles, Coquillettidia, or Mansonia, the citizen is usually told by mosquito control personnel the steps that will be attempted to correct the problem. The inspector will assess the adult mosquito population and attempt to locate the source of larval development using techniques described in this chapter.

3.4.2 Monitoring Adult Mosquitoes

Although service requests are accepted to meet the State requirements to justify control, most mosquito control programs in Florida use one or more methods to measure adult mosquito populations before a control decision is made. The purpose of monitoring adult mosquitoes is:

- To determine where adults are most numerous
- To substantiate service request claims of a mosquito problem
- To determine the effectiveness of source reduction, larviciding, and adulticiding control methods
- To provide data that satisfies Florida Administrative Code 5E-13 to insure that applications of pesticides are made only when necessary

Florida Administrative Code 5E-13.036 dealing with mosquito surveillance is concerned only with the monitoring of adult mosquitoes. According to this rule, before adulticides can be applied, a monitoring program must detect an increase in the mosquito population above a predetermined baseline, collect more than twenty-five mosquitoes in a single trap
night, or collect more than five mosquitoes per hour of operation. The rules do not specify the type or number of traps or the species or sex of the mosquitoes captured, but they make the application of adulticides illegal when mosquitoes are not present. This rule was initiated in 1987, and, for the first time, forced many mosquito control programs to use mosquito surveillance to justify spraying.

3.4.2.1 Landing Rates

Landing rates are utilized by more than 90% (pers. comm., FDACS 2006) of Florida mosquito control programs. They are used for measuring adult mosquito activity, augmentation of existing mechanical trap collections, or assessment of customer complaints for making spot treatments with adulticides. The technique consists of counting the number of mosquitoes that land on a person in a given amount of time.

The specific method used to determine a landing rate varies among programs. Important variables are the time of day at which observations are made, the duration of observations, the portion of the subject's body observed for landing mosquitoes, the number and type of habitats, and the number of human subjects used. It is important to choose a landing rate protocol and avoid changing the variables to get meaningful data. Day-to-day changes in the biting population at a given site are best reflected when the same individual performs the landing rate at that site.

Landing rates taken during the day can be effective for monitoring saltmarsh mosquitoes, which bite during the early morning and during the day. Landing rates also are useful for evaluating activity of day-biting, container-inhabiting (including bromeliad) mosquitoes which are common around homes. Although many crepuscular species can be located in well shaded, moist canopied areas during daylight hours, it is best to assess their landing rate at the time of peak activity. The host-seeking females can be collected with a battery powered aspirator for a set time interval and identified later.

3.4.2.2 Mechanical Traps

The New Jersey Light Trap (NJLT) is traditionally green in color, uses a 25 -watt bulb, is placed $51 / 2$ feet off of the ground, and is useful in measuring relative abundance of certain mosquito species. The light is the attractant, and many insects other than mosquitoes also are attracted to the trap. The NJLTs were first used in a statewide program in the mid-1950s by the Florida Board of Health mosquito control program. Local programs would operate the traps and send the collections to the Department of Health in Jacksonville for identification. Mosquito identification eventually became the responsibility of the local programs. During this transition, many programs that lacked expertise in mosquito identification stopped trapping.

Because NJLTs require 110V AC power, they have been operating in the same locations for decades, and the historical monitoring data have been valuable for documenting the long-term changes in mosquito populations at those locations. While NJLTs are usually operated overnight, the number of trap sites and the frequency of trapping vary among
mosquito control programs. Currently, there are no rules of thumb, established standards, or State rules that apply to the operation of NJLTs.

The majority of Florida mosquito control programs (79%; pers. comm., FDACS 2006) use the Center for Disease Control light traps (CDC) to monitor adult mosquitoes. The CDC light trap is a miniature version of the NJLT that operates on six volts DC and can be used anywhere. It costs less to purchase than the NJLT, does not require AC power, and collects primarily mosquitoes. Although there are several manufacturers of CDClike traps, they can be handmade by local mosquito control programs for about onefourth of the retail cost. This cost differential has resulted in a proliferation of different designs for the trap. It is not important that all control programs use the same CDC trap design as long as the same model of trap is used within a program. Some mosquito control programs use carbon dioxide (either dry ice or bottled gas) and/or octenol as a supplement for the CDC trap. Some control programs operate CDC traps for a few hours a night, and other programs operate them overnight. The main reasons for these variations are budget related, rather than entomological. As with the NJLTs, there is no standard protocol for placing or operating CDC traps.

Three programs in Florida use methods other than light traps as their principal adult mosquito surveillance tool. Pasco County Mosquito Control District (MCD) uses permanently located unbaited suction traps, while Lee County MCD uses truck traps. A truck trap is a large screened funnel attached to the top of a pickup truck. Unlike the NJLT and CDC traps, suction and truck traps sample all airborne mosquitoes, which provides a better measure of mosquito density but does not measure the biting mosquito population. Lee County MCD has operated truck traps for more than 30 years. These data have been very useful for making control decisions for saltmarsh mosquitoes in Lee County. In addition, Lee and Pasco County MCDs use a network of CDC traps to monitor mosquito populations to help identify localized mosquito problems. St. Lucie County MCD recently has used the commercially available "Mosquito Magnet" as their primary adult mosquito collection tool.

Other specialized traps are used to trap either specific species or are used to augment collections as part of an arbovirus surveillance program and include the CDC gravid trap, resting boxes, and vacuum aspirators. The CDC gravid (Reiter) traps collect gravid females, including species that transmit arboviruses. Essentially these traps use an "ovilure mixture", organics in water that attract gravid females that are ready to oviposit. The hypothesis is that since these females have already blood fed at least once, the collected females have a greater probability of having an arbovirus present in their salivary glands, making public risk assessment easier. A number of different "ovilures" are used, and some attract different species, for example, hay infusion for Culex quinquefasciatus, alfalfa infusion for Ae. aegypti, and oak leaf infusion for $A e$. triseriatus.
Resting boxes are used for the collection of Culiseta and Anopheles spp. by programs interested in monitoring vector populations. Resting boxes are generally placed on the ground with the open end facing west to minimize the influence of direct sunlight during the early part of the day. A dark, forested habitat with high canopy yields the highest
collections (Crans 1989). Mosquitoes utilizing resting boxes as diurnal resting sites enter the boxes during the morning hours, remain inactive during late morning and early afternoon, and then exit the boxes later in the day. The inside of the resting boxes are usually painted black or red, while the outside is painted flat black. The 12 " x 12 " x 12 " plywood cubes have one open end and are usually positioned no closer than 10 feet from one another in either a line or grid design. Collection from these boxes is usually by aspirator and should be conducted in mid morning to late afternoon.

Vacuum aspirators include sweepers, suction traps, and hand-held battery operated flashlight aspirators. These devices will collect a number of resting mosquito species and blood-fed mosquitoes in dark areas and natural cavities. They are especially good for collection in heavy vegetation around homes for assessing the mosquito problems of customer complaints calls if other methods are lacking or problematic.

Collection of Mansonia and Coquillettidia adults is more difficult, since the larvae are associated with the roots of aquatic vegetation. Both species are readily collected as adults in NJLT and CDC traps, but, to assess their population from aquatic plant habitats, a more direct trapping regime may be needed. Most workers use emergence traps to collect Mansonia species associated with water lettuce (Pistia stratiotes) mats. The emergence traps cover a known surface area (typically 4 meter square), and adult collections are made on a weekly basis. Traps are generally spaced between 50-100 meters apart and number from 2-10 per site. Traps are periodically repositioned to compensate for the possible depletion of mosquito fauna at 4-8 week intervals.

3.4.3 Monitoring Immature Mosquitoes

If the design of the mosquito control program includes source reduction or application of larvicides, both a mosquito habitat inventory and a larval surveillance system should be in place. The mosquito habitat inventory is a permanent collection of descriptions of all habitats. A larval surveillance system describes the abundance of mosquito larvae at each site. The information can be used to determine optimal times for use of larval control measures, including chemicals, biologicals, draining, or impounding. It also can be used to help forecast the need and timing for adult mosquito control and to help assess the effectiveness of both chemical and biological control measures.

3.4.3.1 Inventory of Mosquito Developmental Sites

As mosquito control programs evolve, topographical and aerial paper maps are being replaced by geo-referenced high resolution aerial images. The geo-referenced maps can show the location of potential larval habitats and the treatments that occurred within a specific time frame. These maps are used to develop and maintain a program for the surveillance of larvae and the application of larvicides. The maps provide an up-to-date record of the larval habitats within the jurisdiction of the control program.

The map inventory should be dynamic and updated on a routine basis. As new residential or commercial developments are created, the characteristics of mosquito
habitats may change. In turn, the species composition of mosquitoes produced at each site also may change. Due to changes in rainfall patterns and intensity of tidal flooding, these habitats can vary greatly.

Deciding which characteristics of the larval habitat should be recorded in an inventory is difficult. Instantaneous measurements of rapidly or frequently changing variables, such as water depth, water temperature, and presence or absence of predators or parasites may be useful to help determine if control treatments are needed and should be included in a larval habitat inventory.

While the field work portion of the initial inventory is time consuming, creating and maintaining maps of larval habitats is even more difficult. It is highly desirable to use a computer-based mapping system using GIS technology to map these larval habitats if possible. A major advantage of a computerized mapping system is the ease with which data can be extracted and compiled. Maps can be displayed on screen or may be printed to highlight areas of concern.

3.4.3.2 Sampling Immature Stages

The number of devices and procedures that have been developed to sample mosquito eggs, larvae, and pupae is extensive (Service 1993). Unfortunately, little effort has been made to standardize the most frequently used methods. Each mosquito control program has its own version of the different sampling methods, which makes the comparison of data between programs difficult.

3.4.3.3 Collecting Eggs

There are many techniques available to sample mosquito eggs (Service 1993), but these methods are seldom used on an ongoing basis or as a primary surveillance system. Sampling mosquito eggs is too labor-intensive for practical purposes, and it is usually easier and simpler to sample mosquito larvae. A few programs have found egg sampling useful to initially describe or find mosquito habitats to be added to the inventory. Once documented, it is usually easier and simpler to sample larvae. One exception to the above is the use of ovitraps, which monitor the distribution of the Asian tiger mosquito, Aedes albopictus, and Ae. aegypti, in Florida. Using a network of highly attractive ovitraps to monitor this species is easier than searching for the small containers in which these species oviposit. Several county programs used ovitraps to detect the initial introduction of Ae. albopictus (Hillsborough, Lee, Leon, Monroe, Sarasota, and the City of Gainesville). Once this species was found and subsequently established, the ovitrap collections were discontinued. Indeed, in certain countries where these species are a major public health risk for dengue or yellow fever, nominal data has been used (i.e., absence/presence) for control determinations (Mogi et al. 1990).

3.4.3.4 Collecting Larvae and Pupae

Mosquito larvae and pupae can be collected with dippers, nets, aquatic light traps, suction devices (turkey baster for bromeliad and container collections), and containerevacuation methods. The most commonly used apparatus is the dipper. The term "standard pint dipper" is used in the scientific literature, but, in practice, there is no standard dipper or standardized dipping techniques (Service 1993). The dipper consists of a white plastic cup, 400 ml in volume, with a two to five foot handle to allow for an extended reach. The dipper can be used as a survey tool simply to determine the presence or absence of larvae. Such a method usually involves taking several dipper samples from designated areas in the habitat of interest and then counting the larvae captured in each dip. The dipping method will vary with water depth, presence of aquatic vegetation or other debris, and water clarity. Collectors must take into account certain factors of importance, e.g., mosquito species difference in submerging behavior, and stage differences (first and second instar stay under longer). Training, practice, and experience are important when control programs use larval density as a basis for larval control measures: Larvae densities measures $=$ Number of larvae per dip.

The collection of Mansonia and Coquillettidia larvae is difficult because the larvae do not breathe at the water surface but get their oxygen by piercing the stems and roots of aquatic plants. Collection of larvae is problematic since they quickly detach when disturbed and bury themselves in the detritus. To collect Coquillettidia larvae, a pump and wand system has been used (Morris et al. 1985) with good results. Collection of Mansonia larvae also is difficult and labor intensive. Samples are taken of a known surface area using a stainless steel sampling tool with serrated teeth around the perimeter of the bottom to penetrate the water lettuce mat. This trap has a "trap door" to collect the underlying water column to be collected with the sample. In this system, five quadrants are used per site and sampled approximately every 30 days. Another method is to collect plants randomly in the field and to place them in a bucket with water for transport. In the laboratory, the plants are shaken vigorously to dislodge the larvae, and the larvae are then concentrated through a series of sieves and then counted. The number of plants collected varies, but generally from 5-10 plants per site are used.

3.5 MONITORING ENVIRONMENTAL PARAMETERS

To maximize the usefulness of mosquito surveillance data, it is important to monitor certain environmental parameters such as rainfall and tidal events. Predicted tide levels in coastal areas are monitored using charts, and tide gauges are useful for measuring the actual tide. Tidal activity and rainfall dictate when high marsh sites will be flooded and when they will need to be inspected for mosquito larvae. The tide gauges also may reflect changes in the water level caused by rainfall and wind that often result in increased mosquito production in salt marshes and mangrove forests. Rain gauges are important in both coastal and inland counties -- in fact, anywhere mosquito production is being monitored. Data from these instruments can be supplemented with data from the National Weather Service and local weather watchers. Because rainfall in Florida is highly localized, it is important to collect rainfall data from many locations.

Knowledge of weather patterns is important during ground and aerial mosquito control applications. High winds, low temperatures, rainfall, and high humidity can deter the product from getting to the target, influence the dispersal of the material applied, and deter it from reaching its target, thereby affecting the efficacy of the application.

3.6 REFERENCES AND GENERAL READING

Crans, W.J. 1989. Proceedings of the Eighty-Second Annual Meeting of the New Jersey Mosquito Control Association, Inc.

Mogi, M., W. Choochote, C. Khamboonruang and P. Suwanpanit. 1990. Applicability of presence-absence and sequential sampling for ovitrap surveillance of Aedes (Diptera: Culicidae) in Chiang Mai, Northern Thailand. Journal of Medical Entomology 27: 509514.

Morris, C.D., J.L. Callahan and R.H. Lewis. 1985. Devices for sampling and sorting immature Coquillettidia. Journal of the American Mosquito Control Association 1: 247250.

Service, M.W. 1993. Mosquito ecology: field sampling methods, 2nd ed. London and New York: Elsevier Applied Science.

Chapter 4

MOSQUITO CONTROL THROUGH SOURCE REDUCTION

Chapter Coordinators: Doug Carlson and Dr. George O'Meara

1998 Coordinators: Doug Carlson and Dr. George O'Meara

Abstract

Summary Source reduction, also known as physical or permanent control, typically is one part of a mosquito control agency's Integrated Pest Management program. Source reduction is usually the most effective and economical mosquito control technique and is accomplished by eliminating mosquito habitats. This effort can be as simple as properly discarding waterholding containers capable of producing mosquitoes or as complex as implementing Rotational Impoundment Management or Open Marsh Water Management techniques, which control saltmarsh mosquitoes concurrent with significant habitat restoration or rehabilitation. Source reduction is important since it can virtually eliminate the need for insecticides in and adjacent to the affected habitat. The history of mosquito control source reduction efforts in Florida dates back to the 1920s when ditching of high marshes by hand or with explosives occurred. Since those early efforts, other source reduction projects include the filling of salt marshes and the creation of impoundments. While all of these techniques had mosquito control benefits, there were environmental impacts. Since the early 1980s, concerted efforts to restore or rehabilitate salt marshes impacted by mosquito control have been an ongoing management initiative.

Source reduction in freshwater habitats (e.g., floodplains, swamps, and marshes) typically involves constructing and maintaining channels. These channels or ditches can serve the dual functions of dewatering an area before mosquito emergence can occur and as harborage for larvivorous fish. Mosquito production from stormwater/wastewater habitats can be a problem but typically can be managed by keeping the area free of weeds through an aquatic plant management program and by maintaining water quality that can support larvivorous fish. Lastly, tires are a problematic mosquito producing habitat which can be managed by proper disposal.

4.1 INTRODUCTION

Source reduction, also known as physical or permanent control, is typically one part of a mosquito control office's Integrated Pest Management (IPM) program. Source reduction is usually the most effective of the mosquito control techniques available and is accomplished by eliminating larval mosquito habitats. This effort can be as simple as properly discarding water-holding containers capable of producing Aedes aegypti, Ae. albopictus, or Culex spp., or as complex as implementing Rotational Impoundment Management (RIM). RIM is a source reduction strategy that controls saltmarsh mosquitoes (e.g., Ae. taeniorhynchus, Ae. sollicitans) concurrent with significant habitat restoration. Source reduction is important since it can virtually eliminate the need for insecticides in and adjacent to the affected habitat. Source reduction is appropriately touted for its ecosystem management effectiveness and economic benefits.

4.2 MOSQUITO PRODUCING HABITATS APPROPRIATE FOR SOURCE REDUCTION

4.2.1 Containers

Containers such as flowerpots, cans, pet bowls, and tires are excellent habitats for several Aedes and Culex species. Container-inhabiting mosquitoes of particular concern in Florida are Ae. albopictus and Ae. aegypti. In some parts of Florida Ae. albopictus, a species adapted to and closely identified with the human environment, has become a significant mosquito control problem. A container-inhabiting mosquito problem can be solved by properly disposing of the standing water in the containers, covering the containers, or tipping them over to ensure that they do not retain water. Many Florida mosquito control agencies have extensive programs to address urban container-inhabiting mosquito problems through house-to-house surveillance and formalized education programs directed at elimination of container habitats.

4.2.2 Freshwater Lakes, Ponds, and Retention Areas

While it is possible to fill small artificial ponds that produce mosquitoes, this technique is usually impossible in natural freshwater areas or large permanent water bodies (due to environmental constraints) and in areas set aside for stormwater or wastewater retention. In these situations, other options are effective in controlling mosquitoes including periodic drainage, providing deepwater sanctuary for larvivorous fish, minimizing emergent and floating vegetation, and maintaining steep banks. Culex, Coquillettidia, Mansonia, and Anopheles mosquitoes are frequently produced in these habitats.

4.2.3 Freshwater Swamps and Marshes

Environmental laws greatly restrict habitat manipulations in freshwater swamps and marshes, making permanent control there difficult. These areas are capable of producing Culex, Anopheles, and Culiseta species.

4.2.4 Temporarily Flooded Locations

Pastures and agricultural lands are enormous mosquito producers, frequently generating huge broods of Aedes, Psorophora, and Culex. Improved drainage is one effective tool for source reduction in these floodwater habitats. Another technique is the use of microjet irrigation for those agricultural areas that require artificial watering. For example, a water conservation requirement in some citrus groves has replaced flood-irrigation with micro-jet irrigation, resulting in almost a complete disappearance of $A e$. vexans in some locales.

4.2.5 Salt Marshes

In Florida's recent past, extensive coastal salt marshes produced enormous Aedes spp. broods, making coastal human habitation virtually impossible. Several of the source reduction efforts described below have greatly reduced saltmarsh mosquito production in these marshes through intensive management that relies upon artificial manipulation of the frequency and duration of inundation.

4.3 SOURCE REDUCTION FOR SALTMARSH MOSQUITO CONTROL

4.3.1 Description of Florida's Salt Marshes

The first mosquito control programs in Florida were created in response to the need to control saltmarsh mosquitoes along areas of the central east coast with barrier islands and large and extensive high salt marshes. Along the central east coast of Florida's estuary, the Indian River Lagoon (IRL), mean daily tidal heights and ranges are small in comparison to other coastal areas of the continental United States which experience much larger seasonal tidal variations. Seasonal wind-generated water movements can be more important factors than lunar tides in determining maximum water levels. The difference between the large seasonal tides and relatively small daily tides results in a greater variability in inundation frequency between low and high marsh. Since low marsh is flooded by the year-round daily tidal changes and high marsh is flooded only by seasonal high tides, strong wind tides, or rainfall, a much greater proportion of high marsh compared to low marsh is created there. It is the high marsh that produces large numbers of saltmarsh mosquitoes and thus is the area targeted by most source reduction efforts.

Provost (1967) broadly classified Florida's salt marshes into three main vegetative types:
Grass Marshes: Grass marshes are typical of low marsh habitats and are dominated by Spartina alterniflora (cordgrass) or Juncus roemerianus (black rush). The relatively small high marsh portions of grass marshes are usually vegetated by Distichlis spicata or Spartina patens, which can be prolific producers of Ae. sollicitans. Areas of transition from low marsh to high marsh are usually narrow in grass marshes, as are the high marsh fringing areas themselves.

Scrub Marshes: Typical scrub marsh is dominated by Batis maritima (saltwort) and Salicornia spp. (glasswort). The scrub marsh can be variable in a cross-sectional area and usually lies behind a wave-action berm that limits inundation frequency. The berm is generally less than 100 feet in cross-section and consists of broken parts of sea shells, sand, mud, and plant materials trapped and retained along shorelines by fringing mangroves. Wave-action berms limit tidal inundation of the marsh to periods when water levels exceed mean high water (MHW) and thus contribute to the mosquito problems by reducing the periodic natural inundation to approximately six weeks per year.

Mangrove Swamps: Mangrove swamps are present in both low and high marsh forms. In the low marsh, mangrove swamps are dominated by Rhizophora mangle (red mangrove), while Avicennia germinans (black mangrove) and Laguncularia racemosa (white mangrove) dominate the high marsh. Red mangroves, with their extensive prop roots, protect the shoreline against erosion and typically lie at, or waterward, of the mean high water line (MHWL), except where management practices (e.g., impoundments) have altered the wetland hydrology. Generally, a wave-action berm forms behind this mangrove fringe, effectively restricting tidal inundation frequency of the more inland sections of the swamp. Due to current rise in sea level and anthropogenic forces (ditching and artificial inundation activities), the tidal flooding frequency may be changing.

Low and high marsh vegetation types differ regionally. Grass marshes dominate in north Florida. Scrub and scrub marshes occur along the central east coast, roughly from St. Augustine to Indian River County and along the central west coast from Tampa Bay to Naples. From Naples and St. Lucie County southward, mangrove swamps or mixed high mangrove scrub marsh dominate coastal wetlands. Both scrub marsh and high mangrove swamps produce saltmarsh mosquitoes, Ae. taeniorhynchus, and biting midges (Culicoides spp.), commonly known as no-see-ums, in vast numbers if uncontrolled.

4.4 HISTORICAL METHODS OF SOURCE REDUCTION IN SALT MARSH HABITATS

4.4.1 Ditching

Beginning in the late 1920s, ditching of high marshes - by hand using Work Projects Administration (WPA) workers or with explosives - was done to dewater the marsh within several days of rainfall events. This rapid dewatering prevented sufficient time for adult mosquito emergence by desiccating the stranded larvae. This technique was of limited success because ditches were not always dug where they were needed most and because many of these ditches were promptly obstructed, especially at the ditch-estuary interface. In addition, fish were generally not present where the larvae occurred in sufficient numbers to provide appreciable control. Furthermore, the ditch banks made perfect sites for biting midges to develop, exacerbating the biting insect problems for nearby communities.

4.4.2 Filling

During the 1950s and 1960s along the central east coast, placing earth or hydraulic material to fill mosquito-producing areas was a common source reduction technique. However, it was generally too slow and expensive to be effective. Fissures and cracks developed in drying dredge/fill material, producing an abundance of saltmarsh mosquitoes. Environmental regulations have virtually eliminated the possibility of largescale wetland filling because it eliminates this environmentally important habitat.

4.4.3 Impounding

Impoundment construction began in the mid-1950s and continued until the late 1960s. Impoundments consist of earthen dikes that isolate high salt marshes and mangrove swamps from the adjacent estuary. Impoundments are generally artificially flooded for mosquito control from May through August/September using water pumped from the adjacent estuary. Impounding and artificial flooding eliminates oviposition sites for saltmarsh mosquitoes and biting midges and is both effective and economical in reducing their populations, with limited need for additional chemical treatments. Pumping water out of a mosquito-producing dike marsh was initially attempted as a source reduction technique but was unsuccessful because it was impossible to completely dewater the area before mosquito emergence occurred.

There were environmental impacts resulting from isolating and flooding these impounded wetlands including interfering with the movement of water and organisms between the marsh and estuary, killing indigenous flora, and, in some instances, changing vegetation from high marsh to low marsh species. Since the early 1980s, these impacts received considerable scientific and regulatory attention resulting in management modifications designed to address both mosquito control needs and environmental benefits.

4.5 CURRENT SALT MARSH SOURCE REDUCTION TECHNIQUES

4.5.1 Environmental Considerations

Prior to the 1970s, when the majority of mosquito control ditching, filling, and impoundment construction was completed, mosquito control was usually the primary consideration when manipulating salt marshes. Little concern was given to environmental issues because the high salt marsh was not considered to be ecologically significant. Today, minimizing ecological impacts must be considered when designing a source reduction project and is of paramount importance in obtaining regulatory approval.

The importance of both mosquito control and natural resource implications of salt marsh manipulations is evidenced by the formation in 1986 of the Subcommittee on Managed Marshes (SOMM) in Chapter 388.46 Florida Statutes (F.S.). SOMM, a subcommittee of the Florida Coordinating Council on Mosquito Control (FCCMC), is an advisory group responsible for providing review and comment on saltmarsh management plans. SOMM,
originally formed in 1983 and called the Technical Subcommittee on Mosquito Impoundments, has developed guidelines for impoundment and mosquito control ditching management plans based on current research findings. These guidelines require that management plans be written with the mutual objectives of mosquito control, protection of fish and wildlife resources, and water quality enhancement. The most desirable management goals appear to be those that attempt to mimic natural marsh functions while providing for mosquito control. The goal of reducing insecticide use is a factor that weighs heavily in the overall management assessment equation.

4.5.2 Ditching

Ditching can be used in salt marsh or freshwater locations to control mosquitoes by:

1) enhancing drainage, thus eliminating mosquito-producing sites
2) allowing larvivorous fish access to mosquito habitats that can be enhanced through the creation of permanent water bodies which act as fish reservoirs

Over the past 30 years, rotary ditching, as part of an Open Marsh Water Management (OMWM) system, has been implemented on both the east and west coasts of the U.S. Rotary ditching involves the construction of shallow ditches, usually through grass or scrub marshes, typically four feet wide and two to three deep, using high-speed rotary equipment which broadcasts spoil evenly over the marsh surface. A ditching network frequently connects shallow ditches to permanent water habitats whether they are ponds or canals. Where it is impossible or impractical to connect to major waterways, a permanent pond is constructed deep enough to hold water throughout the year. These ponds harbor fish, and radial ditches connect the mosquito-producing locations to the pond. Research demonstrating some of the ecological effects of rotary ditching was conducted on Florida's west coast in Charlotte County and along the northern IRL in Brevard and Volusia Counties. A well-designed project avoids deposition of spoil that would alter the hydrography of the ditched wetland areas.

4.5.2.1 Benefits of a Properly Designed Rotary Ditching Plan

Rotary ditching is generally considered more environmentally acceptable than deep ditching (e.g., dragline) because spoil material from these shallow ditches is evenly distributed in a very thin layer over the marsh surface - instead of accumulating on the marsh surface as banks of spoil. Consequently, the problem of invasion of exotic vegetation is eliminated. Impacts to grass or shrub vegetation are usually limited to the ditch area itself, as the low-ground pressure tractor will climb over the vegetation allowing it to spring back, causing little damage. Marsh ditching seems to affect the vegetation as a top-dressing of dirt might affect a lawn. Experience has repeatedly demonstrated that a properly designed rotary ditching system can greatly decrease the need for larvicide applications on the affected marsh. Rotary ditching can be cost
effective and of lower management intensity when used in appropriate areas and where larval habitats are widely scattered.

4.5.2.2 Environmental Risks of Rotary Ditching

Rotary ditchers broadcast spoil indiscriminately and can throw debris great distances; therefore, great care is necessary when working in congested areas. In loose soils, the size and shape of the finished ditch will not be maintained due to erosion from water movement through the ditch. The depth fixes the width of the ditch; therefore, a shallow ditch is also narrow. Concerns have been raised about the possible marsh hydrological changes (i.e., dewatering) that may occur from the installation of rotary ditches. This concern has been addressed typically through the installation of ditch sills, the tops of which are usually set at mean high water. The installation of sills can result in water being retained in the ditch and on the marsh surface; however, this result is not always the case, and some dewatering of the marsh may still occur. Though more frequent flooding of the marsh could conceivably alter soil salinities (by reducing hypersaline conditions), the possible impacts to the benthic invertebrate populations have not been thoroughly investigated. Soil salinity changes also may alter native plant communities, although the introduction of some non-native plants is restricted by marsh elevation. Rotary ditching projects in Volusia County have not experienced native vegetation changes post excavation. Grass marshes continue to thrive immediately adjacent to rotary ditches.

4.5.2.3 Rotary-Ditching Applications

Basic limitations on the use of rotary ditching revolve around the size of the ditch needed, soil types, access, adjacent terrain, and existing vegetation. Good marsh type candidates for rotary ditching include grass marshes, dredge spoils, temporary grassy ponds, scrub marsh, and savannas. Areas with sandy loose soil are not good ditching candidates. Ditch cleaning or new construction is possible in areas of limited woody vegetation, if planned carefully. Experience has shown that poorly engineered or poorly maintained ditches, especially ones that become disconnected from a permanent water body, can produce more mosquitoes than preconstruction conditions, as is true for any permanent control project.

Environmental regulatory agencies generally allow rotary ditching of impoundments because this practice usually reduces insecticide use and allows the impoundment to remain open to tidal exchange, resulting in the exchange of organisms for a longer period of the year. In some cases, it allows the impoundment to be opened permanently. Rotary ditching projects are usually undertaken by mosquito control offices and require permits from the Army Corps of Engineers (ACOE), the Florida Department of Environmental Protection (FDEP), and/or a local water management district (e.g., St. Johns River Water Management District), along with local county approval.

4.5.3 Impoundments

Impounding has been used extensively along Florida's central east coast for mosquito and biting midge control. The principle is simple: keeping a sheet of water across a salt marsh substrate prevents Aedes spp. mosquitoes and biting midges from ovipositing (laying their eggs) on these otherwise attractive soils. On an impounded marsh, mosquito and biting midge control is effectively achieved with a minimum of insecticide use.

4.5.3.1 Environmental Risks of Impounding

Before the 1970s, mosquito control considerations outweighed natural resource concerns in high marsh communities. This situation was due both to the urgent public health need to control tremendous saltmarsh mosquito broods and to the lack of understanding of the ecological significance of wetlands. In the 1950s and 1960s when impoundment construction occurred, little was known about the importance of high marshes and their role in estuarine productivity. Historically, black and white mangroves, Batis, and Salicornia dominated many high marshes that were impounded. These plants cannot sustain continual unregulated flood heights, where the succulent plants or black mangrove pneumatophores are completely inundated. During the early years of impounding, water levels were maintained at an elevation that killed virtually all the existing vegetation in some locations. This result left some impoundments barren of vegetation for many years, except where red mangroves intruded. Also, the perimeter virtually eliminated the natural movement of water and organisms between the marsh and adjacent estuary. Marsh transients, those organisms that use the high marsh during a portion of their life cycle [e.g., Elops saurus (ladyfish), Centropomus undecimalis (snook), Megalops atlanticus (tarpon), Mugil spp. (mullet)], were excluded from the impounded marshes, primarily during the high fall and winter tidal period experienced on the central east coast of Florida.

4.5.3.2 Benefits of a Properly Designed Impoundment Management Plan

Based on research conducted during the 1980s and 1990s, RIM is currently considered the most favorable and versatile management technique that provides the greatest public benefit. RIM accomplishes mosquito control while still allowing the marsh to function in a nearly natural condition for much of the year. RIM is implemented by installing culverts with water control structures through impoundment dikes to allow seasonal management via flooding and a connection between the marsh and estuary during the rest of the year. Pumps are installed to allow summer flooding of the marsh surface when it would normally be dry. Culverts serve as pathways for tidal exchange, rainfall runoff, nutrient exchange, and organism movement between the estuary and the wetland. Intensive sampling has shown that fish use these culverts as ingress and egress points to the impounded marsh and that these marshes now serve as nursery habitat for more than 100 species of juvenile fish and macrocrustaceans.

Culverts are strategically distributed around a dike at approximately 500-900 foot intervals, or one for every ten to fifteen acres of wetland area, in order to approximate natural tidal exchange rates and to meet water quality standards. Most favorable
locations are generally sites where natural tidal creeks occurred or where flushing will be optimized or evenly distributed. Culvert invert elevations are generally set at -1.0 feet NGVD (National Geodetic Vertical Datum) so that they contain water at low tide in an estuarine system, where water levels typically reach 0.0 feet NGVD at low tide. At this elevation, maximum flow-rates can be achieved at MHW levels (culverts flowing at 67\% full). Culverts are left open during the fall, winter, and most of the spring. In the late spring, the culverts are closed and remain so through late summer/early fall (the most productive mosquito season), during which time the marsh is artificially flooded.

The water control structures attached to the culverts allow the marsh flooding height to be regulated to a minimum height necessary for mosquito control. Water levels exceeding control height automatically spill out into the estuary through overflow structures, thus preventing damage to marsh vegetation from excessive water levels or acidification processes. During the closure period (early spring through late summer/early fall), the impounded marsh is flooded by tide, rainfall trapping, and the pumping of water as needed from the adjacent estuary using either stationary electric or portable diesel-driven pumps. Pumping ceases, and the culverts are opened in late summer/early fall to allow the seasonally occurring fall high tides to flood the marsh. Marsh transient organisms enter and leave the marsh on these tidal events.

Modifications to these standard protocols include: continuous summer pumping through open or partially open culverts or combinations of weirs and breaches incorporated into the summer water circulation programs. The latest efforts targeting marsh flooding with pumps or water circulators are designed to inundate the marsh floor and take advantage of natural tidal exchange, thus augmenting the natural tidal inundation frequency of a marsh during the low-water, mosquito-production period. Continuous pumping through open or partially-open culverts (employing flap-gates, bottom-water release gates, etc.) allows organism exchange between the estuary and the impoundment during the management season. This arrangement is especially beneficial to summer transient species such as tarpon. Excess pumping creates water turnover rates that result in improved water quality, enhancing biodiversity, and protecting wetlands from acidification by preventing freshwater build-up. Further benefits of artificial pumping include protection of wetlands from exotic species invasion and enhancement of mangrove growth rates and productivity. New techniques are being tried such as circulating water into remote areas of the marsh, and then using weirs to direct it back out of the marsh. Using water circulators to slightly augment or "finesse" high tides to achieve weekly inundation of the wetland also is being designed and tested.

RIM achieves multipurpose management by allowing the impoundment to:

1) control saltmarsh mosquito production with minimal insecticide use
2) promote survival and re-vegetation of native plant species by maintaining open periods and sufficiently low water levels during the summer flooding period to protect plants with limited water level height tolerances
3) help prevent exotic plant incursion into wetlands
4) allow marine life to use the previously unavailable impounded high marsh

In order for a governmental mosquito control office or private developer to implement a RIM plan, it usually is reviewed and endorsed by the SOMM before being reviewed by the permitting agencies. The agencies involved in RIM permitting include the ACOE, the FDEP, the local water management district (e.g., the St. Johns or South Florida Water Management District), and the local county government. When undertaken by a governmental mosquito control office, some streamlining of the permitting process for RIM projects has occurred under permitting changes adopted in 1995. Under Florida's newly developed Environmental Resource Permit (ERP), a Noticed General Permit is now granted to mosquito control offices for the installation of culverts in impoundments for non-mitigation enhancement projects. While some review of the project is still necessary, this streamlined permit process speeds up the regulatory review process.

4.5.4 Current Efforts in Salt Marsh Management

RIM management and rotary ditching as described above are marsh management techniques that are well accepted by both mosquito control agencies and those agencies responsible for protecting natural resources. Virtually all of the IRL marshes have been impacted in some way; therefore, management diversity may be the best solution for the future. Toward that goal, SOMM participated in a project to develop regional management plans for IRL impoundments and marshes. This planning project regionalized the lagoon into ten management areas and assigned each marsh an optimal management scenario based on current best management information. In addition to RIM and OMWM utilizing rotary ditching, appropriate techniques include among others: open marsh-lagoon connection, RIM modifications with near-continual pumping during the closed period for water quality improvement, RIM management with modifications to enhance wading bird feeding opportunities, waterfowl management, and stormwater retention. This planning document provides assistance to governmental agencies and private developers for specific marshes targeted for management. However, as always, recommendations made today can change tomorrow as further scientific information becomes available. (See Appendix I for a list and description of recognition of mosquito control professionals for their source reduction efforts that take into account environmental considerations.)

4.6 SOURCE REDUCTION IN FRESHWATER HABITATS

Source reduction for mosquito control in freshwater habitats typically involves constructing and maintaining channels (ditches) to reduce mosquito production in areas such as floodplains, swamps, and marshes. The principle that directs source reduction work entails manipulating water levels in low-lying areas to eliminate or reduce the need for insecticide applications.

Two different mosquito control strategies are considered when performing freshwater source reduction. One strategy involves reducing the amount of standing water or reducing the length of time that water can stand in low areas following significant rainfall events. This type of strategy involves constructing channels or ditches with control elevations low enough to allow for a certain amount of water to leave an area before immature mosquitoes can complete their life cycle.

Another strategy involves constructing a main central ditch with smaller lateral ditches at the lowest elevations of intermittently wet areas to serve as a larvivorous fish reservoir. As rainfall increases, fish move outward to adjacent areas to prey on immature mosquitoes, and as water levels decrease, fish retreat to the ditches. Weirs are constructed in main ditches to decrease water flow, decrease emergent aquatic weeds, prevent depletion of the water table, and allow fish year-round refuge.

In Florida, most construction of source reduction projects occurred between the 1940s through the mid-1960s. Initially, these drainage projects were designed to reduce the production of Anopheles mosquitoes and lower the incidence of malaria. Later, drainage projects were constructed to help control other vector as well as nuisance species. Local mosquito control agencies wanting to construct drainage projects had to obtain approval from the state mosquito control office, originally located in the Florida State Board of Health (FSBH). Entomological data to support/justify the merit of projects along with design specifications had to be provided to obtain approval. Once projects were approved by the State, construction and maintenance activities were regulated by the State to ensure compliance with good mosquito control practices. In addition, for a period of more than twenty-five years, a specific type of financial aid - State II Aid was provided to local mosquito control offices to supplement costs associated with constructing and maintaining source reduction projects.

Currently, very few, if any, mosquito control offices are involved in construction of new drainage projects because of environmental restrictions associated with obtaining permits. However, several mosquito control offices are involved in maintenance work on existing drainage systems. This maintenance includes cutting, mowing, or the application of herbicides to overgrown vegetation and excavating built up spoil material. Florida law provides a permit exemption for mosquito control maintenance activities. This maintenance exemption allows mosquito control agencies to maintain the systems, provided that their sizes are not expanded beyond original design specifications. One important provision of the exemption states that up to 10,000 cubic yards of spoil material can be excavated from a project without a permit, provided that the material is deposited on a self-contained upland site.

Over the past several decades, urban development has occurred in areas of Florida where mosquito control drainage ditches were the primary drainage systems. If these systems are expanded to meet modern stormwater management specifications, mosquito control maintenance exemptions are no longer valid. In many cases, maintenance responsibility for mosquito control projects has been taken over by city and county public works departments and integrated into their comprehensive stormwater management programs.

4.7 STORMWATER AND WASTEWATER MANAGEMENT

(See Appendix II for a description of Volusia County Mosquito Control's specific stormwater plan.)

Florida largely depends on potable water pumped from aquifers supplied by rainfall. Much of Florida is flat with sandy soils resulting in a variety of percolation rates and water table depths. These characteristics make the management of stormwater and wastewater very important, and poor engineering and construction - or improper maintenance - can result in considerable mosquito problems.

From a legislative perspective, very little has been done to prevent the production of disease vector or nuisance mosquitoes from either stormwater or wastewater facilities. Wastewater facilities are regulated under FDEP. The current trend of eliminating small package plants and hooking into regional systems has helped. Stormwater is regulated by FDEP or the appropriate water management district, counties, and municipalities. In 1982, the Florida Department of Health and Rehabilitative Services (FDHRS), through the efforts of William Opp, and the Florida Department of Environmental Regulation (FDER) developed the original Florida criteria for considering mosquito problems resulting from stormwater facilities. The 72-hour recovery period associated with design criteria for retention and filter/under-drain systems was put into the rule at the suggestion of HRS solely to minimize mosquito production.

A few counties and municipalities have language prohibiting mosquito production in stormwater treatment facilities. This language was largely due to the efforts of William Opp of HRS in the late 1970s and early 1980s to develop guidelines for engineering mosquito-free facilities. Volusia County Mosquito Control built upon this work in the early 1990s by developing their own local Best Management Practices (BMP) for Mosquito Control in Stormwater Management Facilities (See Appendix II).

Currently, the U.S. Environmental Protection Agency (EPA) is involved in permitting stormwater management as it relates to Municipal Separate Storm Sewer Systems (MS4s) and the discharge of Stormwater Association with Industrial Activity. These permits represent an expansion of Florida's State/Water Management District stormwater program in that they address existing systems - not just new development. The impact on mosquito control is expected to be relatively minor, since these permits do not typically require the installation of structural controls such as retention or detention ponds for compliance.

Research into mosquito problems associated with stormwater and wastewater facilities has been limited. Dr. George O'Meara of the University of Florida, Institute of Food and Agricultural Science, Florida Medical Entomology Laboratory (FMEL) performed some studies in the 1980s on wastewater treatment facilities. Dr. Fred Santana of Sarasota County Mosquito Management also studied stormwater management facilities and associated mosquito problems. A few other researchers also have looked into this problem as well.

Currently, there is a wide range of mosquitoes produced in these facilities including floodwater Aedes and Psorophora spp. in intermittently wet facilities, Culex and Anopheles species associated with permanent or semi permanent wet facilities, and Mansonia, and Coquillettidia species associated with floating or emergent vegetation. The Aedes, Psorophora, Mansonia and Coquillettidia species are the most pestiferous to humans. Mosquito control efforts in infested areas include larviciding, vegetation management, herbicide applications, barrier treatments, Ultra Low Volume (ULV) adulticiding, stocking with larvivorous fish, and the installation of reservoirs for larvivorous fish.

Engineering design can eliminate mosquito production from stormwater and wastewater facilities, but not always easily. Permanent water ponds can be kept clean of weeds with water quality sufficient to support mosquito-eating fish. Dry facilities can be designed to dry down in three days to prevent floodwater mosquito production, but some standing water beyond the three-day period may occur due to intermittent rainfall common to Florida in the summer.

4.7.1 Conclusions

- Ideally, all agencies involved in regulating stormwater and wastewater facilities should add language striving to minimize, and, where possible, eliminate mosquito production. In addition, a method for resolving problems in maintaining compliance with this goal is desirable, but this result may be difficult to achieve due to the large number of facilities. Partnerships between state and local government agencies (in particular local field inspectors) could be beneficial in helping to meet compliance requirements. Research is needed to establish testing/monitoring techniques and thresholds to allow applicants, operators, and independent inspectors to determine compliance with mosquito reduction goals.
- All agencies involved in regulating stormwater and wastewater facilities should recognize that some wetland plantings, while providing habitat for fish and wildlife as well as other ecological functions, can create mosquito larval habitat. This problem should be taken into account in engineering a system design with vegetation that does not contribute to mosquito problems.
- There should be state recognized and published BMPs for mosquito control in stormwater and wastewater management facilities. These BMPs would provide an educational tool guiding designers, builders, and operators. Volusia County Mosquito Control has such a policy. See Appendix II.
- Mandatory mosquito biology and control training should be part of all stormwater and wastewater certification programs.

Finally, mosquito problems in stormwater and wastewater facilities are easy to prevent and sometimes easy to fix. The approaches are non-chemical and environmentally sensitive, and they have the potential to reduce mosquito populations in all areas.

4.8 MOSQUITOES ASSOCIATED WITH WASTEWATER

In many parts of Florida, clean freshwater for domestic, agricultural, or industrial uses is becoming a critical resource. Wastewater recycling and reuse help to conserve and replenish freshwater supplies. Floridians produce approximately 100 gallons of wastewater per capita each day from domestic sources alone. Concern for water quality conditions in lakes, rivers, and marine areas has resulted in the enactment of new state laws that will greatly limit future disposal of wastewater into these aquatic systems. To adjust to these changing conditions, many communities must implement wastewater reuse and recycling programs. Mosquito problems are frequently associated with some conventional wastewater treatment techniques, and the expanded use of wastewater recycling and reuse may inadvertently create even more mosquito habitats.

4.8.1 Domestic Wastewater

4.8.1.1 Septic Systems

In 2008, 31% of Florida's households use on-site treatment systems such as septic tanks and associated drain fields. With proper soil porosity, sufficient lateral fields, and low human congestion, these systems are safe and efficient. The wastewater in a properly located and maintained septic tank system will percolate into the subsoil without causing a surface water accumulation that may induce mosquito production. Yet, when these systems are placed in locations with inappropriate soil conditions, wastewater will flow laterally, often into nearby swales and ditches, thus providing egg laying substrates for Culex spp.

4.8.1.2 Package Plants

Some central wastewater facilities in Florida are relatively small, treating less than 100,000 gallons of wastewater daily. In some instances a small system known as a package plant can be used by private companies when establishing new subdivisions and related developments. However, this arrangement has become much less common as regulations require such developments to use large treatment facilities. Some of these remaining package plants provide inadequate wastewater treatment because they are poorly maintained or operated beyond their capacity. Generally, package plants discharge treated wastewater into small holding ponds. When these ponds receive poorly treated wastewater, mosquitoes may become abundant, especially when the ponds are invaded by aquatic plants. If aerators, pumps, and related components of package plants are not functioning properly, then mosquito production may not be confined to just the holding ponds.

4.8.1.3 Large Treatment Facilities

Large treatment facilities have large holding ponds that are less likely to be invaded by mosquitoes than the smaller ponds associated with package plants. Often, major mosquito problems associated with large municipal and county wastewater treatment facilities are confined to the advanced treatment phase of the overall process.
Techniques used to improve water quality conditions beyond the levels obtained in the secondary treatment process include spray irrigation, rapid-dry ponds, aquatic plant/wastewater systems, and the use of natural or modified wetlands.

4.8.1.4 Spray-Irrigation Systems

Secondarily treated wastewater is used to irrigate golf courses, road medians, pastures, sod fields, citrus groves, and other types of crops. During the rainy season, it is not uncommon for spray fields to become waterlogged, particularly those in low-lying areas with high water tables or in poorly drained soils. Under these conditions, the continued application of spray irrigation will result in the accumulation of surface water, thus providing aquatic habitats for a variety of mosquito species.

4.8.1.5 Rapid-Dry Ponds versus Holding Ponds

Rapid-dry ponds are classified as dry-retention systems. In these systems, water flows into the pond and then percolates into the soil. By contrast, holding ponds are primarily flow-through systems. Typically, water enters and leaves the holding pond in some type of pipe. Soil percolation is an optional feature in holding ponds. Due to the regular inflow of wastewater, holding ponds are normally full and thus represent a type of wetdetention system. Rapid-dry ponds that fail to dry fast enough produce mosquito problems similar to those found in areas where surface water has accumulated from excessive spray irrigation.

4.8.1.6 Wastewater/Aquatic Plant Systems

At some wastewater treatment facility ponds in Florida, certain species of aquatic plants (e.g., water hyacinths) have been added for nutrient removal and biomass production. Mosquito problems result in this type of system if the inflow is inadequately treated. Effective nutrient removal requires periodic harvesting of a portion of the aquatic plants.

4.8.1.7 Wetlands

Subject to regulatory permitting, secondarily treated wastewater can be pumped into wetland areas. Earthen dikes often are used to increase the water retention capacity of wetlands that are receiving treated wastewater. The responses of mosquito populations to wastewater inundations vary depending upon the type of wetland.

For example, coastal salt marshes and mangrove swamps are noted for producing large broods of pestiferous mosquitoes. Highly effective mosquito control has been achieved by surrounding these brackish wetlands with dikes and then flooding the enclosed area.

Usually brackish or freshwater is used, but impoundments at a few locations have been operated effectively with secondarily treated wastewater as the influent.

The various types of freshwater wetlands in their natural condition provide suitable aquatic habitats for a variety of mosquito species. Adding treated wastewater to these aquatic systems rarely reduces mosquito production and often changes the relative abundance of different plant species and the associated mosquito species.

4.8.2 Agricultural and Industrial Wastewater

Many commercial operations have on-site treatment facilities for decreasing nutrient loads in wastewater and generally use techniques similar to those applied to domestic wastewater. The quantity of wastewater produced at some commercial locations, such as those processing certain crops, may be highly variable during the year. Therefore, the amount of surface water in the holding ponds or spray fields used in the wastewater treatment may fluctuate considerably, thereby contributing to the production of certain species of floodwater mosquitoes. Wastewater from feed lots and dairy barns often is placed in holding or settling ponds without any prior treatment. Several mosquito species of the genus Culex can become extremely abundant in these ponds, especially in the absence of aquatic plant control.

4.8.3 Major Pest and Disease-Vectoring Species

4.8.3.1 Culex

Throughout much of southeastern United States, the dominant species of mosquito in wastewater ponds and lagoons is usually Culex quinquefasciatus. Major exceptions to this pattern occur in both central and south Florida where Cx. nigripalpus is often seasonally more abundant than Cx. quinquefasciatus. Especially in the southern half of peninsular Florida, Cx. nigripalpus is usually the dominant wastewater Culex in the summer and fall, whereas Cx. quinquefasciatus is more common in the winter and spring. Human activities are responsible for establishing the vast majority of the aquatic habitats used by Cx. quinquefasciatus, the southern house mosquito. A much wider range of larval habitats, including both artificial and natural aquatic systems, is used by $C x$. nigripalpus. In large wastewater ponds, immature Cx. quinquefasciatus are generally most abundant near the inflow area where the nutrient loads are typically highest. By contrast, immature Cx. nigripalpus are more evenly distributed in wastewater ponds.
Cx. salinarius, another common mosquito in wastewater, is similar to Cx. nigripalpus in its range of larval habitats, but its seasonal pattern of abundance is similar to $C x$. quinquefasciatus. Cx. salinarius inhabit not only semi-permanent ponds but also more ephemeral habitats, such as temporary pools in spray irrigation fields. Occasionally, immature Culex restuans may become common in a wastewater system. Fortunately, Cx. restuans populations are inactive during much of the year in most of peninsular Florida. Cx. salinarius is the most pestiferous wastewater Culex because it feeds mainly on mammals, while females of the other three species are either generalists or primarily
avian feeders. Cx. nigripalpus is the species of greatest interest because it is the dominant Culex in Florida during the summer and fall, occurs in wastewater systems varying widely in nutrient loads, and is the primary vector of St. Louis encephalitis virus (SLEV) and West Nile virus (WNV).

4.8.3.2 Aedes and Psorophora

Unlike Culex, whose eggs hatch within a few days after being laid in rafts on the water surface, Aedes and Psorophora species lay their eggs individually on moist substrate with hatching occurring only after the eggs have been flooded. Consequently, Aedes and Psorophora are seldom found in wastewater systems where there is little or no variation in surface water levels. However, poorly designed, improperly operated, or inadequately maintained systems often lead to conditions that are ideal for an invasion by floodwater mosquitoes. Poorly drained spray-irrigation fields often become water logged, especially during the rainy season. Under these conditions, many broods of Ae. vexans and Ps. columbiae can be produced in a single season. Land application of wastewater may increase the salt content of the soils and cause inland sites to become suitable for saltmarsh mosquitoes. Ae. sollicitans has become a major pest species at some wastewater disposal or recycling sites.

4.8.3.3 Mansonia and Coquillettidia

Immature Mansonia dyari, Mansonia titillans, and Coquillettidia perturbans do not breathe at the water surface; rather, they obtain oxygen from the root hairs of various species of aquatic plants and may stay attached to the plants for extended periods. Immature Ma. dyari are found almost exclusively in association with water lettuce, Pistia stratiotes, whereas Ma. titillans use several species of aquatic plants, notably water hyacinth (Eichornia crassipes) and water lettuce. Rooted and floating cattails (Typha spp.), especially floating mats, are the principal host plants for Cq. perturbans.

Of these three mosquito species dependent upon aquatic plants, Cq. perturbans is the most aggressive biter. It is an opportunistic blood feeder, occasionally taking multiple blood meals. These behavioral traits enhance the mosquito's potential for vectoring certain viruses. Ma. dyari are less likely to feed on humans than are Ma. titillans. Nevertheless, at locations where Ma. dyari is extremely abundant, the species may be an important component in the enzootic cycle of St. Louis encephalitis (SLE) transmission.

4.8.4 Mosquito Control

The best approach to managing mosquitoes in wastewater systems is initial avoidance by incorporating features into the design and operation of wastewater treatment systems that will either preclude or greatly limit mosquito production. Special attention should be directed to the items listed in the remainder of Section 4.8.4.

4.8.4.1 Operating Capacity

Many systems provide inadequate wastewater treatment because the amount of inflow regularly exceeds treatment capacity. Treatment facilities must be designed and constructed to handle current and future demands that are based on realistic projections. Moreover, facilities need to be properly maintained to prevent any loss in operating capacity. Although wastewater treatment is expensive, cutting costs by overloading treatment facilities is counterproductive in the long term.

4.8.4.2 Water Quality

Wastewater should receive at least a good secondary treatment and preferably some advanced treatment before it is placed in detention/retention areas. Land applications, such as irrigation projects, should be used to complement rather than substitute for good secondary treatments. Poor water quality is a major factor contributing to Culex mosquito problems. Improved secondary and advanced treatments decrease the likelihood of Cx. quinquefasciatus and Cx. nigripalpus oviposition, make habitats more suitable for fish and other mosquito predators, and increase the effectiveness of various mosquito larvicides.

4.8.4.3 Wet-Detention Ponds

In wet-detention ponds, large ponds are much more desirable than small ones (i.e., those with < 0.1 acre of surface area). In fact, small ponds and various types of wastewater holding tanks may require surface agitation from a sprinkler or an aerator to deter invasion by Culex mosquitoes. Pond banks should be relatively steep with a minimum water depth of at least two feet. Methods for preventing seepage should be incorporated into the design and construction of holding ponds. Water levels in wet-detention ponds should be kept constant. If ponds must be drained for maintenance, they should be equipped for rapid and complete drainage. These drainage/refill episodes should be infrequent. Debris and excessive vegetation should be removed from the banks and shoreline. The surface of wet-detention ponds should be kept free of floating and immersed aquatic plants. The deliberate introduction of aquatic plants, such as water hyacinths for biomass production or water quality improvement, should be limited to ponds receiving good secondarily or advanced treated wastewater. When plants are used for nutrient removal, they must be protected from insects, pathogens, and cold weather; otherwise, the dead plants will release nutrients back into the wet-detention pond and increase the likelihood of mosquito production. Plant harvesting schedules must be adjusted for variation in seasonal growth patterns. Failure to harvest the plants on time also increases the chances for a mosquito outbreak.

4.8.4.4 Dry-Retention Areas: Rapid-Dry Ponds and Spray-Irrigation Fields

In theory, the wastewater applied to rapid-dry ponds and fields should rapidly percolate into the soil so that surface water is present for brief periods (less than a few days). In practice, standing water is often present for longer periods. Even if 90 to 95% of the wastewater rapidly enters the soil, the amount of surface water remaining can cause
major mosquito problems. Dry-retention areas must be restricted to sites with soil and water table conditions that will allow for the rapid absorption of all wastewater. The rate of application needs to be adjusted for seasonal patterns in rainfall and water table and for long-term changes in the soil's water holding capacity.

Depressions, potholes, and related irregularities should be removed from dry-pond bottoms and spray-irrigation fields. Grass-covered systems should be mowed without creating tire ruts, and the cuttings should be removed. Even when rapid-dry ponds and spray-irrigation fields operate satisfactorily, seepage to adjacent lowlands may create or aggravate mosquito problems. Therefore, the design of dry-retention areas should include provisions for adequate drainage in neighboring areas.

4.8.4.5 Wetlands

Environmental mandates and budget constraints may greatly limit the use of aquatic plant management or mosquito larvicides in freshwater wetlands that receive wastewater. Baseline information on mosquito production should be obtained following wastewater input. Access roads should be made available so that all major sections of the wetlands can be monitored periodically for mosquitoes. If plans call for deliberately adding aquatic plants to a wetlands/wastewater system, avoid using plant species that provide especially favorable microhabitats for mosquitoes. Flow rates and nutrient loading should not exceed the carrying capacity of the area. Wetlands receiving wastewater should be located away from residential and commercial areas. Future development should be limited to maintain buffer zones.

4.8.4.6 Larvicides

Several different types of larvicides are available for controlling mosquitoes. Generally, these larvicides are least effective in wastewater systems. The flow-through nature of many wastewater treatment, reuse, and recycling operations rapidly diminishes the effectiveness of many larvicides. Bacteria and other components of wastewater quickly break down or inactivate some larvicides. Increasing the dosage rate and the number of applications or using slow-release formulations may be required to achieve adequate control. At sites where mosquito outbreaks are large and frequent, larvicides may provide only temporary control and may not be cost-effective. Larvicide operations must be supported with a quality inspection program. Potential mosquito production sites must be identified and frequently inspected. Larvicide applications should be integrated with other mosquito abatement measures, such as aquatic plant management and water quality improvement. Larvicides should not interfere with the level of mosquito control already provided by natural predators and parasites.

4.9 AQUATIC PLANT MANAGEMENT AND THE EFFECTS ON MOSQUITO POPULATIONS

This section describes the practices used to control mosquitoes and aquatic plants associated with freshwater environments only. Saltmarsh environments are discussed in other sections of this chapter.

Certain mosquito species use various aquatic plants as a primary habitat for egg deposition and larval development. Because aquatic plants can, at times, produce heavily vegetated stands, the use of conventional mosquito management techniques, such as biological and chemical control, may be ineffective. Therefore, removal of the habitat may be the only means of reducing these mosquito populations to a desired level.

Aquatic plant management in Florida can have a positive effect on the control of mosquito populations. A primary goal in reducing mosquitoes that use aquatic plants is to eradicate or, at the very least, manage the aquatic plant communities at the lowest feasible level.

4.9.1 Mosquitoes

The three most important mosquito species that use aquatic plants in Florida are Ma. dyari, Ma. titillans, and Cq. perturbans. The following descriptions are taken from the Florida Mosquito Control Handbook.

Mansonia dyari is found in permanent lakes and ponds. This species is most closely associated with water lettuce but also occurs on water hyacinth, pickerel weed (Pontederia), and arrowhead (Sagittaria). The egg masses are attached to water lettuce leaves and, after hatching, the larvae and pupae attach permanently to the roots, getting their oxygen from the plant tissues. The females will bite humans but seldom become pests. In Panama, this species is a major vector of SLE, but its relationship to the SLEV in Florida is unknown.

Mansonia titillans is also found in permanent lakes and ponds. This species is most closely associated with water hyacinth but also occurs on water lettuce, pickerel weed, and arrowhead. This tropical species is found only in the southern half of the state. The egg masses are laid on the underside of floating leaves, and the larvae and pupae attach to and derive their oxygen from the roots. It can be a pest to humans near its larval habitats. In South America, this species is a major vector of Venezuelan equine encephalitis.

Coquillettidia perturbans is found in permanent lakes and ponds with cattails, sedges, maidencane (and other Panicum grasses), and arrowhead. This large black and white mosquito is a severe pest in inland Florida. The immature stages are found in established permanent freshwater marshes containing emergent vegetation where there is a layer of detritus on the marsh bottom. The eggs are laid in a raft on the water surface and the immature forms attach to the roots of the emergent plants. This aggressive mosquito is active for short periods at dusk and commonly flies three to five miles from its aquatic habitat, often much further. Females bite both humans and birds. This species is an
important vector of eastern equine encephalitis (EEE) to humans throughout the eastern U.S. wherever it is associated with Culiseta melanura.

4.9.2 Aquatic Plants

The three most important aquatic plants that provide mosquito habitat in Florida are water lettuce, water hyacinth, and cattails. The following descriptions are reprinted from the Aquatic Plant Identification Deck by Victor Ramey.

Water lettuce is a floating plant. Experts disagree as to whether water lettuce is native or has been introduced. Water lettuce occurs in lakes, rivers, and canals, occasionally forming large dense mats. As its name implies, water lettuce resembles a floating head of lettuce. The very thick leaves are light dull green, hairy, and ridged. There are no leaf stalks. Water lettuce roots are light-colored and feathery. Its flowers are inconspicuous.

Water hyacinth is a floating plant. This exotic nuisance plant grows in all types of freshwater. Water hyacinths vary in size from a few inches to more than three feet tall. They have showy lavender flowers. Water hyacinth leaves are rounded and leathery, attached to spongy and sometimes inflated stalks. The plant has dark feathery roots.

Cattails are among the most common of all aquatic plants. They can reach eight or more feet tall and grow prolifically from thick underground rhizomes. Cattails often dominate large areas, especially where water levels fluctuate. Cattails get their name from their cylindrical flower spikes that can be more than one foot long. The flower spikes are densely packed with tiny flowers. Cattail leaves are strap-like, stiff, and rounded on the back. The leaves are sheathed together at their bases and appear to be flattened from the side. Leaves are straight in the bottom half but twist and spiral in the top half.

4.9.3 Surveillance

If adult Mansonia are discovered through routine surveillance, a thorough survey of the immediate area should be conducted to locate freshwater sources containing water hyacinths and/or water lettuce. If a suspected freshwater source is found, a larval survey should be conducted. If disturbed, the larvae attached to plant roots will immediately release and fall to the bottom of the water. As a result, a mosquito dipper is an inappropriate sampling tool. A good method for collecting Mansonia larvae is to place a shallow pan under the floating aquatic vegetation. Care must be taken not to disturb the aquatic plants or surrounding area. Once the pan is in place, it and the aquatic plant must be lifted slowly out of the water. Clean water may need to be added to the pan to accurately view and count any mosquito larvae. This method requires a great deal of patience and practice.

Cq. perturbans can fly several miles from their larval habitat. Therefore, a more widespread survey of freshwater sources containing cattails may be necessary. The eggs and larvae of this mosquito usually are found in the detritus at the base of the aquatic plants. A mosquito dipper or siphon can be used to collect the larvae. However, the
water may need to be placed in a pan containing clean water for accurate viewing and counting.

4.9.4 Mosquito Control Measures

The use of biological control methods, such as mosquito fish, is usually not effective for mosquitoes associated with aquatic plants. The aquatic vegetation is too dense for predators to gain access to the mosquito larvae.

For Mansonia and Coquillettidia, chemical control methods, such as the larvicides Bacillus thuringiensis israelensis (Bti) and Abate ${ }^{\circledR}$, may be effective if the product is applied directly to the areas containing mosquito larvae. This application may be difficult and labor intensive if the aquatic vegetation is dense. Monomolecular surface films are not effective under all climatic and habitat situations found in Florida.

In general, conventional mosquito control methods are not effective tools in reducing mosquitoes associated with aquatic plants.

4.9.5 Aquatic Plant Management Measures

Eradication or maintenance level control of aquatic plants is the best method of mosquito control for Mansonia and Coquillettidia species. There are three basic types of aquatic plant management:

Chemical control involves the use of aquatic herbicides to eradicate or manage the aquatic vegetation. Depending on the amount and accessibility of the vegetation, a backpack, truck-mounted, boat-mounted, or aircraft-mounted sprayer can be used. The aquatic herbicides used are specific for the aquatic plants. Diquat is used to control water lettuce, a 2,4-D amine is used for water hyacinths, and glyphosate is primarily used for cattails. Chemical control can be cost effective if the aquatic plants are managed at a maintenance level.

Biological control involves the use of insects or pathogens to eradicate or manage the aquatic plants. The water lettuce weevil and water hyacinth beetle have been used with limited success. At present, there is no effective biological control for cattails. There have been a few successful large-scale biological applications to date. However, more research is needed to adequately address some of the problems associated with this technique. Biological control has proven to be very cost effective.

Mechanical control is a method in which equipment or tools are used to physically remove the aquatic vegetation. Examples include aquatic harvesters, bucket cranes, underwater weed trimmers, and machetes. Mechanical control is limited to areas that are easily accessible to the equipment. Also, mechanical control can be labor intensive and extremely expensive.

4.10 WASTE TIRE PROGRAM IN FLORIDA

4.10.1 Tires as Mosquito Producers

Tires have provided favored mosquito habitats since the first discarded tire filled with water. Waste tires have been legally and illegally accumulating in Florida for the past several decades. The legal accumulations usually take the shape of a somewhat organized pile containing up to several million tires. Illegally dumped tires may be scattered about from single tires to piles containing 40,000 to 50,000 tires. Unfortunately, most of the problem tires are not in large piles but are rather scattered about, making removal difficult and, at best, labor intensive.

The design of tires makes them ideal sites for producing several species of mosquitoes, and some of these mosquitoes are important disease vectors. The 20-80 rule probably applies to waste tires. Of the mosquito problems associated with waste tires, it is safe to say that 20% of the tires are responsible for 80% of the problem.

Until the mid-1980s, waste tires were considered more of a nuisance and environmental threat than the possible foci of mosquito-borne disease epidemics. This situation changed in 1985 when a substantial population of Ae. albopictus was discovered in Houston, Texas. It is probable that this population arrived from Japan as eggs deposited inside used tires. In 1986, this species was found in an illegal tire pile in Jacksonville. It was found in 62 counties in 1991 and, by 1994, was established in every county in Florida.

The potential importance of Ae. albopictus and waste tires became apparent in June 1991 when adult specimens collected from a large tire pile in Polk County tested positive for the eastern equine encephalitis virus (EEEV). This discovery called attention to a problem of enormous magnitude. Discarded automobile and truck tires are the preferred habitat of Ae. albopictus. Chemical treatment of tire piles to control either larval or adult stages is much more difficult than most routine applications and may not be fully effective. Shredding tires - or otherwise rendering them incapable of holding water and supporting mosquito production - is preferable to attempting chemical control. However, large piles, such as the one in Polk County, may contain an estimated 4.5 million tires, and it may take two or more years to complete the shredding and cleanup process.

4.10.2 Waste Tire Disposal Regulations

In an effort to promote recycling, slow the growth of landfills, and reduce pollution, a comprehensive solid-waste bill was enacted in 1988. This legislation empowered FDEP to regulate the storage, transportation, processing, and disposal of waste tires. Under this bill, no one is allowed to have more than 1,500 tires except at a solid-waste management facility or a waste tire processing facility. Transporters are required to register each truck used to haul tires with FDEP, dump only at approved locations, and maintain records for three years of where tires were obtained and finally deposited. Processors with fixed-site facilities are allowed to have more than 1,500 waste tires in storage but must comply
with storage standards set by the Waste Tire Rule, Chapter 62-711 of the Florida Administrative Code. Landfills are allowed to collect all tires brought in but must have the tires on hand processed every 90 days. Landfills are allowed to bury tires that have been cut into eighths or smaller pieces. Most landfills have the tires shredded to a four-square-inch size that they can use as daily landfill cover. The FDEP also is involved in eliminating the state's large, illegal tire sites. If a site owner is unable or unwilling to abate the site, FDEP can gain possession of the site through the court, process and remove the tires, and seek recovery of costs.

The legislation also established a waste tire fee of $\$ 1$ collected on each new tire sold at retail. The waste tire fee generates more than $\$ 21$ million annually, which goes into the Solid Waste Management Trust Fund. Of this amount, approximately 31% is allocated each year to small counties (ones with a population less than 100,000) as a consolidated grant to be used for general recycling purposes, including waste tire management.

In addition, up to 11% of the waste tire fees are allocated to local mosquito control agencies for abating and providing mosquito control relating to waste tire sites, other tire piles, and waste debris sites identified as mosquito producing areas. Only mosquito control agencies approved by Florida Department of Agriculture and Consumer Services (FDACS) may receive these funds. FDACS receives approximately $\$ 2.2$ million to administer these programs. Direct oversight of the program is the responsibility of the Bureau of Entomology and Pest Control, Mosquito Control Section.

Currently, 61 approved mosquito control programs receive state aid. In addition to all other state funds, every approved mosquito control office is eligible to receive Mosquito Control Grant funds. If more than one local mosquito control program exists in a county, the funds are spilt evenly between them.

Each mosquito control program receiving Mosquito Control Grant funds is required to submit a monthly report of its control activities. The report provides sufficient information to determine how the funds are being used and ensures adequate attention to proper expenditure and other related elements of the program. During FY 05/06, state approved mosquito control programs received approximately $\$ 1.8$ million in Mosquito Control Grant funds. They received approximately the same amount in FY 06/07.

Since the enactment of the Solid Waste Act of 1988, FDEP has cleaned-up more than 22 waste tire sites that contained more than five million tires. This effort reduces the waste tire problem to a more manageable level but does not alleviate the mosquito problems caused by the many thousands of tires scattered throughout the state that have been illegally discarded to avoid dumping fees. This situation is where mosquito control programs can make a real difference. During the first two years that mosquito control agencies participated in the waste tire program, they were responsible for the collection and removal of approximately 730,000 discarded tires.

The removal of waste tires can help reduce populations of Ae. albopictus and the threat of dengue, possibly eastern equine encephalitis, and yellow fever. However, as tires
disappear from the environment, the mosquitoes that found them an attractive habitat will quickly adapt to almost any type of water-holding container. In the final analysis, premise sanitation is the key to controlling container-producing mosquito problems. Mosquito control workers have daily contact with the public and are uniquely suited to the task of informing citizens about eliminating mosquito habitats around their residences.

4.11 REFERENCES AND GENERAL READING

Bruder, K.W. 1980. The establishment of unified Open Marsh Water Management standards in New Jersey. Proceedings New Jersey Mosquito Control Association 67: 7276.

Carlson, D.B. 1987. Salt marsh impoundment management along Florida's Indian River Lagoon: historical perspectives and current implementation trends. In: Whitman, W.R. and W.H. Meredith (Eds.). Proceedings of a Symposium on Waterfowl and Wetlands Management in the Coastal Zone of the Atlantic Flyway.

Carlson, D.B. and J.D. Carroll, Jr. 1985. Developing and implementing impoundment management methods benefiting mosquito control, fish and wildlife: a two year progress report about the Technical Subcommittee on Mosquito Impoundments. Journal of the Florida Anti-Mosquito Association 56: 24-32.

Carlson, D.B. and P.D. O'Bryan. 1988. Mosquito production in a rotationally managed impoundment compared to other management techniques. Journal of the American Mosquito Control Association 4: 146-151.

Carlson, D.B. and J.R. Rey (Eds.). 1989. Workshop on salt marsh management and research. Journal of the Florida Anti-Mosquito Association, Bulletin \#1.

Carlson, D.B., J.R. Rey and J.D. Carroll (Eds.). 1992. $2^{\text {nd }}$ workshop on salt marsh management and research. Journal of the Florida Mosquito Control Association, Bulletin \#2.

Carlson, D.B., J.R. Rey and J.D. Carroll (Eds.). 1997. $3^{\text {rd }}$ workshop on salt marsh management and research. Journal of the Florida Mosquito Control Association, Bulletin \#3.

Clements, B.W. and A.J. Rogers. 1964. Studies of impounding for the control of saltmarsh mosquitoes in Florida, 1958-1963. Mosquito News 24: 265-276.

Gilmore, R.G., D.W. Cooke and C.J. Donohoe. 1982. A comparison of the fish populations and habitat in open and closed salt-marsh impoundments in east-central Florida. Northeast Gulf Science 5: 25-37.

Harrington, R.W., Jr. and E.S. Harrington. 1961. Food selection among fishes invading a high sub-tropical salt marsh: from onset of flooding through the progress of a mosquito brood. Ecology 42: 646-666.

Harrington, R.W., Jr. and E.S. Harrington. 1982. Effects on fishes and their forage organisms of impounding a Florida salt marsh to prevent breeding by saltmarsh mosquitoes. Bulletin of Marine Science 32: 523-531.

Lesser, F. and J.K. Shisler. 1979. Historical development of OMWM in New Jersey: equipment and technique. Proceedings of the Utah Mosquito Abatement Association 25: 40-44.

Meredith, W. J., D.E. Saveikis and C.J. Stachecki. 1983. Studies on the environmental effects of "Open Marsh Water Management", a salt-marsh mosquito control technique. Estuaries 6: 270.

Meredith, W.J., D.E. Saveikis and C.J. Stachecki. 1985. Guidelines for "Open Marsh Water Management" in Delaware's salt marshes - objectives, system designs, and installation procedures. Wetlands 5: 119-133.

O'Bryan, P.D., D.B. Carlson and R.G. Gilmore. 1990. Salt marsh mitigation: an example of the process of balancing mosquito control, natural resource and development interests. Florida Scientist 53: 189-203.

Provost, M.W. 1959. Impounding salt marshes for mosquito control...and its effects on bird life. Florida Naturalist 32: 163-170.

Provost, M.W. 1967. Managing impounded salt marsh for mosquito control and estuarine resource conservation. Marsh and Estuary Management Symposium.

Ramey, V. Aquatic Plant Identification Deck. University of Florida, Institute of Food and Agricultural Sciences. Gainesville, Florida.

Resh, V.H. and S.S. Balling. 1983. Tidal circulation alteration for salt marsh mosquito control. Environmental Management 7: 79-84.

Rey, J.R. and T. Kain. 1989. A guide to the salt marsh impoundments of Florida. University of Florida - IFAS, Florida Medical Entomology Laboratory, Vero Beach, FL.

Rutledge, C.R. (Ed.). 2004. Florida Mosquito Control Handbook $3^{\text {rd }}$ Edition. Fort Myers, FL: Florida Mosquito Control Association.

Subcommittee on Managed Marshes. 1996. Information for permit applicants entering the impoundment management plan submittal process. Report to the Florida Coordinating Council on Mosquito Control.

Subcommittee on Managed Marshes. 1996. Guidelines for salt marsh ditching management plan evaluation. Report to the Florida Coordinating Council on Mosquito Control.

Chapter 5

LARVICIDES AND LARVICIDING

Chapter Coordinators: Doug Wassmer and Candace Royals

1998 Coordinator: Doug Wassmer

Abstract

Summary This chapter focuses on the various agents used to control juvenile mosquitoes while in life stages - larvae and pupae - which occur only in water. The old days of smothering everything with one pesticide such as waste oil are gone, and mosquito control is rapidly approaching an age of prescription applications where a competent operator will apply one or a combination of larvicides in an environmentally friendly manner appropriate to a given set of conditions. To safely alter our aquatic environments, even temporarily, for the purpose of controlling mosquitoes requires a good working knowledge of both the target species and larvicides. Products and techniques currently used in Florida are discussed.

Commercial pesticide sections summarize data found in manufacturers' current product literature and labels. Two of many additional sources of information on mosquito larvicides are:

- U.S. Environmental Protection Agency http://www.epa.gov/pesticides/health/mosquitoes/larvicides4mosquitoes.htm
- Alameda County, California Mosquito Control http://www.mosquitoes.org/BIORAT.html

The University of Florida published a handbook (Dean and Nesheim 1998) on correct pesticide applications which covers in depth many topics presented here.

5.1 INTRODUCTION

Larviciding is a general term for killing immature mosquitoes by applying agents, collectively called larvicides, to control mosquito larvae and/or pupae. Larval Source Management (LSM) involves both the modification of water habitats, often referred to as Source Reduction (see Chapter 4), and the direct application of larvicides to control mosquito production. Most mosquito species spend much of their life cycle in the larval
stage when they are highly susceptible to both predation (see Chapter 7) and control efforts. They often are concentrated within defined water boundaries, immobile with little ability to disperse, and accessible. Adult mosquitoes, in contrast, fly in search of mates, blood meals, or water sources for egg laying and are often inaccessible, not concentrated, and widely distributed. Therefore, effective larviciding can reduce the number of adult mosquitoes available to disperse, potentially spread disease, create a nuisance, and lay eggs which leads to more mosquitoes.

The effective control of larvae and/or pupae is a basic principle of Integrated Pest Management (IPM). Effective IPM involves understanding the local mosquito ecology and patterns of arbovirus transmission and then selecting the appropriate mosquito control tools. The most common methods of IPM include Environmental Management, or Source Reduction (Chapter 4), Larviciding, and Adulticiding (Chapter 6). Other mosquito control principles include Biocontrol (Chapter 7), as well as additional methods not discussed here such as herbiciding and hand removal of aquatic plants. These methods may be used to control immature mosquitoes indirectly, usually when there is an obligatory association between the larvae/pupae and specific host plants. In Florida, Mansonia and Coquellittidia mosquitoes are associated with aquatic plants.

Common examples of highly concentrated broods include immature Aedes taeniorhynchus and Ae. sollicitans in saltmarsh pools, Psorophora columbiae in flooded pastures, and species such as Culex nigripalpus in wastewater treatment sites. In these situations, most Florida mosquito control programs larvicide as a management practice because it both minimizes the area in which control procedures must be applied and reduces the need for adult control. At these times, larviciding has a high impact on local population numbers with minimal application efforts. At other times, larviciding may be less rewarding because small numbers of larvae and pupae are widely and unevenly distributed. Examples include Culiseta melanura in bay tree swamps, Mansonia species and Cq. perturbans in large freshwater marshes with patchy host plant distribution, and Anopheles quadrimaculatus in large, overgrown grassy retention ponds.

Planning a LSM strategy is crucial to a highly effective control program. The first step begins with adult and larval surveillance. Once surveys have been conducted, it is then important to map out and prioritize potential larval habitats. Treatment thresholds, often based on the number of larvae encountered at a site, should be established to justify larviciding, and action plans appropriate for the sites should be developed.

It is important to select the appropriate control agent and formulation based on performance and other factors. It is critical to have a thorough knowledge of the biology of the targeted species in order to determine the appropriate larvicide, the timing of the application, and the amount of product to be applied. For example, Ae. taeniorhynchus tend to "ball up" when feeding as $3{ }^{\text {rd }}$ instars (Nayar 1985). The larvae are unevenly distributed and the density where they do occur is much higher than at other times in their development when they tend to be more evenly dispersed in salt marsh pools. This situation may call for an application rate higher what is normally used, but never exceeding the maximum allowed on the label. Larvicides may be chosen which exhibit a
selective mode of action and have a minimal residual activity or which are not selective and exhibit long-term control. Many larvicides can be applied from either the ground by truck, boat, and hand held devices or by air with fixed wing and rotary wing aircraft, however, some products are not suitable for aerial application. Follow-up efficacy checks are important to ensure a successful larviciding program, and rotation of products should be incorporated into any IPM program.

There is no perfect larvicide for every situation, and each larvicide has its strengths and weaknesses. Larvicides may be grouped into two broad categories: biorational pesticides and conventional, broad-spectrum pesticides. The latter will be discussed in sections 5.2.3 thru 5.2.4.2.

The term "biorational" gained popularity in the climate of environmental awareness and public concern (Williamson 1999). It refers to pesticides of natural origin that have limited or no adverse effects on the environment or beneficial organisms. In order for a synthetically produced pesticide to be classified as a biorational, it must be structurally identical to a naturally occurring compound. Biorational pesticides are comprised of two major categories: 1) Microbial agents (e.g., bacteria) http://www.pesticidebook.com/pdfs/chapter24_pages293-295.pdf and 2) Biochemical agents (e.g., pheromones, hormones, growth regulators, and enzymes).

Schuster and Stansly (2006) more recently defined a biorational pesticide as any type of insecticide active against pest populations but relatively innocuous to non-target organisms, and, therefore, non-disruptive to biological control. An insecticide can be "innocuous" by having low or no direct toxicity on non-target organisms or by having short field residual, thereby minimizing exposure of natural enemies to the insecticide. By this definition, all larvicides registered for use in Florida, when applied according to label instructions, might be considered biorational. There is actually no legally clear, absolute definition of a biorational pesticide (Williamson 1999). The U.S.
Environmental Protection Agency (EPA) considers biorational pesticides to have different modes of action than traditional pesticides (http://ipmworld.umn.edu/chapters/ware.htm), with greater selectivity and considerably lower risks to humans, wildlife, and the environment. The EPA lists several larval control agents as "biopesticides"
(http://www.epa.gov/oppbppd1/biopesticides/ingredients/index.htm). The terms
"biorational" and "biopesticide" overlap but are not identical.

5.1.1 History

Stories of prodigious numbers of mosquitoes occupy a special place in Florida's history (Patterson 2004) beginning with $16^{\text {th }}$ century explorers. An 1888 yellow fever epidemic in Jacksonville set in motion the formation of the Florida State Board of Health (FSBH) in 1889. The Florida Anti-Mosquito Association was founded in 1922. The first mosquito control legislation was passed, and the Indian River Mosquito Control District was established in 1925 (Anonymous 1948, Patterson 2004).

Larviciding became prominent when implemented as an area-wide malaria control procedure in the early 1900s, but by then it had been used as a control technique for over a century in Florida (Floore 2006). From the earliest days, two types of larval control were employed: Larviciding as a temporary control method and ditching as a permanent control method (see Chapter 4 on Source Reduction). Larviciding using waste oil or diesel oil products was implemented to control mosquitoes in the early 1800s (Howard 1910). Paris green dust, an arsenical insecticide, was developed as a larvicide in 1865 and, along with undiluted diesel oil, was used through the 1960s (Anonymous 1970). In 1958, the FSBH developed its own Paris-green granular formulation as a general purpose larvicide (Mulrennan 1958). The FSBH went on to develop its own "Florida Mosquito Larvicide" in the 1960s which contained 99% mineral oil (unpublished 24-C label 1967).

After 1945, dichloro-diphenyl-trichloroethane (DDT), a chlorinated hydrocarbon compound, was used as both an adulticide and a larvicide in Florida (Anonymous 1970, Patterson 2004). Mosquitoes became resistant to DDT, and its use was discontinued in the late 1950s. As resistance to DDT increased, malathion, an organophosphate (OP) compound, was used increasingly to control both larval and adult mosquitoes. Soon, resistance to malathion was observed in saltmarsh mosquitoes (Rathburn and Boike 1967). The FSBH then implemented a policy limiting the use of malathion to adulticiding in areas where OP larvicides were not used. Resistance (see Chapter 10) has been a concern of Florida mosquito control agencies (Boike and Rathburn 1968) for many years. Rogers and Rathburn (1964) summarized early agency attitudes toward larviciding: "Although larviciding alone is not regarded as a practical procedure for mosquito control in Florida ... the great value of larvicides is fully appreciated." Attitudes have changed, and by 2006 most mosquito control agencies in Florida had incorporated larviciding as one of their mosquito management practices.

During the ten years that have elapsed since the first edition of this document, a number of larviciding formulations are no longer registered and likely will never again be available as tools for mosquito control agencies. These products include pyrethrum, diflubenzuron, Bonide Mosquito Larvicide (oil), and BVA Chrysalin (oil). Laginex AS (active ingredient Lagenidium giganteum) has not been enthusiastically accepted in Florida or elsewhere in the United States. Some agencies may list predatory minnows which they purchase for larval control as line items in their larvicide budgets, but these fish are considered biocontrol agents. Biocontrol is discussed in Chapter 7. Industry consolidation has placed the stewardship of the remaining larvicides into the hands of fewer manufacturers. Mosquito control professionals must be diligent with applications and guard against the loss of the remaining control agents.

5.1.2 Regulation

The regulation of larvicides and larviciding is provided for by a set of federal and state acts, statutes, and rules. Oversight includes both regulation of the pesticides themselves and regulation of pesticide applications. The principal controlling law is the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). Chapter 487 Florida Statutes
(F.S.), known as "The Florida Pesticide Law", Chapter 388 F.S. known as "The Mosquito Control Act" and associated Rules outlined in Chapters 5E-2 and 5E-13 of the Florida Administrative Code constitute the State's authority (http://www.flaes.org/aesent/index.html). The Florida Department of Agriculture and Consumer Services (FDACS), Bureau of Entomology and Pest Control, is tasked with ensuring compliance and regulates and licenses the pest control industry and mosquito control programs.

In accordance with FIFRA and the Florida Pesticide Law, FDACS has established a Pesticide Review Council (PRC) to advise "the Commissioner of Agriculture regarding the sale, use and registration of pesticides and advises government agencies, including the State University System, regarding their responsibilities pertaining to pesticides"
(http://www.flaes.org/pesticide/pesticidereviewcouncil.html). The Council serves as a statewide forum for the coordination of pesticide related activities to eliminate duplication of effort and maximize protection of human health and the environment. The PRC consists of eleven scientific members and operates under the authority of Chapter 487 F.S.

The FDACS Division of Agricultural Environmental Services (AES) administers various state and federal regulatory programs concerning environmental and consumer protection issues. These responsibilities include state mosquito control program coordination, agricultural pesticide registration, testing, and regulation, pest control regulation, and feed, seed, and fertilizer production inspection and testing. The AES, Bureau of Pesticides, Pesticide Registration Section "registers federally accepted (FIFRA) pesticides" (http://www.flaes.org/pesticide/pesticideregistration.html) that are distributed, sold, or offered for sale in Florida. Pesticides not requiring federal approval must be registered in Florida to assure adherence with State law. Emergency exemptions from federal registration also are reviewed and processed by the Pesticide Registration Section and submitted to the EPA for action. Special registration actions for new active ingredients, special local needs, significant new uses, and experimental use permits are processed through the Section. To accomplish their mission, members of the Section consult with specialists within FDACS and other state and federal agencies, commissions, and councils.

The Scientific Evaluation Section (SES) of the FDACS, AES, Bureau of Pesticides, includes scientists with expertise in geology, soil science, hydrology, mammalian and ecological toxicology, chemistry, and chemical fate modeling (http://www.flaes.org/pesticide/scientificevaluation.html). The SES provides technical support and has five core functions/programs:

1. Pesticide Registration Evaluation Committee Reviews
2. Endangered Species Protection Program
3. Ground Water Protection Program
4. Surface Water Protection Program
5. Pesticide Usage Information Reporting

The SES functions and interacts with other stakeholders to ensure the safety of the State of Florida. Many new mosquito control insecticide formulations are evaluated by the Florida Agricultural and Mechanical University, John A. Mulrennan, Sr. Public Health Entomology Research and Education Center (PHEREC) in Panama City.

Chapter 388 F.S. provides the authority for mosquito control activities. The statute includes a provision that public lands may be designated as environmentally sensitive and biologically highly productive, thereby requiring special arthropod control plans for mosquito control activities on those "designated" lands. Many state and federal land management authorities [e.g., Florida Department of Environmental Protection (FDEP), Florida Division of Forestry (FDOF), Florida Fish and Wildlife Conservation Commission (FFWCC), U.S. Fish and Wildlife Service (USFWS)] and regional water management districts designate their conservation lands similarly and have corresponding control plans in place.

The control plans are initially proposed by the mosquito control agency for individual parcels and negotiated with the public land manager until mutually agreed upon. Either party may propose further amendments. There is no overarching agreement that certain control chemicals are approved for all such public lands. For example, in 1987, the Florida Park Service and various mosquito control agencies adopted control plans for many state parks (personal communication, Dana C. Bryan, Environmental Policy Coordinator, Office of the Director, Florida Park Service, December 2006). At that time, products containing Bacillus thuringiensis israelensis (Bti) and methoprene were widely approved for use. Bacillus sphaericus (Bs) had not yet been developed commercially and hence was not included in arthropod control plans. Many subsequent plans include $B s$ in addition to Bti and methoprene. See Chapters 9 and 13 for additional discussions of mosquito control agency interactions with other government entities.

5.2 Larvicides Available

Mosquito larvicides registered for use in Florida are discussed below within the following classification system:

- insect growth regulators (IGRs)
- microbial larvicides
- organophosphates (OPs)
- surface oils and films

Insecticide labels usually bear a precautionary signal word. The necessity for a signal word on labels (http://www.epa.gov/oppfead1/labeling/lrm/chap-07.htm) and which word is assigned is dependent upon the results of six separate acute toxicity studies which are performed with each product formulation.

There are a variety of products and formulations within each larvicide classification. Specific formulations are different from manufacturer to manufacturer. Application rates and suggested treatment sites may differ as well. Individual product labels and material safety data sheets (MSDS), usually downloadable from manufacturers' web sites, should
be consulted for specific information, habitat dependent application rates, and restrictions, if any. FDACS should be consulted to ensure that a specific product is labeled for use in Florida.

5.2.1 Insect Growth Regulators (IGRs)

The initial identification of a natural juvenile hormone (JH I) in insects occurred in 1967 and was followed rapidly by the discovery of JH II and JH III (Henrick 2007). JH is involved in the regulation of physiological processes in insects including mating and metamorphosis. Research was initiated in 1968 to determine if insect pests could be selectively controlled - without environmental concerns - by developing synthetic mimics of the natural JH. Since JH does not occur in vertebrates, it was expected that selective insecticides could be developed. Sacher (1971) reported on a group of chemicals that mimic juvenile hormone activity. These chemicals appeared to block naturally occurring ecdysone from initiating molting processes and inducing metamorphosis in mosquito larvae. Staal (1975) discussed several methoprene analogs that interfere with normal insect growth and maturation. Abnormal larval growth patterns plus malformed or smaller than normal forms were observed. The first IGR, which contained several methoprene isomers, was registered in 1975 (Henrick 2007). Methoprene products currently are the only IGRs registered for use in Florida.

5.2.1.1 Methoprene

Methoprene (Isopropyl (2E, 4E, 7S)-11-methoxy -3,7,11 -trimethyl-2,4-dodecadienoate) is a terpenoid compound. Technical methoprene is an amber or pale yellow liquid with a faint fruity odor (http://extoxnet.orst.edu/pips/methopre.htm), which is slightly soluble in water and is miscible in organic solvents. Methoprene is a synthetic mimic and a true analog of naturally occurring JH found in mosquitoes and in other insects.

JH is found throughout the larval stages of a mosquito, but it is most prevalent during the early instars. As mosquito larvae mature, the level of naturally occurring JH steadily declines until just prior to the $4^{\text {th }}$ instar molt, when larvae develop into pupae. This time is a sensitive period when all the physical features of the adult begin to form. Methoprene is absorbed through the insect's outer "skin" or cuticle and may be incidentally ingested or enter the body through other routes. The level of applied methoprene (parts per billion) in the larvae's water environment must be higher than the level of juvenile hormone circulating in the larvae's body in order for the disruption of endocrine processes to occur. Therefore, the application of methoprene larvicides is most efficacious during late $4^{\text {th }}$ instar. Treated larvae reach the pupal stage and then cannot emerge to become adults. Since pupae do not eat, they eventually deplete body stores of essential nutrients and starve to death. Incomplete adult emergence is an indicator of methoprene efficacy.

Methoprene is listed (http://www.epa.gov/oppbppd1/biopesticides/ingredients/index.htm by the EPA as a biopesticide. Methoprene based larvicides are General Use Pesticides (GUPs). Methoprene-based larvicides have undergone extensive studies both prior to
and after registration to determine risk to humans and non-target organisms. When used according to label directions, methoprene is considered extraordinarily safe for humans and almost all non-target organisms. Methoprene does not produce nondiscriminatory, rapid toxic effects often associated with central nervous system toxicants. The lethal effects of methoprene are based on the disruption of the insect's endocrine system mediated developmental processes, such as metamorphosis and embryogenesis. Consequently, control of mosquito larvae is relatively slow.

Methoprene is effective in a wide variety of both fresh and saltwater habitats. It is relatively selective for target species, and lingering mosquito pupae serve as a food for fish and other predators. The IGR is particularly effective against Aedes larvae. Methoprene does not bioaccumulate; it degrades into simpler compounds. Since ultraviolet light deactivates methoprene, many formulations incorporate activated charcoal or other dark inert substances to prolong product life. Early methoprene manufacturing products included two mirror-image molecules called r - and s-isomers. The racemic isomer (r-methoprene) is not active on mosquitoes. Improved manufacturing techniques allow current formulations to contain only active s-methoprene isomers. Methoprene labels bear the "CAUTION" signal word.

5.2.2 Microbial Larvicides

Microbial larvicides are formulated to deliver a natural toxin to the intended target organisms. Bacteria are single-celled parasitic or saprophytic microorganisms that exhibit both plant and animal properties and range from harmless and beneficial to intensely virulent and lethal. Bacillus thuringiensis (Bt), is the most widely used agricultural microbial pesticide in the world, and the majority of microbial pesticides registered with the EPA are based on Bt. The Bt serovar kurstaki (Btk) is the most commonly registered microbial pesticide, and this variety has activity against Lepidoptera (butterflies and moths) larvae. It was originally isolated from natural Lepidopteran die-offs in Germany and Japan. Bt products have been available since the 1950s. In the 1960s and 1970s, the World Health Organization (WHO) encouraged and subsidized scientific discovery and utilization of naturally occurring microbes. As a result of those early studies and a whole body of subsequent work, two lines of mosquito control products have been developed: crystalline toxins of two closely related grampositive, aerobic bacteria - Bacillus thuringiensis israelensis (Bti) and Bs. Mosquito control agents based on $B t$ are the second most widely registered group of microbial pesticides. Highly successful Bti products have expanded the role of microbial agents into the public health arena (de Barjac 1990). Reviews of microbial agents may be found in Lacey 1985, Lacey 2007, and Singer 1985.

5.2.2.1 Bacillus thuringiensis israelensis

Bacillus thuringiensis is a bacterium which occurs naturally in soils and aquatic environments globally. In 1976, Goldberg and Margalit (1977) isolated Bti from Culex pipiens collected in an Israeli riverbed. In 1977, de Barjac designated this Bt strain as $\mathrm{H}-$ 14 , noting that it is toxic to mosquito and black fly larvae. Over the last three decades, a
number of other strains have been investigated, some with desired larvicidal effects. Two strains, SA3A and FM65-52, are currently utilized for commercial products.

The active ingredients in Bti formulations are delta-endotoxin (d-endotoxin) crystals separated from bacteria near the end of manufacturing processes. These toxic crystals are incorporated into various products which allow their release into water so that they may be ingested by mosquito larvae. The d-endotoxin crystals are activated by the alkaline environment and enzymes of the mosquito midgut. The alkaline gut environment allows hydrolysis of the crystal's protein coating and the release of protoxins. Gut enzymes then activate the pro-toxins and facilitate their binding to the gut epithelium of the mosquito larva. Cells rupture and are destroyed at the binding sites, leading to a loss of body fluids which results in death. This rapid action typically controls larvae in 4-24 hours.

Bacillus thuringiensis israelensis is listed by the EPA as a biopesticide (http://www.epa.gov/oppbppd1/biopesticides/ingredients/index.htm). Bti based larvicides have undergone extensive risk studies both prior to and after registration. Bti products are GUPs and are safe for non-target organisms in the environment. The crystalline d-endotoxins are not activated in the acidic guts of humans or other animals or in the alkaline guts of animals which do not contain the enzymes necessary for activation and binding of released pro-toxins. This specificity accounts for the highly selective nature of Bti larvicides which is limited to Dipterans, notably mosquitoes, black flies, and some midges. Bti controls all larval instars provided they are still feeding. It is effective on most mosquito species in a very wide variety of habitats; Bti formulations are thus ideally suited for IPM.

Bti product labels show the potency of the product as the number of International Toxic Units (ITU) available. This value is more meaningful than the weight percent of the active ingredients, as it characterizes the formulation's effectiveness. ITU values are determined by a standardized laboratory bioassay which uses $4^{\text {th }}$ instar Culex quinquefasciatus. Prepared volumes of toxins are applied to living mosquito larvae and the resulting mortality data provide a numerical measure of activity. Bti labels bear the "CAUTION" signal word.

5.2.2.2 Bacillus sphaericus

Bacillus sphaericus is a naturally occurring spore-forming bacterium found throughout the world in soil and aquatic environments. Kellen and Myers (1964) isolated Bs from Culiseta incidens larvae in California. Early studies were conducted on Bs strains isolated by the Pasteur Institute, while the commercial products discussed below are based on strain 2362 isolated in Nigeria. Lacey (2007) reported that serovarieties with the most pronounced larvicidal activity are 1593 and 2362. Some strains produce a protein d-endotoxin at the time of sporulation which is toxic to many species of mosquito larvae upon ingestion.

Bacillus sphaericus acts in a manner similar to Bti, except it has been shown to recycle in intact Culex cadavers, thus maintaining some residual activity (Becker et al. 1995). Once larvae ingest these $B s$ d-endotoxins, they are partially digested (their protein envelope is dissolved) in the alkaline gut, enabling the release of pro-toxins. These pro-toxins in turn are activated by enzymes and attach to the gut wall where they begin to disrupt, paralyze, and rupture the gut.

The activity of $B s$ d-endotoxins differs from that of $B t i$ in several important ways. $B s$ toxins are attached to a living bacterial spore while the Bti toxins are not. The toxins of $B s$ and Bti bind to chemically different receptor cell sites. They are not related immunologically and are thought to have completely different molecular modes of action. Operationally, the most important differences between the toxins are speed of action and persistence in the larval habitat. Bs toxins are much slower acting than Bti toxins and can be more persistent. Bs has a slower settling rate, and the spores can invade the body cavity of the larvae where they have the capability to germinate, grow, and produce toxins. This process is known as recycling.

Bs is listed (http://www.epa.gov/oppbppd1/biopesticides/ingredients/index.htm) by the EPA as a biopesticide. Bs based larvicides are GUPs, which have undergone extensive risk studies both prior to and after registration. The crystalline d-endotoxins are not activated in the acidic guts of humans or other animals or in the alkaline guts of animals which do not contain the enzymes necessary to activate the pro-toxins. This specificity accounts for the highly selective nature of $B s$ larvicides; they do not target as wide a range of mosquito species as do Bti products. Formulations containing Bs. are most active against Culex and Anopheline larvae and less active against some Aedes larvae. Formulation effectiveness depends on the mosquito species and environmental conditions including water quality. In general, the best immediate results with $B s$ are obtained when applications are made to larvae in the $1^{\text {st }}$ to $3^{\text {rd }}$ instars. Larval mortality may be observed as soon as a few hours after ingestion, but typically it takes as long as two to three days depending upon dosage and ambient temperature. Adequate recycling of $B s$ for sustained control is dependent on the presence of dead mosquito larvae.

Bs International Toxic Units (Bs ITU) values are determined by a standardized laboratory bioassay similar to that developed for $B t i \mathrm{H}-14$. The bioassay uses $3^{\text {rd }}$ and $4^{\text {th }}$ instar $C x$. quinquefasciatus. The signal word "CAUTION" appears on Bs product labels.

5.2.3 Organophosphates

The term organophosphate (OP) refers to all pesticides containing phosphorus. OPs were discovered in Germany during a search for a substitute for nicotine, which was heavily used as an insecticide but was in short supply. The insecticidal qualities were first observed there during World War II (http://ipmworld.umn.edu/chapters/ware.htm). OPs have been used for mosquito control since the early 1950s. OPs work after entry into and distribution through the body of a target organism by modifying the normal functions of some nerve cells by inhibiting the activity of cholinesterase enzymes at the neuromuscular junction. This action results in the accumulation of acetylcholine, thereby
interfering with neuromuscular transmission. In insects, OPs produce a loss of coordination leading to paralysis and ultimately death.

5.2.3.1 Temephos

Temephos ($\mathrm{O}, \mathrm{O}^{\prime}$-(thiodi-4, 1-phenylene) $\mathrm{O}, \mathrm{O}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetramethyl phosphorothiolate) is an OP compound. During the 1960s, temephos was studied extensively as a replacement for the persistent organochlorine DDT in malaria control programs. It was registered as a mosquito larvicide in 1965. A review of Florida pesticide use records indicates that temephos has been utilized in the state since 1969.

Temephos is currently the only OP registered for use as a larvicide in Florida. It is labeled for use in many habitats including tidal marshes, woodland pools, polluted water, tires, and as a pre-hatch treatment. Temephos is often recommended as a rotation larvicide where it is used in place of the microbial or IGR larvicide in an IPM program. Temephos is a GUP with a low toxicity when used according to the label with little or no detrimental effects on non-target organisms. Temephos is one of the least toxic OPs to mammals (http://extoxnet.orst.edu/pips/temephos.htm). Product labels bear either the signal word "WARNING" or the signal word "CAUTION."

5.2.4 Surface Oils and Films

Surface oils and films used as larvicides include oils and ethoxylated isostearyl alcohols. As previously noted, surface oils, such as waste motor oil and diesel, were the first larvicides used for mosquito control in Florida. Howard (1931) considered low grade kerosene or fuel oil more satisfactory than other larvicide methods. The State of Florida developed its own "Florida Mosquito Larvicide" oil, also called the "Florida Formula", in the 1960s, but by the 1980s, crude formulations such as these were losing status in Florida. Studies had begun on potential replacement products such as Arosurf, a thin layer alcohol-based surface film (Mulrennan 1982), and highly refined petroleum oils (Mulrennan 1983). New oil formulations replaced the "Florida Formula" by the mid 1980s (Mulrennan 1986). The new thin layer surface films and highly refined oils are virtually colorless and odorless (Floore et al. 1998), and they exhibit the same larval and pupal control properties as the waste oils they replaced.

5.2.4.1 Larviciding Oils

The larviciding oils are probably the least studied of the mosquito larvicides, despite their long period of use for mosquito control. Specific control mechanisms are difficult to pinpoint but likely include poisoning of the larvae (pers. comm., E. J. Beidler, Indian River MCD). Oils also can suffocate - but only at the very highest dosage rates. Inert ingredients include emulsifiers which help them spread over the water's surface and kill larvae and pupae when inhaled into the tracheae along with air. With low dosages (e.g., 1 gallon per acre), oils can work very slowly, taking four to seven days to provide control. Higher dosage rates (3-5 gallons per acre) are usually used to decrease the control time. Surface oils also are considered one of the most effective tools for pupal
control and can control newly emerged adults that are resting on the water surface when drying their wings.

Larviciding oils are GUPs that are non-selective, and mosquito control efficacy is limited to those species which breathe air at the water surface. They have a low toxicity when used according to the label with minimal detrimental effects on non-target organisms. An "oil slick" can be viewed on the water surface. Both their odor and appearance may be objectionable, precluding widespread use in some areas. Larviciding oil labels bear the "CAUTION" signal word.

5.2.4.2 Monomolecular Surface Films

Monomolecular films (MMFs) are biodegradable, ethoxylated alcohol surfactants, made from renewable plant oils. MMFs are lighter than water and do not mix particularly well with it. As their name implies, MMFs produce an extremely thin film on the water's surface. They were originally developed by the U.S. Navy during World War II to help remove oil slicks. MMFs have been widely used in the cosmetics industry for over 30 years as a component of skin care products. Monomolecular films were investigated as mosquito larvicides and pupicides beginning in the early 1980s. Nayar and Ali (2003) have reviewed MMFs and their mosquito control uses.

Monomolecular surface films do not kill by toxic action but exert a physico-chemical impact on mosquito populations (pers. comm., Richard Levy 2007). When applied, they spontaneously and rapidly spread over the surface of the water to form an ultra-thin film that is about one molecule in thickness. They act by significantly reducing the surface tension of the water and wetting mosquito structures, which leads to drowning. Mosquito adults, eggs, larvae, and pupae utilize the surface tension of water in various aspects of their life cycle. With the surface tension reduction, mosquito larvae, pupae, and emerging adults cannot properly orient at the air-water interface and will eventually drown. Adults of both sexes that utilize the water surface for normal resting, and adult females who use the surface for oviposition also may drown. Eggs and egg rafts of certain species may not float normally or may sink and become unviable.

Monomolecular surface films can affect species that depend on the air-water interface. They may be used safely in potable waters, waters bearing fish and other aquatic organisms, and in runoff waters that enter fish-bearing waters. Monomolecular film labels bear the "CAUTION" signal word.

5.2.5 On-site Formulations and Combining Larvicides

Mixing materials "on-site" to formulate products has historically been popular with mosquito control operations in Florida. Applying liquid larvicides to granular carriers has been the most widely used type of home-made formulation. One early product involved applying Paris-green liquid to light-weight silica particles (pers. comm., E. J. Beidler 1996). Another notable practice involves combining two mosquito larvicides into a single-end product in order to take advantage of the properties of each component
ingredient. The most widely used of these on-site formulations and larvicide combinations are discussed below.

Methoprene Sand Granules are on-site granular formulations that are produced by combining liquid methoprene with washed sand. Thirty years ago, this process was developed at the Indian River Mosquito Control District in Vero Beach, and the formulation was named "Altosand" because Altosid Liquid Larvicide was used as the active material (pers. comm., E. J. Beidler 1996). Altosand was developed primarily to control mosquitoes in densely canopied mangrove swamps and coastal salt marshes where it is often necessary to penetrate dense canopies. Methoprene sand granules, prepared on-site, are used in Florida.

Bti Sand Granules were not available as commercial formulations until the latter part of 1996. However, technical Bti powder and labeling has been available since the mid 1980s to allow end-users to make their own "on-site" Bti sand granules. Sand formulations require coating the particles with oil (GB-1111 or BVA 2) and then applying dry Bti powder which will stick to the oil. Although Bti technical powder is currently produced by both Becker Microbials and Valent Biosciences, it is not commonly used in on-site formulations in Florida. Bti sand granules are no longer produced commercially; they are, however, still produced "on-site" by mosquito control operations in western states.

Duplex is the name that has been attached to the end-user formulation which is made by combining Bti liquid and liquid methoprene. This mixture was developed principally to control larvae such as Culex spp. where many different instars may be present. The rationale for this mixture is that lethal Bti doses are somewhat proportional to a mosquito larva's body size and therefore less $B t i$ is required for control of early instars. The opposite is true for methoprene which is most effective after $4^{\text {th }}$ instars have stopped eating and the amount of methoprene required for control is the least. Combining Bti with methoprene theoretically allows operations to use less of each product than if using only one product. The Pasco County Mosquito Control District (PCMCD) occasionally duplexes both products at maximum dosages for control at sites with a large synchronous brood of both $3^{\text {rd }}$ and $4^{\text {th }}$ instars. In a variation on this process, PCMCD also has combined liquid methoprene with Bti granules to produce an on site "Granular Duplex" formulation. A product combining $B t i$ and $B s$ is commercially available.

Monomolecular Films used with other larvicides have been investigated. Levy et al. $(1982,1984)$ reported significantly improved efficacy of several larvicides when formulated with ethoxylated alcohol surfactants. The authors indicated that "the use of mixtures of Agnique MMF or Agnique MMF mosquito larvicides and pupacides with other mosquito biolarvicides, IGRs, and/or central nervous system inhibitors has been shown to enhance the translocation of the bioactive agents over the surface of the water and provide improved joint-action mosquito-controlling efficacy." The dual-action larvicide formulations also are expected to be a good tool for use in resistance management programs. The use of a variety of ethoxylated alcohol surfactants that are approved by the EPA for use as inert materials in pesticide formulations is being
evaluated on an operational basis as adjuvants for a variety of conventional mosquito larvicides. Lee County Mosquito Control District (LCMCD) has been using a mixture of a MMF and temephos for many years as a joint-action larvicide that rapidly spreads over the water surface (pers. comm., W. Gale and R. Levy 2006).

PCMCD employed a MMF-temephos combination for several years with low doses of the monomolecular film used as a spreader and temephos as the intended active ingredient. However, a laboratory study with this mix introduced into long gutters populated with live larvae showed that temephos by itself spread nearly as well as when mixed with a MMF and that there was a slight tendency for reduced mortality when the two were combined (Wassmer, unpublished data). Consequently, the mixture was abandoned in favor of a temephos and water only mix. The results suggest a need for further study.

5.3 REPORTING ORGANIZATIONS AND RECENT LARVICIDE USE

Pesticide usage reports (in PDF format) dating back to FY 97-98 are available for downloading at http://www.flaes.org/aes-ent/mosquito/reports.html. A number of special taxing districts, municipalities, developments, golf courses, and individuals throughout Florida also conduct mosquito control operations but do not report activities to FDACS.

During the fiscal year beginning October 1, 2004 and ending September 30, 2005 (FY 04-05), 58 mosquito control agencies in Florida reported monthly pesticide usage to FDACS. For FY 04-05, the 58 agencies reported larvicide applications on 385,900 acres. Corresponding FY 94-95 totals reported by 50 agencies in the first printing of this document showed that 458,937 acres were treated with larvicide. Many of additional agencies reporting for FY $04-05$ were started in response to the Florida WNV outbreak which began in 2002. They did not have the time or the budgets to fully develop IPM programs, and adulticiding was the predominant control method employed. Ground larviciding was reported by 49 of 58 agencies (85%), and 18 of them also reported aerial larviciding. In contrast, only 80% (40 of 50) of reporting agencies for FY $94-95$ made larvicide applications. The absolute number of agencies that larvicide (49 versus 40) increased by 23%, and the number that larvicide aerially (18 versus 15) increased by 20%. Ground larviciding totaled 172,816 acres (average 3,527 acres), while aerial larviciding totaled 213,024 acres (average 11,835 acres).

5.4 EQUIPMENT AVAILABLE

Florida mosquito control operations employ a variety of larviciding equipment for both aerial and ground applications, as necessitated by the wide range of larval mosquito habitats, target species, and budgetary constraints. Each operation typically will use more than one type of application equipment. There are advantages and disadvantages to each application system used and to the aerial and ground treatments themselves.

5.4.1 Ground Application Equipment

Almost all Florida mosquito control agencies use some type of four-wheel drive equipment as a primary larvicide vehicle. In most cases an open-bed pickup is equipped with a chemical-container tank, a high-pressure, low-volume electric or gas pump, and a spray nozzle. A switch and an extension hose allow the driver to operate the equipment and apply the larvicide from inside the truck's cab. Some agencies have the sprayer mounted on the front bumper of the truck and install a mechanical control that allows the driver to direct the spray while remaining in the cab. Roadside ditches, swales, retention ponds, treatment ponds, and other similar bodies of water can be treated with this setup.

Increasingly, mosquito control agencies are moving towards the use of all-terrainvehicles (ATVs), which allow operators to reach larval habitats that are inaccessible by truck. These units can carry a reasonable payload allowing operators to treat a number of remote sites consecutively without having to return to replenish pesticides. As with a truck, a chemical container is mounted on the ATV, a 12 -volt electric pump supplies a high-pressure low-volume flow, and a hose and spray tip allow for manual application by an unaccompanied operator while steering the ATV with the other hand. ATVs are ideal for treating areas such as agricultural fields, pastures, salt marsh areas, and other off-road sites. Training in ATV safety and handling should be provided to employees operating these machines.

Ultra Low Volume (ULV) machines also can be mounted in the bed of the truck or on the back of an ATV to apply larvicides. These setups require the installation of a gas engine and compressor plus a metering system to accurately control output (see Chapter 6 for a detailed description of ULV systems). ULV applications of liquid larvicides from the ground were introduced in the late 1980s and early 1990s. Current applications are limited primarily to the use of hand-held ULV machines. ULV larviciding allows the product to drift into inaccessible areas. A more common use of ULV equipment involves diverting air from the compressor to propel granules and briquets into the target habitat via special granule nozzles or pneumatic guns.

Additional equipment used in ground applications includes dippers, horn seeders, handheld sprayers, and backpack blowers and sprayers. Dippers and horn-seeders may be used to broadcast small amounts of granular or pelletized larvicides in spots that require minimal treatment. Hand-held sprayers are standard one- or two-gallon garden style pump-up sprayers used to treat small isolated areas with liquid larvicide formulations. Backpack sprayers usually have a gas-powered blower with a chemical tank and calibrated proportioning slot. Generally, pellet or small granular material is applied with a gas-powered backpack sprayer. They are extremely useful for treating tire piles. Pump-up backpack sprayers are sometimes used for dispensing liquid larvicides.

5.4.1.1 Advantages of Ground Application

There are several advantages to using ground application equipment when on foot or from vehicles. Ground larviciding allows more accurate pesticide applications to the intended treatment area and consequently to only those micro-habitats where larvae are
actually present. Ground larviciding applications are less affected by weather conditions than are aerial applications and are less susceptible to drift and product deposition outside the intended treatment area. This feature reduces the likelihood of unnecessary pesticide load on the environment and the financial cost of wasted pesticide. Also, initial and maintenance costs of ground equipment are generally less than those for aerial equipment.

5.4.1.2 Disadvantages of Ground Application

With ground application, there is greater risk of chemical exposure to applicators than aerial larviciding. Ground applications rely on human estimates of both the size of treatment areas and of equipment output during pesticide applications. Calibration of the applicators to the equipment can be difficult since an applicator's pace can vary, especially in areas with uneven terrain. It is difficult to provide even coverage with manually-operated ground equipment, and the possibility of under-applying or overapplying a larvicide is problematic. Ground larviciding is impractical for large, inaccessible, or densely wooded areas.

5.4.2 Aerial Application Equipment

Many of Florida's organized mosquito control operations have adopted aerial larviciding as a control strategy on otherwise large, unmanageable larval mosquito habitats. Agencies may not actually own the aerial equipment, as agricultural flying services can be contracted to apply larvicides as needed. Outsourcing the usually seasonal activity of aerial larviciding eliminates the need for and expense of an aircraft purchase, aircraft maintenance costs, and the expenses associated with having a pilot and perhaps an aircraft mechanic on staff.

Aerial larviciding is accomplished via fixed wing or rotary aircraft. Both types of aircraft can apply both solid and liquid larvicide formulations. A variety of hoppers, nozzles, and metering systems can be adapted to the aircraft, depending upon the desired equipment configuration and its size. The decision on whether to use liquid or granular applications depends on the target habitat and prevailing meteorological conditions.

Granular formulations provided by manufacturers incorporate a paper product, sand, gelatinous material, or corncob particles as the carrier for the active ingredient. Granules also may be prilled (pelletized) and contain little if any carrier. One prilling process is similar to that of making large snowballs, where the active ingredients are continuously packed onto a small seeded core as the ball of material is slowly rolled in a rotating tray. The tilt of the tray and the rotational speed help determine the resulting product size, as larger balls of material roll off the edge. In some instances, agencies can formulate their own granular materials (e.g., sand mixes). Most granular formulations are applied at rates ranging from 6 to 20 pounds of product per acre.

5.4.2.1 Selecting Larvicide Formulations for Aerial Applications

Deciding which larvicide formulation to apply is critical for successful control efforts. There is considerable debate about which formulations are best for each mosquito control program. Debates often focus on habitat differences and which product type (liquid or granule) will best reach the target habitat or combination of habitats to be treated. The relative efficacy of pesticide types, their initial cost, the costs of any mixing, and the costs of loading and ferrying the pesticides to the application sites also needs to be considered.

With liquid applications, there is debate over the ideal droplet size and carrier. Wind, temperature, evaporation, and droplet movement have major impacts on the success or failure of ULV applications. Using large droplets eliminates some of the drift problems of ULV. Low volume or ULV applications of undiluted liquid products (no water added) maximize acreage per load, thereby reducing overall costs. Diluting liquid products increases the costs of loading and ferrying and greatly reduces the payload. However, dilution may allow the application of more droplets within an application site, which in some circumstances may lead to a better presentation of the toxicant to the mosquito larvae and thus better control.

Liquid larvicides can deposit and stick on foliage, reducing the amount available for larval control. Using small droplets or ULV may reduce the loss due to canopy impaction, but the amount of material actually reaching the target under these conditions is not well documented. Some organizations attempt to minimize losses by using "raindrop" nozzles which produce extremely large droplets. These large droplets are thought to "punch" their way through the canopy, but this concept needs evaluation; this type of application may render overall efficacy unacceptable for some target areas with specific canopy types and density. Despite these shortcomings, ease of product handling and relatively lower product costs combine to make liquid larviciding a viable operational option.

Dry pesticides formulations such as powders utilize bulky and/or heavy carriers to prevent them from drifting away from target application sites. New formulations such as prilled granules may eliminate some of the weight and bulk, but they are essentially unknown to Florida mosquito control operations. Granular products, in contrast to liquid formulations, usually have less drift and are less apt to stick to foliage, allowing somewhat better penetration. Granulars are not as easy to handle as their liquid counterparts because of their bulk (e.g., corncob formulations) or their weight (e.g., sand formulations). Initial costs (especially the costs of premixed formulations) tend to be higher than the initial costs of closely related liquid formulations. Aircraft load weight restrictions limit the amount of granules per load and thus the number of acres that may be treated as compared to diluted liquid formulations. In addition, pilots and their mechanics are extremely cautious about applying formulations containing sand or other hard carriers with turbine driven aircraft.

Over the past decade since the first printing of this document, the Florida Mosquito Control Association (FMCA) has held annual aerial application workshops, called the

Aerial Short Courses, at LCMCD in Ft. Myers, Florida. The courses have included expert presentations on relevant pesticide application topics, field demonstrations, and actual on-site application research. In addition, during the period of 2001 through 2004, extensive aerial field trials were conducted in Pasco County, Florida, to evaluate canopy penetration for typical over-stories and to determine the potential for improved penetration as a function of both emitted liquid droplet size and corncob granule size in six common habitats. Pasco County is located on the west coast of Florida and contains southern coastal vegetative communities dominated by mangroves and northern coastal vegetative communities dominated by rushes. Field trials (Mickle 2002b, 2004, 2005) and knowledge gained at the aerial short courses (Mickle 2002a) are discussed below and in the next section, 5.4.2.2 Measuring and Perfecting the Application of Aerial Larvicides. They may be downloaded from the PCMCD website at http://www.pascomosquito.org/oldsite/Research_Development.htm or obtained by contacting the District office.

Results of the studies shown in Figure 5-1 indicate a significant difference between what is applied and what reaches the target surface for all formulations tested. Although Valent Biosciences products were used in the study, the results should apply to all Bti brands. For Bti liquid (Vectobac 12AS, Teknar HP-D) applications, penetration analyses revealed relatively low deposits under all canopy types. In addition, difficulty in removing dried deposits from droplet samplers suggested that foliage deposits would most likely not be washed off by subsequent rainfall events.

Figure 5-1

Penetration was highest through the saltwort (Batis maritima) site and the black needle rush (Juncus romerianus) site (which normally does not produce mosquitoes), yet only 35% and 45%, respectively, of the liquid mix reached the ground, regardless of droplet size. At other test sites, results were even less impressive. Application over 10-inch high knotgrass (Distichilis spicata) resulted in over 97% of the 80 micron drops and all of the 300 micron drops depositing on the vegetation. Generally, sprays above the taller 10 foot -30 foot canopies of Brazilian pepper (Schinus terebinthifolius), black mangrove (Avicennia germinans), and cabbage palm (Sabal palmetto) with live oak, (Quercus virginiana), longleaf pine (Pinus palustris), and red maple (Acer rubrum) resulted in less than 30% of $B t i$ liquid mix penetrating to the ground. Smaller droplets tended to penetrate canopies slightly better than larger droplets. These results are generally in agreement with a study (Pierce et al. 1989) by Mote Marine Laboratory in Lee County, Florida, where only about $20-70 \%$ of a temephos-water mixture reached the ground when applied over dense black mangrove habitats at five gallons per acre with raindrop nozzles.

In contrast to the liquid applications, more than 50% of either size of the granules penetrated the canopies at all sites. At the knotgrass site, $10 / 14$ grit granules performed better than the larger $5 / 8$ granules with 82% versus 50% penetration. In the black mangrove habitat, 100% of both the $5 / 8$ and the $10 / 14$ grit granules penetrated the canopy to the substrate. Because only 40% or less of the liquid pesticide mix reached the
ground, and more than 50% of the Bti granules reached the ground in the same habitats, the local mosquito control agency decided to use 10/14 grit granular formulations wherever it was practical for aerial larval control. This practice is an example of selecting the best formulation through a rigorous examination of the pertinent factors.

5.4.2.2 Measuring and Perfecting Aerial Larvicide Applications

When attempting to control larvae and/or pupae of many Florida mosquito species, complete coverage of the larval mosquito habitat is critical. Missing just a tiny fraction of the target area can result in the emergence of huge numbers of biting adults. A pilot must be completely familiar with the application equipment and know what kind of swath width to apply for each product under different environmental conditions. A pilot must know the mosquito-producing habitats and know when to apply "heavy" in order for enough pesticide to reach the water's surface to establish control. While many pilots claim that they can fly accurate swaths based on their skill alone, some type of guidance and offset system is necessary when performing aerial larviciding over large areas.

Spray system calibration is necessary to ensure that pesticides are being applied according to label requirements. For liquid formulations, a spray calibration confirms that the droplet size distribution is appropriate. For both liquid and granular larvicides, swath characterizations and trial applications highlight the need for modifications that should provide the best chance for uniform deposit at labeled rates. In an effort to assist in spray calibration efforts, two free companion software programs - Grainalysis and Stainalysis - have generously been made available by REMSpC Spray Consulting at http://www.remspc.com/.

Grainalysis: REMSpC Granular Deposit and Larval Mortality Analysis Tool

The Grainalysis program can be used to calculate the deposit characteristics of granular swath-characterization trials from input data including product weight, number of granules, and measured larval mortality at each sampler. Output, available in tabular or graphic form, is displayed relative to the aircraft flight line and includes deposit (kilograms per hectare or pounds per acre), cumulative deposit fraction, number of granules per unit area (square feet or square meters), number of granules per gram weight of product, and mortality. Swath analyses of deposit and granular uniformity also are available.

Stainalysis: REMSpC Stain Analysis Tool

The Stainalysis program can be used to analyze drop characteristics on Kromekote cards that have been scanned using any flatbed scanner (256 color depth). BMP, GIF and TIFF file formats are supported. Notch filtering allows for stain discrimination by color. Correcting for spread factor, an output file for each card includes: spray documentation, digitization documentation, drop density, deposit volume (ounces per acres or liters per hectare), volume median diameter, and the contribution of individual drop sizes to volume fraction, number fraction, and cumulative volume fraction.

At the January 2002 FMCA Aerial Short Course, aerial swath calibration and application efficiency were demonstrated (Mickle 2002a). A Bell 47 Soloy helicopter equipped with an Isolair granular spreader was used to apply 10/14 grit corncob blanks at an operational application speed of about 50 miles per hour and an altitude of 50 feet. Analysis of deposit patterns revealed that aerial applications were somewhat similar when flying into the wind and when flying with the wind. In both of these cases, there was a tendency to deposit more (about twice as much) on the outer edge of the swath and less under the flight line, with heaviest deposits on the left edge of the swath. The data showed that spreader adjustments were needed to smooth out the distribution of granules across the swath.

These observations highlighted the importance of both calibrating equipment prior to an application and maintaining a constant speed for which the application equipment was calibrated when applying pesticide. The latter can be facilitated using an onboard Global Positioning Systems (GPS) device capable of measuring ground speed as the pesticide is being applied. The second phase of the demonstration revealed that areas of high deposit paralleled the flight lines and that significant deposit variation occurred along the flight path, i.e., the contour lines did not align with, but crossed the flight lines. The author (Mickle 2002a) concluded that further modification to the delivery system could have provided a more uniform deposit across the swath, which in turn should have resulted in less deposit variability. The trials also pointed out the desirability of an onboard GPS ground-speed readout, which would allow the pilot to compensate for wind experienced during applications.

Deposit variability can be minimized only through rigorous calibration programs and optimum flight-path positioning. Using flaggers is a simple alternative to the use of GPS guidance if the influence of wind has been considered in advance. One or two flaggers use a flag or other signaling device on each end of the treatment area and pace off a measured distance for each swath. The pilot is guided by the flaggers, who then pace off the next swath, and so on. While not practical for all areas, when used it greatly increases the accuracy of the treatment coverage.

With today's electronic environment, a ground-to-air radio also may be employed where a field technician on the ground guides the pilot by pointing out landmarks that are easily seen from the air. This arrangement works especially well at small sites and where there is dense canopy since it is often impractical to flag these areas. Another method is to show the pilot a recent aerial photo of the target site during the period when the aircraft is being loaded and explain which spots are to be treated. In contrast, contour flying of large areas while applying pesticides in multiple swaths requires special GPS equipment because no one is capable of recalling all of the necessary landmarks to maintain proper lane spacing.

With improved GPS equipment, new computer-guidance programs for aircraft are now available. These new systems can accurately track the mission parameters (e.g., treatment area, coordinates of treatment area, swath width, etc.) and provide the pilot with almost instant necessary course corrections. In addition to improving treatment
accuracy, these systems log flight information which may be downloaded and used to produce a map or a visual display, providing mosquito control operations with accurate records of treatments.

5.4.2.3 Advantages of Aerial Larvicide Applications

The number of programs utilizing aerial larviciding has been increasing in recent years suggesting that there are advantages to larviciding by air. Aerial larviciding poses a lower risk of chemical exposure to applicators than ground larviciding. Aerial applications can be more economical for large sites, especially when larvae are distributed throughout the area. Utilizing aircraft is often the only way to treat remote sites and those sites inaccessible by ground equipment. Calibration is simplified by the fact that target areas are often mapped, and the larvicide to be applied is usually measured or weighed when loading.

5.4.2.4 Disadvantages of Aerial Larvicide Applications

If the costs of the aircraft and aircraft maintenance are included, it is generally more expensive to aerially larvicide than to perform ground applications. To ensure accuracy in hitting the target, either additional labor for flagging or an expensive electronic guidance system is needed. As with all aerial applications, treatment windows can be narrow due to adverse weather conditions. Aerial applications also require special licenses, staff training, and additional liability insurance.

5.5 CHOOSING WHEN TO LARVICIDE

Historically, mosquito control agencies have adopted the general view that larviciding is typically not as effective or as economical as permanent source reduction but is usually more effective than adulticiding. However, this view was derived long ago when wetlands were not considered to be as important as they are today. Many of the compounds used were different as were costs in terms of money, manpower, and equipment. It was easy to assume that it was "cheaper in the long run" to move dirt and change the hydrology of an area than to apply pesticides. With federal, state, and local government agencies strongly advocating that wetlands not be drained, the engineers who ran control operations had only to decide if it was "cheaper" to chemically control larvae or adults, and larval control through water manipulation won out.

The enlightened view of modern mosquito control professionals includes a strong commitment to minimizing environmental impacts. They recognize that undisturbed wetlands should remain pristine and that any disturbance will have long-term effects on non-target species of plants and animals. Source reduction in these areas should be avoided. One debate is over how to simultaneously manage mosquitoes in wetlands and at the same time maximize the wetlands' value to ecosystems. Our modern approach to mosquito control is reflected by the FMCA's commitment, along with the American Mosquito Control Association (AMCA), as a Partner in the EPA's Pesticide

Environmental Stewardship Program (PESP) since the late 1990s (http://www.epa.gov/pesp/).

Many mosquito control professionals once believed that it was often illogical to attempt larviciding. However, advances in application technology, product formulations, and the ability to predict larval development have led to larviciding success in areas considered unmanageable even ten years ago. While larviciding is not always the preferred control alternative in all situations, it is a key component of an effective IPM program. There is no single answer to mosquito control that can be applied to all circumstances.

A successful IPM program relies on a variety of control methods and often on a combination of management techniques. As a practical matter, a director will view an agency's entire area of responsibility before making an informed decision on whether or not to employ source reduction techniques, larvicides, or adulticides to control mosquito populations. The director must carefully weigh potential risks and benefits associated with each method in an integrated program and then utilize the method that is most appropriate.

5.6 MANAGING LARVICIDE RESISTANCE

Selecting the proper class of larvicide and the formulation are both important in larval resistance management. See Chapter 10 for detailed explanations of how pesticide resistance occurs and for resistance management techniques. The FDACS, Bureau of Entomology and Pest Control discourages control agencies from using the same (or any) OP compound to larvicide when it or another OP is used to adulticide because this practice may lead to resistance.

Resistance also may arise by applying sublethal dosages. Many people feel that the EPA erred when it began allowing the market (cost) to dictate what the low dosage would be, despite the recommendations on the product label. Insects with inherent tolerances for weakly applied pesticides may survive to produce tolerant offspring. Soon, an entire population of tolerant mosquitoes may arise. Beyond recommended use periods, slowrelease formulations may cause resistance if larvae are exposed to sublethal doses of the active ingredients. Agencies that use slow-release formulations should be aware of this possibility and monitor treatment sites.

Dame et al. (1998) reported resistance to methoprene in an island population of $A e$. taeniorhynchus in Lee County after control problems were noted in areas treated with extended life (briquet) formulations. However, the issue appeared to be local. The Florida Keys had been using methoprene briquets since the early 1980s. Floore et al. (2002) reported no methoprene resistance in Florida Keys' Ae. taeniorhynchus populations at sites also controlled with slow-release formulations when control levels were compared to those for a susceptible colony at PHEREC.

The loss of any mosquito larvicide because of resistance would have a tremendous impact on Florida mosquito control operations. Proper product rotation - along with
susceptibility monitoring - are the keys to ensuring that the pesticides currently available to mosquito control professionals remain effective for continued use.

5.7 UNDERSTANDING LARVICIDE NON-TARGET EFFECTS

Currently used mosquito larvicides, when applied properly, are efficacious and environmentally safe. Typically, there is less concern for the drift of mosquito larvicides than for the drift of adulticides, primarily due to the droplet size. Larvicides are typically dispensed aerially through spray systems producing larger droplets (300-400 microns) for canopy penetration, while adulticides are applied as smaller droplets (15-60 microns) for space spraying. Mosquito larvicides usually are applied directly into natural and artificial aquatic habitats as liquid or solid formulations, and aerial drift is negligible. Drift into water can result from tidal flushing or rainwater runoff. Under these conditions, dilution greatly reduces post-application pesticide concentration and consequently reduces exposure to non-target organisms.

It is possible to reduce non-target exposure to larvicides by using novel application techniques and new product formulations. Larviciding with machines that produce fine airborne particles, such as Bti applied with rotary atomizers or turbines, spreads the larvicides so that the concentration of active ingredients at any one point is minimized. In addition, these techniques may have the added benefit of allowing control agents to drift to inaccessible containers and remote aquatic habitats. Larviciding with fine particles is not widely practiced in Florida or elsewhere in the U.S. The LCMCD is currently developing slow-release technology for larvicides. Using different granular carriers, these new formulations provide better canopy penetration and larval control, while reducing the acute exposure rate for non-target organisms.

A variety of aquatic habitats and communities, ranging from small domestic containers to larger agricultural and marshland areas, are treated with larvicides. Natural fauna inhabiting these sites may include amphibians, fish, and invertebrates, particularly insects and crustaceans. Frequently, the aquatic habitats targeted for larviciding are temporary or semi-permanent. Permanent aquatic sources usually contain natural mosquito predators such as fish and do not require further treatment, unless littoral vegetation is so dense that it prevents natural predation. Temporary sites such as tidal marshes, flooded agricultural areas, and woodland depressions produce prolific numbers of floodwater mosquitoes. These sites are generally very low in species diversity due to the time needed for most species to locate and colonize them (Ward and Busch 1976, Pierce et al. 1991). While floodwater mosquitoes develop during the first week post-inundation, it may take several weeks for the first macro invertebrate predators to become established. Finally, many non-target species exploiting temporary aquatic habitats are capable of recovering from localized population declines via recolonization from proximal areas. Currently used larvicides, applied properly, have no known phytotoxic effects.

The use of any pesticide always involves a tradeoff between desired effects (effective control) and undesired side effects. No known larvicides are exempt from this conundrum. Even the seemingly innocuous use of predatory fish may result in an
unwanted or unknown impact on an aquatic community, however temporary. More effective methodologies are needed to apply larvicides that will minimize undesirable impacts. As a group, mosquito control agencies constantly seek new and better application techniques. Mosquito control professionals are committed to the development and evaluation of new materials, as shown by the activities of numerous university and mosquito control scientists around the state.

5.8 REFERENCES AND GENERAL READING

Anonymous. 1948. Mosquitoes - Unwanted residents of Florida. Florida Health Notes 40: 91-111.

Anonymous. 1970. Mosquito control and disease prevention. Florida Health Notes 62: 171-194.

Becker, N., M. Zgomba, D. Petric, M. Beck and M. Ludwig. 1995. Role of larval cadavers in recycling processes of Bacillus sphaericus. Journal of the American Mosquito Control Association 11: 329-334.

Boike, A.H. Sr. and C.B. Rathburn Sr. 1968. Tests of the resistance of Florida mosquitoes to insecticides, 1967. Mosquito News 28: 313-316.

Dame, D.A., G.H. Wichterman and J.A. Hornby. 1998. Mosquito (Aedes taeniorhynchus) resistance to methoprene in an isolated habitat. Journal of the American Mosquito Control Association 14: 200-203.

De Barjac, H. 1990. Characterization and prospective view of Bacillus thuringiensis israelensis. In: De Barjac, H. and D.J. Sutherland (Eds.). Bacterial Control of Mosquitoes and Black Flies. New Brunswick, NJ: Rutgers University Press.

Dean, T.W. and O.N. Nesheim. 1998. Applying pesticides correctly: A guide for private and commercial applicators, $6^{\text {th }}$ Edition. University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences.

Floore, T.G. 2006. Mosquito larval control practices: past and present. Journal of the American Mosquito Control Association 22: 527-533.

Floore, T.G., J.P. Smith, K.R. Shaffer and E.T. Schreiber. 2002. Laboratory bioassay studies to determine methoprene susceptibility in a natural population of Ochlerotatus taeniorhynchus from the Florida Keys. Journal of the American Mosquito Control Association 18: 111-113.

Floore, T.G., J.C. Dukes, J.P. Cuda, E.T. Schreiber and M.J. Greer. 1998. BVA 2 Mosquito larvicide - A new surface oil larvicide for mosquito control. Journal of the American Mosquito Control Association 14: 196-199.

Goldberg, L.J. and J. Margalit. 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Urantaenia unguiculate, Culex univatattus, Aedes aegypti and Culex pipiens. Mosquito News 37: 355-358.

Henrick, C.A. 2007. Methoprene. In: Floore, T.G. (Ed.). Biorational Control of Mosquitoes. Bulletin of the American Mosquito Control Association No. 7. St Louis, MO: Allen Press.

Howard, L.O. 1910. Preventive and remedial work against mosquitoes. Washington: Government Printing Office. U.S. Bureau of Entomology Bulletin 88.

Howard, L.O. 1931. Mosquito remedies and preventives. Washington: Government Printing Office. USDA Farmers' Bulletin No. 1570.

Kellen, W.R. and C.M. Meyers. 1964. Bacillus sphaericus Neide as a pathogen of mosquitoes. Proceedings of the California Mosquito Control Association 32: 37.

Lacey, L.A. 1985. Bacillus thuringiensis serotype H-14. In: Chapman, H.C. (Ed.). Biological Control of Mosquitoes. Bulletin of the American Mosquito Control Association No. 6: 132-158.

Lacey, L. 2007. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. In: Floore, T.G. (Ed.). Biorational Control of Mosquitoes. Bulletin of the American Mosquito Control Association No. 7. St Louis MO: Allen Press.

Levy, R., J.J. Chizzonite, W.D. Garrett and T.W. Miller Jr. 1982. Efficacy of the organic surface film isostearyl alcohol containing two oxyethylene groups for control of Culex and Psorophora mosquitoes: Laboratory and Field studies. Mosquito News 42: 111.

Levy, R., C.M. Powell, and T.W. Miller Jr. 1984. Investigations on the mosquito control potential of formulations of Arosurf ${ }^{\circledR} \mathrm{MSF}$ and conventional larvicides. Mosquito News 44: 592-595.

Mickle, R.E. 2002a. Swath characterization and block variability for a granular larvicide application. REMSpC Report 2002-04, August 26.

Mickle, R.E. 2002b. Swath characterization and penetration studies for Vectobac 12AS Pasco County, FL. REMSpC Report 2002-06, July 2.

Mickle, R.E. 2004. Swath characterization and penetration studies for Vectobac G and CG Pasco County, FL. REMSpC Report 2004-02, July 2.

Mickle, R.E. 2005. Swath Characterization and penetration of Teknar HP-D using large drop sprays. REMSpC Report 2005-05, August 23.

Mulrennan, J.A. 1958. Report No. 3. - Granular Paris Green larvicide, information and recommendations. Memorandum No. 20, Florida State Board of Health, Bureau of Entomology, May 6.

Mulrennan, J.R. 1982. Use of monomolecular surface films Arosurf 66-E2 by Sherex Chemical Company, Inc., Memorandum No. 391, Florida Department of Health and Rehabilitative Services, Bureau of Entomology, Jacksonville, June 22.

Mulrennan, J.R. 1983. Golden Bear oil larvicides for the control of mosquito larvae. Memorandum No. 408, Florida Department of Health and Rehabilitative Services, Bureau of Entomology, Jacksonville, November 10.

Mulrennan, J.R. 1986. Memorandum to B.W. Clements. Florida Department of Health and Rehabilitative Services, Bureau of Entomology, Jacksonville, October 17.

Nayar, J.K., Ed. 1985. Bionomics and physiology of Aedes taeniorhynchus and Aedes sollicitans, the salt marsh mosquitoes of Florida. Agricultural Experiment Stations, Institute of Food and Agricultural Sciences, University of Florida, Gainesville.

Nayar, J.K. and A. Ali. 2003. A review of monomolecular surface films as larvicides and pupacides of mosquitoes. Journal of Vector Biology 28: 190-199.

Patterson, G. 2004. The Mosquito Wars: A History of Mosquito Control in Florida. Gainesville, FL: University Press of Florida.

Pierce, R.H., R.C. Brown, K.R. Hardman, M.S. Henry, C.L. Palmer, T.W. Miller and G. Wichterman. 1989. Fate and toxicity of temephos applied to an intertidal mangrove community. Journal of the American Mosquito Control Association 5: 569-578.

Pierce, R.H., M.S. Henry, A. Ames, T. Conner, T.J. Evans, M.R. Levi and J. Weeks. 1991. Impact assessment of mosquito larvicides on nontarget organisms in a saltmarsh community. Final Report, Contract LP50, Florida HRS, Entomology Services.

Rathburn, C.B. Jr. and A.H. Boike Sr. 1967. Studies of insecticide resistance in Florida mosquitoes. Mosquito News 27: 377-382.

Rogers, A.J. and C.B. Rathburn, Jr. 1964. Present status of insecticides for mosquito control in Florida. Mosquito News 24: 286-291.

Sacher, R.M. 1971. A mosquito larvicide with favorable environmental properties. Mosquito News 31: 513-516.

Schuster, D.J. and P.A. Stansly. 2006. Biorational insecticides for integrated pest management in tomatoes. (http://edis.ifas.ufl.edu/IN481)

Staal, G.B. 1975. Insect growth regulators with juvenile hormone activity. In: Smith, R.F., T.E. Mittle and C.N. Smith (Eds.). Annual Review of Entomology. Vol 20. Palo Alto, CA: Annual Reviews Inc.

Singer, S. 1985. Bacillus sphaericus (Bacteria). In: Chapman, H.C. (Ed.). Biological Control of Mosquitoes. Bulletin of the American Mosquito Control Association No. 6: 123-131.

Ward, D.V. and D.A. Busch. 1976. Effects of temephos, an organophosphorous insecticide, on survival and escape behavior of the marsh crab Uca pugnax. OIKOS 27: 331-335.

Williamson, C.R. 1999. Biorational pesticides: What are they anyway? (http://www.gcsaa.org/gcm/1999/oct99/10biorational.html)

Chapter 6

ADULTICIDES AND ADULTICIDING

Chapter Coordinators: Mark Latham and Dr. Jane Bonds

1998 Coordinators: Dr. James Dukes and James Robinson

Abstract

Summary Chemical treatment for adult mosquitoes - adulticiding - is the most visible form of mosquito control. In Florida, ground and aerial applications for one or more of the state's more than 80 mosquito species are common year-round. These applications may be for pestiferous mosquitoes or mosquitoes that vector disease. The spray treatments typically are Ultra Low Volume.

Adulticides used in Florida include malathion, naled, chlorpyrifos, permethrin, resmethrin, sumithrin, and other products. The decision about which material to use is based on several factors including the efficacy as determined by scientifically conducted field trials, mosquito species susceptibility, safety, and cost. The insecticide choice is made by each mosquito control agency and varies throughout the state due to differing mosquito species and application requirements. Applications are made to coincide with mosquito flight activity so that the insecticide droplets contact the target insects and to avoid the flight activity of nontarget insects such as bees and butterflies.

Training and certification are an integral part of adulticiding operations. The Florida Department of Agriculture and Consumer Services oversees the certification of public health pesticide applicators and routinely inspects mosquito control operations. This inspection checks surveillance records to verify the need for chemical applications and reviews application methods and amounts.

6.1 INTRODUCTION

Pest management techniques are many and varied: mechanical, cultural, biological, and chemical. Treatment of adult mosquitoes - adulticiding - is achieved entirely via pesticide applications targeted to adult mosquitoes. The process of adulticiding is a step wise process that often is considered the method of last resort in an Integrated Pest Management (IPM) approach to mosquito control. Information on the biology of the pest organism is required, and thresholds must be determined before treatments begin. Once the thresholds have been met, the target is defined as flying insects, a barrier (vegetation), and/or a solid surface. Then, the appropriate equipment and chemical must be chosen,
and the application must be made in a timely fashion. The chemical dose and type has a significant effect on the outcome of an application. The chemical must reach the adult mosquito through the most appropriate use of available methods.

Space sprays typically use Ultra Low Volume (ULV) technology, sometimes referred to as cold fogging. Space sprays are applied with specialized spray equipment mounted in aircraft, on the back of trucks, or even carried by hand. With space sprays, aerosols are released to drift through a target zone. Chemical concentrates most often are used and, even if diluted, volumes of material used remain low. The aerosol persists in the air column for an appreciable length of time at suitable droplet densities to contact the flying mosquito and is only effective while the droplets remain airborne. Hence, a space spray is short-lived and is not expected to have any residual effect.

Where a more long-term effect is required, residual spraying is employed. In this case, the mosquito is required to land on a surface deposit of the insecticide to pick up a toxic dose. Residual sprays often are referred to as barrier or surface treatments. A barrier treatment is applied to prevent adult mosquitoes from moving into an area such as a stadium, park, or resident's yard and often is applied with a modified vehicle mounted hydraulic sprayer. Interest in this technique is continuing to develop in Florida. A surface treatment is used to kill and/or exclude adults from a harborage area or resting site often around the home. Because the areas treated are generally small, handheld devices such as a backpack mist blower or a compression sprayer are employed. In Florida, surface sprays are used primarily in urban pest management scenarios and are rarely used by mosquito control agencies.

Adulticides are broad-spectrum pesticides and that have the potential to impact nontarget organisms. Space spraying relies on the prevailing meteorology to carry the pesticide as small droplets (aerosols) to and through the target area, which increases the probability of off-target drift. To minimize the potential for environmental impact, the applicator needs to understand the methods and equipment used and the potential risks involved.

This chapter discusses current and historical adulticiding and best management practices used by mosquito control programs in Florida. For a discussion on the risks and benefits of adulticiding, see Chapter 9, Mosquito Control Benefits and Risks.

6.1.1 Surveillance and Thresholds

Accurate detection and assessment of the current mosquito population is essential and is achieved through regular monitoring and surveillance programs. Mosquito numbers and distribution patterns are assessed, and this surveillance data is used to determine the area(s) to be treated. Surveillance methods to gather this data vary among mosquito control programs and are discussed in the Chapter 3, Mosquito Surveillance and Environmental Monitoring. Adulticiding should be considered to be the last resort and conducted only when larviciding and cultural control methods are not practical due to
concerns about sensitive habitats, or when these methods have failed, and adult thresholds have been exceeded.

When chemicals must be used, IPM strategies aim to maximize on-target deposition and minimize off-target deposition. Adult mosquito control via aerosol application is extremely complex, because it attempts to control numerous species over vast areas and changing habitats in a three-dimensional space. Thresholds, which are the keystone of most agricultural IPM programs, are difficult to establish in mosquito control. To treat or not to treat is typically a response to a nuisance level or an individual perception of the problem, rather than a quantifiable presence or absence of mosquitoes. Thresholds can change with time and location as the human population's tolerance to biting changes. When there are issues of public health, typical thresholds can be superseded by criteria described in approved emergency response plans.

Setting a realistic trigger or action threshold for management decisions is specific to each mosquito control program and must be in compliance with Section 5E-13.036 of the Florida Administrative Code. Once all the criteria have been met to treat an area, the appropriate application may be initiated.

6.1.2 Timing

Timing is essential for space sprays to target actively flying mosquitoes. The timing needs to be precise because different species are active at different times. In general, most mosquito species targeted by space sprays fly in the crepuscular hours, and, hence, most adulticide applications occur in the crepuscular hours. Problems may arise with timing applications because:

1) the meteorology is inappropriate for good downwind dispersal
2) continuous late nights and overtime can cause personnel management problems
3) ground spray missions are typically not conducted when people are on the streets

Some targeted species are not active during the crepuscular hours. The Anopheline malaria vector, Anopheles quadrimaculatus in Florida, exhibit a nocturnal activity pattern. They are most active in the middle of the night when their blood hosts (humans and other mammals) are sleeping and usually exhibit no daytime activity. Florida's common domestic mosquitoes, Aedes aegypti and Aedes albopictus, are day-biters or diurnal. They tend to have peaks of activity during the hours after sunrise and the hours before sunset with less activity during the heat of the day and little to no activity at night. Their activity coincides with the times of highest vehicular traffic in their urban environments and poor meteorology (unstable atmospheric conditions) making aerial or truck adulticiding both impractical and ineffective. Localized spot treatments with handheld equipment are the only effective adulticiding method for these species at this time.

Meteorological parameters also influence mosquito activity and timing of the application. Some general trends are:

- Increased humidity $=$ increased activity
- Increased temperature $=$ increased activity (to a limit above which activity decreases)
- Increased wind = decreased activity
- Lunar illumination = increased activity and an extended activity period

The activity of some mosquito species is more affected by meteorological parameters than the activity of other species. The principal vector of St. Louis encephalitis in Florida, Culex nigripalpus, is a prime example; it is very sensitive to meteorological changes.

Timing of residual spraying is not nearly as critical as the timing of space spraying. Residual spraying targets the mosquito in harborage at rest on vegetation or other surfaces. An effective residual spray uniformly coats a target surface with an insecticide that will last an appreciable length of time. Applications should be conducted when conditions are conducive to provide the best coverage. Timing is not critical in relation to mosquito behavior; instead, applications must be made to achieve the best deposit. Winds should be low or favorable to the direction of the target related to the sprayer. Conditions should be dry since while most compounds are considered rain-fast, they need time to dry.

6.1.3 Choosing the Chemical

Once the application type has been determined, the chemical to be applied and the dose rate must be selected. This decision is dictated in part by the size of the application area. For example, large area spraying with some compounds can be cost prohibitive. The habitat can have some influence. For example, the use of some chemicals may have to be restricted around waterways. The species that is being targeted also may affect the choice of compound. The comparative efficacy of one compound over another is disputable, but one thing that is known is the effect that mosquito species, habitat preference, and behavior has on ease of control. For example, Psorophora columbiae in open field is a species that is generally considered easy to knock down, so reduced doses may be applied. On the other hand, Cx. nigripalpus is a cryptic species that often is not active unless meteorological conditions are just right. Maximum label rates and perfect timing may be required to get enough of the spray cloud into the wooded areas to achieve significant control of Cx. nigripalpus.

6.2 ADULTICIDES USED IN FLORIDA

Pesticides kill or alter an organism by disrupting some vital physiological function. The method by which this occurs is called the pesticide's mode of action. The most typical mode of action involves disruption of the insect's nervous system. One variation is insect growth regulators which mimic insect hormones and disrupt the insect's
development. Also, soaps and oils affect the exoskeleton of the insect, causing the insect to suffocate or desiccate. The mode of action of mosquito adulticides, however, is only through disruption of neuronal activity. General descriptions of the pesticide classes are provided here along with specific information on the individual compounds used in Florida.

Descriptions of individual compounds include the mode of action, general uses, and nontarget toxicity data. The toxicity data is presented as an LC_{50}, the lethal concentration that will kill 50 percent of the target population. The LC_{50} is the most universal measure and allows for comparisons on relative non-target mortality between chemicals. Where possible, toxicity data was accumulated using the Re-registration Eligibility Decisions (RED) of the U.S. Environmental Protection Agency (EPA). RED data, however, are not available for all the compounds used in mosquito control. When data was not available from the RED, the Pesticide Manual (2000), a world compendium of pesticide data, was consulted, and information from this source is marked with an asterisk (*). Further comment on risk assessment, pesticide fate, and the re-registration process is outside the scope of this document.

The Florida Department of Agriculture and Consumer Service (FDACS) tracks and oversees pesticide usage by mosquito control agencies in Florida. Pesticide usage reports (in PDF format) dating back to FY 1997-98 are available for download at http://www.flaes.org/aes-ent/mosquito/reports.html.

6.2.1 Organophosphates - General Description

Organophosphates (OP) generally are acutely toxic and work by inhibiting important enzymes of the nervous system that play a vital role in the transmission of nerve impulses. Nerve impulses usually travel along neurons (nerve cells) by way of electrical signals. However, at the junction between two neurons (a synapse) and between a neuron and a muscle (neuromuscular junction), the impulse is transmitted in the form of a chemical substance (neurotransmitter). The neurotransmitter operating in the autonomic nervous system, neuromuscular junctions, and parts of the central nervous system is acetylcholine. In basic terms, acetylcholine fires the nerve impulse. Acetylcholine is broken down and inactivated in milliseconds by the enzyme cholinesterase. With exposure to OPs, cholinesterase is inhibited, and a build-up of acetylcholine occurs. If acetylcholine is not broken down, the nerve impulse does not stop, ultimately causing paralysis of the insect and eventually death. The organophosphates used in Florida include malathion, naled, and rarely, chlorpyrifos.

6.2.1.1 Malathion

Malathion is used for both ground and aerial adulticide applications. In FY 2004-05, malathion treatments constituted 17.6% of all the acreage sprayed by ground adulticiding but only 1.3% of the acreage treated by aerial application.

Mode of Action: Malathion is a non-systemic contact stomach poison with respiratory action. Malathion is used to control Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera in a wide range of crops. It also is used extensively to control major arthropod disease vectors (Culicidae) in public health programs, ecto-parasites of animals, household insects, and for the protection of stored grain products. Like all of the OPs, malathion has one of the lowest mammalian toxicities. One disadvantage is that it has been used for a long time resulting in many cases of localized resistance.

Malathion Toxicology: Class III	
Mammals	Acute oral LD_{50} for rats $390 \mathrm{mg} / \mathrm{kg}$
Birds	$\mathrm{LC}_{50}(8 \mathrm{~d})$ for a ring necked pheasant $2369 \mathrm{mg} / \mathrm{kg}$
Fish	$\mathrm{LC}_{50}(69 \mathrm{~h})$ for a Bluegill sunfish 30 ppb
Invertebrates	Daphnia magna $(48 \mathrm{hr}) 1.0 \mathrm{ppb}$
$*$ Bees	$\mathrm{LD}_{50}($ topical $0.71 \mu \mathrm{~g} / \mathrm{bee})$

6.2.1.2 Naled

Naled is the primary chemical used in aerial adulticiding in Florida. In FY 2004-05 naled applications constituted 96.6% of the total area sprayed by aircraft. Although labeled for ground adulticiding, no naled formulations were used for this purpose during this period.

Mode of Action: Naled is a non-systemic contact and stomach poison with some respiratory action. Naled is used to control spider mites, aphids, and other insects on many crops. It also is used in animal houses and in public health for control of insects such as flies, ants, fleas, cockroaches, and extensively for the control of mosquitoes. Naled breaks down rapidly in the environment. This product, however, is highly corrosive and therefore requires special consideration in handling and equipment design.

Naled Toxicology: Class I					
Mammals	Acute oral LD_{50} for rats $92-371 \mathrm{mg} / \mathrm{kg}$				
Birds	Canada goose $\mathrm{LC}_{50} 36.9 \mathrm{mg} / \mathrm{kg}$				
Fish	LC 50 (24hr) for: Bluegill sunfish 2.2 ppb				
Lake trout 87 ppb					
Fathead minnow 3.3 ppb		$	$	Invertebrates	Daphnia magna 0.3 ppb
:---	:---				
Bees	$0.48 \mu \mathrm{~g}$ ai/bee				

6.2.1.3 Chlorpyrifos

Only two counties used chlorpyrifos in FY 2005-06. One county applied a 13.25% formulation to 620 acres, while another county applied a 5% formulation to 71,000 acres. This quantity was not significant enough to be counted as a percentage of adulticiding reported to FDACS.

Mode of action: Chlorpyrifos is a non-systemic contact and stomach poison with respiratory action. Chlorpyrifos is used to control Coleoptera, Diptera, Homoptera, and Lepidoptera in soil and on foliage. It also is used in the control of household pests, for public health mosquito control, and in animal houses. It is rarely used in mosquito control in Florida.

Chlorpyrifos Toxicology: Class II

Mammals	Acute LD_{50} for Rats $97 \mathrm{mg} / \mathrm{kg}$
Birds	Mallard duck $\mathrm{LC}_{50} 136 \mathrm{ppb}$
Fish	LC_{50} for:Bluegill sunfish 1.8 ppb Fathead minnow 0.57 ppb Atlantic silverside 0.28 ppb Invertebrates Daphnia $\mathrm{LC}_{50} 0.1 \mathrm{ppb}$
*Bees	Toxic to bees $70 \mathrm{ng} /$ bee

6.2.2 Pyrethroids - General Description

Pyrethroids are synthetic chemicals whose structures mimic the natural insecticide pyrethrum. Pyrethrins are found in the flower heads of some plants belonging to the family Asteracae (e.g., chrysanthemums). These insecticides have the ability to knockdown insects quickly. Pyrethrums can be degraded very easily by ultraviolet light which oxidizes the compounds. In general, this phenomenon leads to lower environmental risk. Pyrethroids can pose significant hazards to aquatic organisms, and the potential for build up within sediment is a concern. Pyrethroids are highly toxic to insect pests at very low rates (often one order of magnitude less than OPs). Synthetic pyrethroids have been chemically altered to make them more stable and safer to mammals. Pyrethroids are axonic poisons; they poison the nerve fiber by binding to a protein in nerves called the voltage-gated sodium channel. Normally, this protein opens causing stimulation of the nerve and closes to terminate the nerve signal. Pyrethroids bind to this gate and prevent it from closing normally which results in continuous nerve stimulation. Control of the nervous system is lost, producing uncoordinated movement and ultimately mortality.

6.2.2.1 Pyrethrum

Pyrethrum is used in Florida as an aerial adulticide but accounted for only 0.12% of the total acreage sprayed in FY 2004-05.

Mode of Action: Pyrethrum binds to sodium channels prolonging their opening and thereby causes paralysis with death occurring later. It has a non-systemic contact action and some acaricidal activity. Pyrethrum is used to control a wide range of insects and mites in public health and agriculture. It normally is combined with synergists that inhibit detoxification by the insect. A benefit to its use is that it is considered to be a naturally occurring compound and therefore more environmentally acceptable. It also breaks down rapidly in sunlight, so it has few negative residual effects.

Pyrethrum Toxicology: Class III	
Mammals	Acute oral LD_{50} for rats $700 \mathrm{mg} / \mathrm{kg}$ for 57% ai
Birds	Oral LD_{50} Mallard duck $5,620 \mathrm{mg} / \mathrm{kg}$
Fish	Toxic to fish LC_{50} (96h) for: Rainbow trout $5.1 \mu \mathrm{~g} / \mathrm{l}$ Sheepshead minnow $16 \mu \mathrm{~g} / \mathrm{l}$
Invertebrates	Daphnia magna $\mathrm{LC}_{50} 11.6 \mu \mathrm{~g} / \mathrm{l}$ Mysid shrimp $\mathrm{LC}_{50} 1.4 \mu \mathrm{~g} / \mathrm{l}$
*Bees	Toxic to bees but exhibits repellant effect LD_{50} (oral) $22 \mathrm{ng} /$ bee (contact) $130-290 \mathrm{ng} / \mathrm{bee}$

6.2.2.2 Permethrin

Permethrin is labeled for ground adulticiding in Florida and is the primary chemical used for this type of application. Permethrin can be used for aerial adulticiding in Florida with specific FDACS permission. It was applied to 76.7% of the total acreage treated by ground adulticiding in FY 2004-05.

Mode of Action: Permethrin is a non-systemic insecticide with contact and stomach action. Permethrin is effective on a broad range of pests. Benefits include good residual activity on treated plants, lack of phytotoxicity when used as directed, and low mammalian toxicity. Additionally, it is one of the least expensive compounds available for adulticiding. A disadvantage is that it is highly toxic to aquatic organisms.

Permethrin Toxicology: Class II	
Mammals	Acute LC_{50} for rats $8,900 \mathrm{mg} / \mathrm{kg}$
Birds	LD_{50} Mallard duck $>10,000 \mathrm{ppm}$
Fish	$\mathrm{LC}_{50}(96 \mathrm{~h})$ for:Atlantic silverside 2.2 ppb Bluegill sunfish $0.79 ~ \mu \mathrm{~g} / \mathrm{l}$
Invertebrates	*Daphnia $0.6 \mu \mathrm{~g} / \mathrm{l}$ Mysid shrimp 0.019 ppb
Bees	Toxic to bees $\mathrm{LD}_{50}(24 \mathrm{~h}) 0.024 \mu \mathrm{~g}$ Bee topical $0.13 \mu \mathrm{~g} / \mathrm{bee}$

6.2.2.3 Resmethrin

Resmethrin is used for both ground and aerial adulticiding. In FY 2004-05, resmethrin was applied to 4.5% of the total acreage for ground adulticiding and 1.5% of the acreage for aerial adulticiding.

Mode of Action: Resmethrin is a non-systemic insecticide with contact action and is a potent contact insecticide effective against a wide range of insects. It often used in combination with more persistent insecticides. Benefits include rapid mosquito knockdown properties and a low mammalian toxicity. It is photo-labile so does not persist. The disadvantages are that it is highly toxic to aquatic organisms and relatively expensive.

Resmethrin Toxicity: Class III	
Mammals	Acute oral LD_{50} for rats $>4639 \mathrm{mg} / \mathrm{kg}$
Birds	LD_{50} for bobwhite quail $>5000 \mathrm{ppb}$
Fish	$\mathrm{LC}_{50}(96 \mathrm{~h})$ for:Rainbow trout $\mathrm{LC}_{50} 0.28 \mathrm{ppb}$ Sheepshead minnow 11 ppb Invertebrates Daphnia magna 3.10 ppb Pink shrimp 1.3 ppb Bees Toxic to bees $\mathrm{LD}_{50} 0.063 \mu \mathrm{~g} /$ bee (contact)

6.2.2.4 Lambda-cyhalothrin

Lambda-cyhalothrin is not listed in the FDACS reporting for 2004-05, but some programs now use it for barrier treatments.

Mode of Action: Lambda-cyhalothrin is a non-systemic insecticide with contact and stomach action and repellant properties. Lambda-cyhalothrin provides rapid knockdown and has a long residual activity. It is used to control a wide range of insect pests in agriculture and public health. Benefits of this barrier product include its relatively safety margin to mammals and a long residual activity.

Lambda-cyhalothrin Toxicology: Class II	
$*$ Mammals	Acute oral LD_{50} for rats $79 \mathrm{mg} / \mathrm{kg}$
$*$ Birds	Acute oral LD_{50} for Mallard ducks $>3950 \mathrm{mg} / \mathrm{kg}$
*Fish	$\mathrm{LC}_{50}(96 \mathrm{~h})$ for:Bluegill sunfish $0.21 \mu \mathrm{~g} / \mathrm{l}$ Rainbow trout $0.36 \mu \mathrm{~g} / \mathrm{l}$
*Invertebrates	Daphnia $\mathrm{EC}_{50}(48 \mathrm{~h}) 0.36 \mu \mathrm{~g} / \mathrm{l}$
*Bees	LD_{50} (oral) $38 \mathrm{ng} / \mathrm{bee}$ (contact) $909 \mathrm{ng} / \mathrm{bee}$

6.2.2.5 Cyfluthrin

Cyfluthrin is not listed in the FDACS reporting for 2004-05, but some programs now use it for barrier treatments.

Mode of Action: Cyfluthrin is a non-systemic insecticide with contact and stomach action that acts on the nervous system. It has a rapid knockdown and long residual activity. Cyfluthrin is effective against many pests in crops and also is used against migratory locusts and grasshoppers. It can be used against Blattidae, Culicidae, and Muscidae in public health situations.

Cyfluthrin Toxicology: Class II	
$*$ Mammals	Acute oral LD_{50} for rats $500 \mathrm{mg} / \mathrm{kg}$
$*$ Birds	Acute oral LD_{50} for bobwhite quail $>2000 \mathrm{mg} / \mathrm{kg}$
$*$ Fish	LC 50$(96 \mathrm{~h})$ for:Golden orfe $3.2 \mu \mathrm{~g} / \mathrm{l}$ Rainbow trout $0.6 \mu \mathrm{~g} / \mathrm{l}$ Bluegill sunfish $1.5 \mu \mathrm{~g} / \mathrm{l}$
*Bees	Toxic to bees

6.2.2.6 Bifenthrin

Bifenthrin is not listed in the FDACS reporting for 2004-05, but some programs now use it for barrier treatments.

Mode of Action: Bifenthrin is a pesticide with non-systemic contact and stomach action. Bifenthrin is effective against a broad range of foliar pests and is a preferred residual; however, it is not compatible with alkaline materials.

Bifenthrin Toxicology: Class II				
$*$ Mammals	Acute oral LD_{50} for rats $54.5 \mathrm{mg} / \mathrm{kg}$	$	$	Acute oral LD_{50} for: Bobtail$18 \mathrm{mg} / \mathrm{kg}$ Mallard ducks $2150 \mathrm{mg} / \mathrm{kg}$
---:				
*Birds				
FFish				
$\mathrm{LC}_{50}(96 \mathrm{~h})$ for:Bluegill sunfish $0.35 \mu \mathrm{~g} / \mathrm{l}$ Rainbow trout $0.15 \mu \mathrm{~g} / \mathrm{l}$				
*Invertebrates				
*Bees				
LD_{50} (oral) $0.1 \mu \mathrm{~g} / \mathrm{bee}$ (contact) $0.01462 \mu \mathrm{~g} / \mathrm{bee}$				

6.2.2.7 D-phenothrin

D-phenothrin (sumithrin) is labeled for both ground and aerial use in Florida. In FY 2004-05 it was used to treat 1.1% of the total acreage for ground adulticiding and 0.3% of the total acreage for aerial adulticiding.

Mode of Action: D-phenothrin is a non-systemic pesticide with contact and stomach action. D-phenothrin provides rapid knockdown. It is used to control injurious and nuisance insects of public health importance and to protect stored grain.

D-phenothrin Toxicity: Class III						
$*$ Mammals	Acute oral LD_{50} rats $5000 \mathrm{mg} / \mathrm{kg}$	$\left	\begin{array}{ll	}\hline \text { Acute oral } \mathrm{LD}_{50} \text { bobtail quail }>2500 \mathrm{mg} / \mathrm{kg}\end{array}\right	$	LC_{50} for:Rainbow trout $2.7 \mu \mathrm{~g} / \mathrm{l}$ Bluegill sunfish $16 \mu \mathrm{~g} / \mathrm{l}$
---:						
*Fish						
Invertebrates						

6.3 METEOROLOGY

Increased understanding of meteorology and the integration of detailed meteorological data into routine operations are some of the major developments in recent years. Clearly, the meteorology at time of application must be considered and, where practical, the application should wait for conditions conducive to successful dispersal of the spray. Many new methods for measurement and logging of meteorology at the time of application are available to mosquito control programs. Networks of local meteorological stations can be accessed for free through websites such as
http://weather.weatherbug.com or http://www.weatherunderground.com. Detailed information, therefore, on weather is available to all programs with a minimal fiscal outlay. At the other end of the spectrum, highly sensitive anemometers are available for installation at the office, on a local tower, or even on the application equipment. An anemometer installed on the application equipment is best since it provides detailed information at the time and the location of the application. A single location meteorological source may not be appropriate for a coastal county because one part of the county may be experiencing the effects of coastal meteorology, while at the same time inland areas may be on the other side of a "sea-breeze front" and experiencing totally different weather.

Every effort should be made by programs to equip and educate themselves about the effects of meteorology on adulticiding. Given the droplet size spectrum that is applied for space sprays, meteorology is the primary parameter controlling droplet dispersal.

6.4 DROPLET SIZE

Although meteorology is considered to be the primary concern for space sprays as the cloud produced is highly subject to meteorological change, droplet size is still extremely important. Unlike atmospheric conditions, droplet size is controllable. Certain droplet sizes will be more likely to provide effective control, and other sized droplets will be lost either downwind or to the ground. It is therefore particularly important for operators to be familiar with the appropriate droplet size distribution for the application at hand. The descriptive statistics of adulticide plumes important to mosquito control relate a particular droplet size being produced to the volume proportion (volume percentage) of the cloud composed of drops equal to or smaller than the droplet size of interest.

With the implementation of new adulticide label requirements in 2006, the spray plume statistics have been changed. A spray plume descriptive statistic was needed which, like the volume median diameter (VMD), relates plume volume and drop size but that could be applied to an infinite number of volume percentages or drop sizes. The Diameter Volume (Dv) is such a statistic. The diameter volume is a decimal value between 0 and 1 which relates the volume proportion of the spray cloud to the drop diameter at which the cloud is made of drops equal or smaller to this drop diameter and whose cumulative volume equals the proportion of interest. The diameter volume for the size drop at which 50% of the spray volume is composed of drops equal to in diameter and smaller, written as $\operatorname{Dv} 0.5$, represents the same value as VMD or mass median diameter (MMD). The diameter volume can provide the size drop at which 10% of the spray volume is composed of this drop diameter and smaller [Dv 0.1] as well as the 90% value [Dv 0.9]. The combination of $\operatorname{Dv} 0.1, \operatorname{Dv} 0.5$ and $\operatorname{Dv} 0.9$ provides an understanding of the whole droplet size distribution that a particular spray system is producing.

The new adulticide label requirements (PR 2005-1) implemented in 2006 place two requirements on the applicator:

1) Use spray nozzles for which there exists the capability to maintain the spray cloud within the $\operatorname{Dv} 0.5$ and Dv 0.9 requirement of the label. For recently approved labels, typical upper limits are as follows:

Ground Adulticiding: Dv $0.5<30$ microns and Dv $0.9<50$ microns
Aerial Adulticiding: Dv $0.5<60$ microns and Dv $0.9<100$ microns
2) Annually confirm that the pressure at the nozzle and nozzle flow rate(s) are properly calibrated.

6.5 GROUND ADULTICIDING

6.5.1 Barrier Treatments

Barrier treatments work through the application of insecticides to foliage where adult mosquitoes may rest. The insecticide needs to be applied at a concentration where a mosquito landing upon the treated vegetation will pick up enough of the active ingredient through contact to cause mortality. Typically, these types of treatments are used in very limited areas to protect the public during nighttime outdoor events such as weddings, parties, and sporting events. Barrier treatments can provide control for days or even weeks depending on the insecticide formulation.

The insecticide can be applied to the foliage by one of three methods:

1. Drenching Sprays

Drenching sprays are applied as a very dilute aqueous formulation, typically using a vehicle mounted larvicide type system (tank, pump, hose, and spray-gun) capable of producing very coarse "raindrop" droplets of 500 to 1000+ microns in diameter. Foliage is treated with a spray-wand or spray-gun at the end of the hose to the point of runoff ("dripping"). Typically, it would take 50 gallons or more of formulation to treat an acre.

2. Mist Sprays

Mist sprays are typically applied as an aqueous insecticide formulation (sometimes oil-based) as a mist type spray with droplets of 100 to 150 microns in diameter using an air blast type sprayer either a backpack or vehicle/trailer mounted equipment such as a "Buffalo Mist Turbine." Insecticides are less heavily diluted for mist sprays than for drenching sprays. The smaller droplets in the high energy air blast ($100+$ miles per hour) readily impinge upon the vegetation and the surfaces that they contact.

3. Electrostatic Sprays

Electrostatic sprays are applied as electrically charged insecticides that more effectively "sticks" to the barrier to which it is applied. Although not widely used for mosquito control in Florida, this method has promise due to the low volumes
needed for effective coverage and the minimal waste/contamination to the ground.

The amount of barrier treatment sprays used in Florida mosquito control programs is insignificant when compared to the amount of ground adulticiding, but barrier treatments are gaining in popularity and are a significant portion of the mosquito control services offered by commercial pest control companies to property owners.

6.5.2 Space spray

Space spray ground adulticiding is the most commonly used method of controlling mosquitoes in Florida today and often is perceived by the general public as the only method in use. In 2005, mosquito control agencies reported adulticiding 23,140,819 acres by ground. This amount is 75 percent of the adulticiding acreage reported; aerial applications accounted for 7,795,602 acres.

Ground adulticiding consists of dispersing an insecticide as a space spray of fine aerosol droplets ("spray cloud") into the air column, which then moves through the habitat where adult mosquitoes are flying. In order to be effective the drops must contact an actively flying adult mosquito. Once the spray has deposited on the ground or has been intercepted by foliage, it is no longer effective because the concentration is far too small to act as contact or residual treatment. Very small droplets are necessary so that they: 1) remain airborne for a significant period of time in order to increase the probability of encountering a flying mosquito, 2) are large enough to have a high probability of impinging when encountering a mosquito, and 3) are not so large that they deposit out close to the vehicle in concentrations that may be harmful to non-target organisms.

Understandably, very small (aerosol) droplets rely on prevailing meteorological conditions to move to and through the target zone. As such, meteorology is one of the primary factors governing the effectiveness of a spray operation. Applications conducted in low wind and very stable inversion conditions may keep the spray cloud in the target zone for a significant period of time, but such applications may fail to penetrate densely vegetated habitats or move the spray cloud through areas with wider than normal street separations. Applications conducted in higher wind "neutral" atmospheric conditions may be more effective at forcing the spray into densely vegetated habitats but also may move the spray cloud too quickly through open areas and may not target the mosquitoes in these areas since their flight activity behavior may be inhibited by the high winds. The operator/manager needs to understand these meteorological issues and the particular mosquito species/habitat that they are targeting.

Historically, two techniques of mosquito control insecticidal space spraying have been utilized: thermal aerosol and ULV cold aerosol. Truck mounted thermal aerosol equipment has been phased out, and only a few programs now use handheld thermal aerosol "foggers" for treating very small areas. Thermal fogging is covered in this section for historical purposes.

6.5.2.1 Thermal Fog

Thermal foggers were developed largely from smoke generators built principally for concealing military maneuvers. The first units were built by a Navy contractor, Todd Shipyards Corporation. The insecticide is mixed into a fog-oil, usually with \#2 Diesel or a light petroleum distillate, which is injected into a heated, often double walled nozzle. The mixture is vaporized by the heat, which may be in excess of $1000^{\circ} \mathrm{F}$. A source of forced air drives this vapor out of the nozzle where the outside cooler air condenses it into a visible fog with droplets ranging from 0.5-1.5 microns.

If the insecticide flow does not overwhelm the vaporization capacity (sufficient BTUs/gallon/hour) of the machinery, all of the droplets will be in this near sub-micron range and often are referred to as a dry fog. If the insecticide flow is increased or the heat reduced, some of the material will not be completely vaporized, and larger droplets will be produced. The insecticide's contact time with the high temperature is so short that little if any degradation takes place.

6.5.2.2 Ultra Low Volume

Cold aerosol generators or cold foggers were developed to eliminate the need for the great quantities of petroleum oil diluents necessary for thermal fogging. These units originally were constructed by mounting a modified vortical nozzle on a thermal fogger's forced air blower. Most of the nozzles owe a great deal of homage to a design patented by the U.S. Army. The insecticide is applied as a technical material or at moderately high concentrations, as is common with the pyrethroids, which translates to very small quantities per acre (typically less than one fluid ounce) and, hence, is therefore referred to as ULV. The optimum size droplet for ground application with cold aerosols has been determined to be in the range of five to twenty-five microns (Haile et al. 1982). Much of the work developing and improving our understanding of this method was conducted from the mid 1960s through the early 1980s by researchers at the United States Department of Agriculture, Agricultural Research Station laboratory in Gainesville, most notably under the leadership of Dr. Gary Mount (Mount et al. 1998).

The sprayers in use today utilize several techniques to meet these requirements. Air blast sprayers are almost universal. They use either high volume/low pressure vortical nozzles or high pressure air shear nozzles to break the liquid into very small droplets. Rotary atomizers, ultrasonic nozzles, and electrostatic nozzles are other rarely used forms of atomization equipment. Centrifugal energy nozzles - rotary atomizers - form droplets when the liquid is thrown from the surface of a high speed spinning porous sleeve or disc. Ultrasonic equipment vibrates and throws the droplets off. Electrostatic systems repel the droplets.

6.5.2.3 Risks and Benefits of Thermal Fogging and ULV

A benefit of thermal fogging is its ability to atomize more insecticide with much less energy (BTUs) input than air blast ULV delivery techniques. Thermal fogging produces a uniform droplet spectrum of very small droplets if a dry fog is maintained. The small
droplets do not settle quickly and may penetrate foliage better than the larger cold aerosol droplets. Also, the cloud is very visible, allowing the applicator to observe its movement through the area, which is particularly useful when wind indications are non-existent.

Dense enveloping fog creates a traffic hazard. Additional concerns include the amount of non-insecticidal petroleum distillates, which function only as a carrier, and their possible damaging side effects on the environment. Thermal fogs are considerably more expensive when the cost of the petroleum oil is considered. Thermal aerosols often are utilized in third world countries because the population can easily see that something is being done.

ULV cold aerosols do not require large amounts of diluents for application, making them cheaper and placing a lower petroleum product load on the environment. The spray plume is nearly invisible and does not create a traffic problem due to reduced visibility and may not be perceived as an undesirable function. The machinery to generate cold aerosols can be much simpler in design and operation than thermal foggers but requires sophisticated nozzles and, with pneumatic equipment, a great deal of energy input (horsepower) to atomize even a small flow of insecticide. A typical energy requirement would be 0.5 horsepower per ounce per minute of formulation to be atomized.

Risks associated with ULV cold aerosols include the problems related to applying any technical pesticide undiluted. The material is being handled and transported in a concentrated form. The droplet spectrum is rather wide ($1 \mu \mathrm{~m}-40 \mu \mathrm{~m}$), can be difficult to change, and may settle into non-target areas more readily than a dry thermal aerosol.

Any discussion of risk versus benefits needs to note that this "space spray" form of control has been in extensive use for more than forty years. There have not been any glaring adverse impacts attributed to ground adulticiding when done properly. Population growth along the coastal areas of Florida and the state's appeal as a tourist destination attest to the benefits of this technique and mosquito control in general.

Although ground adulticiding is the most widely used mosquito control technique in terms of acreage treated, the limitations of this method bear noting. Vehicle mounted equipment can only be effectively utilized where there is a good street network. As roads become more widely spaced in suburban and rural areas, the coverage afforded by the wind-driven spray cloud becomes diluted to the point of being ineffective. Similarly, only those properties on the downwind side of the street are treated by the spray. Dense vegetation and high building densities also may reduce the effective movement of the spray.

6.5.3 Equipment

Ground adulticiding equipment is normally mounted on some type of vehicle, but smaller units are available that can be carried by hand or on a person's back. Pickup trucks are the most common motorized vehicle for conveyance. All-terrain vehicles and golf carts are occasionally utilized for ground adulticiding with various equipment configurations.

Of the 50 organized mosquito control agencies in Florida reporting to FDACS in 2006, all but one agency listed ground adulticiding machines in their inventory of equipment. A total of 352 vehicle mounted ULV adulticiding machines were reported with programs listing as few as one to as many as 27 .

Cold aerosol generators (ULV) are available in a broad range of sizes and configurations. The largest units offered by most manufacturers are often termed "heavy-duty" units and are sold as being the most applicable for community/county sized operations. This "heavy duty" label is more tied to larger flow capabilities than to the durability of the equipment. Large area operations once utilized the largest equipment available because their choice of insecticide often included malathion (over 45\% usage in 1995), which required the highest flow rates (up to 8.6 ounces per minute at 20 miles per hour) and is considered to be the most difficult mosquito adulticide to atomize to label specifications. However by 2005, malathion comprised less than 20% of the total usage (in acres sprayed) for ground adulticiding. The majority ($>75 \%$) of ground adulticiding now is being conducted with various formulations of permethrin that are significantly easier to atomize to correct droplet sizes.

Most manufacturers offer a "heavy-duty" machine, typically utilizing a large twin cylinder gasoline engine (16-18 horse power) driving a rotary lobed blower. The nozzles on these machines may differ, but they all resemble the old vortical nozzle patented by the U.S. Army. The Beecomist Pro-Mist 25 HD differs; it is an electric driven rotary atomizer type machine that operates off of the vehicle's electrical system. Only a few of these machines are used in Florida.

The insecticide metering equipment available on these machines ranges from a simple glass flow meter and a pressurized tank (only found on very old machines) to an electric pump on fixed flow machines to computer-controlled, speed correlated, event recording, and programmable flow management systems. The fixed flow units are designed to be operated with the vehicle traveling at a constant speed. Most of these utilize 12-volt laboratory type pumps that are quite accurate.

Variable flow metering systems regulate insecticide flow relative to the distance the vehicle travels and are therefore forgiving of speed irregularities. Approximately 50\% of all truck-mounted cold aerosol generators used in Florida are equipped with speed control variable flow metering systems. Vehicle monitoring systems record vehicle speed and insecticide pump operations over time. This information may be incorporated with the flow control systems to provide complete spray operations management systems.

Historically, many programs constructed their own ULV adulticiding machines from off-the-shelf components. Some of these machines were built from new pieces, but other machines were fabricated from scavenged equipment that began life elsewhere. They may have been locally made for economic reasons or to customize a certain function for a particular operational need. Many, if not most, of these "home-built" machines are
being replaced by commercially manufactured units incorporating the many improvements and new technologies available today.

Several manufacturers now produce a mid-range machine in the eight to twelve horsepower (or equivalent) class, as well as a few even smaller (<six horsepower) machines. These units are more compact, lighter, and typically use less fuel than their larger relatives. The atomization capabilities of the machines in this class are normally sufficient for many of the pesticides now being used (lighter, lower flow-rate pyrethroid formulations), particularly at the ten miles per hour rates. All of the flow systems available for the larger units may be fitted to this class machine as well.

Several handheld, 2-cycle engine driven, ULV sprayers are available for spot treatments. Several units are configured as backpack sprayers with the engine/blower mounted on a pack frame connected to a remote nozzle with a hose. These units utilize an orifice to control flow and either an aspirating or a gravity feed to supply the insecticide. With the high cost of these relatively small, simple machines, several programs have now taken to manufacturing their own handheld equipment.

6.5.4 Training and Maintenance

Operators of adulticiding equipment must be trained not only in the proper use and maintenance of the pesticide equipment but also in the proper application of the insecticide that they are using. Pesticide labels specify application details including acceptable droplet spectrum, flow rates, application rates, areas to avoid, and target insects. The law requires that any operator be certified in the Public Health category through FDACS or be supervised by a licensed person. A certified applicator may supervise up to ten operators. Some programs have all their personnel certified including office staff.

The Florida Mosquito Control Association (FMCA) Dodd Short Courses regularly offer programs designed to educate operators, mechanics, and supervisors in the proper techniques of calibration, maintenance, operation, and scheduling of spray activities. FDACS encourages agencies to budget course fees and travel monies to attend the courses every year. In addition, Florida Agricultural and Mechanical University, John A. Mulrennan, Sr. Public Health Entomology Research and Education Center (PHEREC) annually offers the Southeast Conference in Panama City, Florida, where hands-on classes can be attended.

6.6 AERIAL APPLICATIONS

In 2005, there were twenty operational mosquito control programs in Florida that conducted aerial adulticiding. Fifteen programs own their own aircraft, and five programs contract with one of several private aerial applicators. They have chosen aerial application as a very effective means of controlling adult mosquitoes particularly in inaccessible areas. Some of the agencies base almost all of their operations on this form
of application. Normally, adulticiding would not be the primary operational response. Where aerial adulticiding is the primary response, it is because:

- permits to construct new source reduction projects are essentially unobtainable
- larviciding is most effective when a high percentage of the mosquito production sites are regularly treated which may be difficult and expensive
- aerial applications may be the only reliable means of getting effective control if the areas lack a network of roads

Aerial adulticiding may be the only means of covering a very large area quickly during severe nuisance mosquito outbreaks (particularly after natural disasters such as hurricanes) or vector- borne disease epidemics. One of the advantages of aerial application of organophosphates (naled and malathion) is that the pesticide labels permit as much as five times the amount of toxicant to be applied by air as by ground. An example is the Dibrom (naled) label with a ground maximum rate of 0.198 ounce per acre but an aerial maximum of one ounce per acre (over 5 times the ground rate). This opportunity for aerial operations biases it heavily toward better levels of control. However, this advantage does not apply to the synthetic pyrethroids (permethrin, resmethrin, and D-phenothrin), as the per acre rates for these products are the same for both ground and aerial applications.

Aerial applications are expensive due to the pesticide costs per acre, the high cost of owning and maintaining (or leasing) aircraft, and the inherent increased salary for professional pilots. Low level flying, most often conducted during the night hours to coincide with peak mosquito activity, is a dangerous activity requiring a high degree of skill and professionalism, particularly considering the many obstructions such as towers, high rise buildings, and construction cranes. Flying also is very dependent on good weather conditions. Due to the commitments for any spray mission, decisions are given much thought and are commonly scheduled when adult mosquito population levels are at their peak.

Three aerial adulticiding techniques have been used in Florida: low volume spraying, thermal fogging, and ULV aerosols.

Low volume (about a quart per acre) sprays were commonly applied with the pesticide diluted in light petroleum oils and applied as a rather wet spray with a large droplet size. Their effectiveness as a localized residual treatment was negated by problems of spotting cars or anything else left outside. The size of the droplets reduced drift, thus limiting swath widths, and was not ideal for impinging on mosquitoes. This technique has not been used for some time but is compatible with the equipment commonly used for aerial liquid larviciding. This technique would be the aerial equivalent of ground applied barrier treatments.

Thermal aerosol applications used the exhaust heat of the aircraft's engines (including the helicopter's turbine) to atomize a very dilute mixture of petroleum oil and insecticide. These applications were popular with pilots who easily could see where the spray plume
was drifting. It also was an efficient means of producing a very small droplet and tight spectrum. The small droplets would remain airborne much longer than larger droplets and at very high densities, thus increasing the probability of impact with a flying mosquito. However, the large quantities of fog oil required larger heavy lift aircraft and even then limited the area that could be covered economically to about one-tenth that of the area covered by ULV applications. The insecticide mix needed to be completely atomized, or larger oil droplets could potentially put sheen on water beneath the flight path. The amount of petroleum oil dispensed as a carrier may have created environmentally undesirable effects. Aerial thermal aerosol applications rarely are used today.

The primary aerial adulticiding technique in use today applies the insecticide in a technical concentrate or in a very high concentration formulation as an ULV cold aerosol (Mount 1996). Lighter aircraft, including helicopters, can be utilized because the insecticide load is a fraction of the weight of other techniques. As with ground adulticiding with a cold aerosol generator, the intent of this method of aerial adulticiding is to produce a spray cloud of very fine droplets (aerosol) that moves through the target zone and kills any mosquitoes upon which the droplets impinge. Aerial adulticiding applies the spray well above the target zone, unlike ground adulticiding which sprays within the target zone. Aerial adulticiding relies on a number of different phases of particle (=droplet) movement to bring the spray cloud down into the target zone (within 50 feet of the ground). These phases are:

1. Aircraft Vortices

Fairly soon after being emitted at the nozzle, spray drops are caught up or "entrained" within the wingtip or rotor wash vortices. This energetic turbulence produced by the aircraft sinks toward the ground taking the spray cloud with it before dissipating. The descent distances and life of the vortices before decay vary between aircraft and atmospheric conditions (stable, neutral or unstable) but typically drop 30-50 feet from the aircraft and last several minutes. In some aircraft under very stable atmospheric conditions, vortex descent distances can exceed 100 feet and last more than five minutes.

2. Atmospheric Dispersion

Once released from the dissipated vortices, the spray cloud is now subject to general atmospheric turbulence, which dilutes the spray cloud through vertical spread as well as horizontal (wind) movement. The degree of atmospheric turbulence (vertical spread) is related to the stability of the atmosphere. In a highly stable atmosphere under inversion conditions typical of low wind nights, the vertical spread is minimal resulting in the spray cloud hanging together as a fairly concentrated plume. In neutral to slightly unstable conditions typical of windy overcast nights without inversion conditions, the vertical spread is significant, bringing the spray cloud down towards the ground much faster and also diluting the spray cloud concentration.

3. Droplet Sedimentation

Spray droplets also are subject to the forces of gravity, sinking towards the ground with a sedimentation velocity related to their size and density. For example, a $10 \mu \mathrm{~m}$ diameter drop would take 2.8 hours to fall 100 feet, a $20 \mu \mathrm{~m}$ drop would take 42 minutes, and a $50 \mu \mathrm{~m}$ drop would take only 6.7 minutes. Under stable nighttime conditions with little vertical movement in the atmosphere (typical night spray conditions in Florida), the sedimentation velocity may play a significant role in the droplets movement towards the target zone (near the ground).

The flight parameters for aerial adulticiding differ by program and by technique. Some mosquito control programs fly during the hours of daylight so their applications begin either at morning's first light or before sunset and work into twilight. At these times, the pilots should be able to see towers and other obstructions, as well as keep track of the spray plume. This timing makes it safer for the aircraft to be flown at less than 200 feet altitude which may make it easier to hit the target area. Although potentially safer and more comfortable for the pilot, this period may not coincide with the times of peak mosquito activity, thereby reducing the effectiveness of the spray.

Other operations fly in the dark of the night, typically after twilight or early in the morning before dawn. The aircraft typically are flown between 200 and 300 feet altitude, which is not ideal for accurate targeting of small spray blocks but is more appropriate for the-treatment of larger ($10,000+$ acre $)$ areas. A few programs utilize night vision goggles, allowing for safer low altitude (100-200 feet) applications during nighttime hours. Most mosquito flight activity is crepuscular, so these flights catch the adults at their peak activity. Bees are not active prior to full daylight so should not be at risk of serious impact from the insecticide application.

Application altitude not only has an impact on the accurate targeting of small spray blocks but also affects the insecticide deposition levels more than might be expected. Lower application altitudes result in higher deposition levels with the potential for nontarget impacts. This phenomenon has been recognized by the EPA which now requires minimum application altitude statements on all new labels - 75 feet for helicopters and 100 feet for fixed wing aircraft.

Swath widths also vary from operation to operation but are normally set somewhere between 500-1500 feet. Swaths are flown as close to perpendicular with the wind as is possible, working into the wind and commonly forming a long, tight S pattern. Many factors affect the spray drift offset, the horizontal distance traveled between spray being released at the aircraft and reaching the target zone closer to the ground. Pilots rely to a degree on experience for determining this offset, although there are now Global Positioning System (GPS) guidance systems with built in computer spray modeling which provide reasonable estimates for accurate placement of spray clouds. Spray drift offset distances can vary from less than 1000 feet (low level applications in light winds) to greater than 7000 feet (high altitude and/or moderate winds).

The relative importance of the three phases of droplet movement - Aircraft Vortices, Atmospheric Dispersion, and Droplet Sedimentation - depends upon the type of operational application. Low level (<100 foot altitude) treatments conducted during the dawn hours to target narrow mosquito harborage habitats (such as mangrove forest shorelines) rely almost exclusively on the aircraft vortices to move the spray into the target area. While this method has the ability to target a small area, it also runs the risk of creating a potentially damaging deposit peak close to the flight line. High altitude (300 foot altitude) nighttime applications rely on a combination of all three phases but more significantly on atmospheric dispersion and sedimentation. High altitude sprays have a higher probability of spray drift outside the intended target zone, but the spray deposit concentration is likely to be below a level that could be considered biologically significant.

It may be for this particular reason that droplet sizes that are effective for ground adulticiding (Dv 0.5 of 12-20 microns with droplet sizes of 5-25 microns) do not appear to be most effective for aerial adulticiding (according to anecdotal reports from several programs utilizing small droplet high pressure spray systems in aircraft). Although not conclusively proven at this time (there are several research projects being conducted to answer the question), it may be that the most effective droplet sizes for aerial adulticiding are in the range of 15-50 microns with spray cloud Dv 0.5 of 25-40 microns depending on operational parameters, target species, and target habitat. New label language sets the upper limit for droplet size, described by the terms $\operatorname{Dv} 0.5$ and Dv 0.9 . On the few new labels that have been approved the values for aerial adulticiding: Dv $0.5<60$ microns and Dv $0.9<80-100$ microns.

6.6.1 Equipment

The only aerial thermal fogging equipment still in existence in Florida is on one DC-3/C-47 fixed wing aircraft and on two UH-1B helicopters operated by the Lee County Mosquito Control District, and these systems are rarely, if ever, used. The spray apparatus consists of a series of large nozzles arranged in a radial pattern directing the insecticide/oil mix into the engine's hot exhaust. The tanks are quite large, 800 gallons in the C-47 and 300 gallons in the Huey helicopters.

ULV systems are as diverse as the aircraft on which they are mounted. Many fixed wing twin engine aircraft and helicopters are equipped with external belly tanks suspended under the fuselage, cabin, or in pods under the wings (BN Islander). Other programs install their insecticide tanks within the aircraft's passenger compartment. Some of the tanks are commercial fiberglass units, but most tanks are custom fabrications of stainless steel, polypropylene, or fiberglass. One operation utilizes the aircraft's own auxiliary fuel tanks which were separated from the fuel system and now carry an oil/pyrethroid mix. Some units are equipped with in-flight (or return flight) tank flushing capability. Tank capacity ranges from 350 gallons for a C-47 to 20+ gallons for a Hughes 269A heliocopter.

Much of the following information describing "typical" aerial application equipment
comes from observations of the diverse systems at the FMCA Aerial Short-Course programs held annually in Florida over the past 15-20 years.

A wide variety of aircraft are utilized by mosquito control programs including both helicopters and fixed wing aircraft. Most aircraft are owned by the local mosquito control agencies, while some aircraft are contracted. One program contracts for pilots but owns the aircraft. Although many mosquito control agencies developed aerial application programs by acquiring inexpensive government/military surplus aircraft, the majority of the agencies now are purchasing and using newer (or brand new) civil aircraft.

6.6.1.1 Fixed Wing Aircraft

Fixed wing, multi-engine aircraft account for most of the acreage aerially adulticided in Florida. They have a reasonable payload and are moderately fast, economical to operate, and practical to maintain. Aircraft use and selection is changing in Florida. Older military cargo planes (C-45 and C-47) which carried the heavy payloads required for the dilute formulations used in thermal aerosol applications are being replaced by smaller, newer, and more practical aircraft capable of treating the same or greater acreage using adulticide concentrates applied as ULV aerosols. Ten years ago, four programs used DC-3/C-47, and, by 2006, only one program did so.

Light general aviation twins (including Cessna 336, Piper Aztec, and Britten Norman Islander) may be smaller but still have payloads suitable for ULV spraying. They can be economical to purchase and operate, simple to maintain, nimble to fly, and somewhat less conspicuous when spraying. The fuel consumption of a smaller light twin engine plane may only be 30 gallons per hour, but the useful payload is limited to about 1000 pounds.

6.6.1.2 Helicopters

Helicopters are seeing wider use for adulticiding activities. Many programs that operate helicopters for larviciding change the spray equipment and use the helicopters to adulticide. Additionally, programs utilize helicopters for adulticiding smaller areas with difficult obstructions or meandering shapes and also operate fixed wing aircraft for larger spray blocks. Helicopters are capable of much tighter turns, are more maneuverable, and can be serviced at field sites thus reducing ferry times. However, their operating costs are far more expensive than fixed wing aircraft. They may be considered safer, but autorotations during an engine failure at low level may be beyond recovery. No twin engine helicopters are used in mosquito control because the increased acquisition and maintenance costs far exceed the added benefits. Air speeds are somewhere between 60 knots for piston engine ships and 100 knots for the faster light turbines.

6.6.1.3 Inventory of Aerial Adulticiding Aircraft in Florida

Organized mosquito control programs have reported ownership of the following aircraft ownership to FDACS:

21 Fixed Wing Aircraft (an additional plane is used solely for larviciding)	
8	Douglas DC-3/C-47 (Twin Radial)
1	Beech King Air C-90 (Twin Turbine)
3	Piper Aztec (Twin Piston)
2	Cessna 337 (Twin Piston)
2	Britten Norman Islander BN2T (Twin Turbine)
1	Britten Norman Islander BN2 (Twin Piston)
3	Shorts SkyVan (Twin Turbine)
1	Ayres Thrush (Single Turbine)

$\mathbf{2 0}$ Helicopters (an additional 27 are used solely for larviciding)	
2	Bell UH-1B (Single Turbine)
8	Hughes/MD 500 C,D\&E (Single Turbine)
7	Bell 206 (Single Turbine)
1	Hughes 269 A (Single Piston)
2	Eurocopter Astar B3 (Single Turbine)

6.6.2 Training and Requirements

Pilots operating aircraft spraying for mosquitoes must hold a Public Health Aerial Applicator's certification issued by FDACS. The Aerial Training Committee within the Education Coordination Committee of the FMCA educates personnel involved with aerial operations about new developments, demonstrates calibration procedures, and brings experts from related fields to special work sessions. In the wake of 9/11 and the potential use of agricultural spray aircraft by terrorists, all spray aircraft must be registered with FDACS each year and must be well secured at their home location. Any sale also must be reported to FDACS.

All aircraft applying insecticides are operated under the Federal Aeronautics Association (FAA) FAR Part 137 (Agricultural Aircraft Operations). However, government owned aircraft may be operated as public aircraft, a category originally intended to allow government entities to use surplus non-certificated military aircraft. Public aircraft are
exempt from a number of the provisions of FAR Part 137 including the need for a Part 137 Certificate and the need for an Airworthiness Certificate. Programs using public aircraft must still develop a "congested area plan" if they operate over residential areas of their county. It should be noted that most, if not all, aircraft flown by mosquito control programs are maintained according to the FAA's strict maintenance requirements as if they were civil aircraft rather than the more lax requirements of public aircraft. Private aerial applicators cannot operate as public aircraft and must conform to the full provisions of FAR Part 137. These aircraft have a certificate of airworthiness and are maintained, modified, and flown in strict conformance to the FAA's regulations governing civil aircraft.

Part 137.51(4)(iii) states: "No person may operate an aircraft over a congested area during the actual dispensing operation, including the approaches and departures for that operation, unless it is operated in a pattern and at such an altitude that the aircraft can land, in an emergency, without endangering person or property on the surface." This statement might be interpreted to mean that any aircraft other than a helicopter must be multi-engine (in case one fails) if spraying over congested areas.

6.7 TECHNOLOGICAL IMPROVEMENTS, GUIDANCE SYSTEMS, AND DOCUMENTATION

Ground adulticiding by truck mounted equipment always has had a simple form of geographical reference since the vehicles were driven on street networks. Drivers could follow paper maps with delineated spray zones for guidance. Aircraft, however, do not follow streets and must rely on other forms of reference for flight line guidance. In the early days "flagmen" with flashing beacons on vehicles were used to mark the beginning or ending of a spray run. This arrangement required streets at the edges of the spray block, the ability of the driver to move to the correct marking position, and a lack of potentially conflicting flashing beacons (e.g., emergency vehicles). Some aerial programs simply relied on the pilots ability to read a map, recognize spray block boundaries by visual cues, and estimate the correct spray line separation (be it 500 feet, 1000 feet, or some other distance).

Based on radio signals triangulated between towers, LOng RAnge Navigation (LORAN) systems were used from the 1970s through the 1990s but suffered from signal interference particularly around dawn and dusk (meteorological effects). However, they were useful for flying large rectangular blocks with accurate swath separation since many incorporated a "grid" program developed for search and rescue flights. The pilot simply flew a known baseline (spray block downwind edge), entered the desired swath width, and the instrument gave guidance to succeeding flight lines.

In the early 1990s GPS became available and affordable. Navigation was based on signals from geostationary satellites and did not suffer from the same interference as LORAN. Even basic units are accurate to within 30 feet, providing the federal government does not re-introduce an error, "Selective Availability", during times of heightened national security. Systems are designed specifically for aerial application
(including agriculture, forestry, and mosquito control) with the "grid" spraying program, flight recording, and the ability to upload irregular shaped spray blocks, "no spray" zones, and obstructions (towers) onto a moving map screen for pilot viewing and guidance. They are usually equipped with a light bar mounted in the pilot's field of view that indicates how far off track the aircraft might be so that the pilot does not have to look down at a map screen.

All of these improvements in technology allowed a pilot to fly a very accurate flight path within a defined spray block, but mosquito control programs still relied on a "best guess" as to where to fly (what offset distance) to ensure that the spray effectively covers the target zone. The U.S. government embarked on a program to develop computer models that could predict spray drop movement after leaving an aircraft. These models incorporated all the complex interactions between aircraft type, size, weight, nozzle position, formulation, droplet size, spray altitude, meteorological conditions (wind, temperature, humidity, atmospheric turbulence), and other parameters to give a reasonable estimate of spray deposit and drift. The original program was known as FSCBG (Forest Service, Cramer, Barry, Grim) and incorporated a "modeling engine" known as AGDisp (Agricultural Dispersal). The Spray Drift Task Force, a consortium of pesticide manufacturers and regulatory agencies, spent millions of dollars validating the AGDisp model and released a regulatory version known as AGDrift. This model is used by the EPA for pesticide application risk assessments. The AGDisp and AGDrift models are relatively simple and can be run on a desktop computer to view the effects of changing operational parameters (including droplet size, wind speed, spray altitude) on the eventual drift and deposit of the spray and allow the user to estimate the correct offset distances to use under a given set of conditions (Latham 2004).

In recent years one GPS guidance system manufacturer has taken this work a step further by incorporating the AGDisp modeling algorithms into the onboard computer processing unit to create, in essence, an "intelligent" unit that takes real-time information and calculates offset distances and correct flight paths for the pilot. The pilot simply flies the headings indicated by the unit on his light bar. The unit also takes into account "no spray zone" avoidance using the same process. The meteorology necessary to run the model in real time is obtained from one of a number of sources: a fixed weather balloon (Kitoon), a tower based system that broadcasts the data to the GPS via a spread spectrum modem, or a meteorological probe mounted on the aircraft that calculates the meteorological conditions (wind speed, direction, temperature, and humidity) at the aircraft. Alternatively, wind information from another source can be manually entered by the pilot into the system. Further improvements include flow control valves that can automatically turn the spray on and off based on the aircraft's position within the spray block or regulate the flow based on aircraft speed or special remote sensing in the system.

Improvements also have occurred in technology for truck-mounted ground adulticiding equipment. Different forms of speed regulated flow control are common in many systems. Automated GPS systems with fully functional mapping and guidance systems are available. These units can be preprogrammed to turn the spray on or off at different
locations, enabling automatic avoidance of no spray zones and ensuring that double spraying of streets (particularly cul-de-sacs) does not occur. These improvements have reduced the probability of human error in misapplications of pesticides, although it should be noted that failures and errors can occur in even the most sophisticated technologies.

FDACS reporting system requires records on the total acres sprayed and total chemical used for any application of pesticides. However, most operations keep more detailed records of their adulticiding missions, especially with aircraft/vehicle GPS recording devices that provide accurate information on location, time, and spray status (on or off), usually at one second intervals. Many units also record flow rate and meteorological information. Additionally, programs should include relevant adult mosquito sampling information (e.g., landing rates and trap counts, preferably both pre- and post-spray) or at least a reference to where this information is retained. See Appendix III for Rule 5E13.06(5) from Chapter 5E-13 of the Florida Administrative Code.

6.8 DRIFT AND DEPOSITION MANAGEMENT

An effective insecticide application in mosquito control provides maximal target control and minimal non-target mortality. Two avenues are available for non-target impacts in mosquito adulticiding: 1) drift of the insecticide outside of the intended spray zone and 2) deposition to the ground.

Defined as the movement of spray material outside of the target area, drift is a negative term when used in pesticide application technology. However, many mosquito control professionals use the term 'drift' incorrectly to describe the general movement of mosquito control adulticide sprays, putting a negative slant on the correct use of these operational applications. Drift from an agricultural application is a negative term and is not relevant to mosquito control spray applications. While a mosquito control aerosol cloud is inside the intended application zone, the spray is actively controlling mosquitoes. Mosquito control aerosols can only be termed "drift" when they move into a no spray zone with potentially negative consequences.

Ground truck spraying applies a smaller volume of pesticides than aerial spraying, and the droplet size distributions are much smaller, reducing concerns for non-target communities. However, if the conditions are not consistent for the projected downwind dispersal, reduced concern may be misplaced.

Both drift and deposition effects must be considered and taken into account in aerial applications. Drift into a no spray zone can occur when conditions are beyond normal limits or incorrect operational parameters are used. Over the past decade, the use of GPS to precisely locate operations in relation to no spray areas has improved application efficiency. Moreover, computer models (AGDisp) integrated with real time meteorological data are available to calculate downwind dispersal of the spray. These models are accepted by the EPA and are being continually improved upon for mosquito control. The calculation and estimation of long range movement can be provided by
models, and these models are being validated by dedicated research projects (Dukes et al. 2003 and 2004).

Deposition is the other avenue for non-target impacts; minimization of deposition is far more critical than off-target drift. If off-target drift does occur, the spray cloud usually is so diluted the probability of impact with a non-target is low. Deposition, however, can occur in peaks close to the flight line, particularly with large droplets and low spray altitudes. This peak deposition has the potential to be problematic for non-target organisms.

Deposition can be controlled by droplet size. The larger droplets deposit quickly rather than move downwind. Mosquito control obtains no benefit from these larger droplets as deposition is waste. It is therefore within everyone's interest to minimize this depositing fraction of the spray. The EPA has refined its stance on this issue and created an extra required measure of droplet size distribution on the labels (PR 2005-1).

Whereas old labels only required that the spray be below a maximum $\operatorname{Dv} 0.5$, the new labels require that the spray must now be both below a maximum Dv 0.5 value and a maximum Dv 0.9 value. The addition of the Dv 0.9 value now means that the upper end of the spray distribution can be limited so that spray systems producing the larger depositing drops that could impact non-targets are excluded. This is a profound step forward for mosquito control; adherence to this rule will lead to more effective mosquito control and minimize non-target impacts.

Deposition also is affected by altitude. Aircraft have wake effects and create vortices which entrain the spray, bringing it down in a concentrated plume from flight altitude. Although vortices descent distances and life are limited, if the flight altitude is low enough, the spray cloud can be placed close to the ground as a concentrated plume, resulting in high deposition peaks that could be potentially damaging to non-target organisms. Downwind movement and deposition of the spray can be calculated and viewed using AGDisp, the primary spray-fate model for long distance movement of aerially applied pesticides. This model has been adopted by the EPA and is used as a regulatory tool with other eco-toxicological models such as PRISM EXAMS to conduct risk assessments during the registration and re-registration of mosquito control pesticides. These tools can improve the efficacy of our operations and further minimize the potential for unintended non-target impacts.

This chapter describes the current technology used in mosquito adulticiding. In the last two decades, Florida mosquito control professionals have focused their attention on technological developments that locate, measure, and record mosquito control activities. With the re-registration of mosquito control products, the mosquito control industry is in a state of flux. However, the close relationship between the operators and researchers within this industry provides a unique ability to stay at the forefront of all changes and challenges. In this highly sensitive discipline there is no room for "Status Quo." Mosquito control techniques need to be the best available. As new technologies and
changes in understanding arise, mosquito control managers need to incorporate them into operations in order to truly be integrated pest managers.

Pesticide usage reports (in PDF format) dating back to FY 1997-98 are available for download at http://www.flaes.org/aes-ent/mosquito/reports.html.

6.9 REFERENCES AND GENERAL READING

The pan international website provides information from various resources including Pesticide News http://www.pan-uk.org/pestnews/

Barber, J.A.S., M. Greer and M. Latham. 2006. Ultra Fine Aerosols Meteorology and Canopy Penetration in Mosquito Control. 2006 ASABE/NAAA Technical Session 40th Annual National Agricultural Aviation Association Convention. Rosen Shingle Creek Hotel, Orlando, Florida December 4, 2006.

Dukes, J., H. Zhong, M. Greer, P. Hester, D. Hogan and J.A.S. Barber. 2004. A comparison of two ULV spray nozzle systems using a multiple swath scenario for the aerial application of fenthion against adult mosquitoes. Journal of the American Mosquito Control Association 20: 27-35.

Dukes, J., H. Zhong, M. Greer, P. Hester, D. Hogan, J.A.S. Barber. 2004. A comparison of two spray nozzle systems used to aerially apply the Ultra low volume adulticide fenthion. Journal of the American Mosquito Control Association 20: 36-44.

Florida Department of Agriculture certification and pesticide usage reports (www.doacs.state.fl.us).

Haile, D.G., G.A. Mount, N.W. Pierce. 1982. Effect of droplet size of malathion aerosols on kill of caged adult mosquitoes. Mosquito News 42: 576-583.

Himel, C. 1969. The optimum size for insecticide spray droplets. Journal of Economic Entomology 62: 919-925.

Latham, M. 2004. An introduction to computer models for predicting aerial spray drift and deposit. Wing Beats 15: 12-14.

Matthews, G. 1992. Pesticide Application Methods. Harlow, UK: Longman Scientific and Technical.

Mount, G.A., T.L. Biery and D.G Haile. 1996. A review of ultralow-volume aerial sprays of insecticide for mosquito control. Journal of the American Mosquito Control Association 12: 601-18.

Mount, G.A. 1970. Optimum droplet size for adult mosquito control with space sprays or aerosols of insecticides. Mosquito News 30: 70-75.

Mount, G.A. 1998. A critical review of ultralow-volume aerosols of insecticide applied with vehicle-mounted generators for adult mosquito control. Journal of the American Mosquito Control Association 14: 305-34.

Rathburn, C. 1970. Methods of assessing droplet size of insecticidal sprays and fogs. Mosquito News 30: 501-503.

Robinson, J. 2001. Light at the end of the tunnel. Wing Beats 12: 10-13.
Tomlin, C.D. (Ed.). 2000. The Pesticide Manual. $12^{\text {th }}$ Edition. Farnham, UK: British Crop Protection Council Publications.

Yeomans, A.H. 1945. Directions for determining particle size of aerosols and fine sprays. U.S. Department of Agriculture and Bureau of Plant Quarantine.

Zhong, H., M. Latham, S. Payne and C. Brock. 2004. Minimizing the impact of the mosquito adulticide naled on honey bees, Apis mellifera (Hymenoptera: Apidae): aerial ultra-low-volume application using a high-pressure nozzle system. Journal of Economic Entomology 97: 1-7.

Chapter 7

BIOLOGICAL AND ALTERNATIVE CONTROL

Chapter Coordinator: Dr. Jorge Rey

1998 Coordinator: Dr. Eric Schreiber

Abstract

Summary Biological control will not be a "magic bullet" for mosquito control in the coming years. In the near term, biological control probably will be used as part of integrated pest management programs to complement other mosquito control techniques. Currently, the most widely used biological control agents are the bacteria Bacillus thuringiensis subsp. israelensis and B. sphaericus 2362. Furthermore, recombinant strains of these bacteria with highly improved efficacy have been developed and hold potentials to be used. Other promising organisms include predatory fish and copepods, and all of these organisms require further study before they can be fully incorporated into mosquito control programs in an effective and economically feasible manner. Consistent support from federal, state, and local agencies for biological control research is necessary to insure the continued effectiveness of mosquito control efforts. Also see Chapter 5: Larvicides and Larviciding, 5.2.2 Microbial Larvicides.

7.1 INTRODUCTION

The use of biological organisms or their byproducts to combat pest insects, such as mosquitoes, is termed biological control, or biocontrol. The overall premise is simple: Organisms that attack pests are grown in the laboratory and then released into the environment to control targeted pest species. Releases can be inoculative, where the biocontrol agent is released in low numbers and allowed to multiply naturally, or inundative, where massive numbers of the agent are released to control the pests, usually with no expectation that the biocontrol organism will reproduce and persist naturally. Additionally, biocontrol efforts often involve providing access to naturally occurring enemies of the pests to areas where control is desired.

One advantage of some biocontrol agents like pathogens and parasites is host specificity. This characteristic reduces impacts to non-target species and to the environment. Host specificity, however, means that the potential market for new products is often narrow. This fact, combined with the sometimes large start-up costs of new products, often deters commercialization of biocontrol agents. However, in the future, increased societal awareness of the importance of environmental protection is likely to increase interest in
the use of biocontrol agents. Furthermore, the increasing costs of development, manufacture, and application of chemical pesticides and the ever decreasing number of products used against mosquitoes are making the use of biocontrol agents more and more attractive. Thus, increased knowledge of alternative control strategies such as biocontrol is needed.

A detailed discussion of the intricacies of biocontrol or of the many environmental and biotic factors that influence its effectiveness is beyond the scope of this white paper. Scientific and popular literature on these subjects is extensive and readily available. Also see 7.5 References and General Reading. The objective of this chapter is to characterize the biocontrol agents and alternative control strategies tested or used by Florida mosquito control programs.

7.2 DEVELOPMENT AND USE OF BIOLOGICAL CONTROL AGENTS IN FLORIDA

Mosquitocidal bacteria

The mosquitocidal bacteria Bacillus thuringiensis subsp. israelensis (Bti) and B. sphaericus ($B s$) are the most extensively used biological control agents in Florida (Pesticide Usage Reports. Bureau of Entomology and Pest Control, Florida Department of Agriculture and Consumer Services (http://www.flaes.org/aesent/mosquito/reports.html). In the fiscal year 2004-2005, for example, 79,530 pounds of Bti and 7,139 pounds of Bs were used by 49 state-approved mosquito control programs to treat, respectively, 262,314 and 12,149 acres. These soil-dwelling bacteria produce mosquitocidal crystal toxins during sporulation. Mosquito larvae ingest the toxins during filter-feeding and the toxins are activated by the mosquitoes' high gut pH . The activated toxins kill the mosquitoes by degrading the internal tissues (Federici et al. 2006). Recently, the Mosquito Biological and Alternative Control Section at Florida Agricultural and Mechanical University, John A. Mulrennan, Sr. Public Health Research and Education Center (PHEREC) initiated state-supported research to isolate novel mosquitocidal $B t$ and $B s$ strains from mosquito habitats with the assistance of several mosquito control programs in Florida.

Mosquito fish

Mosquito fish (Gambusia spp.) also are widely used in Florida. Gambusia affinis and G. holbrooki are native to eastern North America and are considered invasive species in some other areas. These fish, which feed on mosquito larvae, can be placed in a variety of permanent and semi-permanent water habitats. Differences of opinion exist on the utility and actual control benefits derived from use of Gambusia to control mosquitoes in certain situations, and actual results vary from excellent control to no control at all. Recently, concerns over placing Gambusia in habitats where other fish species assemblages are threatened have arisen. Care must be taken in placement of these species in areas where endemic fish species are sensitive to further environmental perturbation. Additionally, investigation of endemic fish species in these areas of concern as potential biological control agents deserves greater attention. An example of
this is Rivulus spp. The potential of Rivulus as a mosquito predator is currently being evaluated in saltwater habitats, especially in Brevard County.

In some aquatic habitats, fish function as excellent mosquito biocontrol agents. These habitats typically are permanent habitats where Culex and Anopheles are the primary mosquito residents, where mosquito densities are not excessive, and where emergent vegetation is not too dense. However, in habitats such as salt marshes, fish are sometimes unable to control the sudden explosion of larvae produced by rainfall or rising tides. This situation is particularly true during the first hatch of the season, where the mosquito populations numerically exceed what the fish can consume during the brief immature mosquito developmental period. However, in many situations, effective control can be achieved if the larvivorous fish are afforded access to the mosquitoproducing areas.

Toxorhynchites

Species of predaceous mosquitoes in the genus Toxorhynchites have been studied in a variety of urban areas for control of container-inhabiting mosquitoes such as the Asian tiger mosquito, Aedes albopictus. Toxorhynchites mosquitoes also affect mosquito populations that develop in the tree-hole environment. However, their introduction into urban container habitats has proven unsuccessful (Jones and Schreiber 1994; Schreiber and Jones 1994). In certain containers, Toxorhynchites may consume a large number of prey mosquito larvae, such as Ae. aegypti and Ae. albopictus. However, this predator does not disperse well enough to impact the vast number of natural and artificial containers used by these mosquitoes. Additionally, their development time is 2-3 times that of their prey making it difficult for them to keep up with the other more rapidly developing mosquito species (Service 1983).

Copepods

Another group of biocontrol agents with promise for mosquito control is comprised of predaceous copepods. In Florida, season-long (Schreiber et al. 1994) and multi-year (Rey et al. 2004) control was achieved in trials in tire habitats. Copepods are easy to rear and to deliver to target sites in the field (Hallmon et al. 1993), and they perform well when used with certain narrow spectrum insecticides (Tietze et al. 1994). Additionally, copepods consume a broad variety of prey and can survive in the field when mosquitoes are not present or abundant. More research on these organisms is needed, particularly on trials simulating actual, operational field conditions.

Other predators

Research on other possible predators of mosquitoes, such as other fish species, dragonflies, and frogs is ongoing. Currently, however, there is no small- or large-scale development program for the application of these organisms for biocontrol purposes.

The parasitic nematode Romanomermis spp., the pathogenic protozoan Brachiola algerae (formerly Nosema algerae), the mosquito virus CuniNPV, and some non-digestible algae, among others, have been examined as biocontrol agents by universities and the United States Department of Agriculture (USDA) researchers and by mosquito control
organizations. Thus far, results have been mixed. Use of these organisms in inundative or even inoculative release programs is hindered by the difficulty of rearing them and by the terrestrial, dispersive stage in their life cycles. In some cases, the application techniques that have been utilized need additional development. Research at University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory (FMEL) is currently investigating allelopathic products produced by marine and freshwater microalgae as potential mosquitocides, but this work is still in its infancy.

Birds and bats often are promoted as potential biocontrol agents of adult mosquitoes. While both predators eat adult mosquitoes, they do not do so in sufficient amounts to impact the mosquito populations. Mosquitoes are not a primary food source for these predators. Additionally, because mosquito flight behavior is crepuscular, they are not active during the feeding periods of most birds. While bats are active during the correct time period, they simply can not impact the massive numbers of adult mosquitoes available.

As the development of mosquito control technology moves forward, new biocontrol agents will be discovered. It is hoped that among these agents will be cost-effective, ecologically benign agents that can become an integral part of Florida mosquito control programs.

7.3 ALTERNATIVE CONTROL TECHNIQUES

The term "alternative control techniques" in essence is a catch all for removal-trapping techniques, repellents, mechanical traps, bug zappers, biotechnological developments, and socio-cultural changes. A thumbnail sketch of some of these alternative control techniques, their merits, and their disadvantages follows.

7.3.1 Removal Trapping Techniques

The premise underlying removal trapping is that a trap attracts, captures, and removes a significant portion of the biting mosquito population. Subsequent mosquito populations are smaller and, therefore, require fewer chemical applications for control. Removal trapping is currently being evaluated by the USDA at the Center for Medical, Agricultural, and Veterinary Entomology (CMAVE) in Gainesville with the Collier Mosquito Control District, and by the FMEL. Some of these studies use commercially available attractant baited traps and others are using baited targets. Up to now, these studies have largely been conducted on a limited spatial and temporal scale. So far the technology has worked best on isolated islands where one species was clearly dominant compared to the mainland residential areas where many different important nuisance species of different genera were present. Different attractant combinations, delivery systems, and trap types may be required to attract and effectively capture different species. Additional studies are in progress, and answers are still being sought to such questions as:

- How many and what type of trap/target should be used?
- What are the short and long term impacts of removal trapping on the target mosquito population?
- What influence does the flight range of the target species have on the effectiveness of removal trapping?

Acceptance by the public and/or professional mosquito control community of new technologies, such as mass trapping and other biological control technologies, will not be easy because people have grown accustomed to the immediate control obtained through spraying with chemical insecticides. Nevertheless the public needs to be educated and made to realize that the use of semiochemical-baited traps/targets, either locally or on an area wide scale, must be part of an integrated pest management program. Parks, resorts, golf courses, and other recreation areas may be good candidates to evaluate this technology. With the development of sufficiently effective traps and diversity of effective attractant combinations for different mosquito species, trapping systems could be used as behavioral control measures and added to the growing list of biologicallybased technologies for mosquito control

7.3.2 Mechanical Traps and Bug Zappers

The use of electronic devices to attract and kill flying mosquitoes or to repel them by sound is not supported by scientific research. None of the currently marketed products function as advertised. A public information campaign targeted at exposing the truth about these devices should be developed and implemented. A FMEL factsheet that discusses the advantages and disadvantages of various mosquito control devices is available at http://edis.ifas.ufl.edu/IN171 .

7.3.3 Biotechnology

Although bacterial insecticides, such as $B t i$ and $B s$, have been successfully used, high levels of resistance to $B s$ in the field have been reported in several countries (Rao et al. 1995; Silva-Filha et al. 1995; Yuan et al. 2000; Su and Mulla 2004). Furthermore, although no resistance to $B t i$ has been reported in the field, laboratory selection of mosquitoes with toxins produced by Bti results in high levels of resistance (Wirth et al. 1997).

These findings strongly suggest that novel mosquitocidal bacteria with a complex of toxins having different modes of action are needed. One way to achieve this goal is to isolate novel bacteria discussed earlier in this chapter. Another way is to make recombinant bacteria with improved efficacy. A good example of this approach is the construction of Bti producing $B s$ toxins that showed high potency against $C x$. quinquefasciatus being 21 -fold as potent as the wild-type Bti (Park et al. 2005). There is also research underway to develop transgenic algae and cyanobacteria based on the toxins of $B t i$ and $B s$.

Autocidal control is a method of pest control in which sterile or genetically altered insects are released to reduce the reproductive success of the local insect population. This type of control can be achieved via the release of sterile males or by manipulation or alteration of the genome of the target population. The theory of sterile-male release comes from the successful sterile-male eradication program for the screw worm fly in North America. Implementation of sterile-male technology for controlling Florida mosquitoes has a number of logistical and economic obstacles. Much basic research still needs to be conducted before sterile-male technology could be used for control of any given species in Florida.

Sterile-male release works well in situations where target populations are low and dispersal is limited, such as screw worm flies and Mediterranean fruit flies. With mosquitoes, such as Ae. taeniorhynchus and Ae. vexans, the number of fertile males emerging from a typical brood is so large that it would be impractical to mass rear sufficient sterile males to compete with them. Berryman et al. (1973) indicated that ratios of sterile:fertile males of $40: 1$ can fail to reduce populations. Consider the number of sterile males that would have to be synchronously raised to compete with the single emergence from a 500 acre salt marsh, where billions of adult Ae. taeniorhynchus emerge in a 24 hour period.

Genetic manipulation of mosquito populations requires much additional research if operational methods are to be developed. Some possible examples include the introduction of a lethal gene into the mosquito population and the incorporation of autogeny, a characteristic in female mosquitoes where eggs can be laid without the requirement for a blood meal. Researchers at FMEL have discovered that trypsin modulating oostatic hormone (TMOF) can stop digestion in mosquito larvae, causing them to die of starvation. They have genetically engineered the green alga Chlorella and yeast to produce TMOF. These recombinant organisms starve mosquito larvae to death after they eat the cells and, in the future, could be mass-produced, formulated, and applied over large areas.

7.3.4 Socio-cultural Changes

This category of alternative controls includes human avoidance of mosquitoes. Two lifestyle changes in Florida that have greatly reduced mosquito contact with human beings are air conditioning and television viewing. Today people seldom sit on a porch at dusk or at night during the summer.

Additional cultural changes that can be employed include wearing protective clothing and the curtailment of outdoor activities when the potential for mosquito attack is greatest. Mosquito control can influence the public perception of mosquito problems through educational programs in schools, through the media, and by cooperation with government agencies at the local, state, and federal level. With continuing urbanization, residents seem to be becoming even less tolerant of insect pests. However, with the recent publicity of mosquito-borne diseases such as West Nile and other encephalitides,
public receptiveness to temporary lifestyle changes for protection against mosquito bites may be increasing.

7.4 CONCLUSIONS

While it may be desirable to increase the use of biocontrol and alternative control methods in Florida mosquito control programs, many unanswered questions prevent immediate implementation of more than a few existing methods. The only biocontrol agents or alternative technology currently included in mosquito control programs are the mosquitocidal bacteria, Bti and Bs, and the mosquito fish Gambusia spp. Other technologies may be included in the future, but these methods may be limited to fewer programs with one or two specific mosquito problems. Changes in the state laws which govern the sale and advertisement of mosquito control devices or repellent devices of doubtful efficacy are strongly recommended.

7.5 REFERENCES AND GENERAL READING

Berryman, A.A., T P. Bogyo and L.C. Dickman. 1973. In: Proceedings of a panel organized by the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture. Vienna, 1971, International Atomic Energy Agency, Vienna.

Federici, B.A., H.W. Park and Y. Sakano. 2006. Insecticidal Protein Crystals of Bacillus thuringiensis. In: Shively, J.M. (Ed.). Microbiology Monographs No.1: Inclusions in Prokaryotes. Springer-Verlag, Berlin-Heidelberg. pp. 195-236.

Hallmon, C.F., A.M. Lopez, W.L. Turner and E.T. Schreiber. 1993. A modified handpump sprayer for the distribution of copepods for the control of container breeding mosquitoes. Journal of the Florida Mosquito Control Association 64: 82-83.

Jones, C.J. and E.T. Schreiber. 1994. Color and height affects on oviposition site preference of Toxorhynchites splendens and Toxorhynchites rutilus rutilus (Diptera: Culicidae) in the laboratory. Environmental Entomology 23: 130-135.

Park, H.W., D. K. Bideshi, M.C. Wirth, J.J. Johnson, W.E. Walton and B.A. Federici. 2005. Recombinant larvicidal bacteria with markedly improved efficacy against Culex vectors of West Nile Virus. American Journal of Tropical Medicine and Hygiene 72: 732-738.

Rao, D.R., T.R. Mani, R. Rajendran, A. S. Joseph, A. Gajanana and R. Reuben. 1995. Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. Journal of the American Mosquito Control Association 11: 1-5.

Rey, J.R., S. O'Connell, S. Suárez, Z. Menendez, L.P. Lounibos and G. Byer. 2004. Laboratory and field studies of Macrocyclops albidus (Crustacea: Copepoda) for
biological control of mosquitoes in artificial containers in a sub-tropical environment. Journal of Vector Ecology 28: 124-134.

Schreiber, E.T., W.L. Turner, A.M. Lopez, C.F. Hallmon and G.G. Marten. 1993. Evaluation of two cyclopoid copepods for Aedes albopictus control in tires in the Panhandle of Florida at low introduction rates. Journal of the Florida Mosquito Control Association 64: 73-77.

Schreiber, E.T. and C.J. Jones. 1994. Evaluation of inoculative releases of Toxorhynchites splendens (Diptera: Culicidae) in urban environments in Florida. Environmental Entomology 23: 770-777.

Schreiber, E.T., C.F. Hallmon, K.M. Eskridge and G.G. Marten. 1996. Effects of Mesocyclops longisetus (Copepoda: Cyclopidae) on mosquitoes that inhabit tires: Influence of litter type, quality and quantity. Journal of the American Mosquito Control Association 12: 688-694.

Service, M.W. 1983. Biological control of mosquitoes-has it a future? Mosquito News 43: 113-120.

Silva-Filha, M.H., L. Regis, C. Nielsen-LeRoux and J.F. Charles. 1995. Low-level resistance to Bacillus sphaericus in a field-treated population of Culex quinquefasciatus (Diptera: Culicidae). Journal of Economic Entomology 88: 525-530.

Su, T. and M.S. Mulla. 2004. Documentation of high-level Bacillus sphaericus 2362 resistance in field populations of Culex quinquefasciatus breeding in polluted water in Thailand. Journal of the American Mosquito Control Association 20: 405-411.

Tietze, N.S., P.G. Hester, K.R. Shaffer, S. Prescott and E.T. Schreiber. 1994. Integrated management of waste tire mosquitoes utilizing Mesocyclops longisetus (Copepoda:Cyclopidae), Bacillus thuringiensis israelensis, Bacillus sphaericus, and methoprene. Journal of the American Mosquito Control Association 10: 363-373.

Wirth, M.C., G.P. Georghiou and B.A. Federici. 1997. CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proceeding of the National Academy of Sciences, U.S.A. 94: 10536-10540.

Yuan, Z., Y. Zhang, Q. Cai and E.Y. Liu. 2000. High-level field resistance to Bacillus sphaericus C3-41 in Culex quinquefasciatus from southern China. Biocontrol Science and Technology 10: 41-49.

Chapter 8

DISEASE SURVEILLANCE, OUTBREAKS, AND CONTROL IN FLORIDA

Chapter Coordinator: Dr. Jonathan Day

1998 Coordinator: Dr. Donald Shroyer

Abstract

Summary Historically, Florida has suffered from repeated large epidemics of serious mosquito-borne disease, including yellow fever, malaria, dengue, and arboviral encephalitides. Many of these diseases remain a serious threat to Florida residents. Florida's proximity to areas in the Caribbean Basin that are currently suffering from these diseases contributes to concern about the potential for their resurgence in the state. The state also is susceptible to invasion by other emerging diseases arising in the region. In the past 35 years, St. Louis encephalitis virus and eastern equine encephalitis virus have become increasingly important in Florida. More recently, following the detection of West Nile virus in New York State during the fall of 1999, Florida experienced extensive morbidity and mortality in humans and equines beginning in 2001. Though poorly documented, the economic costs associated with mosquito-borne disease are probably growing rather than subsiding as development of the state progresses.

Surveillance and control of mosquito-borne disease was once largely coordinated and financed by the state of Florida. In recent decades, however, state involvement has declined. Active disease surveillance and control is now predominantly a local initiative supported by local revenues. Most counties conduct no active surveillance for mosquitoborne disease. It is generally accepted that Florida mosquito control agencies are maintained by local taxpayers only where there is demand for continuous relief from biting "nuisance" mosquitoes - with concern for mosquito-borne disease being only a secondary consideration. The Division of Environmental Health, Florida Department of Health monitors human cases of mosquito-borne and other reportable human diseases, while the Florida Department of Agriculture and Consumer Services independently monitors horse cases of West Nile encephalitis and eastern equine encephalitis. Active surveillance is conducted for West Nile encephalitis, St. Louis encephalitis, and eastern equine encephalitis in Florida and the Florida Department of Health publishes weekly
arbovirus summary reports with sentinel chicken, horse, mosquito, bird, and human surveillance data.

Where practiced, encephalitis surveillance in Florida consists primarily of: 1) monitoring virus exposure in sentinel chickens and 2) monitoring density of mosquito vector species. Wild avian mortality, especially that of corvids (blue jays and crows), and equine mortality also is used to monitor West Nile encephalitis virus transmission. Climatic conditions and mosquito infection rates are also monitored by some jurisdictions. Elevated rates of virus exposure in sentinel chickens can indicate an elevated risk of transmission to the human population. A cluster of animal cases also may indicate potential for transmission to humans. Properly interpreted, vector density data can be used for a long-range prediction of periods of potential increased transmission. High mosquito densities may support extensive enzootic transmission of these viruses, but they do not inevitably lead to epidemic activity in humans. The response to epidemic mosquito-borne disease can involve: 1) aggressive insecticide applications targeting the immature and adult stages of the vector mosquito populations and 2) notification of the public about increased arboviral transmission risk to reinforce the use of personal protection that reduces exposure to biting mosquitoes.

8.1 HISTORY OF DISEASE OUTBREAKS

The prevalence of freshwater and coastal wetlands in Florida and the subtropical climate of much of the state were formidable obstacles to its colonization by Europeans. These characteristics made the human inhabitants (and their domestic animals) particularly vulnerable to a variety of mosquito-transmitted pathogens and parasites. Most of these disease agents are endemic in Florida, and some have taken on a greater prominence as human development increasingly impinges on previously uninhabited regions.

8.1.1 West Nile Fever (WN)

West Nile Fever (WN) is caused by a Flavivirus that first entered Florida in the autumn of 2000 or the winter/spring of 2001. The likely mode of transport was in migrating birds and the location of the initial outbreak and amplification was in the Central Florida Panhandle. The transmission dynamics of West Nile virus (WNV) in Florida between 2001 and 2006 appear to be very similar to the transmission dynamics of St. Louis encephalitis virus (SLEV) which has been reported in Florida since 1952. It appears that wild birds are important amplification hosts for WNV and that the major mosquito vectors include Culex nigripalpus throughout the state and possibly Cx. quinquefasciatus in the Florida Panhandle. Compared with other parts of the continental United States, Florida has been spared from a major WN epidemic. Relatively few human cases have been reported during the seven years WNV has been endemic in Florida (2001-2007) when an average of 29 human cases was reported during each of the seven years. The
heaviest WNV transmission year in Florida so far was 2003 when 92 human cases were reported from throughout the state. Focal outbreaks have been reported from the Florida Panhandle in 2003, Dade County in 2004, and Pinellas County in 2005. The reason(s) for the absence of a major WN epidemic in Florida remain unclear, but in all likelihood, the environmental factors found in Florida will favor a major WN epidemic sometime in the future.

8.1.2 St. Louis Encephalitis (SLE)

St. Louis Encephalitis (SLE) is caused by a Flavivirus that is endemic to Florida and normally associated with wild birds (where it causes no disease) and several species of mosquito, most notably Culex nigripalpus. In the latter half of the 20th century, SLE became the predominant mosquito-borne disease of humans in Florida and was responsible for recurring epidemics in the south and central parts of the state. Major epidemics occurred in 1959, 1961, 1962, 1977, and 1990. The 1990 epidemic was the largest (226 documented cases) and most widespread (cases in 28 counties), with 11 fatalities. The 1959-1962 outbreaks in the Tampa Bay area involved 55 fatalities amongst 315 cases. The true impact of SLE during epidemics is difficult to assess, since there are typically several hundred mild or asymptomatic cases generated for every laboratory-diagnosed reported case. The 1977 and 1990 SLE epidemics resulted in considerable disruption of normal activities of permanent residents and negatively impacted tourism in affected parts of the state. Economic loss to the state has not been well-documented, but the 1990 epidemic alone is likely to have been responsible for millions of dollars of direct and indirect losses.

8.1.3 Eastern Equine Encephalitis (EEE)

Eastern equine encephalitis (EEE) disease is frequently a fatal affliction of humans, equines, and exotic avian species (e.g., pheasants, emus, and ostriches). The veterinary importance of EEE adds considerably to the economic impact of EEE virus (EEEV). The EEEV is an Alphavirus that is endemic to Florida. Two transmission cycles of EEEV are reported in Florida. The enzootic transmission cycle involves transmission of EEEV between Culiseta melanura and wild birds in freshwater swamps. Periodically, EEEV breaks out of the enzootic transmission cycles and is transmitted to horses and humans in areas surrounding the freshwater swamps. The vectors for these secondary transmission cycles are not known, but may involve freshwater mosquito species in the genera Aedes, Mansonia, and Coquillettidia. Epidemics of EEE have never been reported from Florida. Most human cases are isolated and few in number (rarely more than one or two per year). However, human EEE cases usually occur in focal areas where an increase in the number of horse cases is reported. Despite the commercial availability of an effective EEE vaccine for horses, several hundred horses are estimated to die of EEE each year in Florida (most unreported through official channels). The annual cost of veterinary care for prevention and treatment of EEE in horses was estimated to exceed $\$ 1,000,000$ per year in a study conducted during 1982 and 1983 and published by Wilson and colleagues in 1986. As with SLE virus (SLEV), EEEV is predominantly associated with a wild bird-mosquito transmission cycle. Humans and horses that are infected with EEEV are
regarded as biological dead-ends (i.e., mosquitoes feeding on these infected, viremic hosts do not become infected and are unable to transmit the virus) despite the severe disease experienced by these hosts.

8.1.4 Dengue (DEN)

Dengue is a disease with symptoms ranging from simple flu-like illness to severe hemorrhagic symptoms, shock, encephalitis, or death, and is caused by any of four distinct dengue virus species (DEN-1, $-2,-3$, or -4). Nearly unique among arboviruses (arthropod-borne viruses), the dengue viruses utilize humans as their only natural vertebrate host. Aedes aegypti and Ae. albopictus are the principal mosquito vectors of dengue virus in most of the world. Both of these species are endemic in Florida. Dengue has become an increasingly serious threat throughout the Caribbean and Central and South America in the past 30 years, and all four dengue viruses (DEN-1, $-2,-3$, and -4) occur in the region. Although endemic dengue transmission has not been reported in Florida since the late 1940s, several laboratory-diagnosed cases of dengue in travelers are regularly detected by State health officials. Epidemics of this disease had a major impact during the early development of the state. Dengue was first recognized in Florida in 1850 and in 1934 an epidemic with more than 15,000 cases was reported throughout peninsular Florida.

8.1.5 Yellow Fever (YF)

Like the DEN viruses, Yellow Fever (YF) is a Flavivirus. It can be transmitted in a mosquito-man-mosquito cycle, but a basic jungle cycle of YF maintains the virus in nature. The jungle cycle involves obscure forest-dwelling mosquitoes that can transmit YF virus (YFV) directly to their offspring via infected eggs or to forest monkey species bitten by these mosquitoes. Urban transmission cycles involving humans are maintained by Ae. aegypti mosquitoes, although laboratory studies have shown that Ae. albopictus is a potential YFV vector as well. Although YF has not been seen in Florida for many decades, it was the scourge of the area until its last appearance in 1905. Yellow Fever was first reported in Pensacola in 1764, and in 1874 killed 354 of that city's 1,400 residents. Similarly, 1,500 of Fernadina's 1,600 residents were infected with YF in 1877. Yellow Fever has not been eradicated from South America where it currently circulates in a jungle transmission cycle that occasionally results in sporadic human cases in Brazil, Venezuela, Ecuador, Peru, and Bolivia. Yellow Fever also occurs in most of Africa. There is an effective vaccine for YF that should be taken by travelers to jungle areas of South America or Africa.

8.1.6 Venezuelan Equine Encephalitis (VEE)

Venezuelan equine encephalitis (VEE) is caused by a complex of closely related but distinct Alphavirus subtypes. One VEE virus (VEEV) subtype, Everglades virus (EVEV), was discovered in the 1960s in the Everglades but is now known from as far north as Indian River County. The EVEV virus is apparently maintained in cotton mice, cotton rats, raccoons, and opossums, with transmission by the bite of Culex

Melanoconion subgenus mosquitoes, Aedes taeniorhynchus black saltmarsh mosquitoes, and others. The EVEV virus is apparently not a source of disease in horses, but serious human illness due to infection with this virus has been documented in two Florida residents. Other variants of VEE virus have been responsible for periodic equine epidemics of VEEV in northern South America and in Central America. Most recently, a 1995 VEE epidemic in South America reportedly involved at least 13,000 human cases. In Colombia, transmission seemed to be associated with Ae. taeniorhynchus and Psorophora columbiae mosquitoes.

8.1.7 Malaria

Human malaria is caused by infection with one of four protozoan parasites (Plasmodium species) that have a complex life cycle requiring Anopheles mosquitoes as intermediate hosts. Nearly all of the fourteen species of Anopheles mosquitoes found in Florida have been shown capable of transmitting the Plasmodium parasites, and historically malaria was a major impediment to the economic development of the state. Between 1917 and 1930, 33 of Florida's 67 counties had annual malaria death rates of 100 or more per 100,000 residents. During the 1930s and 1940s, mosquito control efforts contributed to a large reduction in malaria cases in Florida. Worldwide, malaria is a growing international problem. Annually, there are 400-500 million cases of malaria, with at least 2 million fatalities. Large amounts of funds have been provided by the U.S. Government and the Bill and Melinda Gates Foundation to combat this problem. Despite the decline of malaria transmission in North America, dozens of imported malaria cases are reported annually in Florida residents who have returned from international travels. These imported cases provide the opportunity to infect local mosquito populations, reestablishing transmission within Florida. In fact, a camper in Gulf County in the Florida panhandle acquired malaria from local mosquitoes in 1990, as did two individuals in Palm Beach County in 1996, and eight individuals in the same area of Palm Beach County in 2003, highlighting the potential for renewed endemic malaria transmission in the State.

8.1.8 Dog Heartworm

Dog heartworm is a chronic disease of dogs and sometimes cats that is due to a mosquito-transmitted filarial worm parasite (Dirofilaria immitis). Large adult worms dwell in the canine heart and release large numbers of microscopic, embryonic worms (microfilariae) into the bloodstream. Microfilariae are ingested by blood-feeding mosquitoes and develop into infective $3^{\text {ra }}$ stage larvae which eventually infect the salivary glands of susceptible mosquito species. The 3 stage larvae escape mosquito mouthparts during blood-feeding to infect a new mammalian host (ideally, another dog) and then migrate to the heart where they mature to the adult stage. Untreated, heartworm is often a fatal disease in dogs. Human exposure to infective heartworm larvae is probably common, since many of Florida's common mosquito species are potential vectors. Although heartworms fail to fully complete development in humans and cause no real disease, the invading worms are sometimes detected in lung X-rays, where they are easily confused with cancerous lesions. Prevention and management of heartworm in dogs is
best accomplished by use of available pharmaceuticals which kill the infective larvae that are introduced by the infected mosquitoes.

8.1.9 Mosquito Annoyance and Discomfort

Although mosquito control programs cannot directly address the needs of those affected, a few minor public health consequences caused by mosquitoes should be mentioned. An undocumented but presumably small proportion of the human population experiences true allergic reactions to mosquito bites. Undoubtedly, a larger number of people (especially children) suffer from self-induced injury related to excessive scratching of fresh mosquito bites. This scratching response can cause considerable alarm in parents of infants and does produce some risk of secondary bacterial infection. Another documented though rare phenomenon is the syndrome described as entomophobia. Entomophobes experience an uncontrollable, irrational fear of insects resulting from their belief that their bodies are infested (despite evidence to the contrary). Entomophobes may induce numerous secondary skin lesions by scratching imaginary bites and this reinforces their conviction of a personal insect infestation.

8.2 ECONOMIC COSTS OF SURVEILLANCE, PREVENTION, AND CONTROL

It appears that there has never been a careful analysis of the state-wide costs of surveillance, prevention, and control of mosquito-borne diseases in Florida. Such an analysis should include costs that accrue during normal and epidemic years. Costs incurred by mosquito control programs, public health agencies, businesses - as well as the cumulative medical and other costs incurred by individual citizens - should be part of the analysis. The tourism industry and school administrators bemoaned loss of revenue during the 1990 epidemic of SLE in Florida when cancellation of school-sponsored outdoor athletic events (especially high school football games) was frequently cited. During non-epidemic years, disease-related responses by mosquito control programs and public health agencies do not constitute a major part of their budgets, but the collective, state-wide expenditure (if calculated) would probably be substantial. Mosquito-borne diseases in Florida produce a significant cost to the State, even when not at the forefront of public attention.

Costs associated with single human cases of diseases like SLE, WN, and EEE can be enormous and drain personal and public funds alike. Non-fatal cases of WN, SLE, and EEE often suffer residual neurological damage, and full recovery to a productive life is not always possible. A 1995 cost analysis of EEE survivors in Massachusetts revealed that life-time medical care and support for a child surviving severe EEE was approximately $\$ 3$ million, exceeding the economic burden imposed by other major infections (including AIDS). Even mild EEE cases that did not suffer chronic residual damage experienced an economic burden of $\$ 21,000$. The Massachusetts study concluded that the costs of a single severe case of EEE far exceeded direct costs of statewide aerial adulticiding during periods of epidemic risk. There is also a growing
body of evidence that WN survivors frequently require costly long-term medical care. A 2006 study by Carson and colleagues of 49 patients surviving WN fever or WN neuroinvasive disease found that half had lingering health issues 13 months after diagnosis, including fatigue, memory problems, depression, and tremors.

8.3 SURVEILLANCE FOR MOSQUITO-BORNE DISEASE IN FLORIDA

Vector-borne disease systems offer special challenges to those responsible for prevention and control of disease outbreaks. With the exceptions of YF and Japanese encephalitis, commercially produced human vaccines are not available. Most vector-borne disease systems have complex transmission cycles that involve multiple host species. These hosts can be heavily influenced by rainfall and temperature patterns, factors that are also inherently unpredictable. Consequently, outbreaks of mosquito-borne disease cannot be reliably predicted except in a general way, or at best only over a short period of time.

Dengue provides a dramatic illustration of the difficulty in predicting impending epidemic activity. Dengue outbreaks are notoriously difficult to predict, despite the fact that humans are the only vertebrate host involved. This situation is true even in Puerto Rico, which experiences endemic dengue activity annually with periodic outbreaks, despite the presence of the Centers for Disease Control and Prevention's prestigious dengue laboratory in San Juan. Zoonotic diseases such as WN, SLE, and EEE that involve disease cycles in other vertebrate species are even more problematic.

Unlike many diseases of humans, mosquito-borne diseases are not transmitted person-toperson but via one or more insect vectors. Medical and public health workers that are more accustomed to dealing with conventional infectious diseases do not always appreciate this fundamental distinction. Public health agencies are understandably reluctant to issue Mosquito-borne Illness Alerts until at least one human case is seen. However, it has been repeatedly established that emergency measures to reduce arboviral encephalitis transmission are largely ineffective if delayed until the index case appears. For SLE, most of the cases in an epidemic have already received an infectious bite from a mosquito before the initial case becomes symptomatic and is identified by laboratory testing. Timely surveillance data and a quick vector control response to sentinel, animal disease, and vector surveillance data are clearly essential.

8.4 ORGANIZATION OF DISEASE SURVEILLANCE IN FLORIDA

Surveillance and control of mosquito-borne disease in Florida was initially the responsibility of the State government. In fact, YF epidemics were the stimulus behind the creation of the Florida State Board of Health (FSBH) in 1889. In its early years, FSBH was heavily involved with control of YF, DEN, and malaria, while in the early 1960s emphasis switched to the emerging problem of SLE. This focus prompted the development of the Epidemiology Research Center in Tampa to provide laboratory
diagnostic services and conduct research related to Florida arboviruses. Following the 1977 central Florida SLE epidemic (110 cases in 20 counties), the first statewide arbovirus surveillance program was established by FSBH. This program provided laboratory services and financial assistance to local agencies to monitor transmission of SLEV and EEEV by monitoring sentinel chickens maintained in the field. This support provided important information on the seasonality of transmission in the limited number of participating counties. The FSBH was incorporated into the new Department of Health and Rehabilitative Services (FDHRS) in 1976. In 1997, this department was reorganized, and all health functions were transferred to the new Florida Department of Health (FDOH).

Only fourteen counties have monitored sentinel chickens for all 28 years that the surveillance program has been in existence. Although the State continues to provide serologic testing of sentinel blood samples, state funding for other costs of the program disappeared in the 1980s. It can be argued that the sentinel chicken program is no longer fundamentally a state surveillance program, as participation is entirely dependent on the interest and resources of the local agency. Current participants are typically mosquito control programs, although a few county health departments (CHDs - part of the FDOH structure) are directly involved. Participants submit serum samples to the FDOH Bureau of Laboratories in Tampa, where hemagglutination-inhibition (HI), IgM ELISA, plaque reduction neutralization tests (PRNT), polymerase chain reaction (PCR), and virus isolation tests are performed to detect antibodies and antigen to SLEV, WNV, EEEV, and Highlands J virus (HJV). Each week, participating agencies received facsimile or electronic copies of the serological and viral isolation test results for their submissions of that week. Combined results from all participating counties are also provided, if requested. These combined results are also distributed to each mosquito control program director and to all CHDs in the state. The FDOH reports the weekly serologic data to the local agency but does not recommend any specific courses of action relative to vector control. Active surveillance for mosquito-borne disease is non-existent in most Florida counties.

While the FDOH Division of Environmental Health conducts surveillance for arboviral encephalitis in humans, the FDOH CHD Director is responsible for issuing local Mosquito-borne Illness Advisories and Alerts for WN, SLE, or EEE. The local mosquito control agency should be consulted prior to the issuance of a Mosquito-borne Illness Advisory or Alert since in addition to being a "first responder" the mosquito control agency is usually the collector of all local surveillance data. Unfortunately, this communication does not always happen. In some counties there is a long-standing communication problem that undermines the local ability to respond to episodes of increased epidemic risk.

Supplemental surveillance data are provided by the FDACS Bureau of Diagnostic Laboratories in Kissimmee, which tests veterinarian-submitted blood samples from horses and other domestic animals for antibodies to WNV, EEEV, and VEEV and other agents. These data are frequently of lesser public health value because the number of
submissions is generally too low to adequately sample any particular locality and data are generally reported long after infection or onset dates. Lee County Mosquito Control District performs its own testing on sentinel chicken sera collected by its program, although samples also are sent to the FDOH Bureau of Laboratories in Tampa. Other counties and districts of the state also collect serological samples from wild birds to monitor arbovirus activity.

Since 2002, Florida Agriculture and Mechanical University, John A. Mulrennan, Sr. Public Health Entomology Research and Education Center (PHEREC) has conducted a cooperative mosquito and wild bird surveillance program with Okaloosa, Santa Rosa, North Walton, and Washington Counties in northwest Florida. All serological samples from this program are processed by the FDOH Laboratory in Tampa. The FDOH also monitors Florida Fish and Wildlife Conservation Commission wild bird mortality data as a passive indicator of WNV transmission. For mosquito-borne diseases other than WN, SLE, HJ, and EEE, surveillance is entirely restricted to the monitoring of human cases by public health agencies.

8.5 GENERAL APPROACHES TO SURVEILLANCE OF ENCEPHALITIS

One of the principal goals of most arbovirus surveillance programs is to anticipate circumstances conducive to the appearance of disease in humans before this occurs (or at least before many cases of disease are suspected or diagnosed). From this perspective, it is possible to group all surveillance methods or approaches into two broad categories: predictive factors and transmission monitors. Ideally, an integrated surveillance program (Day and Lewis 1992) will incorporate one or more components from each category. Integrated programs tend to have better information at hand to guide their decisions than is the case for more limited surveillance programs.

Predictive factors are not directly linked to virus transmission per se but have some indirect correlation or relationship to virus transmission. Transmission monitors are more likely to influence decision-making by public health agencies, since they provide data that suggest imminent - not future - risk. Predictive factors that may be monitored as part of a disease surveillance program include the following:

- Population density of potential vector species
- Vector population dynamics and age structure
- Recent and long-term patterns of rainfall and other weather parameters (These not only affect vector numbers but also can influence vector behavior, vector population age structure, and the reproductive success of vertebrate hosts of the virus.)
- Immunological status of wild-caught vertebrate hosts
- Prevalence of infected mosquitoes in field samples (Field infection rates in mosquitoes)
- Virus activity in the preceding year or in adjacent surveillance regions

Data on the immunological status of wild vertebrates, such as birds, may provide a direct measure of virus transmission under three conditions:

1) serological tests are performed that are diagnostic of recent infections
2) blood samples tested are from a nestling or hatching-year bird
3) a series of negative serum samples precede a positive sample

Without meeting one of these conditions, it is very difficult to determine when the animal was bitten by the virus-infected mosquito. Consequently, it is not possible to determine whether transmission occurred one month or one year ago.

Mosquito infection rate data do not necessarily predict present or future transmission risk. Even assuming an adequate population sampling scheme (which is rarely achieved), the detection of virus in a mosquito pool (typically 50 females from the same species from a specific locality) cannot distinguish between mosquitoes capable of transmission and those that are non-transmitters. The non-transmitters could include individuals that are incompletely susceptible (perhaps with infection limited to the midgut), as well as potentially competent vector individuals who have been infected too recently to have developed salivary gland infections. Climatic factors affecting mosquito longevity may preclude many of the latter from surviving to an age when transmission will occur. Unfortunately, mosquito infection rates calculated by assay of pooled mosquitoes are usually assumed to be far more precise than can be justified. Seemingly large differences in calculated infection rates are generally statistically identical, since such group-testing inherently creates extreme confidence limits that can only be overcome by testing much larger mosquito samples than those generally processed. The extreme abundance and mobility of Cx. nigripalpus in Florida also has implications for the use of mosquito infection rates as a primary surveillance tool for WNV and SLEV. The SLEV infection rates rarely exceeded 1:1000 in Cx. nigripalpus during the 1990 epidemic in Indian River County (Shroyer 1991).

The following methods are virus transmission monitors:

- Regular serological testing of sentinel vertebrates maintained in habitats appropriate for sampling the target vector mosquito species
- Isolation of the virus from wild or sentinel vertebrates
- Monitoring human cases of arboviral disease (i.e., human sentinels)

The last option is not acceptable as a primary arbovirus surveillance tool, yet it is often the default method employed because resources (or interests) will not support a more comprehensive surveillance program. Clinical symptoms of most arboviral diseases are non-specific and, unless alerted to the possibility, local physicians often fail to recognize the initial human cases in an outbreak. As noted previously, retrospective analysis of arbovirus epidemics provides examples in which a substantial proportion of all human cases were actually infected before the index case was identified.

When the goal of arbovirus surveillance is to provide an early warning during times of elevated risk for disease in humans, the surveillance system will yield one of three possible outcomes:

Ideally, the surveillance system will detect a period of risk in advance of the appearance of disease. This outcome not only provides an opportunity to initiate preventive and emergency control procedures but also provides time to alert the medical community to recognize potential human cases that might not otherwise be recognized as mosquitoborne disease. Unfortunately, surveillance systems frequently fail in either of two ways.

Due to sampling error, data may fail to suggest an imminent risk, when in fact an outbreak of disease is about to occur. In this false-negative scenario, the responsible agency is caught off guard by the virus. The appearance that virus activity is at a low level can sometimes foster a false sense of security.

Surveillance data may instead suggest the imminent occurrence of a disease outbreak, when in fact one will not materialize. This false-positive outcome sometimes provokes charges that the responsible agency is "crying wolf" and that surveillance activities are a waste of time.

In addition to the obvious potential for endangering public health, either type of failure can seriously jeopardize local support for surveillance programs and personnel. Responsible public health agencies should probably attempt to err on the conservative side in issuing public alerts when field data indicate that increased arboviral virus transmission to humans is likely to occur.

In their efforts to establish the best arbovirus surveillance program possible, agencies sometimes fail to recognize that there is no single, universally applicable, superior surveillance method. Integrated strategies of arbovirus surveillance for prediction of disease outbreaks are least likely to fail, and different agencies concerned with the same virus may be completely justified in following different strategies in their surveillance programs.

Heavily-populated urban regions will generally require different surveillance strategies than predominantly rural ones. Rural-oriented programs often contend with extensive natural or agricultural wetlands, as well as a smaller human population (i.e., smaller tax base to provide operating funds). Even when concerned with the same disease, different
local agencies must deal with differing terrain, mosquito habitats, human population patterns, financial constraints, and logistical limitations on their ability to effectively control vector mosquitoes. It would be inappropriate and dangerous to expect each local jurisdiction in Florida to design its surveillance program along identical lines.

No matter what specific methods are employed, a local arbovirus surveillance program needs several years of operation to accumulate a baseline surveillance data set that is useful for assessing epidemic risk in that geographic area. Surveillance programs can succeed in the long run only to the extent that they are able to clearly define realistic surveillance goals that are appropriate for the available control and response resources.

The organizational structure of the local mosquito control office and its relationship to the CHD (which has responsibility for issuing a Mosquito-borne Illness Advisory or Alert) are also important considerations. Where active surveillance is conducted locally by an independent mosquito control district, it is especially important to have preestablished lines of communication to the CHD. Otherwise, it will likely prove impossible to effectively motivate the CHD to issue a medical alert when surveillance data clearly warrant one.

8.6 OVERVIEW OF CURRENT SURVEILLANCE METHODS FOR ENCEPHALITIS

As noted, surveillance of human cases of mosquito-borne disease in Florida is done by the state FDOH Division of Environmental Health in Tallahassee and is dependent upon data provided by individual physicians and CHDs. Surveillance of equine cases of EEE and WN is conducted by the State Veterinarian's Office and the FDACS Bureau of Diagnostics Laboratories in Kissimmee. These data are made available to local mosquito control programs on a weekly basis. However, serologic testing for arboviruses is infrequently done for patients and animals with generalized symptoms consistent with mild forms of WN, SLE or EEE, unless there has already been a recent medical alert notifying local physicians of the possibility of local transmission. This situation highlights another reason why human and animal case surveillance generally provide data too late to allow implementation of a meaningful vector control intervention.

Aside from case surveillance, other forms of mosquito-borne disease surveillance currently used in Florida include:

- Monitoring transmission of WNV, SLEV, and EEEV to sentinel birds (e.g., chickens). In 1990, data from sentinel chicken flocks detected the imminent arrival of Florida's most extensive SLE epidemic before the appearance of the human index case.
- Monitoring some index of vector population density, usually by selectively trapping some fraction of the population that is actively flying at night. In
many cases, this type of surveillance is performed primarily to assess the need for insecticide applications to reduce annoyance of biting mosquito populations.
- Monitoring and testing of dead birds for WNV infection.
- Monitoring qualitative indices of representative vector populations to track (in real-time) the physiological status, blood-feeding activity, oviposition, and physiological age of local mosquitoes.
- Serologic sampling of wild vertebrates for evidence of past arboviral infection with an arbovirus (e.g., WNV, SLEV, or EEEV).
- Laboratory testing of population samples of potential vector species to determine the presence or absence of virus.

The first three methods of encephalitis surveillance are commonly employed in Florida. The last three methods are employed either experimentally or in limited areas, usually with active participation by university entomologists or vector specialists.

Concerning the role and limitations of developing molecular technologies, innovative molecular technologies are being applied to many diagnostic problems in medicine and have application to the highly specialized needs of those monitoring mosquito-borne diseases. Polymerase chain reaction (PCR)-based diagnostic tests, in particular, are attractive candidates for increasing the speed and, in some cases the accuracy, of detecting the presence of an arbovirus. The PCR technology has been field-tested for all of the major North American arboviruses and has proven exceptionally efficient for antigen-capture type analyses on avian and mammalian tissues and on mosquito pools. Analytical problems associated with false-positive tests that measure incomplete sections of viral RNA, rather than live virus, remain an important hurdle that needs to be overcome before PCR will become a complete surveillance tool.

There is an unfortunate tendency to view this welcome development of molecular tools as a "magic bullet" that will eliminate the need for other forms of encephalitis surveillance, particularly the monitoring of virus transmission to sentinel animals. Yet, no matter how useful, these techniques are only new virologic tools, not wholly new approaches to arbovirus surveillance. The monitoring of infection rates in mosquito population samples addresses a fundamentally different part of the virus transmission cycle than does monitoring of virus transmission to sentinel chickens, regardless of the laboratory methods employed to determine whether or not mosquitoes are infected.

8.7 CONTROL OF DISEASE EPIDEMICS

When an epidemic of mosquito-borne disease is imminent or in progress, the primary means of disease control are: 1) aggressive insecticidal treatment of suspect vector populations, including aerial applications and 2) public notification and education of the
medical community and the general public. Notification of the medical community enhances the likelihood of proper clinical diagnosis of suspected cases and makes it possible to follow the course of the epidemic. This information can be useful in establishing when risk of further transmission has declined and when emergency surveillance and control measures can be terminated. While notification of the public of an impending epidemic can generate anxiety if treated sensationally by news media, surveillance personnel have an obligation to advise the population -- in realistic terms -of their best assessment of the situation and the public health risk. The overriding benefit of public notification is that citizens can be stimulated to take personal protective measures, such as reducing exposure to mosquito bites by use of repellents, by wearing protective clothing, or by modifying outdoor activity. The benefit of public notification is probably most pronounced in situations where insecticidal control of the vector mosquito is most difficult and ineffectual (e.g., control of SLEV or WNV vectors). It is believed that aggressive public notification prior to the 1990 SLE epidemic in Indian River County substantially reduced the number of human cases.

8.8 REFERENCES AND GENERAL READING

Carson, P.J., P. Konewko, K.S. Wold et al. 2006. Long-term outcomes of WNV infection. Clinical Infectious Diseases 43: 723-730.

Day, J.F. and L.M. Stark. 1996. Transmission patterns of St. Louis encephalitis and eastern equine encephalitis viruses in Florida: 1978-1993. Journal of Medical Entomology 33: 132-139.

Day, J.F. and A.L. Lewis. 1992. An integrated approach to St. Louis encephalitis surveillance in Indian River County, Florida. Florida Journal of Public Health 4: 12-16.

Shroyer, D.A. 1991. The 1990 Florida epidemic of St. Louis encephalitis: virus infection rates in Culex nigripalpus. Journal of the Florida Mosquito Control Association 62: 69-71.

St. Louis Encephalitis in Florida. 1969. Florida State Board of Health Monograph Series No. 12. Jacksonville, Florida.

Villari, P., A. Spielman, N. Komar, M. McDowell and R.E. Timperi. 1995. The economic burden imposed by a residual case of eastern encephalitis. American Journal of Tropical Medicine and Hygiene 52: 8-13.

Wilson, J.H., H.L. Rubin, T.J. Lane and E.P.J. Gibbs. 1986. A survey of eastern equine encephalomyelitis in Florida horses: Prevalence, economic impact, and management practice, 1982-1983. Preventative Veterinary Medicine 4: 261-271.

Chapter 9

MOSQUITO CONTROL BENEFITS AND RISKS

Chapter Coordinators: Dr. Larry Hribar and Dana Bryan
1998 Coordinators: Alex Cordero and Dr. Scott Taylor

Abstract

Summary In Florida, both mosquito control and the protection of environmentally sensitive habitats are legislatively mandated. Clearly, modern mosquito control poses some environmental risks, yet it just as obviously provides benefits. Public health protection, improved human comfort from mosquito annoyance, and economic payback are the most obvious benefits. Impacts on fish, wildlife, and non-target arthropods are some of the risks. There is also growing concern about the risks of human exposure to pesticides in general. These potential impacts to both natural communities and to humans need to be sufficiently understood to help risk/benefit analysis that can result in informed decision making.

Modern mosquito control methodology dictates the use of an integrated pest management program, utilizing adulticiding, larviciding, and source reduction as appropriate, and incorporating a public education component. Mosquito control agencies and environmental land management agencies are required to work together to resolve any controversial issues that arise by carefully weighing the risks and benefits in each situation.

9.1 INTRODUCTION

The use of various chemicals to attempt to control pests of humans, crops, and animals has been documented since ancient times. Homer described how Odysseus fumigated a house with burning sulfur to control pests (Ware 1994). The Chinese used arsenic sulfide to kill insects (Pimentel and Lehman 1993). The use and success of chemicals drastically changed with the development of synthetic pesticides a little over fifty years ago. The Swiss chemist Paul Müller discovered the insecticidal properties of the organochlorine pesticide dichloro-diphenyl-trichloroethane (DDT), and the United States Department of Agriculture (USDA) laboratory in Orlando developed it for field use by the armed services. An arsenic compound (Paris green) was used in Florida for larval control during the 1960s.

These and many other synthetic pesticides were developed by scientists for the control of insects and other pests in many situations in both public health and agriculture. In the early years their effectiveness, just like that of antibiotics, was so dramatic that their development was considered miraculous. As a result, these chemicals were widely and often indiscriminately applied. While some people questioned such a widespread use of pesticides, many more people praised it. At that time, research had not yet documented the environmental, ecological, or human hazards of these materials. What people did know throughout the world was that chemical control of mosquitoes and other pests significantly reduced human illness and death and greatly improved human comfort.

The risks involved with pesticide use were not widely questioned until the early 1960s when Rachel Carson published Silent Spring (Carson 1962). Although the science was controversial (Edwards 2002), this publication increased public awareness of issues such as:

1) acute and chronic pesticide impacts to humans, wildlife, and other nontarget species
2) the persistence of certain pesticides in the environment
3) the transport of pesticides outside target areas, which can cause unintended environmental damage

Mosquito control contributes to some of these environmental problems, but compared to agricultural methods and materials, mosquito control pesticides are applied at lower dosages and in smaller amounts (Lyon and Steele 1998). In Florida, agriculture and lawn care are believed to represent much greater potential impacts to the aquatic environment than does mosquito control (Hushon 2006).

Mosquito control pesticides are regulated federally by the U.S. Environmental Protection Agency (EPA) which is responsible for authorizing labels for allowable chemicals. The legal authority for mosquito control in Florida is Chapter 388 Florida Statues (F.S.). Mosquito control is regulated by the Florida Department of Agriculture and Consumer Services (FDACS), which designates which chemicals are permitted for use. FDACS also oversees Florida mosquito control operations by making certain that they comply with Florida Statutes and any appropriate rules.

The University of Florida's (UF) Bureau of Economic and Business Research (2004) estimates that from 1900 to 2000 Florida's population increased by almost $3,000 \%$. There is little doubt that implementation of both physical and chemical mosquito control techniques aided in the development and utilization of areas that previously were not considered acceptable for human habitation. Certainly, Florida's explosive growth in coastal areas after World War II was due in large part to the use of synthetic pesticides and physical methods to control mosquitoes.

Controversy often accompanies mosquito control because the chemicals frequently are applied in developed areas, and some people are concerned with their own exposure. Treatment also occurs in natural areas, including protected public lands, and some people are concerned about effects on wildlife. It is vitally important that the risks and benefits of mosquito control practices are analyzed scientifically so that the control decisions can be made with a good understanding of their effects.

Prior to the early 1980s, mosquito control practices were questioned only when obvious, adverse effects on wildlife were observed (e.g., Patterson 2004). We now better appreciate the complex interrelationships of organisms within an ecosystem. For instance, the food of many marine organisms consists of small arthropods or organisms that are similar in size to mosquito larvae, and such organisms differ greatly in their susceptibility to pesticides (Curtis and Profeta 1993). Some organisms may be more sensitive to pesticides than mosquitoes. Impacting any portion of this food web may affect other parts or even the entire web. The current lack of knowledge concerning the biology of many non-target species and their community functions further complicates the problem of risk/benefit analysis.

Mosquito control practices usually focus on the monitoring of mosquito populations with little or no routine monitoring of non-target species. The difficulty and cost of monitoring non-target effects in the natural environment has impeded this type of work. Ideally, long-term goals for non-target assessments are:

1. Identify key non-target indicator species to monitor on a routine basis
2. Establish insecticide impact thresholds for these indicator species
3. Develop standardized methodologies for monitoring post-application insecticide residues

Moreover, mosquito control programs must place more emphasis on non-chemical techniques to control mosquitoes in order to reduce non-target impacts.

9.2 INTEGRATED PEST MANAGEMENT (IPM)

It is important that mosquito control agencies maintain a broad selection of tools, both chemical and non-chemical, to use in managing mosquito populations in Florida. It is also important that the potential impacts to both natural communities and to humans are understood sufficiently to help in risk/benefit analysis that can result in informed decision-making. For the most part, since 1949, mosquito agency activities have been directed primarily towards nuisance mosquitoes, those which are of economic importance but do not transmit diseases to humans. However, mosquito-borne diseases are on the rise worldwide and several diseases are threats to public health and animal health in Florida. These diseases include

St. Louis encephalitis, eastern equine encephalitis, Highlands J encephalitis, West Nile encephalitis, and California group encephalitis (i.e., Keystone and Trivitattus).

The most effective and environmentally sound pest control programs are based on a combination of methods including source reduction, chemical control, and biological control (Rose 2001). Using a combination of these techniques is termed Integrated Pest Management (IPM). IPM has been developed to encourage a balanced usage of cultural and insecticidal methodologies and habitat manipulations in order to minimize adverse environmental impacts. To effectively use IPM, it is necessary to have a thorough understanding of the basic biology of the pest species and the many factors that influence their density. Because of rapid mosquito population reduction and economic considerations, many mosquito control programs use chemical applications as their primary control method. A program that relies solely on chemical control is not an IPM program. While most components of an IPM program have some level of environmental risk, the overall risks are likely to be less than a program that relies solely on chemical control, which might cause undesirable non-target mortality and contribute to chemical resistance in mosquitoes.

9.3 MOSQUITO CONTROL INSECTICIDES: PAST AND PRESENT

The synthetic pesticides used for mosquito control over the years have varied greatly in structure, toxicity, persistence, and environmental impact. These chemicals include the following:

Organochlorine pesticides are no longer used for mosquito control in Florida, although methoxychlor was labeled for use until its cancellation in 2003 (Edwards 2004). Some organochlorines that were formerly used included DDT, BHC, chlordane, heptachlor, aldrin, and dieldrin. Organochlorines are relatively nonsoluble in water and very persistent in soils. Also, they are lipophilic, i.e., they bioaccumulate in fat and other lipids. Largely, it was these lipophilic properties that resulted in organochlorines no longer being labeled for use in the U.S. These bans are still actively criticized by some (e.g., Tren and Bate 2000, Bailey 2002, Edwards 2004). In spite of cancellation of all uses of these chemicals in the U.S. by the EPA between 1973 and 1988 (Ware 1994), many soils and rivers are still contaminated with residues of the most persistent of these compounds (i.e., DDT, endrin, dieldrin) (White and Krynitsky 1986), and they continue to be detected in wildlife (Clark et al. 1995, Sparling et al. 2001). The total concentration of DDT residues in the U.S. appears to be declining (Nowell et al. 1999). Organochlorines continue to be used for agricultural and mosquito control in developing countries.

Organophosphates (OP). Although OPs are generally less persistent than organochlorines, some have higher acute toxicities for mammals and other
organisms (Pimentel and Lehman 1993). Currently recommended OP compounds are the adulticides malathion (Fyfanon ${ }^{\circledR}$), naled (Dibrom ${ }^{\circledR}$), and the larvicide temephos (Abate ${ }^{\circledR}$). These compounds have relatively low mammalian toxicity and most usually break down rapidly; however, some intermediate breakdown products are also toxic. Accidental discharge of organophosphorus insecticides into aquatic environments has caused fish kills, and some of the OP compounds are toxic to microcrustaceans such as Daphnia spp. (WHO 1986a). Fenthion (Baytex ${ }^{\circledR}$) is no longer used for mosquito control in the U.S.

Pyrethroids. Pyrethroid insecticides are based on the chemical structure of a group of naturally occurring compounds, pyrethrums, derived from a flower native to Africa. Products extracted from these flowers have been used for thousands of years and are still used today but are extremely expensive. Artificially created pyrethroids used today in Florida for mosquito control are resmethrin, permethrin, and sumethrin. Pyrethroids are more persistent than natural pyrethrums and in a few cases are more persistent than OPs, although resmethrin degrades rapidly in the environment (WHO 1989). Pyrethroids are broad-spectrum toxicants that are very toxic to fish, aquatic organisms, and most other cold-blooded animals. Due to their high and broad range of toxicity to insects, they may affect beneficial species, thereby lessening natural controls, and, for some pests, may actually increase the need for further chemical control (Edwards 1993). However, to date, a need for increased chemical control because of pyrethroid use for mosquito control has not been demonstrated. Pyrethroids exhibit low toxicity to birds and mammals (EPA 2002).

Carbamates. Methyl carbamates are related chemically to physostigmine, a naturally-occurring alkaloid isolated from the calabar bean (WHO 1986b). No carbamates are currently used for mosquito control in Florida, although propoxur has been used. Carbamates are broad-spectrum, tend to be more persistent than organophosphates in soil, and thus have the potential for considerable environmental impact (Edwards 1993). However, data exist that suggest carbamates are liable to degradation by soil microorganisms (WHO 1986b). Propoxur is considered to be moderately toxic to mammals (WHO 1986b).

Insect Growth Regulators (IGR). IGRs interfere with insect development typically resulting in larval or pupal mortality. For more than thirty years, the insect growth regulator methoprene, Altosid ${ }^{\otimes}$, has been a widely used mosquito larvicide in Florida and elsewhere in the world. Methoprene is specific to immature insect larvae, especially dipterans, which include mosquitoes. Methoprene has extremely low mammalian toxicity. Diflubenzuron (Dimilin ${ }^{\circledR}$), a chitin inhibitor, has much broader non-target impacts than methoprene, especially on marine and freshwater arthropods such as shrimp and crabs. Therefore, Dimilin is severely restricted to certain sites and is not widely used.

Biologicals. Bacillus thuringiensis israelensis (Bti) and B. sphaericus (Bs) are both bacterial larvicides (acting as stomach poisons) that are quite specific to
mosquito larvae and a few other aquatic dipterans. Bti is used worldwide. $B s$ is more recently labeled and is only effective in freshwater habitats. Bs has a narrower host range than does Bti (Bauman et al. 1991). Bs can be used in water of much lower quality than can $B t i$ and can actually improve water quality by suppressing algal growth (Silapanunatakul et al. 1983, Su and Mulla 1999). Both are non-toxic to mammals and exhibit few or no non-target effects (WHO 1999, Ware 1994, Boisvert and Boisvert 2000).

Surface films. Petroleum distillates (i.e., oils) are used as pupacides, to suffocate mosquitoes prior to adult emergence. These oils can be toxic to predatory Hemiptera and Coleoptera, as well as sheepshead minnows, but are not toxic to rotifers and some protozoa (Mulla and Darwazeh 1981; Tietze et al. 1993, 1995). Monomolecular films, alcohol ethoxylated surfactants, are used as larvicides and pupacides. They disrupt surface tension and cause larvae and pupae to drown. Monomolecular films currently are being evaluated in Florida regarding their toxicity to non-target insects in salt water marsh habitat. Monomolecular films are not as efficacious when exposed to high winds (Nayar and Ali 2003).

9.4 BENEFITS OF MOSQUITO CONTROL

Broadly speaking, the benefits of mosquito control can be divided into three classes: nuisance benefits, economic benefits, and public health benefits. Nuisance benefits include relief to people around homes or in parks and recreational areas. Nuisance benefits can even be said to extend to pets and to wildlife. Economic benefits include increased real estate values, enhanced tourism and related business interests, or increased livestock or poultry production. Public health benefits include the reduction of infectious disease agents.

9.4.1 Nuisance Benefits

A benefit of mosquito control that has greatly contributed to Florida's growth is the tremendous progress made in controlling pestiferous mosquito species, especially those that are found in coastal marshes. Although many of these pest mosquitoes do not present a threat of disease transmission to humans, they significantly affect human comfort. Prior to the advent of organized mosquito control in Florida, mosquito numbers were such that residents could not go outdoors after dark, and many coastal towns closed down for the summer season (Harden 1981). The influx of an estimated 700-800 people moving to Florida daily and the fact that much new development occurs near mosquito-producing habitats puts increasing pressure on mosquito control agencies to maintain effective control programs.

The nuisance factor to pets also may be considered important to many people. Video evidence exists that mosquitoes are severe pests of purple martin nestlings (Hill 1994). The introduction of novel viral pathogens into naïve populations may
have impacts (Farajollahi et al. 2004, Miller et al. 2005). For example, during the 2001 West Nile virus outbreak in Florida, 1,106 dead birds reported to the Florida Department of Health were found to be infected with West Nile virus. The affected birds comprised 10 orders and 25 families (Blackmore et al. 2003).

9.4.2 Economic Benefits

Florida's economy benefits from tourism (almost 84 million visitors in 2006) which depends on the beaches, fishing, golfing, amusement parks, and the outdoors in general. Tourism resulted in $\$ 65$ billion in taxable sales in 2006 and supported almost one million jobs for Floridians (Visit Florida 2007). Most of these visitors have little tolerance for mosquitoes, and it seems reasonable that mosquito control helps many visitors enjoy their stay and, therefore, helps the Florida economy. Perhaps the most striking illustration of the economic benefits of controlling mosquitoes is the classic graph by Dr. John A. Mulrennan, Sr. showing that for the period 1950-1967, the decline in average light trap catch for the female saltmarsh mosquito (Aedes taeniorhynchus) correlated with increasing tourist expenditures (Breeland and Mulrennan 1983). The dramatic decrease in saltmarsh mosquitoes during this period, in large measure due to impoundment, ditching, and filling of salt marshes, facilitated the development of large areas of coastal Florida and a general increase in tourism (Gaiser 1980, Harden 1981, Thomas 1981).

Economic impacts of mosquito-borne diseases have not been well documented in the past, but recent research suggests that any type of vector-borne epidemic will have local and statewide, direct and indirect economic impacts that may be in the multi-millions of dollars. For example, the 1990 SLE epidemic not only caused considerable illness (223 confirmed cases with 11 deaths), but Florida saw a 15\% decrease in tourism-related revenues in the last quarter of the year (Mulrennan 1991). The 2002 West Nile virus (WN) epidemic was estimated to have cost over $\$ 20$ million in Louisiana alone (Zohrabian et al. 2004). Mosquito control possibly decreases these impacts by reducing the chances for outbreaks and by helping to control them when they occur (e.g., Ruiz et al. 2004).

Another economic benefit of mosquito control is increased worker productivity. In outdoor work areas, such as crop fields, marinas, orchards, sawmills, and the construction trades, productivity of work crews can fall to near zero in the presence of large numbers of mosquitoes.

A wide cross-section of domestic animals also benefit from mosquito control. Data on loss of meat or dairy production due to mosquito attack are difficult to come by, although older literature reported losses in milk production of up to 40% and losses in beef cattle weight gain (reviewed in Steelman 1976). Research conducted in Louisiana showed that a combination of mosquito control and improved diet resulted in significant increases in weight gain by beef cattle (Steelman et al. 1972, 1973). The suffocation of cattle by hordes of mosquitoes
prior to modern mosquito control was documented in news reports and has occurred in recent times as well (Addison and Ritchie 1993). One source estimated an economic loss of $\$ 61$ million dollars in one year due to mosquitoes (Hamer 1985, cited in Frank et al. 1997)

Birds and other wildlife may serve as reservoirs for mosquito-borne diseases that can impact animals of economic importance (USDA 2005). Horses in Florida are at risk from infection by eastern equine encephalitis virus and West Nile virus and potentially from Venezuelan equine encephalitis virus (Lord and RutledgeConnelly 2006). During the 2001 West Nile virus outbreak in Florida, 492 horses were confirmed to have had acute West Nile encephalitis (Blackmore et al. 2003).

9.4.3 Public Health Benefits

Another important benefit of mosquito control is the targeting of mosquitoes that transmit diseases. Mosquito control is an important and basic public health service (ASTHO 2003). Since 1978, some public health departments and mosquito control agencies throughout the state have participated in a surveillance program using sentinel chickens to closely monitor for St. Louis encephalitis (SLE) and eastern equine encephalitis (EEE) viruses. Arbovirus outbreaks, like the 1990 SLE epidemic (223 confirmed cases with 11 deaths) (Mulrennan 1991) and the 2002 West Nile virus (WN) epidemic in the United States (4,156 reported cases with 284 fatalities) (O'Leary et al. 2004) typically result in increased and targeted mosquito control to stem the outbreaks. On a personal level, a survivor of EEE infection may need lifetime medical support costing into the millions of dollars (Villari et al. 1995). Long-term sequelae of West Nile virus infection include abnormalities of motor skills, attention, and executive functions, all of which may negatively impact quality of life and productivity (Carson et al. 2006).

There are also social justice benefits to mosquito control. At least three different studies (Kutz et al. 2003, Ruiz et al. 2004, Rios et al. 2006) have suggested that the burden of mosquito-borne viral diseases falls more heavily upon lower-income residents and minority group communities.

9.5 COSTS OF MOSQUITO CONTROL

9.5.1 Human Health Concerns

A consideration associated with the overall use of pesticides, of which mosquito control is a part, is the potential human health risk of pesticide exposure. In the last several years, more evidence has been evaluated concerning the impact on humans from a half-century of exposure to synthetic chemicals and other environmental contaminants. Human health problems associated with the effects of severe, acute exposure to organophosphate pesticides include irreversible neurological defects, memory loss, mood changes, infertility, and disorientation (Savage et al. 1988). However, health effects are generally attributed to exposure
to agricultural applications to food - not to mosquito control applications. No clear evidence exists for adverse effects on human health from long-term exposure to organophosphate insecticides at levels that do not affect acetylcholinesterase levels (WHO 1986a). In fact, recent research suggests that human health risks from mosquito control pesticides are low and that risks from WN greatly exceed risks from pesticides to human health (Peterson et al. 2006).

Idiopathic Environmental Intolerance (IEI) ("idiopathic" meaning of "unknown origin") is the name currently applied to a phenomenon formerly known as Multiple Chemical Sensitivity (ACOEM 1999). The newer name does not assume a chemical, biochemical, or immunologic cause for the patient's symptoms and was adopted because there is no medical consensus as to its diagnostic criteria, etiology, or therapy (AAAAI 1999, Poonai et al. 2001). Symptoms are said to be caused by exposure to a wide range of human-made chemicals at doses far below those known to cause toxic effects to humans (ACOEM 1999, Bailer 2005). Symptoms may include weakness, dizziness, headaches, heat intolerance, difficult in concentrating, depressed mood, and memory loss (Pirages and Richard 1999).

IEI is said to be "the only ailment in existence in which the patient defines both the cause and the manifestations of his own condition" (Gots 1995). Many IEI patients self-report allergies to chemicals, but IgE levels have been shown to not support an allergic cause (Bailer et al. 2005). Another study found that IEI patients showed no difference from control subjects in responses to solvents or placebos (Bornschein et al. 2008). Other researchers suggest that IEI patients have an exaggerated response due to hypersensitivity to odors (van Thriel et al. 2008). Currently, IEI is not recognized as an organic disease by the American Academy of Allergy and Immunology, the American Medical Association, the California Medical Association, the American College of Physicians, nor the International Society of Regulatory Toxicology and Pharmacology (Gots 1995).

This notwithstanding, medical research continues to investigate the causes of the phenomenon. Preliminary data indicate that IEI and panic disorder are related and may have a common neurogenetic origin (Poonai et al. 2000, Binkley et al. 2001). Other data indicated that IEI patients may have variant genes that code for altered drug-metabolizing enzymes (McKeown-Eyssen et al. 2004, Schnakenberg et al. 2007). Still other researchers report that IEI appears to be a variant of somatoform disorders, in which psychiatric disorders cause unexplained physical symptoms (e.g., Bailer et al. 2005).

Regardless of the cause of their symptoms, IEI patients can suffer severe disruption of work and daily life (Magill and Suruda 1998). IEI is given credence in regulatory actions, tort liability, and workers compensation claims (Gots 1995). In Florida, private pest control operators are legally required to notify registered persons prior to chemical applications (Chapter 482 F.S.). In addition, FDACS maintains a list of persons who claim to be pesticide-sensitive, requiring a
physician's certification of a health concern, and typically mosquito control offices avoid spraying their residences or notify them prior to spray operations.

9.5.2 Chemical Trespass

The concept of chemical trespass (i.e., applying chemicals to an individual or their property against their wishes) extends back to old Florida statutes. However, statutory law (Chapter 388 F.S.) now permits the application of mosquito control chemicals in the public domain. The potential for conflict is obvious, and this conflict has been the basis for some claims in the past (e.g., by beekeepers).

Adulticide drift, in particular, invites claims of chemical trespass. Mosquito adulticides are not labeled for application to wetlands and most environmentally sensitive publicly owned upland is also off-limits. Because any wind will create drift, mosquito control operators face the difficult task of both hitting their targets and avoiding the adjacent non-target areas. Adulticides have been shown to drift three miles and in some extreme instances up to five miles (Dukes et al. 2004). One study in the Florida Keys found that aerial thermal fog drifted 750 meters ($1 / 2$ mile) into protected no-spray zones which harbored endangered vertebrate and plant species, though no harm was demonstrated (Hennessey and Habeck 1991, Hennessey et al. 1992). Such data may appear to suggest the need for larger buffer areas and/or careful attention to meteorological conditions to fully protect no-spray zones. With the general replacement in Florida of aerial thermal fogging by aerial ULV treatments, some of these concerns may be allayed.

Tietze et al. (1992) and Tietze and Shaffer (1997) documented microscopic damage to automotive paint finishes due to the application of malathion and naled.

9.5.3 Potential Problems of Chronic Chemical Exposure

Problems resulting from chronic exposure to chemicals are a general public health issue, because everyone is exposed daily to chemical and pesticide residues in food, water, and air. In regard to chronic exposure to chemicals, animal endocrine and immune system dysfunction studies have provided evidence that synthetic pesticides and industrial chemicals in very low quantities, after repeated exposures, may affect these functions (Pimentel and Lehman 1993). Such chronic exposure has been associated both with decreases in human sperm counts and sperm abnormalities. Swan et al. (2003) and Swan (2006) examined effects of pesticides on quality of human semen in the United States. These studies revealed that among men living in agricultural areas exposure to atrazine, alachlor, and diaznon appeared to decrease sperm concentration and motility, whereas exposure to malathion and DEET did not. A documented problem in Lake Apopka believed to be caused by chronic exposure to chemicals, included small genitalia size and sperm abnormalities in male alligators (Colburn et al. 1996). While mosquito control chemicals are not implicated in these instances, they are a part of the total insecticide use picture. It should be noted that organophosphates, such as malathion, have been used routinely for over 40 years in some Florida
communities without any documented chronic effects. This lack of documentation should not be misunderstood to be proof of absence of risk, however (Thier 2001). This lack of data may be a detriment to public relations. For example, Petty et al. (1959) observed the development of two extreme points of view regarding the use of organophosphate pesticides in Louisiana. On the one hand were people who were too casual in mixing and applying pesticides. On the other were people so frightened by any use of pesticides that they created "localized hysteria".

There do not appear to be significant ill effects to humans attributable to longterm, low-level exposure to organophosphate pesticides (WHO 1989, Steenland 1996, Leon-S. et al. 1996, others reviewed by Eskenazi et al. 1999). Insecticides used for mosquito control in Florida have been evaluated for this use by the EPA. They pose minimal risk to human health and the environment when used according to label directions. The EPA estimates that the exposure and risks to adults and children posed by ULV aerial and ground applications of malathion and naled range from 100 to 10,000 times below the quantity of pesticide that might present a health concern (IDPH undated). Lal et al. (2004) examined blood cholinesterase levels of applicators and residents of villages involved in a kalaazar control program in India. These researchers found that blood cholinesterase levels of applicators and villagers decline immediately after treatment of homes with 5% malathion suspension but still were within the normal range of blood cholinesterase levels. One week after application the applicators' blood cholinesterase levels were still depressed but remained within normal limits. After one year of exposure the villagers' blood cholinesterase levels had returned to pretreatment levels (Lal et al. 2004). Few data concerning inhalation toxicity of malathion to humans are available, but Culver et al. (1956) and Golz (1959) found no significant health effects beyond nasal irritation.

Beyond the risks to humans and wildlife from pesticide exposure, application procedures may cause problems by promoting pesticide resistance, resulting in the need for increasing doses or new chemicals. In some locations, the widespread use of pesticides by agriculture, homeowners, and mosquito control may have contributed to resistance (Boike et al. 1989). In some geographically distinct areas (i.e., island situations), spraying has helped lead to mosquito resistance to certain chemicals (Reimer et al. 2005). Mosquito populations subject to chemical control operations may be especially vulnerable to development of resistance due to widespread applications of a single pesticide coupled with the short generation time with abundant progeny of the mosquito life cycle (Hemingway and Ranson 2000).

Since it is currently impossible to predict the long-term consequences of human exposure to synthetic compounds, including mosquito control agents, a prudent strategy is for society to reduce all unnecessary chemical applications. For mosquito control, strides have been made in this direction by regulations that allow adulticide applications only after adequate surveillance verifies a nuisance
level. Mosquito control and all other industries applying chemicals should use alternative procedures that reduce the need for chemical applications whenever possible. Such actions may result in decreased environmental risks.

9.5.4 Environmental Costs of Adulticiding

In recent years, some politicians, private interest groups, and the general public have become increasingly vocal in their concerns about potential human and environmental hazards associated with the use of chemicals to control mosquitoes, especially aerially applied adulticides (Gratz and Jany 1994). This concern has generated greater accountability by mosquito control operations when applying insecticides, and some tighter environmental restrictions have been implemented at the Federal and State levels. Hopefully in the future, more effective alternative strategies such as biological control agents and non-chemical larvicides will be available for mosquito control. Realistically, however, chemical companies see the mosquito control market as being relatively small and usually not providing adequate economic incentive to allocate the tremendous costs (easily tens of millions of dollars) necessary to develop and receive a label for a new and safer product (Rose 2001).

9.5.4.1 Non-target Insect Mortality

At times, an adversarial relationship has existed between Florida mosquito control and beekeepers. Bees are very sensitive to organophosphates, and extensive kills from mosquito control have been documented. Acute problems usually include immediate bee kills, but sublethal amounts of organophosphates can also cause a general decline in hive vigor and/or a loss of feeding ability (Atkins 1975). Despite documented cases involving mosquito control, aerial agricultural spraying probably accounts for more bee kills. Bee exposure to ground adulticiding is minimal because treatment is almost always conducted after the evening or before the morning crepuscular periods. However, under certain conditions, aerial adulticiding sometimes occurs while bees are foraging and therefore can be an increased threat.

The incidence of conflicts between beekeepers and mosquito control peaked in the 1980s and has declined in recent years. In some parts of Florida, mosquito control programs are now required to notify beekeepers in advance of spray operations to give the beekeepers the option of covering or moving hives. The impact to honeybees within target areas can be minimized if insecticide deposition on the ground is reduced to below the effect threshold (Zhong et al. 2003, 2004). Improvements in mosquito control equipment also have led to reductions of honeybee mortality (Zhong et al. 2004). In the 1980s, the state distributed to beekeepers a state map depicting where most aerial operations occurred (Sanford 1998). Currently, mosquito control and beekeepers maintain communication about timing of insecticidal treatments.

Other pollinators less well known than the honeybee may be impacted by adulticiding. Perhaps 65% of flowering plants depend upon insect pollination, with many plant species relying upon a specific insect species.

In Florida, and particularly in the Florida Keys, there has been controversy regarding the impact of mosquito control on Lepidoptera, especially the Schaus' swallowtail (Papilio aristodemus ponceanus) and the Miami blue butterfly (Cyclargus thomasi bethunebakeri). Emmel (1991) reported that insect diversity was much lower in areas subjected to mosquito control operations (i.e., Key Largo) compared to areas not exposed to mosquito control (i.e., Elliott Key). Eliazar and Emmel (1991) and Salvato (2001) calculated LD_{50} values for some mosquito control adulticides against butterfly species. Laboratory analyses are not always reflective of events in the field (Clark 1991, Charbonneau et al. 1994, Blus and Henny 1997). Experiments currently are being conducted in the Florida Keys to determine the impacts of mosquito control operations on the Miami blue butterfly under field conditions. Walker (2001) also suggested that mosquito control was responsible for extirpating a wood cricket (Gryllus cayensis) from the Florida Keys, although he stated he had no proof this was the case.

The impact of adulticides on the nocturnal insect fauna, both flying and nonflying, has not been well documented. One study in California evaluated the effects of aerial application of pyrethrin, malathion, and permethrin on night flying non-target insects. A significant reduction in numbers of non-target insects was observed on the night of the insecticide treatments, but insect numbers had rebounded 24 hours later (Jensen et al. 1999). Non-target impacts could be far beyond what we know. These possible non-target impacts are worthy of further study.

9.5.4.2 Impacts on Insectivores

Just as the impacts of mosquito adulticiding on non-target insects are not well quantified (Stevenson 1980), the ecological impact from the reduction of mosquitoes is also largely unknown. Nevertheless, it is commonly claimed that mosquitoes play an important role as a food source for larger organisms. Claims include that larvae are an important food for other aquatic organisms, that adults of many mosquito species have an important role in the pollination of plants, and that adults serve as important food sources for birds, bats, and other arthropods, including dragonflies and spiders.

The evidence is lacking for commonly cited species such as Purple Martins (Kale 1968) and bats (Easterla and Whitaker 1972, Vestjens and Hall 1977, Sparks and Valdez 2003). Adults of most mosquito species are not active during the hours that most dragonflies are seeking prey (Pritchard 1964a, Walton 2003).
Nevertheless, adult dragonflies will prey on adult mosquitoes when the two are present in the same habitat (Wright 1944a, 1944b; Pritchard 1964a). Analysis of gut contents has revealed that consumption of mosquitoes by dragonflies is greater
in the early morning hours; up to 19% of gut contents consisted of mosquitoes (Pritchard 1964a). The importance of mosquito larvae as food for fish, aquatic salamanders, and predatory aquatic insects seems better demonstrated (e.g., Pritchard 1964b, Mathayan et al. 1980, Whiteman et al. 1996, Lundkvist et al. 2003). Boone and Bridges (2003) have pointed out that control measures that reduce population sizes of plankton and aquatic invertebrates can have adverse effects on amphibians due to reduction of available foods.

9.5.4.3 Fish

Impacts of mosquito adulticides on fish have received considerable attention. Fish may be killed in small streams or ponds where slow flow rates allow pesticide concentrations to increase in excess of toxic levels or where heavy rainfall within a large watershed area allowed high pulse loads to enter small aquatic habitats (EPA 2006). Risk to fish is lower in swiftly flowing streams because pesticides are transported downstream and rapidly diluted (McEwen et al. 1996-2000). Field studies have shown that operational mosquito control applications of pesticides can be of shorter duration and of lesser concentration that those used in worst-case scenarios for environmental risk assessments (Clark 1991). For example, in one field study, application of naled according to label directions did not impact fish (Bearden 1967). Temephos applied at label rates resulted in no adverse impact on bluegill (Sanders et al. 1981). Malathion ground ULV and thermal fog applications presented no acute toxicity to fish (Tagatz et al. 1974). Clark et al. (1989) and Coates et al. (1989) have reviewed the literature pertaining to toxicity of pesticides to aquatic organisms.

9.5.4.4 Aquatic Crustacea

Aquatic crustaceans - cladocerans, copepods, lobsters, and shrimp - can be impacted by mosquito control adulticides, probably due to their close phylogeny to insects (Clark 1991). Older studies documented effects of fenthion on ostracods and cladocera (Khudairi and Ruber 1974, Ruber 1963). Zulkosky et al. (2005) reported that resmethrin was more toxic to American lobsters (Homarus americanus) than was malathion during 96 hour tests. Operational application of naled according to label directions resulted in no significant mortality of shrimp or crabs (Bearden 1967). Aquatic habitats are avoided operationally to minimize such impacts.

9.5.5 Environmental Costs of Larviciding

Controlling a brood of larval mosquitoes while they are still concentrated in a pool of water is easier, more efficient, and less costly environmentally than controlling dispersed adults. Nevertheless, there still are costs, and they should be recognized and minimized to the extent practicable. Using biorational materials (e.g., Bti, methoprene) minimizes non-target effects because of the specificity of these materials. Nevertheless, research has shown there are short-term effects on non-
target insect species when methoprene is used for mosquito larviciding (Hershey et al. 1998). That same study revealed that there was a delayed effect of 2-3 years between initiation of treatment with Bti and evidence of effects on the wetlands food web. Methoprene can affect copepods, crabs, and shrimp, although effects generally are seen at concentrations higher than those of operational rates (Miura and Takahashi 1973, McAlonan et al. 1976, Christiansen et al. 1977, Bircher and Ruber 1988). A review of 75 studies of non-target effects of Bti, concerning nearly 125 families, 300 genera, and 400 species is available (Boisvert and Boisvert 2000). Most research on the use of monomolecular films to control larvae or pupae has shown that there is little or no effect on non-target organisms (reviewed by Stark 2005). However, Takahashi et al. (1984) observed mortality of aquatic Hemiptera (Corixidae, Notonectidae), Coleoptera (Hydrophilidae), and clam shrimp (Limnadiidae) in field trials of Arosurf ${ }^{\circledR}$. Regarding the loss of mosquitoes as important prey, in the case of methoprene, since mortality generally occurs during the pupal stage, larvae remain as a prey source. Nevertheless, the reduction of the huge biomass of saltmarsh mosquitoes (potentially many millions of larvae per acre) must be significant to some aquatic predators. Nielsen and Nielsen (1953), for example, described the voracious consumption of $A e$. taeniorhynchus larvae by minnows and water beetle larvae. The loss may be mitigated by some species, however (Harrington and Harrington 1961, 1982) have shown that a few species of fish are capable of dietary shifts following impoundment when mosquito broods were lost as a food source.

9.5.6 Adulticiding versus Larviciding

Both larvicide and adulticide chemicals may impact non-target species, although it is widely accepted that larvicides have less environmental impact than adulticides. Larvicides can be quite target specific (e.g., Bti, methoprene) and are used in specific habitats and under certain conditions. Adulticides, on the other hand, are more broadly distributed by truck or aircraft, thus impacting both the target area and potentially other nearby areas through drift and run-off. Such movement is a problem when the insecticide enters wetlands or public lands where they are not allowed. All mosquito control programs should continue to concentrate their efforts on developing effective larval surveillance and control programs in order to effectively minimize the need for adulticiding.

All industries need to continually review and improve their operations. Mosquito control is no exception. When larval or adult control has not worked effectively, a thorough assessment should be conducted so the program can be improved. Larval control will usually allow some mosquitoes to emerge, mostly due to the inspection program's failure to identify a mosquito brood or to implement thorough treatment coverage. Likewise, adulticiding is by no means 100% effective. An education program to inform the public that at least some mosquitoes are to be expected in Florida is warranted.

9.6 SOURCE REDUCTION

Achieving permanent mosquito control by eliminating mosquito larval habitats is called source reduction. It ranges from efforts as simple as collecting discarded tires to long-term habitat altering measures. Several source reduction techniques for saltmarsh mosquito control are presently used. For more information about source reduction, see Chapter 4.

Ditching is a strategy whereby mosquito producing depressions of tidal water or rainfall are engineered to drain and larvivorous fish are allowed access. Ditching is most effective where daily tides flush the potential mosquito oviposition sites on the marsh. Ditching can increase tidal flushing of soils, increase oxygen availability to plants, reduce soil salinity, and contribute to increased primary productivity of salt marsh plants. It also can increase fish diversity within the marsh and can provide additional habitat for birds (Anonymous 1990, Resh and Balling 2003). The environmental costs of ditching include creation of permanent scars on the marsh and adverse effects on natural hydrology and biological productivity. Ditching historically has created berms which allow encroachment of woody, often exotic, vegetation. While ditching can be effective for mosquito control, it also can create larval habitat for biting midges (Culicoides spp.), insects which are difficult to control and frequently are perceived as being much more annoying than mosquitoes.

Impounding became popular along the Indian River Lagoon in the 1950s and 1960s when earthen dikes were built around approximately 42,000 acres of high salt marsh to allow for their seasonal flooding. This technique became the most effective and economically feasible approach to saltmarsh mosquito control on Florida's central east coast. Although early impounding efforts greatly decreased the need for adulticiding and virtually eliminated the need to larvicide, the environmental consequences included high mortality of the native marsh vegetation and the isolation of thousands of acres of salt marsh. These habitats are critical for the development of many important marine species (e.g., fish, crustaceans, mollusks), and their loss negatively affected the multibillion dollar commercial and recreational fishery. Despite these impacts, high saltmarsh impoundments have provided good feeding opportunities for ducks and wading birds (Provost 1959, 1969), although some use of these impoundments may be due to loss of habitat elsewhere (e.g., loss in the Kissimmee River and St. Johns River flood plains due to human development and drainage).

Unintentional effects of source reduction practices have included: changes in plant composition and abundance that affect their value as forage or shelter, changes in animal diversity and abundance which alter the food web, changes in competitive relationships between predators and prey, and increased susceptibility to disease and parasitism. An extreme example of unintentional pesticide impacts is that the use of some agricultural chemicals has altered entire ecosystems, resulting in freshwater eutrophication.

Since the early 1980s scientific research has identified improved water management techniques that reintegrate impounded marshes with the estuary. This reconnection restores many natural marsh functions while still controlling mosquito populations with a minimum of pesticide use. There are two salt marsh management techniques which best accomplish these desirable goals, and they have been aggressively implemented by mosquito control agencies: Rotational Impoundment Management (RIM) and Open Marsh Water Management (OMWM), typically utilizing rotary ditching (Carlson 2006).

9.7 MOSQUITO CONTROL ON BIOLOGICALLY PRODUCTIVE STATE-OWNED LANDS

Florida public land management agencies generally believe that any external influence that potentially threatens the flora, fauna, or natural systems under their management must be considered with caution. For example, although pest control once was a priority in Florida's parks (e.g., Provost 1952), park managers now pursue an ecosystem management approach that considers the well-being of entire biological communities (e.g., Stevenson 1991). Chapter 388.4111 F.S. mandates that public lands may be designated by their managers to be "environmentally sensitive and biologically highly productive". Once declared, and where such lands have public health or nuisance levels of mosquitoes, their mosquito control activities are conducted according to a special "public lands arthropod control plan". The plan is written by mutual agreement between the agency and the mosquito control program to authorize activities that are the minimum necessary and economically feasible to abate the health or nuisance problem and impose the least hazard to fish, wildlife, and other natural resources. Since adulticiding is not highly selective and non-target species can be adversely affected, state land managers generally believe adulticiding is contrary to the legislative mandate to protect environmentally sensitive and biologically productive state lands. Other control methods, ideally biological controls (e.g., Gambusia spp. for larval control) or larviciding with Bti or methoprene, which are mostly target-specific, are usually acceptable to the agencies. Allowing these practices on most properties is viewed by the state as a reasonable compromise for adhering to the legislative mandates regarding public land protection and mosquito control.

9.8 MUTUAL ACCOMMODATION

The effects of pesticides on target and non-target organisms, wildlife, soil, and water can both benefit and negatively impact Florida's quality of life. Both mosquito control and the protection of environmentally sensitive habitats in Florida are legislatively mandated, needed, and important to the state. Indeed, they need not be mutually exclusive goals (e.g., O'Bryan et al. 1990, Batzer and Resh 1992). Because the selection of chemicals available for both larviciding and adulticiding is becoming increasingly limited without many new products in development, and because of the possibility of non-target insecticide effects, it is
incumbent that mosquito control pesticides be applied wisely in integrated pest management programs. It is also important that new, more environmentally acceptable methods are developed, tested, and used as they become available, and that research continues to document non-target and human health effects of the pesticides used. The American Public Health Association has noted, "debates over the use of pesticides for public health vector control have sometimes divided the public health and environmental communities ... at a time when maximizing public health and environmental protection requires close coordination and mutual trust between those communities" (APHA 2001). Continued dialogue between mosquito control and environmental resource agencies is necessary to make certain that mosquito control minimizes all its adverse environmental effects while protecting the public health and welfare.

9.9 REFERENCES AND GENERAL READING

AAAAI (American Academy of Allergy, Asthma and Immunology). 1999. Idiopathic environmental intolerances. Journal of Allergy and Clinical Immunology 103: 36-40.

ACOEM (American College of Occupation and Environmental Medicine). Multiple chemical sensitivities: idiopathic environmental intolerance. Journal of Occupational and Environmental Medicine 41: 940-942.

Addison, D.S. and S.A. Ritchie. 1993. Cattle fatalities from prolonged exposure to Aedes taeniorhynchus in southwest Florida. Florida Scientist 56: 65-69.

Anonymous. 1990. Salt marsh restored. TR News, January-February 1990.
APHA (American Public Health Association). 2001. Maximizing public health protection with integrated vector control. American Journal of Public Health 91: 22-23.

ASTHO (Association of State and Territorial Health Officers). 2003. Public
Health Confronts the Mosquito: Developing Sustainable State and Local Mosquito Control Programs. Accessed October 18, 2006. (http://www.astho.org/?template=mosquito_control.html).

Atkins, E.L. 1975. Injury to honey bees by poisoning. The hive and the honey bee. Hamilton, IL: Dadant and Sons, Inc.

ATSDR (Agency for Toxic Substances and Disease Registry). 2003. Toxicological profile for malathion. Accessed October 18, 2006. (http://www.atsdr.cdc.gov/toxprofiles/tp154.html\#bookmark07).

Bailer, J., M. Withoft, C. Paul, C. Bayerl and F. Rist. 2005. Evidence for overlap between idiopathic environmental intolerance and somatoform disorders. Psychosomatic Medicine 67: 921-929.

Bailey, R. 2002. Silent Spring at 40: Rachel Carson's classic not aging well. Accessed August 14, 2002. (http://reason.com/rb/rb061202.shtml).

Banerjee, B.D., S.T. Pasha, Q.Z. Hussain, B.C. Koner and A. Ray. 1998. A comparative evaluation of immunotoxicity of malathion after subchronic exposure in experimental animals. Indian Journal of Experimental Biology 36: 273-282.

Batzer, D.P. and V.H. Resh. 1992. Wetland management strategies that enhance waterfowl habitats can also control mosquitoes. Journal of the American Mosquito Control Association 8: 117-125.

Bauman, P.M., A. Clark, L. Bauman and A.H. Broadwell. 1991. Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiology and Molecular Biology Reviews 55: 425-436.

Bearden, C.M. 1967. Field tests concerning the effects of Dibrom 14 Concentrate (naled) on estuarine animals. Contribution No. 45, USDOI, Bears Bluff Laboratories, SC.

Binkley, K., N. King, N. Poonai, P. Seeman, C. Ulplan and J. Kennedy. 2001. Idiopathic environmental intolerance: increased prevalence of panic disorderassociated cholecystokinin B receptor allele 7. Journal of Allergy and Clinical Immunology 107: 887-890.

Bircher, L. and E. Ruber. 1988. Toxicity of methoprene to all stages of the salt marsh copepod, Apocyclops spartinus (Cycylopoida). Journal of the American Mosquito Control Association 4: 520-523.

Blackmore, C.G.M., L.M. Stark, W.C. Jeter, R.L. Oliveri, R.G. Brooks, L.A. Conti and S.T. Wiersma. 2003. Surveillance results from the first West Nile virus transmission season in Florida, 2001. American Journal of Tropical Medicine and Hygiene 69: 141-150.

Blus, L.J. and C.J. Henny. 1997. Field studies on pesticides and birds: unexpected and unique relations. Ecological Applications 7: 1125-1132.

Boike, A.H., Jr., C.B. Rathburn, Jr., T.G. Floore, H.M. Rodriguez and J.S. Conklin. 1989. Insecticide tolerance of Culex nigripalpus in Florida. Journal of the American Mosquito Control Association 5: 522-528.

Boisvert, M. and J. Boisvert. 2000. Effects of Bacillus thuringiensis var. israelensis on target and nontarget organisms: a review of laboratory and field experiments. Biocontrol Science and Technology 10: 517-561.

Boone, M.D. and C.M. Bridges. 2003. Effects of pesticides on amphibian populations. In: Semlitsch, R.D. (Ed.). Amphibian Conservation. Washington, DC: Smithsonian Institution Press.

Borschein, S., C. Hausteiner, H. Rommelt, D. Nowak, H. Forstl and T. Zilker. 2008. Double-blind pacebo-controlled provocation study in patients with subjective Multiple Chemical Sensitivity (MCS) and matched control subjects. Clinical Toxicology 46: 443-449.

Breeland, S.G. and J.A. Mulrennan, Jr. 1983. Florida mosquito control. Pest Control 51: 16-24.

Bureau of Economic and Business Research, University of Florida. 2004. Historical Census Counts for Florida and Its Counties 1830 through 2000.
Accessed August 14, 2006. (http://www.bebr.ufl.edu/node/18)
Carlson, D.B. 2006. Source reduction in Florida's salt marshes: management to reduce pesticide use and enhance the resource. Journal of the American Mosquito Control Association 22: 534-537.

Carson, P.J., P. Konewko, K.S. Wold, P. Mariani, S. Goli, P. Bergloff and R.D. Crosby. 2006. Long-term clinical and neuropsychological outcomes of West Nile virus infection. Clinical Infectious Diseases 43: 723-730.

Carson, R. 1962. Silent Spring. New York, USA: Houghton Mifflin Company.
Charbonneau, C.S., R.D. Drobney, and C.F. Raben. 1994. Effects of Bacillus thuringiensis var. israelensis on nontarget benthic organisms in a lentic habitat and factors affecting the efficacy of the larvicide. Environmental Toxicology and Chemistry 13: 267-297.

Christiansen, M.E., J.D. Costlow, Jr. and R.D. Monroe. 1977. Effects of the juvenile hormone mimic ZR-515 (Altosid) on larval development of the mud-crab (Rhithropanopeus harrisii) in various salinities and cyclic temperatures. Marine Biology 39: 269-279.

Clark, J.R. 1991. Mosquito control pesticides: adverse impacts to freshwater aquatic and marine organisms. In: Emmel, T.C. and J.C. Tucker (Eds.). Mosquito Control Pesticides: Ecological Impacts and Management Alternatives. Gainesville: Scientific.

Clark, D.R., Jr., E.L. Flickinger, D.H. White, R.L. Hothem and A.A. Belisle. 1995. Dificol and DDT residues in lizard carcasses and bird eggs from Texas, Florida, and California. Bulletin of Environmental Contamination and Toxicology 54: 817-824.

Colburn, T., D. Dumanoski and J. Peterson Myers. 1996. Hormonal sabotage. Natural History 105: 42-49.

Culver, D., P. Caplan and G.S. Batchelor. 1956. Study of human exposure during aerosol application of malathion and chlorthion. American Medical Association Archives of Industrial Health 13: 37-50.

Curtis, J. and T. Profeta. 1993. The unsolved problems of pesticide use in the United States. New York: Natural Resource Defense Council, Inc.

Dukes, J., H. Zhong, M. Greer, P.G. Hester, D. Hogan and J. Barber. 2004. A Comparison of Two Spray Systems Using a Multiple Swath Scenario for the Aerial Application of Fenthion. Journal of the American Mosquito Control Association 20: 36-44.

Easterla, D.A. and J.O. Whitaker, Jr. 1972. Food habits of some bats from Big Bend National Park, Texas. Journal of Mammalogy 53:887-890.

Edwards, C. 1993. The impact of pesticides on the environment. New York: Routledge, Chapman and Hall, Inc.

Edwards, D. 2004. Methoxychlor reregistration eligibility decision (RED). EPA Publication No. EPA 738-R-04-010. Accessed October 16, 2007. (http://www.epa.gov/oppsrrd1/REDs/methoxychlor_red.htm).

Edwards, J.G. 2002. Why DDT was banned ... the lies of Rachel Carson. Accessed August 16, 2006. (http://www.citizenreviewonline.org/nov_2002/why_ddt.htm).

Edwards, J.G. 2004. DDT: A case study in scientific fraud. Journal of American Physicians and Surgeons 9: 83-88.

Eliazar, P.J. and T.C. Emmel. 1991. Adverse impacts to non-target insects. In: Emmel, T.C. and J.C. Tucker (Eds.). Mosquito Control Pesticides: Ecological Impacts and Management Alternatives. Gainesville: Scientific.

Emmel, T.C. 1991. Overview: mosquito control, pesticides, and the ecosystem. In: Emmel, T.C. and J.C. Tucker (Eds.). Mosquito Control Pesticides: Ecological Impacts and Management Alternatives. Gainesville: Scientific. pp. 9-13.

EPA (Environmental Protection Agency). 2002. Permethrin, Resmethrin, Sumithrin: synthetic pyrethroids for mosquito control. Accessed August 11, 2006. (http://www.epa.gov/pesticides/health/mosquitoes/pyrethroids4mosquitoes.htm).

Eskenazi, B., A. Bradman and R. Castorina. 1999. Exposures of children to organophosphate pesticides and their potential adverse health effects. Environmental Health Perspectives Supplements 107(S3): 409-419.

Farajollahi, A., R. Gates, W. Crans and N. Komar. 2004. Serologic evidence of West Nile virus and St. Louis Encephalitis virus infections in White-tailed deer (Odocoileus virginianus) from New Jersey, 2001. Vector-borne Zoonotic Diseases 4: 379-383.

Frank, J.H., E.D. McCoy, H.G. Hall, G.F. O’Meara and W.T. Tschinkel. 1997. Immigration and Introduction of Insects. In: Simberloff, D., D.C. Schmitz and T.C. Brown (Eds.). Strangers in Paradise: Impact and Management of Nonindigenous Species in Florida. Washington, DC: Island Press.

Gaiser, D. 1980. The importance of mosquito control to tourism in Florida. Proceedings of the Florida Anti-Mosquito Association 51: 7-8.

Golz, H.H. 1959. Controlled human exposures to malathion aerosols. American Medical Association Archives of Industrial Health 19: 53-59.

Gots, R.E. 1995. Multiple chemical sensitivities - public policy. Journal of Toxicology-Clinical Toxicology 33: 111-113.

Gratz, N.G. and W.C. Jany. 1994. What role for insecticides in vector control programs? American Journal of Tropical Medicine and Hygiene 50: 11-20.

Hamer, J. L. 1985. Southeastern branch insect detection, evaluation and prediction report. 1983 (Vol. 8). College Park, MD: Entomological Society of America.

Harden, F.W. 1981. You and the environment. Journal of the Florida AntiMosquito Association 52: 60-61.

Harrington, R.W. and E.S. Harrington. 1961. Food selection among fishes invading a high subtropical salt marsh: from onset of flooding through the progress of a mosquito brood. Ecology 42: 646-66.

Harrington, R.W. and E.S. Harrington. 1982. Effects on fishes and their forage organisms of impounding a Florida salt marsh to prevent breeding by salt marsh mosquitoes. Bulletin of Marine Science 32: 523-31.

Hemingway, J. and H. Ranson. 2000. Insecticide resistance in insect vectors of human disease. Annual Review of Entomology 45: 371-391.

Hennessey, M.K. and D.H. Habeck. 1991. Effects of adulticiding on populations on non-target terrestrial arthropods in the Florida Keys. Unpublished Report. US Fish and Wildlife Service and University of Florida Cooperative Wildlife Research Unit.

Hennessey, M.K., H.N. Nigg and D.H. Habeck. 1992. Mosquito (Diptera: Culicidae) adulticide drift into wildlife refuges of the Florida Keys. Environmental Entomology 14: 714-21.

Hershey, A.E., A.R. Lima, G.J. Niemi and R.R. Regal. 1998. Effects of Bacillus thuringiensis israelensis (BTI) and methoprene on nontarget macroinvertebrates in Minnesota wetlands. Ecological Applications 8: 41-60.

Hill, J.R. III. 1992. Ten ways to increase the size of your martin colony. Accessed August 16, 2006. (http://www.purplemartin.org/update/Reprints.html). (Reprinted from Purple Martin Update 3: 28-29.)

Hill, J.R. III. 1994. What's bugging your birds? An introduction to the ectoparasites of purple martins. Accessed August 16, 2006. (http://www.purplemartin.org/update/Parasites.html). (Reprinted from Purple Martin Update 5: 1-7.)

Hribar, L.J. and E.M. Fussell. 2005. Mosquito control, Miami blues, and mass media in Monroe County, Florida. Technical Bulletin of the Florida Mosquito Control Association No. 5.

Hushon, J.M. 2006. Pesticides in southwest Florida waterways - a report card. Florida Scientist 69 (Supplement 2): 100-116.

IDPH (Illinois Department of Public Health). (undated). Prevention and Control. Questions and Answers about Spraying for Adult Mosquitoes. Accessed December 1, 2006. (http://www.idph.state.il.us/envhealth/factsheets/fog.htm)

Jensen, T., S.P. Lawler and D.A. Dritz. 1999. Effects of ultra-low volume pyrethrin, malathion, and permethrin on nontarget invertebrates, sentinel mosquitoes, and mosquitofish in seasonally impounded wetlands. Journal of the American Mosquito Control Association 15: 330-338.

Kale, H.W. II. 1968. The relationship of purple martins to mosquito control. The Auk 85: 654-661.

Khudairi, S.Y.A. and E. Ruber. 1974. Survival and reproduction of ostracods as affected by pesticides and temperature. Journal of Economic Entomology 67: 22-24.

Kristan, M., H. Fleischmann, A. della Torre, A. Stich and C.F. Curtis. 2003. Pyrethroid resistance/susceptibility and differential urban/rural distribution of Anopheles arabiensis and An. gambiae s.s. malaria vectors in Nigeria and Ghana. Medical and Veterinary Entomology 17: 326-332.

Kutz, F.W., T.G. Wade and B.B. Pagac. 2003. A geospatial study of the potential of two exotic species of mosquitoes to impact the epidemiology of West Nile virus in Maryland. Journal of the American Mosquito Control Association 19: 190-198.

Lal, C.S., V. Kumar, A. Ranjan, V.N.R. Das, N. Kumar, K. Kishore and S.K. Bhattacharya. 2004. Evaluation of cholinesterase level in an endemic population exposed to malathion suspension formulation as a vector control measure. Memórias do Instituto Oswaldo Cruz 99: 219-221.

Leon-S., F.E., G. Pradilla and E. Vesga. 1996. Neurological effects of organophosphate pesticides. British Medical Journal 313: 690-693.

Lord, C.C. and R. Rutledge-Connelly. 2006. Protecting Florida horses from mosquitoes. Florida Cooperative Extension Service Fact Sheet ENY-646 (IN 181). Accessed October 13, 2006. (http://edis.ifas.ufl.edu/in181).

Lundkvist E., J. Landin, M. Jackson and C. Svensson. 2003. Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. Bulletin of Entomological Research 93: 219-226.

Lyon, W.F. and J.A. Steele. 1998. Mosquito Pest Management. Ohio State University Extension Bulletin No. 641.

Magill, M.K. and A. Suruda. 1998. Multiple chemical sensitivity syndrome. American Family Physician 58: 721-728.

Mathayan, S., J. Muthukrishnan and G.A. Heleenal. 1980. Studies on predation on mosquito larvae by the fish Macropodus cupanus. Hydrobiologia 75: 255-258.

McAlonan, W.G., F.J. Murphey and R.W. Lake. 1976. Effects of two insect growth regulators on some selected saltmarsh non-target organisms. Proceedings of the New Jersey Mosquito Control Association 63: 198.

McKeown-Eyssen, G., C. Baines, D.E. Cole, N. Riley, R.F. Tyndate, L. Marshall and V. Jazmaji. 2004. Case-control study of genotypes in multiple chemical sensitivity: CYP2D6, NAT1, NAT2, PON1, PON2, and MTHFR. International Journal of Epidemiology 33: 971-978.

Miller, D.L., Z.A. Radi, C. Baldwin and D. Ingram. 2005. Fatal West Nile virus infection in a White-tailed deer (Odocoileus virginianus). Journal of Wildlife Diseases 41: 246-249.

Miura, T.V. and R.M. Takahashi. 1973. Insect developmental inhibitors. 3. Effects on non-target aquatic organisms. Journal of Economic Entomology 66: 917-922.

Moeller, H.C. and J.A. Rider. 1962. Plasma and red blood cell cholinesterase activity as indications of the threshold of incipient toxicity of ethyl-p-nitrophenyl thionobenzenephosphate (EPN) and malathion in human beings. Toxicology and Applied Pharmacology 4: 123-130.

Mulla, M.S. and H. A. Darwazeh. 1981. Efficacy of petroleum larvicidal oils and their impact on some aquatic non-target organisms. Proceedings and Papers of the California Mosquito Control Association 49: 84-87.

Mulrennan, J.A., Jr. 1991. Benefits of mosquito control. In: Emmel, T.C. and J.C. Tucker (Eds.). Mosquito Control Pesticides: Ecological Impacts and Management Alternatives. Gainesville: Scientific.

Nayar, J.K. and A. Ali. 2003. A review of monomolecular surface films as mosquito control agents and their effects on nontarget organisms. Journal of Vector Ecology 28: 190-199.

Nielsen, E.T. and A.T. Nielsen. 1953. Field observations on the habits of Aedes taeniorhynchus. Ecology 34: 141-156.

Nowell, L.H., P.D. Capel and P.D. Dileanis. 1999. Pesticides in stream sediment and aquatic biota: distribution, trends, and governing factors. Boca Raton: Lewis.

O'Bryan, P.D., D.B. Carlson and R.G. Gilmore. 1990. Salt marsh mitigation: an example of the process of balancing mosquito control, natural resource and development interests. Florida Scientist 53: 189-203.

O’Leary, D.R., A.A. Marfin, S.P. Montgomery, A.M. Kipp, J.A. Lehman, B.J. Biggerstaff, V.L. Elko, P.D. Collins, J.E. Jones and G.L. Campbell. 2004. The epidemic of West Nile virus in the United States, 2002. Vector-borne Zoonotic Diseases 4: 61-70.

Patterson, G. 2004. The Mosquito Wars: A History of Mosquito Control in Florida. Gainesville, FL: University Press of Florida.

Peterson, R.K.D., P.A. Macedo and R.S. Davis. 2006. A human-health risk assessment for West Nile virus and insecticides used in mosquito management. Environmental Health Perspectives 114: 366-372.

Petty, C.S., A. Hedmeg, W.H. Reinhart, E.J. Moore and L.F. Dunn. 1959. Organic phosphate insecticides - a survey of blood cholinesterase activity of exposed agricultural workers in Louisiana, 1957. American Journal of Public Health 49: 62-69.

Pimentel, D. and H. Lehman. 1993. The pesticide question: environment, economics and ethics. New York: Routledge, Chapman, and Hall, Inc.

Pirages, S.W. and C.L. Richard. 1999. Multiple chemical sensitivities. Proceedings of the Annual Meeting, New Jersey Mosquito Control Association 83: 14-22.

Poonai, N., M.M. Antony, K.E. Binkley, P. Stenn, R.P. Swinson, P. Corey, F.S. Silverman and S.J. Tarlo. 2000. Carbon dioxide inhalation challenges in idiopathic environmental intolerance. Journal of Allergy and Clinical Immunology 105: 358-363.

Poonai, N.P., M.M. Antony, K.E. Binkley, P. Stenn, R.P. Swinson, P. Corey, F.S. Silverman and S.J. Tarlo. 2001. Psychological features of subjects with idiopathic environmental intolerance. Journal of Psychosomatic Research 51: 537-541.

Pritchard, G. 1964a. The prey of adult dragonflies in northern Alberta. Canadian Entomologist 96: 821-825.

Pritchard, G. 1964b. The prey of dragonfly larvae (Odonata: Anisoptera) in ponds in northern Alberta. Canadian Journal of Zoology 42: 785-800.

Provost, M.W. 1952. Insect enemies of park comfort. Proceedings of the Park Short Course 3: 33-40.

Provost, M.W. 1959. Impounding salt marshes for mosquito control ... and its effects on bird life. Florida Naturalist 32: 163-170.

Provost, M.W. 1969. Ecological control of salt marsh mosquitoes with side benefits to birds. Proceedings of the Tall Timbers Conference on Ecological Animal Control by Habitat Management.

Raghavendra, K., K. Vasantha, S.K. Subbarao, M.K.K. Pillai and V.P. Sharma. 1991. Resistance in Anopheles culicifacies sibling species B and C to malathion in Andra Pradesh and Gujarat states, India. Journal of the American Mosquito Control Association 7: 255-259.

Raghavendra, K., K. Vasantha, S.K. Subbarao, M.K.K. Pillai and V.P. Sharma. 1992. Differential selection of malathion resistance in Anopheles culicifacies A and B in Hayara state, India. Journal of Medical Entomology 29: 183-187.

Reimer, L.J., F. Tripet, M. Slotman, A. Spielman, E. Fondjo and G.C. Lanzaro. 2005. An unusual distribution of the $k d r$ gene among populations of Anopheles gambiae on the island of Bioko, Equatorial Guinea. Insect Molecular Biology 14: 683-688.

Resh, V.H. and S.S. Balling. 2003. Tidal circulation alteration for salt marsh mosquito control. Environmental Management 7: 79-84.

Rios, J., C.S. Hacker, C.A. Hailey and R.E. Parsons. 2006. Demographic and spatial analysis of West Nile virus and St. Louis encephalitis in Houston, Texas. Journal of the American Mosquito Control Association 22: 254-263.

Risebrough, R.W. 1986. Pesticides on bird populations. Current Ornithology. New York: Plenum Press.

Rose, R.I. 2001. Pesticides and public health: integrated methods of mosquito management. Emerging Infectious Diseases 7: 17-23.

Ruber, E. 1963. The effect of certain mosquito larvicides on microcrustacean populations. Proceedings of the $50^{\text {th }}$ Annual Meeting of the New Jersey Mosquito Extermination Association.

Ruiz, M.O., C. Tedesco, T.J. McTighe, C. Austin and U. Kitron. 2004. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. International Journal of Health Geographics 3:8. (http://www.ij-healthgeographics.com/content/pdf/1476-072x-3-8.pdf).

Salvato, M.H. 2001. Influence of mosquito control chemicals on butterflies (Nymphalidae, Lycaenidae, Hesperiidae) of the lower Florida Keys. Journal of the Lepidopterists' Society 55: 8-14.

Sanders, H.O., D.F. Walsh and R.S. Campbell. 1981. Abate: effects on the organophosphate insecticide on bluegills and the invertebrates in ponds. Technical Paper 104, USDOI, USFWS.

Sanford, M.T. 1998. Honey bee technical council. APIS, Vol. 16, No. 3. Accessed October 12, 2007. (http://apis.ifas.ufl.edu/apis98/apmar98.htm\#3).

Savage, E.P., T.J. Keefe, L.W. Mounce, R.K. Heaton, A. Lewis and P.J. Burcar. 1988. Chronic neurological sequelae of acute organophosphate pesticide poisoning. Archives of Environmental Health 43: 38-45.

Schnakenberg, E., K.R. Fabig, M. Stanulla, N. Strobl, M. Lustig, N. Fabig and W. Schloot. 2007. A cross-sectional study of self-reported chemical-related sensitivity is associated with gene variants of drug-metabolizing enzymes. Environmental Health 6: 6.

Silapanunatakul, S., S. Pantuwatana, A. Bhumiratana and K. Charoensiri. 1983. The comparative persistence of toxicity of Bacillus sphaericus strain 1593 and Bacillus thuringiensis serotype $\mathrm{H}-14$ against mosquito larvae in different kinds of environments. Journal of Invertebrate Pathology 42: 387-392.

Sparks, D.W. and E.W. Valdez. 2003. Food habits of Nyctinomops macrotis at a maternity roost in New Mexico, as indicated by analysis of guano. Southwestern Naturalist 48: 132-135.

Sparling, D.W., G.M. Fellers and L.L. McConnell. 2001. Pesticides and amphibian population declines in California, USA. Environmental Toxicology and Chemistry 20: 1591-1595.

Stark, J.D. 2005. Environmental and health impacts of the mosquito control agent Agnique, a monomolecular surface film. Report for New Zealand Ministry of Health. Accessed October 6, 2006. (http://www.moh.govt.nz/moh.nsf/0/C38B20D047798A8FCC25701900732FFE)

Steelman, C.D., T.W. White and P.E. Schilling. 1972. Effects of mosquitoes on the average daily gain of feedlot steers in southern Louisiana. Journal of Economic Entomology 65: 462-466.

Steelman, C.D., T.W. White and P.E. Schilling. 1973. Effects of mosquitoes on the average daily gain of Hereford and Brahman breed steers in southern Louisiana. Journal Economic Entomology 66: 1081-1083.

Steelman, C.D. 1976. Effects of external and internal arthropod parasites on domestic livestock production. Annual Review of Entomology 21: 155-178.

Steenland, K. 1996. Chronic neurological effects of organophosphate pesticides. British Medical Journal 312: 1312-1313.

Stevenson, H.R. 1980. A review of the effects of ultra-low volume insecticide treatments to honey bees, Apis mellifera (L.). Proceedings of the Florida AntiMosquito Association 51: 11-14.

Stevenson, J. 1992. What about the innocent? Florida Naturalist. Fall: 10-11.
Stevenson, J.A. 1991. Public lands issues. In: Emmel, T.C. and J.C. Tucker (Eds.), Mosquito Control Pesticides: Ecological Impacts and Management Alternatives. Gainesville: Scientific.

Su, T. and M.S. Mulla. 1999. Microbial agents Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus suppress eutrophication, enhance water quality, and control mosquitoes in microcosms. Environmental Entomology 28: 761-767.

Subbarao, S.K., K. Vasantha and V.P. Sharma. 1988. Responses of Anopheles culicifacies sibling species A and B to DDT and HCH in India: implications in malaria control. Medical and Veterinary Entomology 2: 219-223.

Swan, S.H. 2006. Semen quality in fertile US men related to geographical area and pesticide exposure. International Journal of Andrology 29: 62-68.

Swan, S.H., C. Brazil, E.Z. Drobnis, F. Liu, R.L. Kruse, M. Hatch, J.B. Redmon, C. Wang and J.W. Overstreet. The Study for Future Families Research Group. 2003. Geographic differences in semen quality of fertile U.S. males. Environmental Health Perspectives 111: 414-420.

Tagatz, M.E., P.W. Borthwick, G.H. Cook and D.L. Coppage. 1974. Effects of ground application of malathion on salt-marsh environments in northwest Florida. Mosquito News 34: 309-315.

Takahashi, R.M., W.H. Wilder and T. Miura. 1984. Field evaluations of ISA-20E for mosquito control and effects on aquatic nontarget arthropods in experimental plots. Mosquito News 44: 363-367.

Thier, A. 2001. Balancing the risks: vector control and pesticide use in response to emerging illness. Journal of Urban Health 78: 372-381.

Thomas, N. 1981. Enemies or allies? Journal of the Florida Anti-Mosquito Association 52: 1-3.

Tietze, N.S., J.P. Ruff, C.F. Hallmon, P.G. Hester and K.R. Shaffer. 1992. Effect of ULV malathion on automotive paint finishes. Journal of the American Mosquito Control Association 8: 241-246.

Tietze, N.S., M.A. Olson, P.G. Hester and J.J. Moore. 1993. Tolerance of sewage treatment plant microorganisms to mosquitocides. Journal of the American Mosquito Control Association 9: 477-479.

Tietze, N.S., P.G. Hester, M.A. Olson, C.F. Hallmon and K.R. Shaffer. 1995. Acute toxicity of mosquito control compounds to Cyprinodon variegatus and Menidia beryllina: laboratory and field tests. Journal of the Florida Mosquito Control Association 65: 37-44.

Tietze, N.S. and K.R. Shaffer. 1997. Impacts of Dibrom ${ }^{\circledR}$ concentrate and three new naled formulations on three 1996 Du Pont automotive paint finishes. Journal of the American Mosquito Control Association 13: 326-328.

Tren, R. and R. Bate. 2000. When politics kills: malaria and the DDT story. Competitive Enterprise Institute. (http://www.cei.org/PDFs/malaria.pdf).

USDA (United States Department of Agriculture). 2005. 2004 United States Animal Health Report. USDA APHIS Agriculture Information Bulletin No. 798. Fort Collins: USDA.
van Thriel, C., E. Kiesswetter, M. Schaper, S.A. Juran, M. Blaszkewicz and S. Kleinbeck. 2008. Odor annoyance of environmental chemicals: sensory and cognitive influences. Journal of Toxicology and Environmental Health Part A 71: 776-785.

Vestjens, W.M.J. and L.S. Hall. 1977. Stomach contents of forty-two species of bats from the Australasian region. Australian Wildlife Research 4: 25-35.

Villari, P., A. Spielman, N. Komar, M. McDowell and R.E. Timperi. 1995. The economic burden imposed by a residual case of eastern encephalitis. American Journal of Tropical Medicine and Hygiene 52: 8-13.

Visit Florida. 2007. Visit Florida Research. Accessed October 12, 2007. (http://media.visitflorida.com/about/research.php).

Walker, T.J. 2001. Gryllus cayensis n.sp. (Orthoptera: Gryllidae), a taciturn wood cricket extirpated from the Florida Keys: songs, ecology and hybrids. Florida Entomologist 84: 700-705.

Walton, W.E. 2003. Managing mosquitoes in surface-flow constructed treatment wetlands. University of California Division of Agriculture and Natural Resources Publication 8117.

Ware, G.W. 1994. The Pesticide Book. Fresno, CA: Thomson Publications.

White, D.H. and A.J. Krynitsky. 1986. Wildlife in some areas of New Mexico and Texas accumulate elevated DDE residues, 1983. Archives of Environmental Contamination and Toxicology 15: 149-157.

Whiteman, H.W., S.A. Wissinger and W.S. Brown. 1996. Growth and foraging consequences of facultative paedomorphosis in the tiger salamander, Ambystoma tigrinum nebulosum. Evolutionary Ecology 10: 433-446.

WHO (World Health Organization). 1986a. Organophosphorus Insecticides: A General Introduction. Environmental Health Criteria 63. Geneva, World Health Organization.

WHO (World Health Organization). 1986b. Carbamate Insecticides: A General Introduction. Environmental Health Criteria 64. Geneva, World Health Organization.

WHO (World Health Organization). 1989. Resmethrins - Resmethrin, Bioresmethrin, Cisresmethrin. Environmental Health Criteria 92. Geneva, World Health Organization.

WHO (World Health Organization). 1999. Bacillus thuringiensis. Environmental Health Criteria 217. Geneva, World Health Organization.

Williams, L.A., Jr. 1986. The benefits of mosquito control. Journal of the Florida Anti-Mosquito Association 57: 32-36.

Wright, M. 1944a. Some random observations on dragonfly habits with notes on their predaceousness on bees. Journal of the Tennessee Academy of Science 19: 295-301.

Wright, M. 1944b. Notes on dragonflies in the vicinity of New Smyrna Beach, Florida. Florida Entomologist 27: 35-39.

Zhong, H., M. Latham, P.G. Hester, R. L. Frommer and C. Brock. 2003. Impact of Aerial Applied Ultra-Low-Volume Insecticide Naled with Flat-Fan Nozzle System on Honeybees Survival and Productivity. Archives of Environmental Contamination and Toxicology 45: 216-220.

Zhong, H., M. Latham, S. Payne and C. Brock. 2004. Minimizing the impact of the mosquito insecticide naled on honey bee, Apis mellifera (Hymenoptera:
Apidae): aerial ultra-low-volume application using a high-pressure nozzle system. Journal of Economic Entomology 97: 1-7.

Zohrabian, A., M.I. Meltzer, R. Ratard, K. Billah, N.A. Molinari, K. Roy, R.D. Scott II and L. R. Petersen. 2004. West Nile virus economic impact, Louisiana, 2004. Emerging Infectious Diseases 10: 1736-1744.

Zulkosky, A.M., J.P. Ruggieri, S.A. Tarracianno, B.J. Brownawell and A.E. McElroy. 2005. Acute toxicity of resmethrin, malathion and methoprene to larval and juvenile American lobsters and analysis of pesticide levels in surface waters after Scourge ${ }^{\mathrm{TM}}$, Anvil ${ }^{\mathrm{TM}}$, and Altosid ${ }^{\mathrm{TM}}$ application. Journal of Shellfish Research 24: 795-804.

Chapter 10

INSECTICIDE RESISTANCE MANAGEMENT

Chapter Coordinators: Dr. Jack Petersen and Dr. Chelsea Smartt

1998 Coordinator: Dr. Eric Schreiber

Abstract

Summary This chapter discusses development of resistance to insecticides and best management practices to maintain efficacy of chemical means for mosquito control. Topics covered are the: 1) history of insecticide resistance in Florida mosquitoes, 2) definition of genetic insecticide resistance, 3) resistance mechanisms, 4) methods to detect insecticide resistance in both larvae and adult mosquitoes, 5) current research, and 6) practical strategies for resistance management.

10.1 INTRODUCTION

Development of resistance to insecticides is a potential threat to any long term mosquito control program. Like populations of all living organisms, mosquito populations are dynamic, responding to selective pressure. The challenge to mosquito control programs is to stay a few steps ahead of the target species' ability to defeat control efforts. Insecticide resistance can be mitigated in a number of ways including greater reliance on Integrated Pest Management (IPM), the development of better methods of resistance detection and monitoring, and improved management of insecticide resistant populations through better coordination among mosquito control programs, state agencies, university and government scientists, and insecticide manufacturers.

10.2 HISTORY OF INSECTICIDE RESISTANCE IN FLORIDA MOSQUITOES

Insecticide resistance developed shortly after the earliest attempts at large-scale chemical control in agriculture, and there is a long history on this subject. See Appendix III. In 1993, Breaud published a review of scientific literature on insecticide resistance in Florida mosquitoes (Breaud 1993). This section is based on that report.

The rapid development of resistance to the organochlorine insecticide, dichloro-diphenyl-trichloroethane (DDT), shortly after its introduction during World War II, has been well documented. DDT was first used for mosquito control in Florida in 1943. During and immediately following World War II, Florida mosquito control programs relied almost exclusively on DDT for mosquito control. This over-dependency quickly led to resistance to DDT, and, subsequently, to dieldrin resistance. In 1947 the black saltmarsh mosquito, Aedes taeniorhynchus, began to show resistance to DDT (Brown 1986).

The response to this problem was to look for chemical alternatives to DDT. During the 1950s, Florida mosquito control programs utilized a different class of insecticides, the organophosphates (OP), which were shown to be more effective than DDT. By 1963, the OPs malathion and naled had replaced DDT as the adulticides of choice. A few years later, Gahan et al. (1966) reported poor results with aerially applied malathion for the control of Ae. taeniorhynchus in Lee County. In laboratory studies, Glancey et al. (1966) confirmed the development of resistance to malathion showing that it took ten times the baseline amount of malathion to achieve the median lethal concentration $\left(\mathrm{LC}_{50}\right)$ with susceptible mosquitoes and thirteen times the baseline to obtain the LC_{90}, the concentration at which 90% of a population dies. This account was the first published report of malathion resistance in Florida.

In the last four decades, there were few confirmed incidences of mosquito resistance to other OP adulticides (chlorpyrifos, fenthion, naled) or to carbamates in Florida, despite their extensive usage. Furthermore, resistance has not prevented the continued use of OP insecticides in Florida, where tolerance or resistance tends to be localized and not a general or widespread phenomena. This situation is probably a direct result of the adoption of Florida's policy in the late 1960s to restrict the use of a class of insecticides to either adulticiding or larviciding, but not both.

The synthetic pyrethroid resmethrin, synergized with piperonyl butoxide (PBO), was introduced in the 1970s in part to control malathion-resistant mosquitoes, followed later by synergized permethrin and sumithrin (d-phenothrin) products. At present, pyrethroids are the chemical treatment of choice for ground adult mosquito control in Florida. To date (2006), no documented reports of pyrethroid resistance negatively impacting mosquito control in Florida have been published. However, permethrin resistance has been reported in Culex mosquitoes in California (McAbee et al. 2004) and is suspected elsewhere. Laboratory tests conducted at Auburn University, Alabama, have documented elevated LC_{50} values for mosquitoes from the Southeastern United States (Liu et al. 2004, 2006). Eternal vigilance is in order.

Although over three decades of larviciding with temephos (Abate ${ }^{\circledR}$) in Lee County and other Florida districts has not led to resistance to this OP insecticide, resistance to an insect growth regulator, methoprene, was documented in an
isolated saltmarsh habitat of Lee County following the long-term use (150-day) of briquets for control of Ae. taeniorhynchus (Dame et al. 1998).

10.3 DEFINITION OF RESISTANCE

Insecticide resistance is defined as the genetic response of a population of mosquitoes that enables some members of that population to survive exposure to a chemical that would prove lethal to a susceptible population (WHO 1992). This definition distinguishes insecticide resistance from treatment failures that may result from any number of other problems such as operator error, formulation error, equipment failure, etc. This definition is vitally important because it enables the establishment of standardized procedures for the early detection of insecticide resistance. Without standardized procedures, meaningful comparisons are not possible.

Insecticide resistance originates in the genetic variability of an insect population. Mutations give rise to some individuals with an enhanced ability to survive exposure to chemicals that would kill fully susceptible individuals.

Insecticide resistance is inherited. The basic genetic mechanisms are well understood. Genes are the units of inheritance. Alternative forms of genes are called alleles. The resistant allele may be either recessive (as in certain DDTresistant mosquitoes) or dominant (as in organophosphate resistance). Some alleles are co-dominant, and the resistant-susceptible hybrids are intermediate in susceptibility (as in dieldrin resistance). Resistance increases in the population when susceptible alleles are selectively removed by insecticide treatments, leaving an increased proportion of resistant alleles. Proportionally more eggs of resistant mosquitoes hatch than those of susceptible females of the target population under selective pressure from chemical insecticides.

10.4 RESISTANCE MECHANISMS

Four major classes of insecticides have been used to control adult mosquitoes:

- chlorinated hydrocarbons (DDT and dieldrin) [no longer used in Florida]
- carbamates (carbaryl and propoxur)
- organophosphates (malathion and naled)
- pyrethrins/pyrethroids [natural pyrethrin, permethrin, resmethrin, and sumithrin (d-phenothrin)]

Each class has a particular mode of action, so various mechanisms of resistance may operate. Specific types of resistance are: behavioral, metabolic, target site insensitivity, and cross resistance.

10.4.1 Behavioral Resistance

Genetic variation in behavior may contribute to resistance by enabling the mosquito to avoid contact with the insecticide. When resting surfaces are treated with pesticide, some mosquitoes in the target population may never contact the treated area. This difference in exposure alters survival rates of the next mosquito generation and may increase the allele frequency of the genetic factors contributing to the avoidance behavior. Over time, fewer and fewer mosquitoes will be killed by the pesticide. This type of resistance is most common in the case of insecticide-treated surfaces.

10.4.2 Metabolic Resistance

Detoxifying enzymes present in mosquitoes, such as the oxidases and esterases, may inactivate an insecticide before it can kill the mosquito. Mixed function oxidases (MFOs), in general, deactivate pyrethroids. Esterases are responsible for detoxifying organophosphates, such as malathion.

Synergists like PBO work by defeating the mosquito's detoxifying enzymes. PBO is not an insecticide at the dose it is applied, but together with the active ingredient (AI), reduces the mosquito's ability to detoxify the insecticide, thereby making the AI more effective. Synergists can be used experimentally to detect the mechanism of resistance. For example, if the synergist DEF (S,S,S,-tributyl phosphorotrithioate - a defoliant) or TPP (triphenyl phosphate) increases susceptibility, then esterases are the mechanism of resistance. If addition of PBO increases susceptibility, then MFOs are the mechanism of resistance.

10.4.3 Target Site Insensitivity

Organophosphate and carbamate insecticides work by inhibiting the enzyme acetylcholinesterase. Some mosquito species have developed insecticide resistance by structural modification of acetylcholinesterase so that it is less sensitive to the insecticide. In order for this type of insecticide to work properly, it must attach to the target molecule which is acetylcholinesterase. Genetic modification of the shape of the acetylcholinesterase molecule prevents proper attachment and results in resistance.

Pyrethroids work by interfering with the normal function of the nerve membrane. Because pyrethroids target the nervous system they possess rapid "knock-down" capability. In order to be effective, pyrethroids must bind with certain molecular structures on the nerve surface called sodium channels. Genetic variation may lead to altered molecular surface structures, or altered "target sites." Mosquitoes with these altered target sites may not be killed with pyrethroid insecticides. This type of altered target site resistance is also known as "knockdown resistance," or $k d r$, which reduces the effectiveness of natural pyrethrins and the synthetic pyrethroids.

10.4.4 Cross Resistance

Selection pressure on a mosquito population by one specific insecticide may result in resistance to other insecticides to which the population has not been exposed. This type of cross-resistance is most common among insecticides that belong to the same class. However, cross class resistance has been reported in, for example: 1) target-site DDT-pyrethroid resistance in the malaria vector, Anopheles gambiae and 2) carbamate-organophosphate cross resistance in Central American Anopheles albimanus. In both of these cases, a similar mode of action contributed to the cross resistance. DDT and pyrethroids target the sodium and potassium channels of the nerve membrane. Carbamates and organophosphates work by inhibiting the enzyme acetylcholinesterase.

10.5 DETECTION OF RESISTANCE

Insecticide resistance is often first observed in the field as a failure to control the target population with a dosage applied at the label rate. The next step is to rule out treatment failure due to operator error, equipment failure, unfavorable weather conditions, formulation error, failure to expose (hit) the target population, or some other non-genetic cause. To confirm genetic resistance, it is essential to test a sample of the target population by means of a standardized test in the laboratory. Methods for susceptibility-resistance tests have been standardized by the World Health Organization (WHO 1981) for both larval and adult mosquitoes. In addition, the Centers for Disease Control and Prevention (CDC) have developed rapid diagnostic tests that can provide useful information to operational control programs (CDC 2002). Bioassays and biochemical tests are used to detect genetic insecticide resistance and to establish the median lethal concentration.

10.5.1 Median Lethal Concentration

The median lethal concentration $\left(\mathrm{LC}_{50}\right)$ is the quantity of an insecticide per unit volume of solvent (e.g., micrograms of AI/ml of ACS acetone) that kills 50% of the test sample. The LC_{50} is estimated by conducting replicated dose response bioassays. In dose response bioassays the LC_{50} is determined by exposure to several dilutions of actual insecticide not just a single diagnostic dose. A correctly designed dose response bioassay usually includes five or more different AI concentrations selected to obtain mortalities between 10\% and 90\% (Robertson and Preisler 1991). A statistical test called probit analysis (Finney 1971) is then used with the resulting data to estimate the LC_{50} and other values, such as the LC_{95}, together with the appropriate confidence limits. The LC_{95} value is important because doubling the LC_{95} is one method of establishing the diagnostic dose. The diagnostic dose is a predetermined insecticide concentration known to be lethal to a high proportion of susceptible mosquitoes but not to a high proportion of resistant individuals.

10.5.2 Bioassay

A bioassay uses live mosquito larvae or adults to determine the response to known concentrations of an insecticide under controlled conditions. The bioassay incorporates sufficient replication to estimate experimental error accurately. Two bioassays used in Florida are the:

1. bottle bioassay, which measures the response of adult mosquitoes over time to a single diagnostic dose
2. standard beaker test, which measures the response of mosquito larvae to different concentrations of an insecticide

Measuring Insecticide Resistance by the Bottle Bioassay (Petersen 2004) in the Florida Mosquito Control Handbook is a chapter on standardized methods for the bottle bioassay. An advantage of the bottle bioassay is that it can be modified by adding synergists to inhibit the detoxification enzymes and expose the nature of the resistance.

Beaker tests were employed during the Florida Abate ${ }^{\circledR}$ (temephos) monitoring program of the 1980s conducted by Boike et al. (1982). These long-term studies made a significant contribution to insecticide resistance management by establishing a convention that facilitated comparison of data from different tests. Boike et al. $(1982,1985)$ defined the resistance ratio (R / R) as the median lethal concentration $\left(\mathrm{LC}_{50}\right)$ for the test strain divided by the LC_{50} of the susceptible strain. Resistance ratios are now usually calculated at the median lethal doses, LD_{50} and LD_{95}, of the test populations. Resistance ratios make it much easier to compare populations with respect to their insecticide susceptibility.

10.5.3 Biochemical tests

Biochemical assays can detect resistance mechanisms in single mosquitoes, enabling resistance monitoring when only a small sample size is available. For example, biochemical assays to detect target site resistance measure changes in the affinity of acetylcholinesterase (the target of organophosphates and carbamates) to its substrate resulting from the alteration of the amino acids responsible for insecticide binding at its site of action (Brogdon and McAllister 1998a). Acetylcholinesterase activity can be measured using acetylthiocholine iodide as a substrate and measuring the released thiol colorimetrically at a specific absorbance (Grafton-Cardwell et al. 2004). Changes in the affinity of acetylcholinesterase from the resistant strain compared to the susceptible strain indicate that resistance is due to modified acetylcholinesterase activity.

Resistance by detoxification of the insecticide includes measuring changes in protein levels or activity of enzymatic members of a large multigene family of
esterases, oxidases, and glutathione-S-transferase. The biochemical analysis can be measured using a microtiter plate and a spectrophotometer.

The most common resistance mechanisms in insects are esterase detoxification enzymes that metabolize a broad spectrum of insecticides (Brogdon and McAllister 1998b). Reduction in insecticide susceptibility may be due to changing a single amino acid, resulting in the conversion of an esterase to an insecticide hydrolase. The modification may result, also, in the presence of multiple esterase genes that have been amplified to produce numerous copies in resistant insects. Increase in esterase activity can indicate resistance to organophosphates or cross resistance to OP, carbamates, and pyrethroids (Brogdon and McAllister 1998a; Vulule et al. 1999).

Detoxification of insecticides is also a function of cytochrome P450 oxidase, including monooxygenases or mixed function oxidases. Oxidases responsible for insecticide resistance result from increased concentration rather than gene amplification. High oxidase metabolic activity, for example, has been implicated in permethrin EC tolerance (Etang et al. 2004). Glutathione-S-transferase (GST) exists in insect genomes as multiple copies of one of the classes of glutathione-stransferase. GST has been implicated in DDT resistance and exists as gene clusters scattered throughout the insect genome via recombination. In fact, multiple forms of GST in the same insect have been found and implicated in resistance (Ferrari 1996).

10.6 CURRENT RESEARCH

Detection of insecticide resistance commonly relies on results from one or more of the following techniques: WHO bioassay kit, CDC bottle bioassay, and biochemical assays (for esterase, GST and monooxygenase). For example, using a bottle bioassay for adult mosquitoes and beaker tests for larvae, Paul et al. (2005) investigated susceptibility of Culex pipiens from 2 sites in New York to 4 larvicides [methoprene, sumithrin (d-phenothrin), Bacillus sphaericus and Bacillus thuringiensis israelensis (Bti) and one adulticide, sumithrin (dphenothrin)]. The bioassay revealed low levels of resistance to all insecticides and a high level of resistance to $B t i$ in one strain of $C x$. pipiens. The investigators concluded that it is feasible to use the bioassay to monitor insecticide resistance in Cx. pipiens in New York. And, because of the high level of Bti resistance, the scope of resistance monitoring should be widened in New York area in order to identify populations whose resistance phenotype could compromise mosquito control efforts.

In the laboratory, Tao et al. (2006) selected a malathion-resistant strain of $C x$. pipiens palens and then tested the synergistic effect of iprobenfos on malathion toxicity. CDC bottle bioassays and esterase assays showed that malathion resistance was associated with increased esterase activity. Presence of iprobenfos,
the synergist, resulted in a decrease in esterase activity due to its inhibition of esterase activity. Esterase activity was higher in adult females from the malathion-resistant strain than in their larval counterparts. The results from exposure of a cross of malathion-resistant and susceptible strains revealed that malathion resistance levels in the strain exposed to malathion alone were much higher than the strain exposed to malathion and iprobenfos. Esterase activity also was higher in the malathion exposed strain, with adult mosquitoes exhibiting higher esterase activity than larvae. The study suggests that although iprobenfos cannot stop or prevent malathion resistance, it could delay its evolution.

The detection of resistance by measuring changes in target sites or detoxifying enzymes has not drastically changed over the past years. However, the detection of $k d r$ to pyrethroids has become modernized and a number of advances have been made. The primary target of pyrethroid insecticides is the voltage-gated sodium channel (Narahashi 1996; Sattelle and Yamamoto 1988). Insensitivity of the sodium channel to pyrethroids was found to result from knockdown resistant insect species that exhibited a single nucleotide polymorphism in the sodium channel (Kniple et al. 1994; Williamson et al. 1993). The detection of the polymorphism, now commonly performed using a multiplex Polymerase Chain Reaction (PCR) (Martinez-Torres et al. 1998), has been improved (Kolaczinski et al. 2000) with a simple PCR amplification followed by probing with a sequence specific oligonucleotide primer (PCR-SSOP). But this method has not been extensively used, perhaps due to the additional time-consuming high technology hybridization step. A hot ligation oligonucleotide assay (HOLA) developed by Lynd et al., (2005) uses low technology to detect positive $k d r$ mutations by yielding a bright blue color, whereas non-mutant negatives remain colorless. This technique is reliable, very sensitive, and requires only basic laboratory equipment and skills that can be available in low technology, developing world laboratories but requires more time and is more expensive. Tripet et al. (2006) have described a new PCR technique that uses two fluorescence-labeled primers to enable detection of the $k d r$ allele using a sequencer, maximizing amplification efficiency and alleviating problems resulting from poor DNA quality.

Knockdown resistance was detected in Anopheles arabiensis for the first time using fluorescence resonance energy transfer/melt curve analysis (FRET/MCA) (Verhaeghen et al. 2006). The melting curve of each $k d r$ mutation allele is different and lower than the wild type allele, and can be used to distinguish homozygous and heterozygous mosquitoes. This method can detect both $k d r$ alleles in one assay. FRET/MCA is sensitive, reliable and is able to detect new genotypes. Verhaeghen et al. (2006) used FRET/MCA to determine the presence of the East African $k d r$ mutation in East African An. arabiensis specimens. Additionally, four An. gambiae s .s. mosquitoes were found to posses both the West and East African $k d r$ alleles, simultaneously.

A method to detect the $k d r$ mutations at low frequency was developed by Kulkarni et al. (2006). The method uses PCR and product visualization using sequencespecific oligonucleotide probes (SSOP) in an enzyme-linked immunosorbent assay (ELISA). It is rapid, reliable, and a cost-effective way to screen a large number of individuals. SSOPs were designed for simultaneous detection of East and West African $k d r$ mutations. Using the SSOP-ELISA assay, Kulkarni et al. (2006) detected the West African $k d r$ mutation in two heterozygous mosquitoes in a population of An. arabiensis from East Africa.

These and other advances, coupled with the now standard approaches like bottle bioassay, probit analysis of exposure to selected concentrations, and detection of enzymatic activity, provide a wider array of tools for resistance detection and management.

10.7 STRATEGIES OF RESISTANCE MANAGEMENT

This section is based on Georghiou (1983).

Management by Moderation:

- Use the lowest dosage that gives control, sparing a portion of the susceptible target population. This practice does not seek complete control and conserves susceptible alleles in the mosquito population.
- Over-dosing exerts more selective pressure than under-dosing. In other words, applying too much pesticide, too frequently, will result in more rapid selection for insecticide resistance. Applying too little pesticide may not effectively control the target species, but it is not likely to speed up the process of insecticide resistance. However, when dealing with vector species during periods of active pathogen transmission, under-dosing should be avoided because of the likelihood of enhancing transmission. In this regard, without in-depth assessment in the laboratory, it is not possible to predict which species have genetic mechanisms to respond to insecticide selection pressure.
- Apply insecticide less frequently.
- Use chemicals of short environmental persistence.
- Rotate chemicals of different classes.
- Avoid slow-release formulations.
- Use localized rather than area-wide applications.
- Leave some mosquito generations untreated.
- Preserve "refugia" of susceptible mosquitoes (see section 10.7.1).
- Consider acceptance of a higher pest population threshold before applying insecticide.

Management by Multiple Attack:

- Use mixtures of chemicals of different classes.
- Suppress detoxification mechanisms by use of synergists, such as PBO.
- Alternate or rotate use of insecticides of different classes every 2-4 years for an entire season.
- Use different classes of insecticides for adulticiding and larviciding.

10.7.1 Management by Integrated Pest Management

Integrated Pest Management (IPM) is the prudent combination of control methods designed to minimize over-reliance on any single means of control. The effect of IPM is to minimize exposure of target species to a given class of pesticides.

For example, mosquitoes that show evidence of resistance to OP insecticides still show high levels of susceptibility to Bti. Take advantage of this differential susceptible by using $B t i$ against the larvae where feasible, eliminating the use of OP larvicides, and reducing the use of OP adulticides. This approach illustrates another principle of effective resistance management: different control strategies should be directed to the different life stages of the mosquito in order to minimize selective pressure.

Another effective strategy is to maintain "refugia" of susceptible mosquitoes. Refugia are areas in which the target population remains untreated. The fundamental concept here is that mosquitoes that are not exposed to pesticides will maintain high levels of susceptible alleles and low levels of resistant alleles. Susceptible mosquitoes usually have higher biotic potential, which enables them to be more successful and live longer than resistant mosquitoes. Thus, they can reduce the proportion of resistant allelles when they migrate from refugia and
infiltrate resistant populations. State and Federal lands, where pesticide use is prohibited, effectively function as refugia.

10.8 RESISTANCE SURVEILLANCE

The main defense against insecticide resistance is close surveillance of mosquito susceptibility to pesticides. Insecticide application methodology should include regular measurement of target insect susceptibility. Early diagnosis improves long-term prognosis.

10.9 STATE-WIDE RESISTANCE MANAGEMENT PROGRAM

Since 1999 the Florida Agriculture and Mechanical University, John A. Mulrennan, Sr. Public Health Entomology Research and Education Center (PHEREC) has collaborated with Florida mosquito control programs to establish standardized procedures for measuring insecticide resistance by means of the bottle bioassay. These procedures have been compiled into a chapter in the Florida Mosquito Control Handbook (Petersen 2004).

The objectives of the PHEREC extension/outreach program for Florida are to:

- Empower mosquito control programs to monitor on a regular basis the efficacy of the insecticides they use. The objective is to detect the development of insecticide resistance before there are treatment failures.
- Establish the diagnostic dose for each insecticide used to control adult and larval mosquitoes.
- Establish baseline susceptibility data for mosquito species of public health importance.
- Standardize methods of insecticide susceptibility testing.
- Implement sustainable pest management strategies that maintain efficacy for mosquito control.
- Communicate these findings at regional and national meetings. Publish articles, including technical reports, using the internet, print media, and peer-reviewed journals.

10.10 FUTURE RESEARCH

Future research efforts should focus on developing biological assays that can distinguish among resistance mechanisms rapidly. Researchers at the University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory (FMEL) are developing a multiplex quantitative Real Time Polymerase Chain Reaction (RT-PCR) assay to determine insecticide resistance/tolerance status by detecting changes in the quantity of esterase, oxidase, and GST messages in a single mosquito or mosquito pools, simultaneously. Utilization of this assay should decrease the cumbersome nature of traditional resistance detection, enabling a more rapid response by mosquito control programs and provide specific information about which resistance mechanism is being utilized thus enabling rapid response with the appropriate insecticide.

Improving the mosquitocidal nature of traditional chemicals or biological agents should also be the focus of future research. Research into combined control strategies - using chemical and biological agents simultaneously - is imperative. The mixed control strategy approach should impede the establishment of any single insecticide-resistant population. Development of alternatives to the traditional chemical control should be a priority. One such alternative strategy, as suggested by two independent studies, is the use of entomopathogenic fungi in mosquito control (Blanford et al. 2005; Scholte et al. 2005). Both investigations found that mosquitoes with fungal infections exhibited reduced transmission rates, reduced ability of the infected female mosquitoes to blood feed, and, above all, reduced mosquito survival.

10.11 CONCLUSION

The application of chemical insecticides is the mainstay of mosquito abatement in Florida. It is essential that great care is taken to maintain efficacious, costeffective, and safe control methods. Monitoring for insecticide resistance on a regular basis can provide early warning, so that corrective measures can be taken. Use of alternative classes of active ingredient, increased larviciding with Bti and other biorational techniques, source reduction, rotation of chemical classes, and mechanical control measures all contribute to sound management practices that will result in sustainable maintenance of successful mosquito control.

10.12 REFERENCES AND GENERAL READING

Blanford, S., B.H. Chan, N. Jenkins, D. Sim, R.J. Turner, A.F. Read and M.B. Thomas. 2005. Fungal pathogen reduces potential for malaria transmission. Science 308: 1638-1641.

Boike, A.H., Jr., C.B. Rathburn, Jr., LA. Sizemore and M.W. Peters. 1982. Results of the Florida Program for Monitoring Mosquito Susceptibility to Temephos, 1980-82. Journal of the Florida Anti-Mosquito Association 53: 84-92.

Boike, A. H., Jr., C B. Rathburn, Jr., K.L. Lang, H.H. Masters and T.G. Floore. 1985. Current status of the Florida Abate ${ }^{\circledR}$ monitoring program - Susceptibility levels of three species of mosquitoes during 1984. Journal of the American Mosquito Control Association 4: 498-501.

Breaud, T.P. 1993. Insecticide resistance in Florida mosquitoes. Journal of the Florida Mosquito Control Association 64: 14-21.

Brogdon, W.G. and J.C. McAllister. 1998a. Insecticide resistance and vector control. Emerging Infectious Disease 4: 605-613.

Brogdon, W.G. and J.C. McAllister. 1998b. Simplification of adult mosquito bioassays through the use of time-mortality determination in glass bottles. Journal of the American Mosquito Control Association 14: 159-165.

Brown, A.W.A. 1986. Insecticide resistance in mosquitoes: a pragmatic review. Journal of the American Mosquito Control Association 2: 123-140.

CDC, 2002. Last accessed December 7, 2007. (http://www.cdc.gov/ncidod/wbt/resistance/assay/bottle/index.htm)

Dame, D.A., G.J. Wichterman and J.A. Hornby. 1998. Mosquito (Aedes taeniorhynchus) resistance to methoprene in an isolated habitat. Journal of the American Mosquito Control Association 14: 200-203.

Etang, J., F. Chandre, P. Guillet and L. Manga. 2004. Reduced bio-efficacy of permethrin EC impregnated bednets against an Anopheles gambiae strain with oxidase-based pyrethroid tolerance. Malaria Journal 3: 46.

Ferrari, J.A. 1996. Insecticide Resistance. In: Beaty, B.J. and W.C. Marquardt. (Eds.). The Biology of Disease Vectors. Niwot, Colorado: University of Colorado Press.

Finney, D.J. 1971. Probit analysis. Cambridge: Cambridge University Press.
Gahan, J.B., C.N. Smith and B.M. Glancey. 1966. Resistance in Florida and countermeasures involving chemicals. Mosquito News 26: 330-337.

Georghiou, G.P. 1983. Management of resistance in arthropods. In: Georghiou, G.P. and T. Saito. (Eds.). Pest resistance to pesticides. New York, USA: Plenum Press.

Glancey, B.M., C.S. Lofgren and T.W. Miller. 1966. Malathion resistance in the Black Salt-Marsh Mosquito, Aedes taeniorhynchus (Wiedemann) in Florida. Mosquito News 26: 439.

Grafton-Cardwell, E.E., Y. Ouyang, R.A. Striggow, J.A. Christiansen and C.S. Black. 2004. Role of esterase enzymes in monitoring for resistance of California red scale, Aonidiella aurantii (Homoptera: Diaspididae), to organophosphate and carbamate insecticides. Journal of Economic Entomology 97: 606-13.

Knipple, D. C., K.E. Doyle, P.A. Marsella-Herrick, D.M. Soderlund. 1994. Tight genetic linkage between the $k d r$ insecticide resistance trait and a voltage-sensitive sodium channel gene in the house fly. Proceedings of the National Academy of Sciences. U.S.A. 91: 2483-7.

Kolaczinski, J H., C. Fanello, J.P. Herve, D.J. Conway, P. Carnevale and C.F. Curtis. 2000. Experimental and molecular genetic analysis of the impact of pyrethroid and non-pyrethroid insecticide impregnated bednets for mosquito control in an area of pyrethroid resistance. Bulletin of Entomological Research 90: 125-32.

Kulkarni, M.A., M. Rowland, M. Alifrangis, F.W. Mosha, J. Matowo, R. Malima, J. Peter, E. Kweka., I. Lyimo, S. Magesa, A. Salanti, M.E. Rau, and C. Drakeley. 2006. Occurrence of the leucine-to-phenylalanine knockdown resistance ($k d r$) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified high-throughput SSOP-ELISA method. Malaria Journal 5: 56.

Lynd, A., H. Ranson, P.J. McCall, N.P. Randle, W.C. Black 4 ${ }^{\text {th }}$, E.D. Walker and M.J. Donnelly. 2005. A simplified high-throughput method for pyrethroid knock-down resistance ($k d r$) detection in Anopheles gambiae. Malaria Journal 4: 16.

Liu, H., E.W. Cupp, K.M. Micher, A. Guo and N. Liu. 2004. Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefasciatus (S.). Journal of Medical Entomology 41: 408-413.

Liu, N, Q. Xu, F. Zhu and L. Zhang. 2006. Pyrethroid resistance in mosquitoes. Insect Science 13: 159-166.

Martinez-Torres, D., F. Chandre, M.S. Williamson, F. Darriet, J.B. Berge, A.L. Devonshire, P. Guillet, N. Pasteur and D. Pauron. 1998. Molecular characterization of pyrethroid knockdown resistance $(k d r)$ in the major malaria vector Anopheles gambiae s.s. Insect Molecular Biology 7: 179-84.

McAbee, R. D., K.D. Kang, M.A. Stanich, J.A. Christiansen, C.E. Wheelock, A.D. Inman, B.D. Hammock and A.J. Cornel. 2004. Pyrethroid tolerance in Culex pipiens pipiens var molestus from Marin County, California. Pest Management Science 60: 359-368.

Narahashi, T. 1996. Neuronal ion channels as the target sites of insecticides. Pharmacological Toxicology 79: 1-14.

Paul, A., L.C. Harrington, L. Zhang and J.G. Scott. 2005. Insecticide resistance in Culex pipiens from New York. Journal of the American Mosquito Control Association 21: 305-9.

Petersen, J.L. 2004. Measuring Insecticide Resistance by the Bottle Bioassay. In: Rutledge, C.R. (Ed.). Florida Mosquito Control Handbook. $3^{\text {rd }}$ Edition. Ft. Myers, FL: Florida Mosquito Control Association.

Robertson, J.L. and H. K. Preisler. 1991. Pesticide Bioassay with arthropods. Boca Raton, Florida: CRC Press.

Sattelle, D.B. and D. Yamamoto. 1988. Molecular targets of pyrethroid insecticides. Advanced Insect Physiology 20: 147-213.

Scholte, E.J., K. Ng'habi, J. Kihonda, W. Takken, K. Paaijmans, S. Abdulla, G.F. Killeen and B.G. Knols. 2005. An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 308: 1641-2.

Tao, L. M., J.Z. Yang, P.J. Zhuang and Z.H. Tang. 2006. Effect of a mixture of iprobenfos and malathion on the development of malathion resistance in the mosquito Culex pipiens pallens Coq. Pest Management Science 62: 86-90.

Tripet, F., J. Wright and G. Lanzaro. 2006. A new high-performance PCR diagnostic for the detection of pyrethroid knockdown resistance $k d r$ in Anopheles gambiae. American Journal of Tropical Medicine Hygiene 74: 658-62.

Verhaeghen, K., W. Van Bortel, P. Roelants, T. Backeljau and M. Coosemans. 2006. Detection of the East and West African $k d r$ mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis. Malaria Journal 5: 16.

Vulule, J. M., R.F. Beach, F.K. Atieli, J.C. McAllister, W.G. Brogdon, J.M. Roberts, R.W. Mwangi and W.A. Hawley. 1999. Elevated oxidase and esterase levels associated with permethrin tolerance in Anopheles gambiae from Kenyan villages using permethrin-impregnated nets. Medical Veterinary Entomology 13: 239-44.

Williamson, M.S., I. Denholm, C.A. Bell and A.L. Devonshire. 1993.
Knockdown resistance ($k d r$) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). Molecular Genetics 240: 17-22.

World Health Organization. 1981. Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides diagnostic test. WHO/VBC/81.806, Geneva.

World Health Organization. 1992. Vector resistance to pesticides. Fifteenth report of the WHO expert committee on vector biology and control. Geneva: WHO technical report series, No. 818.

Chapter 11

MOSQUITO CONTROL RESEARCH

Chapter Coordinators: Dr. Ken Linthicum, Dr. John Smith, and Dr. Walter Tabachnick
1998 Coordinators: Dr. Richard Baker, Dr. Donald Banard, and Dr. John Smith

Abstract

Summary The aim of mosquito control is to limit the impact of nuisance and disease carrying mosquitoes on Florida residents and tourists, while simultaneously maintaining and, where possible, improving the environment. Mosquito control is too often in the middle of a conflict between citizens who may feel that mosquito control is insufficient and those people who believe mosquito control is harming the environment. To strike a balance, mosquito control programs need to be based on solid scientifically based research that provides safe, effective, economical, and environmentally sensitive mosquito control technologies. In the development of an effective mosquito control program, the most important concerns facing mosquito control today requiring research are:

- surveillance
- mosquito biology
- wetlands ecology
- human-made mosquito problems
- disease detection and prevention
- repellents
- attractants improving
- existing chemical technology
- non-target organisms
- biocontrol

The history, accomplishments, and needs of the principal university, government and private laboratories, and agencies involved in Florida's research effort are described. Without strong funding for mosquito control research and extension, these laboratories will be forced to conduct research in other more readily funded areas. Already, mosquito control is losing some of its effective tools due to insecticide resistance, development and operational costs, or concern that some chemicals and/or techniques may be harmful to the environment. Without research
> laboratories searching for new innovative methods and technology and verifying their safe use, mosquito control will have increasing difficulties providing protection for Florida's citizens at the level expected today. The threat of more mosquitoes and the pathogens they carry will affect the well-being of Floridians and tourists. Without a strong mosquito control effort, Florida will be an uncomfortable and dangerous place to live and visit.

11.1 INTRODUCTION

- Surveillance: Good mosquito and mosquito-borne pathogen surveillance systems are the heart of an effective mosquito control program. Efficient and accurate methods to survey mosquito populations to identify and predict mosquito outbreaks and to detect and predict the occurrence of mosquito-borne pathogens are needed so that the most efficient and environmentally sound control methods can be implemented. Research is needed to improve current surveillance practices.
- Mosquito Biology: Mosquitoes have been around for millions of years and have mastered ways to survive - despite habitat manipulation and chemical control. New exotic species invade the state on a regular basis, bringing with them new threats. Research on the biology of many of the species has provided much of the information that led to today's control methods. These methods resulted from an understanding of mosquito biology, ecology, reproduction, and habits. The more we know about mosquitoes, the greater the potential for developing improved techniques for their control without harming the environment.
- Wetlands Ecology: Originally, mosquitoes inhabiting salt marshes along Florida's coast were the major source of complaints. The use of draining, impounding, and chemicals brought saltmarsh mosquitoes largely under control. Unfortunately, some of the past solutions caused some environmental problems. Research has demonstrated that mosquito control and wetlands preservation are not mutually exclusive goals. More research is needed to fine-tune and enhance mosquito control programs.
- Human-made Mosquito Problems: Wastewater, rainwater, and artificial containers discarded by humans are now a major source of mosquito problems in Florida. Research is needed to provide creative solutions to mosquito problems created by humans. For example, research is needed on the biology and control of Aedes albopictus, the Asian tiger mosquito, and other invasive species introduced into the U.S. The Asian tiger mosquito is considered by many people to be among the more important pest species throughout much of Florida. It also is considered an important potential vector of pathogens that cause disease.
- Disease Detection and Prevention: While Florida has been relatively free for the last 40 or more years from the most infamous mosquito-transmitted diseases such as yellow fever, dengue, malaria, and filariasis, Florida still experiences periodic outbreaks of St. Louis encephalitis (SLE), eastern equine encephalitis (EEE), and West Nile encephalitis (WNE). The last SLE epidemic in 1990 struck 226 individuals, caused eleven deaths, disrupted the lives of many Floridians, and had a negative financial impact on the tourist industry. West Nile virus (WNV) entered the U. S. in 1999, was detected in Florida in 2001, and has caused West Nile disease in 3-100 Floridians each year since. There is great risk of a substantial WNE epidemic in Florida with hundreds to thousands of human cases.

Endemic malaria, dengue, and filariasis are only an airplane ride away (e.g., Haiti, Mexico, and Puerto Rico). In 1990 an outbreak of locally acquired malaria occurred in Gulf County, and, in 1996 and in 2003, outbreaks occurred in Palm Beach County. The mosquito vectors for many vector-borne pathogens are abundant in Florida. The entry of WNV into Florida demonstrates the great risk from other emerging vector-borne pathogens. Expertise and research to identify the mosquito vectors, the pathogens they carry, and new methods to control them are essential to detect outbreaks early and implement control measures to interrupt transmission to prevent human disease.

- Repellents: Safe and effective personal protection is needed to ward off biting insects, especially if funds, time, or location do not allow for mosquito control activities. Unfortunately, of the few repellents that are available, some products are oily, have an offensive odor, or have other unpleasant properties. Some individuals are allergic to the ingredients. A number of plants, bug zappers, buzzers, etc., are advertised and sold as mosquito repellents and yard insectcontrol devices. To date, all of these devices have proven useless. Research is needed to evaluate and develop new repellents and new methods of personal protection.
- Attractants: In contrast to repellents, mosquito attractants also exist. Research has shown that some gases (e.g., CO_{2} and octenol) attract large numbers of some mosquito and biting midge species to traps or into killing zones treated with an insecticide. Through research, we are able to develop more integrated methods of control with less reliance on chemical insecticides.
- Improving Existing Chemical Technology: New chemicals for mosquito control are expensive to develop. Research to develop new or different application techniques, formulations, and synergists can extend the effectiveness of existing chemicals for mosquito control by delaying resistance and/or improving performance. For example, recent discussions concerning the efficacy of microbial insecticides suggest that time of application and larval feeding habits may be important for treatment success. There are variations in application methods among mosquito control programs. It is not unusual for a chemical to work well for one program but not work for another program. Research to
compare and demonstrate the best methods and techniques of application are needed.
- Non-target Organisms: The Florida Coordinating Council on Mosquito Control (FCCMC) has been concerned about the effects of insecticides such as temephos and permethrin on non-target organisms, especially when applied on state lands. Further research is needed to better assess and mitigate the non-target impacts of mosquito control insecticides. There is also a need to weigh the benefits and limitations of deploying a particular chemical versus other control techniques (e.g., ditching, impounding).
- Biocontrol: Although a number of mosquito predators, parasites, and pathogens have shown promise as biological control agents, few species other than the mosquitofish, Gambusia spp., have been effectively integrated into mosquito control due to efficacy, as well as logistical and economic problems. Research has shown that, with the exception of mosquito-eating fish, natural levels of predators, such as purple martins and dragonflies or pathogens and parasites, do not significantly reduce mosquito populations. Yet with additional research, biological control may represent a target-specific alternative to chemical insecticides.

11.2 RESEARCH ORGANIZATIONS

Florida is fortunate to have a number of federal, state, and local government agencies, as well as private organizations, that conduct or support mosquito biology and control related research.

11.2.1 Federal

11.2.1.1 U.S. Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology

History: During World War II, the United States Department of Agriculture (USDA) cooperated with the United States Department of Defense (DoD) to establish a research laboratory in Orlando, Florida. The mission of the laboratory was to develop technologies for the protection of military personnel against insect vectors of disease. In 1951, the laboratory was named the Insects Affecting Man and Animals Research Laboratory. In 1961, the Secretaries of Defense and Agriculture signed a memorandum of understanding to continue the research program under USDA funding. In 1963, the laboratory moved into new federal facilities located on the campus of the University of Florida (UF) in Gainesville. The laboratory's name was changed to Medical and Veterinary Entomology Research Laboratory in 1990 and to the Center for Medical, Agricultural, and Veterinary Entomology (CMAVE) in 1996. Annual base funding for the Center exceeds $\$ 13$ million at present.

Mission: The mission of CMAVE is to conduct research on insects of agricultural, medical, and veterinary importance with the goal of achieving control of pest species through environmentally compatible approaches. CMAVE consists of four Research Units:

1. Behavior and Biocontrol
2. Chemistry
3. Imported Fire Ant
4. Mosquito and Fly

The mosquito-related mission of the laboratory is to develop novel technologies for detection and population monitoring, repellents for the protection of humans and animals from biting and filth breeding flies, and effective chemical, biological, and genetic control technologies and integrated management strategies for insects and arthropods of medical and veterinary importance. The mission is primarily in support of the USDA and the DoD; however, results of research undertaken at CMAVE have application to programs of animal and public health in international, national, state, and local agriculture and public health government agencies, private industry, and the general public. The medical and veterinary entomology staff of CMAVE consists of fifteen permanent scientists, six postdoctoral/visiting scientists, and approximately fifty technical/support personnel. The laboratory facility is modern and well equipped and comprises approximately 60,000 square feet of space.

Staff: Mosquito-related research at the laboratory is undertaken by ten permanent, full-time category I scientists, two full-time category III scientists, and four temporary postdoctoral scientists.

Budget: The allocation of base funding is defined by the number of permanent, full-time category I positions. At present, approximately $\$ 3,700,000$ per year is committed to research involving mosquitoes. Base funds are received via the agriculture appropriation approved yearly by the U.S. Congress. Current total extramural funding in support of mosquito research is more than $\$ 1,500,000$ from DoD and industry sources.

Major Contributions: CMAVE accomplishments derive from multi-disciplinary team research and a wide range of cooperative efforts. Scientists interact with colleagues and with animal/public health agencies and organizations worldwide. Cooperators include the DoD, the World Health Organization (WHO), the Food and Agriculture Organization, the International Atomic Energy Agency, the Animal and Plant Health Inspection Service, the Centers for Disease Control and Prevention (CDC), the Food and Drug Administration (FDA), the Environmental Protection Agency (EPA), the Tennessee Valley Authority, various universities, local and state mosquito control programs, sister Agriculture Research Service (ARS) laboratories, and industry. CMAVE has an outstanding record of chemical control research accomplishments.

Research accomplishments of the scientists concerned with mosquito research are documented in approximately 2,500 publications in scientific journals, conference proceedings, books, book chapters, handbooks, and patents.

Major research accomplishments related to biodegradable pesticides and personal protection chemicals include the:

- development of N, N-diethyl-meta-toluamide (DEET), the principal active ingredient in most insect repellents
- development of the Ultra Low Volume (ULV) method of insecticide application for use in mosquito control
- development of a clothing treatment for personal protection against biting arthropods

Major research accomplishments related to the Biologically Based Research Program include developing new biologically based control strategies for mosquitoes, house flies, and stable flies. Development of new biological pesticides and/or control strategies for vector and pest flies becomes increasingly important as human populations grow and new and exotic disease agents appear. Alternative control methods also are needed to combat high levels of insecticide resistance in flies that affect animal production and well-being. Such strategies can help prevent contamination of the environment with chemical pesticides that threaten humans and contribute to a decline in biodiversity. Examples of new technologies under development by unit scientists are:

- Discovery of a new baculovirus to combat mosquitoes inhabiting agricultural wastewater
- Development of a new protozoan parasite method for control of Aedes aegypti, the yellow fever mosquito
- Development of a new method using a nematode parasite for mosquito control
- Discovery of a new parasitic wasp for control of house flies and stable flies
- Improvement of the quality of commercially produced wasps for fly control
- Development of new traps to prevent fly immigration into neighborhoods around farms
- Discovery of chemicals that cloak humans (make them "invisible") from mosquito detection
- Development and evaluation of permethrin-treated United States Marine Corps uniforms

Major research accomplishments of the Surveillance and Ecology of Mosquito, Biting and Filth Breeding Insects Program are directed at meeting public/animal health and military needs for low-cost, attractant-based detection systems that determine the presence and abundance of nuisance flies and vectors and developing faster, less expensive, more specific, and more sensitive methods to detect vectors that may be carrying endemic, exotic animal, or human pathogens. There is a critical need to develop a Geographic Information System (GIS)-based system that integrates these detection methods with knowledge of the target insect's biology and environmental factors for accurate disease risk assessment. Examples of new technologies under development by unit scientists are:

- Discovery of new attractants for house flies, Aedes aegypti, and mosquitoes that transmit malaria
- Discovery of environmental factors that attract or repel mosquitoes during oviposition
- Elucidation of dispersal patterns, breeding habits, and host attractions of horn flies, house flies, stable flies, and mosquitoes
- Development of marking systems to study dispersal patterns of mosquitoes
- Development of a new generation of CO_{2} and/or heat producing mosquito traps for improved surveillance and population management of selected mosquito species
- Identification of octenol as an important mosquito attractant and work with private industry to develop readily available lures for mosquito surveillance programs
- Understanding the role of species biology and population genetics in the transmission of arboviruses
- Development of species-specific traps that are light weight, inexpensive, low maintenance, and which are surrogates for individual human or livestock bait
- Identification and synthesis of host specific and oviposition attractants and adaptation for use in traps or bait stations
- Design and testing of a model using GIS technology and remote sensing to predict the ideal placement of traps for vector and fly surveillance and to assess risk of disease transmission
- Investigation of the neural and sensory ultrastructure of ticks and Diptera
- Development of measurements of electrophysiological activation for use in selecting vector attractants and repellents

The Deployed War-Fighter Protection (DWFP) Program is a DoD-sponsored research program administered by the Armed Forces Pest Management Board (AFPMB). It is tasked with the development and testing of management tools for pest and vector species that transmit diseases to deployed war-fighters. New and improved materials and methods for pesticide delivery are needed by the Armed Forces to prevent diseases that threaten the deployed troops. Research at CMAVE involves the discovery, evaluation, development, and optimization of:

1) new pesticides effective against mosquitoes and flies, 2) new personal protection products effective in preventing mosquito and fly bites, and 3) new application and personal protection methodologies and strategies.

Recent accomplishments include:

- Re-evaluation of old chemistries for their effect on mosquitoes
- Development of new pesticides using molecular biology techniques to target physiological process in the insects
- Development of spatial repellent delivery field kits to be used by warfighters
- Testing of spatial repellents for use in military tents
- Development of barrier-spray strategies for use by deployed troops
- Selection of more efficient fly traps for use in arid conditions where U.S. troops are deployed

Future research is being directed at the following:

- Discovery and development of new biological, behavioral, physiological, genetic, and chemical regulating mechanisms that can be used for mosquito control
- Validation of recently discovered biological, chemical, and genetic mosquito control technologies in large-scale, area-wide management programs targeted at natural populations of mosquitoes
- Scientific, economic, and sociologically sound analyses of the costs of mosquito control in relation to benefits accruing to the public (improved quality of life) and animal/public health (disease vector abatement) worldwide

11.2.1.2 U.S. Navy Entomology Center of Excellence

History: In 1940, the United States faced war in the Pacific which would require committing numerous personnel to a region characterized by an elevated risk of malaria and other vector-borne disease. By 1941, steps were initiated to deal with such an eventuality. The Navy Medical Department established the Hospital Volunteer Specialist Group, $\mathrm{H}-\mathrm{V}(\mathrm{S})$, to fill the requirement for experts in allied medicine fields including entomology, leading to commissioning the first Navy entomologists. By the end of the war, the $\mathrm{H}-\mathrm{V}(\mathrm{S})$ group would include more than 900 personnel, over 200 of whom were entomologists, and would be represented by 31 different professional specialties.

Following World War II, only a handful of entomologists remained on active duty. A majority of the Navy Epidemiology Units, which proved so successful during the war, were disbanded. One that remained, however, was the Malariology and Pest Control Unit at Naval Air Station, Banana River, Florida. The unit was moved to Naval Air Station, Jacksonville, Florida in 1947. In 1949, it was commissioned the Malaria and Mosquito Control Unit No. 1, with an entomologist as the Officer in Charge. In 1952, the Unit was renamed Preventive Medicine Unit No. 1 (PMU-1), and in 1957, PMU-1 became the Disease Vector Control Center (DVCC) with an expanded mission and area of operation which included approximately one-half of the world. In 1971, DVCC JAX was redesignated the Navy Disease Vector Ecology and Control Center (DVECC). Finally, in 2006, DVECC JAX was re-named the Navy Entomology Center for Excellence (NECE) to reflect an expanded role involving active collaboration with federal, state, and local agencies, academia, and world-recognized specialists and organizations to develop state-of-the-art disease vector control tactics, techniques, and procedures, protecting the war-fighter resulting in mission success.

Mission: NECE continues to ensure readiness of our military forces by providing expert training and technical support to reduce the risk of disease transmitted by arthropod vectors. This mission is accomplished through:

1) conducting on-site disease vector/pest management program evaluations for shore and afloat commands supporting their preventive medicine requirements
2) evaluating/developing new equipment, pesticides, and techniques for the DoD , partnering with a variety of organizations including the USDA and the AFPMB
3) directly supporting disaster relief/humanitarian assistance efforts (e.g., Hurricane Katrina, Tsunami relief) and contingency operations (e.g., Operation Iraqi Freedom, Operation Enduring Freedom) to minimize the threat of vector-borne disease impacting at-risk populations
4) providing a wide variety of training opportunities including Operational Entomology Training (OET), which prepares medical personnel to establish a temporary public health vector/pest management program where none exists, and pesticide applicator certification training to DoD personnel
5) analyzing and compiling world-wide medical entomology information into Vector Risk Assessment Profiles, which are provided to deploying medical and non-medical personnel and their commands

From its inception in 1947 through today and into the future, the staff of NECE has and will continue to provide world-class support to the war-fighter, reducing the adverse affects of vector borne disease.

11.2.2 State

11.2.2.1 Florida Agricultural and Mechanical University, John A. Mulrennan, Sr. Public Health Entomology Research and Education Center

History: Florida Agricultural and Mechanical University, John A. Mulrennan, Sr. Public Health Entomology Research and Education Center in Panama City (PHEREC) began operations out of temporary quarters in the Panama City Navy Mine Defense Laboratory (now Naval Coastal Systems Station) in 1964 under its former name, West Florida Arthropod Research Laboratory. It was staffed with scientists specializing in chemical control from the then Entomology Research Center [now the University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory (FMEL)] and was located in the coastal region of the central panhandle. The primary purpose of PHEREC was to develop strategies for the control of the dog fly, Stomoxys calcitrans (stable fly), a severe biting pest of the north gulf coast region.

Staff moved to the present location on a 10 -acre campus near the Panama City airport in 1966. At that time, PHEREC was under the Entomology Office of the Florida State Bureau of Health (FSBH) located in Jacksonville. From 1964 through 1971, PHEREC scientists developed the aerial spray program for dog fly control. Concurrently, the laboratory maintained the reputation of being the state center for chemical control research on mosquitoes. In contrast, FMEL focused more on the biology of mosquitoes and biting midges. After the dog fly control program was developed, research on the control of mosquitoes, as well as other
public health pests and vectors, took on an even greater significance at PHEREC. A biological control and an environmental pesticide testing program were added to support mosquito control needs.

In 1992, PHEREC was transferred by the Florida Legislature to the State University System under Florida Agricultural and Mechanical University, College of Engineering Sciences, Technology, and Agriculture. At that point, more emphasis was placed on the integration of research, extension, and educational programs. Shortly thereafter, the biological control research section was expanded to include other non-chemical techniques of mosquito control (i.e., predaceous copepods and the development of literature for the general public for container-breeding mosquito control). A dedicated research section also was established for biting fly and tick control research.

Today, PHEREC continues to be Florida's primary center for insecticide research. Scientists are working on several facets to improve safety, efficacy, and environmental stewardship. Cutting edge research on pesticide evaluation techniques, application methods and procedures, precision targeting, meteorological effects, environmental fate, non-target effects, and mitigation are at the forefront. Complementing these studies are projects on remote sensing, barrier sprays, misting systems, formulation testing, repellents, trapping systems, and mosquito and arbovirus surveillance and ecology, as well as discovery and enhancement of microbial insecticides. PHREC works closely with the mosquito control agencies throughout the state to improve their programs.

The erosion of state funding has resulted in greater emphasis on sponsored research. Out of necessity, scientists have become more opportunistic, taking on projects that have funding support as an essential element. This reality, more than anything else, controls the continued evolution of PHEREC.

The future will find PHEREC scientists conducting a variety of research, education, and extension programs. Maintaining adequate funding to support and expand section laboratories will be a priority. Contracts and grants will finance mosquito research needed in the absence of state appropriations. Chemical research will be paid for by industry. Local mosquito control programs will assume a greater share of the costs to get priority research accomplished.

Mission: The mission of PHEREC is to:

- Perform basic and applied research to develop and test formulations, application techniques, and procedures of pesticides and biological control agents for the control of arthropods of public health and nuisance importance
- Provide special attention to the needs of arthropod control districts, counties, and municipalities of the state by providing information,
assistance, and recommendations for the safe and effective control of arthropods which create a health or nuisance problem
- Conduct environmental impact studies to determine (and mitigate) the effects of arthropod control pesticides, with a special emphasis on integrated arthropod control
- Provide the Florida Department of Agriculture and Consumer Services (FDACS) with such information as required to assist the Department in the performance of duties with respect to arthropod control under Chapter 388, Florida Statues (F.S.)
- Serve as a center for training students, as well as state and local government personnel, in the safe and effective control of biting arthropods that create a public health or nuisance problem

Resources: Over one dozen buildings occupy the ten-acre campus of PHEREC. The Center is nestled on a peninsula surrounded by salt marsh on St. Andrews Bay. Easy access to the Gulf of Mexico is available from the Center's boathouse. Additional facilities includes an administration building, six laboratories, several insect rearing facilities, and a shop. An extensive array of fresh and saltwater ponds and tanks, screened enclosures, chemical storage, and carport/storage facilities are maintained on the grounds. The Center deploys a fleet of fourteen vehicles used for statewide travel. Cable internet is provided throughout the campus via a fiber-optic network. In addition to a library containing professional entomology and pesticide journals, PHEREC also maintains equipment for video teleconferencing and distance education.

PHEREC is staffed by twenty permanent employees and six to ten seasonal employees. There are six Ph.D. faculty scientists and one M.S. researcher for a total of seven principal investigators. In addition to the seasonal employees, nine scientific support staff are available year-round to assist the scientists. Two clerical and two maintenance staff support administrative functions, the shop, facilities, and grounds. Although most of the Center's resources are devoted to mosquito programs, stable flies, yellow flies, biting midges, and ticks are studied as well. Numerous scientific papers, popular articles, presentations, and media interviews have been published and presented since the Center's inception.

Research programs are presently divided into six sections:
Mosquito Adulticides. New formulations and insecticides are tested to determine dosages and efficacy against adult mosquitoes. This testing is accomplished through laboratory wind tunnel experiments and operational field tests. The section also evaluates equipment used to dispense insecticides for adult mosquito control and develops application procedures employing sophisticated equipment such as sonar, remote sensing cameras, and precision application systems.

Mosquito Larvicides. The Mosquito Larvicide Section conducts research similar to that of the adulticide section. However, the focus is on products used to control the mosquito larval and pupal life stages in aquatic habitats. New insecticides are screened in laboratory tests and then taken to an extensive array of experimental ponds and tanks for outdoor evaluations. This section also is responsible for monitoring insecticide resistance throughout the state via bioassays.

Mosquito Biological and Alternative Control. Molecular approaches are employed in the Mosquito Biological and Alternative Control Section to selectively enhance genes responsible for the toxicity of microbial insecticides, such as Bacillus thuringiensis subsp. israelensis (Bti), and Bacillus sphaericus (Bs). Researchers also conduct research to identify and isolate new pathogens with mosquitocidal properties.

Disease Ecology and Control. Mosquito and arbovirus ecology, mosquito repellent, and mosquito trapping systems are the research programs in the Disease Ecology and Control Section. Ecological studies are focused predominantly on the relationship of eastern equine encephalitis virus (EEEV) and WNV in mosquitoes and wild birds. Repellent research focuses on developing DEETalternatives and evaluating commercial repellents currently on the market. Mosquito trap studies compare the capturing prowess of various commercial and experimental models and the efficacy of deploying traps for control.

Pesticide Environmental Impact. Screening for the potential undesirable effects of pesticides on non-target organisms is the primary aim of the Pesticide Environmental Impact Section. Both laboratory and field exposure tests are conducted using a variety of test organisms, including fish, crustacea, and arthropods. Pesticide residue analyses by gas chromatography and high performance liquid chromatography are major resources of this section. The researchers advise Florida mosquito control programs of any potential environmental risks and recommend mitigation methods and procedures.

Biting Fly and Tick Control. Developing effective control strategies for biting midges, yellow flies, stable flies, and ticks has been probably the most difficult challenge for the PHEREC. The Biting Fly and Tick Control Section tackles this challenge by conducting basic research to better understand the pest's behavior and then uses this information to develop applied control, which ranges from trapping systems for local area control to insecticidal methods for broader area treatment. More recently, this section also has taken on the lead role in attractant and residual surface spray research to include assessment of barrier and misting systems for mosquito and biting fly control.

Budget: The PHEREC budget includes approximately $\$ 1.2$ million per year in state appropriations, plus annual grant funds averaging from $\$ 200,000$ to over $\$ 400,000$ per year with a high of over $\$ 1.4$ million in FY 2006/07.

Major Contributions: Some of the more notable achievements of PHEREC scientists are provided below with many more and detailed descriptions available at http://pherec.org:

- Served as the state research, development, and evaluation center for mosquito control pesticides and equipment
- Developed and maintained the mosquito insecticide resistance monitoring system for Florida
- Developed techniques for evaluating mosquito pesticides and resistance testing
- Developed and maintained a non-target pesticide effects literature database
- Developed the State dog fly control program
- Developed trapping and surveillance systems for public health arthropods
- Served as a primary entomological and mosquito control education provider
- Contributed basic and applied scientific and extension literature on medically important arthropods and their control
- Served as an entomological resource and technical service provider for county, state, and federal agencies and for the public
- Provided research to support biological and alternative forms of public health arthropod control
- Conducted environmental and non-target impact assessment research and mitigation

Future Research in Need of Additional Funding: Scientists at PHEREC are operating in modest facilities constructed during the middle of the 1960s and in several renovated trailers used as laboratories. These facilities require intensive maintenance and have high energy costs. Moreover, the Center's location on the St. Andrews Bay exposes the low-lying facilities to frequent flooding and wind damage. Consequently, there is an urgent need to update the buildings and insect and animal rearing facilities to better support the scientists. A single, multi-level,
elevated building is needed to house scientists, support staff, laboratories, and equipment so that energy costs can be managed more efficiently. Construction of a new insect/animal rearing facility would consolidate all rearing in one location so that multiple buildings do not have to be maintained. A dedicated housing and training facility needs to be constructed to enhance learning opportunities for mosquito control personnel and graduate students. The cost for these facilities is estimated to be $\$ 7$ million. The following projects have been identified as important immediate research needs:

- Evaluate efficacy of aerial mosquito spraying on arbovirus risk reduction
- Assess the role of wild birds in arbovirus transmission
- Calculate the wear time for spray nozzles used in mosquito control
- Meteorology and its affects on aerial spraying
- Determine optimum droplet size for different insecticides and aerial application equipment
- Evaluate new and existing adulticides on a wide variety of important species in Florida
- Vegetative barrier treatments for mosquito control
- Evaluate new mosquito attractants
- Isolation of new mosquitocidal bacteria
- Develop and test new repellents
- Develop and test new trapping systems
- Construction of recombinant mosquitocidal bacteria with improved efficacy
- Development of alternative larvicide application methods
- Catch basin/retention pond mosquito control
- Efficacy studies of the organophosphate temephos against saltmarsh mosquitoes
- Statewide monitoring for insecticide resistance in mosquitoes
- Develop Agnique ${ }^{\circledR}$ MMF (a monomolecular surface film) application technique to minimize non-target impacts in salt marshes
- Permethrin impact as potential endocrine disrupter
- Impact of ULV naled (Dibrom) on butterflies
- Establish statewide adulticide drift and deposition monitoring program
- Biology and ecology of the new invasive species, Culex coronator

11.2.2.2 Florida Department of Health, Tampa Branch Laboratory, Virology Section

The Florida Department of Health, Tampa Branch Laboratory, Virology Section tests the sentinel chicken blood from various counties for SLE, EEE, and WNE antibodies collected on a weekly or biweekly schedule. Results are sent to all mosquito control programs by the FDACS. The Laboratory also collaborates with FMEL and PHEREC on arboviral research projects.

11.2.2.3 Florida Institute of Technology

Scientists and graduate students at the Florida Institute of Technology (FIT), a private university in Melbourne, have conducted research on the ecosystem effects of mosquito control source reduction projects (e.g., impoundment management and rotary ditching). FIT is now called Florida Tech.

11.2.2.4 University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory

The University of Florida (UF), Institute of Food and Agricultural Sciences (IFAS), Florida Medical Entomology Laboratory (FMEL) is located about three miles south of Vero Beach along the Indian River Lagoon (IRL) on Florida's subtropical east coast. The laboratory, established in 1956 as the Entomology Research Center, consists of a group of buildings among 38 acres of an oak-palm forest, a scrub oak-pine forest, and an extensive salt marsh. The facilities include about 25,000 square feet of modern laboratories, offices, a library, a dormitory, an outdoor pavilion, and a lecture hall. Other facilities include a biological safety level III laboratory for handling arboviruses, an insectary for holding exotic mosquitoes, a metal and woodworking shop, biochemistry and molecular biology laboratories, a graphics laboratory, a photographic darkroom, and an animal house for small experimental animals. Renovated in 1992, a screened pavilion sits in the midst of a coastal oak hammock for use as an outdoor mosquito cage and also is available to accommodate up to 150 guests and students for lectures. A classroom
and wet lab are located in a building situated on a tidal creek and nestled among mangroves.

The FMEL site is surrounded by a 440 acre preserve of similar habitats. On the FMEL eastern boundary, the IRL includes seagrasses, shallow sand bottoms, and spoil islands, as well as bird rookeries. The Florida Fish and Wildlife Conservation Commission has designated an adjacent rookery as one of the ten most important rookeries in the state. The convergence of these habitats provides an exceptional outdoor classroom setting which affords students the opportunity to experience the contrasts and similarities of all these habitats. Over 130 species of animals and plants have been identified, some threatened and endangered, including the bald eagle, manatee, gopher tortoise, coral root orchid, butterfly orchid, and bromeliads.

Mission: In 1979 the Florida Legislature passed House Bill 684. This bill placed the FMEL under the UF/IFAS. The Legislature, through House Bill 684, recognized the need for greatly expanded research on the biology and control of mosquitoes, especially about the effects of insect-borne diseases on the citizens of Florida and its tourist industry. House Bill 684 mandated that the FMEL:

- Conduct research in the biology and control of biting insects and other arthropods which are important transmitters of disease or pest annoyances, giving special attention to the needs of Florida's mosquito control organizations (districts, counties, and municipalities)
- Be a center to train students and personnel in the entomological aspects of public health, veterinary science, sanitation, mosquito control, drainage and irrigation design, wetlands management, and other areas of service requiring knowledge of medical entomology
- Extend research and training to international programs

The FMEL is one of the world's largest research institutions devoted to the understanding and control of medically important biting insects. Modern laboratory and support facilities and easy access to natural habitats offer an environment conducive to scientific investigation.

Over 1,400 peer reviewed scientific publications have been published by FMEL faculty and staff in about 100 national and international journals. The FMEL staff of about fifty people includes ten Ph.D. faculty, each of whom is in the Department of Entomology and Nematology, UF/IFAS in Gainesville. The faculty include six full professors, two associate professors, and two assistant professors. The staff includes several visiting scientists, affiliate faculty, postdoctoral fellows and eight to ten graduate students earning M.S. and Ph.D. degrees at the UF. Faculty and staff represent an array of expertise contributing to
multi-disciplinary projects that remain the hallmark of the Laboratory and why the FMEL provides unparalleled opportunities for studying vectors and vector-borne diseases.

Research programs at the FMEL span disciplines from molecular biology, biochemistry, physiology, virology, and genetics to population level disciplines like population biology, ecology, and epidemiology. The programs of the FMEL remain true to the philosophy of Dr. Maurice Provost, the first FMEL Director. The FMEL is well known for its strong field components and the integration of its research with mosquito control and public health programs. The FMEL extension program emphasizes gathering information, distributing important research findings, providing training to clientele in mosquito control, public health and the general public, and conducting biological studies at the mosquito control agencies.

The FMEL faculty are internationally recognized authorities on the biology of mosquitoes and mosquito-borne diseases. Research collaborations involve leaders throughout the U.S. and elsewhere in the world. International collaborative projects have included work in Africa, Central and South America, and Asia. Faculty serve as reviewers for professional journals and serve as members of prestigious grant review panels for national agencies like the National Institutes of Health (NIH). Several faculty have been presidents of different national and international professional societies, and several FMEL faculty serve on professional journal editorial boards and as editors-in-chief of leading journals.

Major Program Areas:

- Biology and control of mosquitoes and sand flies
- Mosquitoes in human-made and natural containers
- Biotechnology to develop improved mosquitocides and removal trapping to control biting arthropods
- Invading mosquitoes and pathogens with emphasis on the invasion of Florida by Aedes albopictus
- Emerging insect-borne diseases with focus on WNV, St. Louis encephalitis virus (SLEV), dengue virus (DENV), Venezuelan equine encephalitis virus (VEEV), and eastern equine encephalitis virus (EEEV)
- Risk assessment and risk management to reduce the impact of exotic vector-borne pathogens in Florida
- Genetic ecological and morphological differentiation of mosquitoes
- Improving current mosquito control technologies
- Biology and epidemiology of arthropod transmitted diseases
- Evaluating and predicting Florida encephalitis epidemics
- Modeling of mosquitoes and sand flies - and the diseases they carry
- Wetlands ecology
- Biology and ecology of the IRL estuary and coastal wetlands
- Water chemistry and vegetation dynamics of impounded marshes
- Water management and water quality issues to reduce mosquito populations and risk from mosquito-borne disease
- Importance of tidal wetlands and their system management
- Providing handbooks, videos, fact sheets, technical bulletins, brochures, computer tutorials, traveling displays, exhibits, and a bimonthly newsletter concerning mosquitoes, mosquito control, and public health
- Advanced courses in medical entomology and advanced mosquito biology for graduate students at the UF

Budget: Funding to support FMEL comes from general revenue funds appropriated by the Florida Legislature. Approximately $\$ 1.4$ million in state appropriations provides salary and support of the 10 faculty and 16 permanent staff. Current annual extramural funding in support of mosquito research is approximately $\$ 1,000,000$ from the NIH, the DoD, the FDACS, the Florida Department of Environmental Protection, water management districts, and mosquito control programs, as well as county and state agencies.

Major Contributions:

- FMEL has conducted many studies on the natural history, life history, and ecology of many of Florida's mosquitoes and sand fly species. Research includes the relative importance of abiotic factors (e.g., weather and tides) and biological factors (e.g., predation and competition) in determining the distribution and abundance of pests and vectors. The mating, feeding, and egg-laying behaviors of many mosquito and biting insect species have been published in numerous scientific reports. This information has allowed mosquito control to take advantage of the specific features of the biology of important species to control them more effectively.
- Current saltmarsh management practices pertaining to mosquito control are in large part based on research done at the FMEL. The FMEL pioneered environmentally sound mosquito control practices and helped to develop ecologically sound management strategies to control mosquitoes. These practices provide a benefit to widely different components of the estuarine system, including wading birds, fish, waterfowl, and invertebrates - allowing mosquito control programs to control saltmarsh mosquitoes with impoundments instead of pesticides. The FMEL staff have been active in developing policy issues and management strategy design, testing, and implementation.
- Many trapping methods used by mosquito control to monitor biting flies had their genesis at the FMEL, including methods to assess the factors influencing mosquito abundance that permit mosquito control programs to control biting flies more effectively. FMEL demonstrated the distance and direction of dispersal of mosquitoes by mark-release-recapture studies that can be utilized by mosquito control programs. They also tested the use of attractant-baited traps for the control of biting sand flies.
- FMEL contributed information of how mosquito-borne diseases are transmitted and the epidemiology of these diseases in Florida. Our understanding of the natural history of SLEV and the role of the vector Culex nigripalpus is based on FMEL research, including the determination of blood-feeding preferences of common Florida mosquitoes. Much of the information on WNV in

Florida is based on FMEL research. These studies provided solid information to mosquito control programs on the relative attraction of humans to various species and effectively narrowed the focus of control efforts.

- FMEL developed a sensitive, simple, and fast method that can be used by mosquito control programs to detect EEEV and SLEV in mosquitoes. Scientists verified that sentinel chickens provide early warning of SLEV and WNV transmission to humans.
- FMEL evaluated the importance of exotic avian species (i.e., emus, rheas, peafowl, and parrots) as possible arboviral amplification hosts and evaluated how meteorological factors and biological (e.g., larval competition) factors influence arboviral transmission in Florida.
- Research at the FMEL on the epidemiology and transmission dynamics of arboviruses has led to insights into the biological and environmental conditions that allow epidemics and outbreaks of vector-borne diseases.
- Important discoveries were made on the role of mosquitoes as vectors of filaria, arboviruses, dog heartworm, turkey malaria, turkey pox, and other vector-borne diseases in Florida.
- FMEL scientists demonstrated field transmission of WNV by Cx. nigripalpus, providing evidence of the ability of this species to vector WNV under natural conditions.
- FMEL developed an on-line risk map for mosquito control programs to use in making decisions on control operations based on arbovirus activity in their areas.
- FMEL demonstrated genetic differences among vector species at morphological, physiological, chromosomal, and biochemical levels of organization. Based on discoveries made at FMEL, there are several tools that are now used to identify malaria and virus-carrying mosquito species that are morphologically similar.
- Protocols for designing and operating mosquito-free wastewater/aquatic plant systems and stormwater management systems have been developed.
- The spread of the Asian tiger mosquito and other exotic pests via tires, flower pots, and plants - and the associated decline in the distribution and abundance of the yellow fever mosquito in Florida - were documented. Underlying mechanisms responsible for outcomes of interactions between the Asian tiger mosquito and native or resident mosquito species have been discovered.
- The natural reductions (biological control) of mosquitoes by Toxorhynchites, Corethrella, copepods, tadpoles, fish, and other organisms and their importance to mosquito control has been demonstrated in several studies. Traditional insecticide evaluations also are performed at FMEL. These efforts assist Florida mosquito control programs in evaluating and improving biting fly control.
- FMEL investigated the role of nutritional, biochemical, genetic, endocrine, and immunological mechanisms that control mosquito development and the transmission of mosquito-borne parasites in Florida. These methods may be used for the future control of mosquitoes and the parasites they carry.
- A peptide hormone, a potential biorational larvicide, from Ae. aegypti, that stops mosquito larvae from digesting their food, was sequenced and cloned into the Tobacco Mosaic Virus, resulting in five patents for the UF.
- FMEL scientists make contributions and keep abreast of mosquito-borne diseases not presently common in the U.S. and Florida by visiting and working briefly in foreign countries where malaria, filariasis, dengue, and other vector-disease problems are common. Workshops and courses taught by FMEL faculty are hosted at the laboratory for international students, Florida's mosquito control personnel, and commissioners.
- FMEL scientists developed a mosquito reference collection for teaching species identification for mosquito control personnel, started an Advanced Mosquito Identification Course to earn certification from the State of Florida as a "Certified Mosquito Identifier," and published the $3^{\text {rd }}$ edition of the Florida Mosquito Control Handbook.
- BuzzWords is now available on-line at websites of the Florida Mosquito Control Association (FMCA), the FMEL,
and the Mosquito Information Page, http://mosquito.ifas.ufl.edu.

Future Research in Need of Additional Funding: The FMEL is a major component of the UF's Emerging Pathogens Institute (EPI). In 2006 the EPI was awarded Florida state support of approximately $\$ 55$ million for construction of a new facility, where multidisciplinary work on emerging pathogens will be centered, and $\$ 7$ million to hire new faculty. The EPI will integrate and provide a network for collaborations between researchers studying a variety of pathogens. Vector-borne pathogens figure prominently in the EPI mission and involve researchers at the FMEL and at the UF campus in Gainesville, where the focus is primarily veterinary pathogens and related issues. Future research needs include:

- Bti field research: Bti is currently one of the approved microbial insecticides that is the least toxic to non-target organisms. This stomach poison occasionally fails to control mosquito larvae in the field, not for its lack of toxicity, but because it is not known when or what the target mosquitoes eat and if the habitat nutrients interfere with Bti.
- Field testing of the TMOF (trypsin modulating oostatic factor) hormone for larval control after cloning it into different organisms that survive in the field.
- Detection of dengue viruses in mosquitoes by PCR, as this virus is in Texas and may again be a problem for Florida.
- The role of larval competition in vector competence of 'wild' Florida mosquitoes for resident arboviruses.
- Fitness effects of viral loads on arbovirus vectors in Florida.
- Role of predation in regulating invasions by arbovirus vectors.
- Role of climate and landscape ecology in determining the coexistence or exclusion of Ae. aegypti with Ae. albopictus.
- Evaluation of removal-trapping and point-source reduction techniques for the control of adult mosquitoes, sand flies, and other biting flies.
- Development of a GIS for wetlands and impoundments to study the effects of impounding on sea grasses, the next
area where mosquito control programs may be challenged on environmental grounds and for which there are no data.
- Studies of the mating behavior of important mosquito pests and disease vectors, a poorly understood topic that could provide a key to future control by mating disruption.
- Evaluation of aspiration techniques to measure the abundance of resting adult mosquitoes.
- Studies of the transmission of malarial parasites and trypanosomes by Florida mosquitoes to wading birds and birds of prey.
- Investigation of the bionomics of Culiseta melanura and its relationship to EEEV.
- Development of computer systems to identify mosquito larval habitats so remote sensing can be done by mosquito control programs themselves.
- Comparison of sentinel chickens with PCR techniques for sensitivity and cost for SLEV and EEEV surveillance.
- Expansion/continuation of studies of the dynamics of arbovirus transmission and the influence of biological and environmental variation to improve our understanding and prediction of epidemics.
- Studies to improve our knowledge of how population and species level variation in mosquito ecology affects population size, transmission of arboviruses and other parasites, and the effectiveness of control methods.
- Molecular genetic studies of Florida mosquitoes to identify cryptic species complexes.
- Updating and completing of the FMEL on-line mosquito identification guide.
- Ecological and behavioral studies on newly discovered mosquito species in Florida to evaluate their pest and disease vectoring potential.
- Studies on developing methods to enhance the mosquito control potential of tadpoles and copepods.
- Evaluating the effectiveness of various chemicals and other approaches for repelling mosquitoes and other biting arthropods.

11.2.2.5 University of Florida, Whitney Laboratory for Marine Bioscience

 The Whitney Laboratory for Marine Science (Whitney Lab) is located in St. Augustine and has several faculty investigating the physiology of mosquito disease vectors. The research is primarily on the malaria vector Anopheles gambiae and the yellow fever mosquito, Ae. aegypti. Projects involve studies on transport physiology and ion exchange in mosquito larvae, the physiology of amino acid transport in the mosquito midgut, and anion regulation in the mosquito midgut. The research at the Whitney Lab utilizes functional genomic approaches to characterize physiological mechanisms in mosquitoes, particularly those dealing with digestion. Projects employ molecular biology, biochemistry, electrophysiology, and laser scanning confocal microscopy. The goal of the work is to ultimately provide new targets for larvicides.
11.2.2.6 University of Miami

Several faculty at the University of Miami (UM) in Coral Gables are investigating the epidemiology, ecology, and control of vector-borne infectious diseases with emphasis on international and overseas projects. Current research projects are conducted in Kenya and other countries in Africa and the Latin America Caribbean Region. Projects include studies on African malarial vectors, their larval ecology, behavioral and chemical ecology, and their vector competence for malaria. The mosquito research program is part of the UM Global Public Health Program. This interdisciplinary program involves faculty throughout the UM system and emphasizes the development of international disease control programs.

11.2.2.7 University of North Florida

Research at the University of North Florida in Jacksonville is focused on studies of mosquito-arbovirus interactions. The program is using a well studied virus, Sindbis virus (SINV), to study its interactions in various tissues of Ae. aegypti and Ae. albopictus. The infection process of an arbovirus is being evaluated using SINV to characterize SINV-associated pathology, persistence, and tissue specific clearance of the virus in the mosquito.

11.2.2.8 University of South Florida

In 2007 several new faculty joined the College of Public Health University of South Florida (USF) in Tampa to work on vector-borne pathogens as part of the University's Global Health Program. The primary focus of the research involves
studies on malaria, including drug development and vector studies. The ecology of arthropod-borne encephalitic viruses is also under investigation.

11.2.3 Local

Many Florida mosquito control programs conduct research on issues that address local needs.

Anastasia Mosquito Control District (MCD) conducts studies on mosquito control traps, GIS/GPS for surveillance, development of bioassay techniques, and evaluation of mosquito larvicides and adulticides.

Beach MCD evaluates aerial permethrin applications and barrier treatments in cooperation with PHEREC.

Collier MCD is involved in ongoing research to improve ULV aerial application equipment and techniques, testing of new mosquitocides, resistance testing of adult mosquitoes, and the integration of GIS/GPS into surveillance and aerial operations.

East Flagler MCD has been evaluating PCR technology for EEE detection.
Indian River MCD is developing a GIS using ArcView for its saltmarsh management, inspection, and larviciding program. Field inspectors will use hand held GPS data loggers. Collected information will be joined with the IRMCD historic larviciding data base. Studies continue to assess the age and blood feeding status of Cx. nigripalpus populations in assessing risk from mosquitoborne pathogens, particularly SLEV and WNV.

Research at Lake County Mosquito Management is in collaboration with CMAVE. The spatial distribution of mosquitoes is being assessed utilizing the program's mosquito surveillance database.

Lee County MCD has actively participated for over 30 years in the improvement of larval and adult mosquito control through field and laboratory research programs. The research programs have produced publications, patents, and products related to larval parasites and pathogens, chemical larvicides and pupicides, granular and liquid active-ingredient delivery systems, invasion of exotic species, disease epidemiology, adulticide efficacy, and aerial adulticide spray nozzle characterization and efficiencies. Research efforts presently involve new surface films for control of mosquito larvae and pupae, adjuvants to facilitate the efficacy and spreading of larvicides injected into the water stream during ditch truck applications, development of control-delivery granular formulations of larvicides, laser-based wind tunnel characterizations of nozzles for aerial adulticide nozzles, and validation of drift models for aerial application of
adulticides. Spin-off research also has produced new technologies in the areas of bioremediation and lubricants.

Manatee County MCD has been working on the development of GIS/GPS for mosquito control applications and optimum droplet sizes for aerial mosquito control.

Okaloosa County Mosquito Control (MC) is participating in a cooperative project with PHEREC to study the surveillance and ecology of WNV and EEEV in wild birds and mosquitoes.

Orange County MC has supported a FMEL M.S. graduate student to evaluate WNV surveillance strategies in the County. The program is evaluating factors that affect the movement of adult Cx. nigripalpus in Orange County to determine a window to spray for the adults to achieve maximum kill.

Pasco County MCD is involved in developing a computer-based adult mosquito surveillance program and innovative spray equipment.

Pinellas County MC has been working with FMEL in evaluating groundwater levels using hydrologic modeling to predict freshwater and floodwater mosquito hatchings. The program uses rotator traps to evaluate peak activity periods for target mosquito species to tailor their adulticiding missions to coincide with these times. Pinellas County MC has worked with PHEREC on a spectral imaging prediction evaluation project. They have analyzed trap data for a five year period to determine seasonality of mosquito species, comparability of similar habitat trap results, and evaluation of trap placement.

Sarasota Mosquito Management conducts research on the behavior, ecology, and control methodologies of container-inhabiting mosquito species, on assessing arbovirus detection techniques for operational use, and on the ovipositional preferences of Psorophora columbiae.

St. Lucie County MC studies include Penaeid shrimp life history, benthic ecology of tidal creek restoration areas, wetland post-hurricane restoration evaluations, ecological impacts of RIM practices on mangroves, mangrove life history in post-wetland restoration areas, impacts of wetland restoration on spotted seatrout spawning, and use of impoundments for marine fish and clam stocking in the estuary. The program also is working on impoundment management using enhanced tidal circulation and evaluating mosquito magnets and the attractants used with such traps. Future work will study tidal dynamics in the estuary as it relates to inter-inlet dynamics and their role in water quality. The program plans to provide tidal data collected using telemetry to the South Florida Water Management District as part of a cooperative hydrodynamic monitoring program.

Santa Rosa MC is participating in a cooperative project with PHEREC to study the surveillance and ecology of WNV and EEEV in wild birds and mosquitoes.

South Walton MCD is participating in a cooperative project with PHEREC to 1) identify vector species responsible for transmission of WNV and EEEV and 2) evaluate the residual effectiveness of insecticide-treated vegetation as a barrier against mosquitoes.

Volusia County MC conducts research on novel control techniques for non-biting midges, i.e., outdoor lighting alteration and larval habitat water chemistry manipulation. Other studies are being conducted on the impact of salt marsh spoil restoration excavation on vegetation and fiddler crab utilization of altered sites.

The following mosquito control agencies submit soil samples to PHEREC where new microbial pathogens are isolated:

- Amelia Island Mosquito Control District
- Anastasia Mosquito Control District
- Beach Mosquito Control District
- Charlotte County Environmental and Extension Services
- Citrus County Mosquito Control District
- Collier Mosquito Control District
- East Flagler Mosquito Control District
- Escambia County Mosquito and Rodent Management Division
- Florida Keys Mosquito Control District
- Gulf County Mosquito Control
- Indian River Mosquito Control District
- Lake County Mosquito/Aquatic Plant Management
- Manatee County Mosquito Control District
- Miami-Dade County Mosquito Control
- North Walton Mosquito Control
- Okaloosa County Mosquito Control
- Orange County Mosquito Control
- Polk County Mosquito Control
- St. Lucie County Mosquito Control
- Volusia Mosquito Control District

The Alachua, Polk, Keys, Pasco and Manatee mosquito control programs work on remote sensing of mosquito larval habitats with PHEREC, and the Duval, Flagler, Citrus, Keys, Lee and Volusia mosquito control programs conduct larvicide projects in collaboration with PHEREC.

11.2.4 Private

11.2.4.1 Harbor Branch Oceanographic Institution, Inc.

Harbor Branch Oceanographic Institution, Inc., a not-for-profit organization located on approximately 500 acres along the IRL in Ft. Pierce, has a commitment to understand and protect the oceans, estuaries, and adjacent coastal regions. In past years, several scientists were involved in the following activities related to mosquito control:

- Water control systems and their hydrological and biological impact on impounded marshes and fish communities
- Determination of the effectiveness of various artificial means of marsh management, such as culverts and weirs, and the compatibility of water management schedules with habitat requirements for different life history stages of important fish species
- Effects of organophosphorus mosquito insecticides on hatching fish larvae and other estuarine zooplankton

11.2.4.2 Mote Marine Laboratory

Mote Marine Laboratory, a non-profit private institution in Sarasota, with funding support from Florida Department of Health and Rehabilitative Services (FDHRS) and Lee County Mosquito Control District, has studied the effects of mosquito larvicides on non-target invertebrates and vertebrate larvae. They conducted studies to determine if aerial application of temephos (Abate ${ }^{\circledR}$) is detrimental to non-target organisms in a mangrove-fringed salt marsh in southern Florida. The test organisms used in the studies were the marsh fiddler crab, Uca rapax, and the mangrove tree crab, Aratus pisonii. Their conclusions are reported in their Final Report for 1993, Mote Marine Laboratory Technical Report No. 333.

11.3 THE NEED FOR COMPETITIVE EXTRAMURAL FUNDING FOR FLORIDA'S RESEARCH LABORATORIES TO SUPPORT MOSQUITO CONTROL

In 1984, Florida mosquito control directors realized that additional funding for research on mosquito control was needed to supplement shrinking budgets for mosquito control research. Following a recommendation of the Research Advisory Committee of the FMCA, Florida's mosquito control programs decided to assign a portion of their annual state-appropriated operational funds to research. Through a competitive grant program, up to $\$ 500,000$ annually was contracted to various institutions to support needed mosquito control research. This program was eliminated in 1991 due to a statewide budget shortfall but was re-instated in

1996 at $\$ 250,000$. At that time, it was determined that only the two state laboratories, FMEL and PHEREC, would be eligible to submit proposals for funding.

A review of the Research Chapter in the first edition of the Florida Mosquito Control White Paper will show that there have been great strides in the past several years on many of the issues listed in that chapter as research needs. Unfortunately, many important needs have yet to be addressed and are again listed in this chapter. The inability to address many of the listed needs is largely due to the lack of adequate monetary support for research.

FMEL, PHEREC, and CMAVE are mandated to perform research on mosquito control to reduce mosquito pests and mosquito-borne disease. All have faculty, staff, and facilities to investigate mosquito biology and provide research for new effective, economical, and environmentally sound control methods. Since its establishment, FMEL has secured federal, state, and county grants and contacts for its support. FMEL ranks among the leading UF/IFAS units in productivity and extramural support but has experienced reductions in its state general revenue for technical and operational support. PHEREC has received funding from state and local governments, as well as industry for many years. More recently, it has received funds from the federal government. PHEREC was transferred from the FDHRS to the FAMU in 1992. Since that time, there has been no growth compensating for inflation in the budget for operating the Center. Both laboratories need additional revenues to accomplish their respective mandates and provide Florida mosquito control and public health professionals essential new information to improve Florida's capabilities to control mosquitoes and mosquitoborne pathogens. It is imperative that the state mosquito research program administered by FDACS, Bureau of Entomology and Pest Control, be increased to past funding levels of $\$ 500,000$ in order to meet the growing demands for more research to improve Florida's capabilities for mosquito control. The current spending level of $\$ 250,000$ is inadequate for the needs and can support approximately four to six projects out of fifteen to twenty projects submitted annually.

Without strong funding support for research, the scientists at the university laboratories will be forced to seek research support in other more readily funded areas that may be removed from the immediate needs of Florida mosquito control and public health. Already, mosquito control is losing some of its effective insecticidal weapons due to resistance, higher application costs, or the perceived concerns that some chemicals and/or techniques may be harmful to the environment.

Mosquito control does not have a promising future for protecting Florida's public without researchers searching for innovative technology and verifying their safe use. The threat of more mosquitoes and the pathogens they carry will affect the well-being of Florida residents and tourists. It is certain that Florida is at great
risk from emerging pathogens, like WNV, that demands Florida be better prepared to effectively mitigate an impending, potentially catastrophic epidemic. Without a strong mosquito control effort, backed by a superior dynamic research effort, Florida will become an increasingly uncomfortable and dangerous place to live and visit.

Chapter 12

EDUCATION, EXTENSION, AND OUTREACH

Chapter Coordinator: Dr. Roxanne Connelly
1998 Coordinator: Dr. Charlie Morris

Abstract

Summary This chapter describes the needs for and the implementation methods used to educate and inform mosquito control workers, related professionals, and the public about matters related to mosquito control in Florida. We describe the organizations involved and the techniques used for extending knowledge appropriate to select audiences.

12.1 INTRODUCTION

An important component of Florida mosquito control is to increase the understanding of mosquito control workers, other professionals, and the general public on matters related to mosquito biology, ecology, control, and disease transmission. This effort is accomplished through education, extension, and outreach programs.

12.2 EDUCATION

Education focuses on increasing the professionalism of all mosquito control workers. Four agencies dedicate significant time to this effort:

- Florida Department of Agriculture and Consumer Services, Bureau of Entomology and Pest Control
- Florida Mosquito Control Association
- University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory
- Florida Agriculture and Mechanical University, John A. Mulrennan, Sr. Public Health Research and Education Center

12.2.1 Florida Department of Agriculture and Consumer Services, Bureau of Entomology and Pest Control

The Florida Department of Agriculture and Consumer Services (FDACS), Bureau of Entomology and Pest Control is the principle certifier of mosquito control personnel in the public health category of certified pesticide applicators. The Bureau offers three to five one- or two-day workshops throughout the state each year. The purpose of these workshops is to prepare people to take and pass the Public Health Certification exam.

The Bureau offers two types of certification: basic and advanced. Only the basic exam is needed to become certified. The advanced exam was designed for those who wish to test their knowledge beyond the basic level. These classes are offered free of charge.

12.2.2 Florida Mosquito Control Association

The Florida Mosquito Control Association (FMCA), through its Education Coordination Committee (ECC), provides training in mosquito biology and control beyond the basic level. Formed in 1995 in response to an increasing demand for general and specialized training, the ECC integrates many association educational projects and maintains an annual budget to fund the educational projects of its nine subcommittees.

The principle subcommittee, the Dodd Short Course Subcommittee, organizes and presents three types of courses: Annual, Regional, and Specialty. The Annual Dodd Short Courses consist of 15 to $30,1 / 2$ - to $41 / 2$-day courses, all of which are held during one week in January or February. The courses are designed for specific groups such as new employees, clerical staff, biologists and entomologists, inspector-sprayers, administrators, computer personnel, mechanics and equipment operators, elected commissioners, and directors of mosquito control programs. The courses cover a wide range of topics related to mosquito control, but each year a few non-mosquito related courses are offered to increase the general abilities of mosquito control staff. Examples of such courses include Public Speaking, Myers-Briggs personality evaluation, Stormwater Certification, and computer applications software instruction. Most courses have maximum enrollments and emphasize student participation. Fieldwork is included in many of the biology courses.

Employees of mosquito control programs, university faculty and staff, state agency staff, manufacturer and distributor representatives, and other individuals volunteer to teach at the annual Dodd Short Courses. The non-mosquito related courses are often contracted with a private consultant for a fee.

Each course carries one to sixteen continuing education units (CEUs) for recertification in either the public health or the aquatics categories of the Florida Pesticide Applicator Certification program that is managed by FDACS, Bureau of

Entomology and Pest Control. Annual attendance averages over 285 people. The vast majority of the course fees are used to finance the annual Dodd Short Courses, and the remainder is used to finance projects of several other ECC Subcommittees.

The Dodd Short Course Subcommittee also organizes Regional Short Courses and Specialty Short Courses. The Regional Short Courses supplement the annual courses and are intended for mosquito control programs with limited travel budgets that prevent them from taking advantage of the annual courses. Regional courses are designed for a specific group of mosquito control personnel, particularly veteran inspector-sprayers, who work in a region of the state such as the southwest or Panhandle. However, courses can be arranged for any group needing training. While attendance is not limited to employees in the region, most attendees work within a one-hour commute to the course site. Regional courses are organized and presented when requested by mosquito control program directors, have tuition, and are designed to provide CEUs for certified applicators.

Specialty Dodd Short Courses deal with a specific and often highly technical topic, such as "Recent Advances in Aerial Application of Mosquitocides" and "Geographic Information Systems for Mosquito Control". The instructors are typically out-of-state experts who are not available during the annual short course week or whose subject is of interest to many people who teach at the annual courses. Attendance is open, but most specialty course attendees are directors, supervisory personnel, and specialists. Specialty courses have a tuition, usually carry CEUs for certified pesticide applicators, and are organized as opportunities arise or by request to the ECC.

The Aerial Training Subcommittee of the ECC is responsible for developing training courses and manuals, fly-ins, and specialty short courses that meet the mosquito control related needs of pilots and other aerial application related personnel. The FMCA Aerial Short Course is a three-day short course held every January that provides information on basic aerial application techniques, new technologies, current research, changes in regulations/label language, and unique perspectives from a wide range of mosquito control programs. The course attracts attendees not just from Florida but from all parts of the United States, as well as Canada, Australia, and Europe. A number of pilots bring their aircraft, complete with unique spray equipment setups. These courses offer CEUs in the public health and/or aerial categories. An informal subgroup, the Florida Mosquito Control Pilot's Association, recently formed solely to address pilot and flight safety aspects of aerial application.

12.2.3 University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory

The University of Florida (UF), Institute of Food and Agricultural Sciences (IFAS), Florida Medical Entomology Laboratory (FMEL) celebrated fifty years of dedicated research on mosquitoes and biting flies in 2006. Located on Florida's east coast in Vero Beach, the FMEL started out as the Florida State Board of Health's Entomological Research Center (ERC) in 1956.

The FMEL offers the Advanced Mosquito Identification and Certification Course each spring. This two-week course provides intense training in the identification of adult and larval mosquitoes of North America. Students who pass the exams receive a certification from the UF. FMEL also provides many opportunities to earn CEUs in public health through their Lecture Series which includes seminars from national and international guest speakers on topics of importance to medical entomology and mosquito control.

The FMEL maintains three websites of interest to mosquito control professionals:

1) http://fmel.ifas.ufl.edu has content related to the FMEL research programs, faculty and staff, and FMEL publications.
2) http://eis.ifas.ufl.edu, the Encephalitis Information System, provides risk maps and risk assessments for EEE, SLE, and WNE transmission in Florida.
3) $\mathrm{http}: / /$ mosquito.ifas.ufl.edu provides information on dozens of mosquito-related topics.

The IFAS Electronic Data Information Source, EDIS, is a collection of fact sheets written for the general public on a wide variety of topics (http://edis.ifas.ufl.edu). FMEL faculty contribute extensively to this collection on subjects including Mosquito Control Devices and Services for Florida Homeowners, St. Louis Encephalitis in Florida, West Nile Virus in Florida, Lyme Disease in Florida, Saltmarsh Mosquito Management, and Mosquito Repellents. Extension Specialists continually add new topics important for Florida residents. FMEL fact sheets are available in English and Spanish.

A basic mosquito identification course for the staff of mosquito control operations became so popular that it outgrew the space available at FMEL. This and other courses are now offered yearly at the FMCA's annual Dodd Short Courses where FMEL faculty and staff frequently serve as course organizers and lecturers.

12.2.4 Florida Agriculture and Mechanical University, John A. Mulrennan, Sr. Public Health Entomology Research and Education Center

Florida Agriculture and Mechanical University (FAMU), John A. Mulrennan, Sr. Public Health Entomology Research and Education Center (PHEREC), in Panama City, provides an annual, three-day training event in February known as the Southeast Regional Public Health Pest and Vector Management Conference. The conference consists of a half-day plenary session featuring guest speakers followed by several concurrent, hands-on workshops taught by PHEREC faculty, staff, and guest speakers. PHEREC provides continuing education for mosquito control and environmental health professionals in the southeastern states and frequently provides training at the annual Tallahassee-based FAMU Pest Control Field Day held for pest control professionals during the first week in November. Periodically, PHEREC hosts technology transfer seminars on timely topics of interest to researchers and control personnel in north Florida.

In the area of extension publications, PHEREC produces an extension series referred to as "EntGuides"on public health arthropods and related topics for mosquito control personnel and the public. Along the same lines, PHEREC produces "Technical Memoranda" that outline procedures for testing insecticide resistance in mosquitoes. These and other important activities are posted in the Center's quarterly newsletter, PHEREC News, and at the Center's web site http://pherec.org.

12.2.5 Industry Short Courses

Some mosquito control product distributors offer free $a d$ hoc short courses open to their customers and to other mosquito control personnel. These courses often also carry CEUs for the Public Health Certification.

12.3 EXTENSION

Beyond courses, the FMCA, FMEL, and PHEREC offer other extension services to assist Florida mosquito control programs. These services vary from producing a bi-monthly newsletter to conducting multi-year research on specific problems.

The Wing Beats Magazine Subcommittee of the ECC publishes a quarterly trade magazine for mosquito control professionals in conjunction with the American Mosquito Control Association (AMCA). It is currently distributed to over 3,600 people in the United States, Canada, Latin America, and overseas. This 40-page color magazine contains articles of interest to operational mosquito control personnel. Advertising has fully supported the production and distribution of the magazine since its inception in 1990, yet advertisements take up no more than half the pages. In fact, the magazine operates in the black, and, along with the annual Dodd Short Courses, supports the other educational projects of the ECC.

Since 1990, the FMEL, in cooperation with the FDACS and the FMCA, has produced and distributed a bi-monthly newsletter, BuzzWords. It is currently distributed to over 1,300 mosquito control professionals in Florida and throughout the United States. The newsletter contains short communications on all aspects of mosquito biology and control, including announcements of meetings, significant changes in personnel, employment opportunities, news items, obituaries, and official mailings of the FMCA to its members. It is automatically sent to FMCA members and is available by request to anyone in the United States free of charge.

12.4 ASSISTANCE TO MOSQUITO CONTROL PROGRAMS

FMEL faculty, PHEREC faculty, scientists at the USDA Center for Medical, Agricultural, and Veterinary Entomology (CMAVE) in Gainesville, and mosquito control personnel work with or assist many other mosquito control programs on research and demonstration projects of mutual interest. Projects are numerous and varied, ranging from computer system setup, equipment repair and calibration, characterizing mosquito problems, and evaluating control methods to conducting arbovirus surveillance.

12.5 OUTREACH

Florida mosquito control programs have several activities to inform the public about the nature of their programs, the needs for and benefits of mosquito control, and the relationship between mosquito control and environmental and health agencies. These efforts include school programs, talks before local clubs and groups, exhibits at local events, literature, house calls, and public service announcements.

School programs range from three full-time teachers on staff to ad hoc presentations to classes upon request. The Lee County Mosquito Control District (LCMCD) pays the salary of two full-time teachers employed by the Lee County School Board and a third full-time instructor employed by Florida Gulf Coast University. These educators teach week-long units of study and instruct teachers on how to present exercises that include major components on the control of mosquitoes. Programs are presented to fifth and seventh grade science students and high school biology and chemistry classes. More typical school programs are one- to two-hour presentations by one or more mosquito control employees who have other duties. These lessons often have a field component and typically focus on third-, fourth-, and fifth-grade classes. The lessons are as varied as the people who teach them.

Mosquito control programs have staff members who make presentations to local clubs and special interest groups on request. Several years ago, a mosquito biology and control speakers list was proposed, but the idea was never developed.

All programs have a telephone number that citizens may call to request spraying or find out more about the mosquito control program. Several programs advertise this number and even notify the media of when and where spraying will be conducted for the next day or week.

Leon County Mosquito Control has a unique way of informing the public. They take a school program one step further by using school children as the talent in a TV-based public service announcement series that has been very effective in educating the public about container-inhabiting mosquitoes that are a major problem in Tallahassee.

Many programs develop their own literature or use literature developed by the FDACS, FMEL, and PHEREC to inform citizens how they can assist in controlling mosquitoes, what services they offer, and how citizens can take advantage of their services. Literature may be distributed as door knob hangers, bookmarks, or fact sheets and is made available in a variety of places, including bookstores, libraries, schools, banks, and other locations where the public may encounter the literature.

Several programs take advantage of space made available at local fairs and festivals by erecting an exhibit that educates people about mosquitoes and their control. The exhibit may be of their own making, one of the two developed by FMEL for use by local programs, or one developed by other programs. Literature related to the exhibit may be available for visitors to take with them.

The thrust of all these public education programs is to let the public know that they can effectively help prevent mosquitoes in urban areas by eliminating larval habitats in their yards.

Chapter 13

HOW FLORIDA MOSQUITO CONTROL IS REGULATED

Chapter Coordinator: Doug Carlson and James Clauson
1998 Coordinators: Doug Carlson and Randy Dominy

Abstract

Summary The regulation of mosquito control in Florida poses a unique set of circumstances. In Florida, mosquito control frequently requires ground or aerial applications of pesticides in highly populated areas. Thus, the potential for human exposure to the pesticides is high. Also, mosquito control is frequently carried out near water bodies or wetlands, areas which are considered environmentally sensitive. Since the success of an adulticide application relies heavily on drift to reach the target, label violation concerns about off-target movement and environmental impacts are common. Enforcement of the label is necessary to ensure that no unreasonable adverse effects occur. However, the same enforcement and registration requirements designed to protect human health and the environment can limit mosquito control's effectiveness. This chapter will explore the various agencies and laws which regulate mosquito control in Florida.

13. 1 AGENCY INVOLVEMENT AND ENFORCEMENT

13.1.1 Florida Department of Agriculture and Consumer Services

Chapter 388 Florida Statutes (F.S.) addresses mosquito control by stating that Florida's policy is to achieve and maintain adequate arthropod control to protect human health and safety, foster the quality of life, promote economic development, and allow for the enjoyment of its natural attractions. This policy is to be achieved by creating mosquito control programs to reduce populations of pestiferous and disease-vectoring arthropods and is to be carried out in a manner consistent with protection of the environment. Thus, Chapter 388 F.S. first establishes the necessity of mosquito control and goes further in requiring that control measures be consistent with environmental laws. Enforcement of mosquito control activities is necessary to ensure that all regulatory requirements are met.

Chapter 388 F.S. authorizes mosquito control offices to do whatever is necessary to control all species of mosquitoes and other arthropods of public health importance as long as that work is not inconsistent with Chapter 388 or other pertinent legislation. Control can be achieved through reducing locations where mosquitoes are produced or by the application of chemicals which are approved by the Florida Department of Agriculture and Consumer Services (FDACS). The Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), as well as Chapters 388 and 487 F.S., establish the primary requirements which FDACS must enforce.

13.1.2 United States Environmental Protection Agency

FIFRA governs the distribution, sale, and use of pesticides in the United States with the U.S. Environmental Protection Agency (EPA) administering these regulations. FIFRA grants significant regulatory latitude to the states, and many states have laws which mirror the Federal regulations. Through a cooperative effort, the EPA and the states work together to ensure that regulatory compliance is achieved.

13.2 REGISTRATION

Under FIFRA, the EPA is responsible for registering new pesticides and ensuring that, when used according to label directions, they will not cause unreasonable adverse effects to human health or the environment. Only pesticides registered under FIFRA can be distributed or sold.

Pesticide registration decisions are based primarily on EPA's evaluation of the test data which is provided by the applicants. This test data allows for a determination of whether a pesticide has the potential to cause adverse effects to humans, wildlife, fish, and plants, including endangered species. A registrant is required to submit to the EPA all factual information regarding unreasonable adverse environmental effects. It further grants EPA the authority to cancel the registration of a pesticide if it causes unreasonable adverse effects on the environment. However, the EPA is required to take into account the product's economic benefits.

FIFRA's Section 24 allows each state to regulate the sale or use of any federally registered pesticide or device. In Florida this regulation is enabled through Chapter 487 F.S. and requires annual renewal. Regulations pertaining to pesticide registration in Florida appear in Chapter 5E-2 of the Florida Administrative Code (FAC).

13.3 AUTHORITY

Section 388.361 establishes FDACS as the agency to administer and enforce all rules under the Mosquito Control Law. FDACS also is charged with adopting rules providing for the following:

1. Criteria to demonstrate that arthropod population levels constitute a public health or nuisance problem.
2. Criteria regarding aerial spraying of pesticides on private lands which minimize deposition and the potential for substantial adverse effects.
3. Requirements that all arthropod control pesticides, including adulticides and larvicides, be used only in accordance with the registered labeling or be otherwise accepted by the EPA or FDACS.
4. Protection of the health, safety, and welfare of arthropod control employees, the general public, and Florida's natural resources.

FDACS can adopt rules which are more stringent than the EPA's label requirements. FDACS establishes criteria for licensing of all private and public arthropod control applicators and program directors. FDACS requires that applicators report their activities. However, licensing or certification is not required for private individuals controlling arthropods on their own residential or agricultural property. FDACS authorized inspectors can enter upon any property to inspect records or lands in order to investigate complaints, and FDACS has the authority to cooperate with federal and other state agencies as appropriate.

Florida's legislatively-established Coordinating Council on Mosquito Control (FCCMC) has the responsibility to develop and implement guidelines to assist FDACS in resolving disputes arising over the control of arthropods on publicly owned lands. Another key issue on which the FCCMC provides recommendations is aerial spraying in which a goal is to minimize environmental harm.

FCCMC has the authority to designate subcommittees to assist in carrying out their responsibilities. The Subcommittee on Managed Marshes (SOMM) is such a committee charged with providing technical assistance and guidance on salt marsh management plans and developing and reviewing research proposals for mosquito source reduction techniques.

13.4 ENFORCEMENT ACTIONS AND VIOLATIONS

Section 388.3711 outlines enforcement actions that FDACS may take:

1. FDACS is authorized to enforce Chapter 388 including requesting that a circuit court grant an injunction.
2. It can deny, suspend, or revoke any license or certification, or the disbursal of state aid, in accordance with the provisions of Chapter 120.
3. If FDACS finds a violation to be severe, it can deny, revoke, or suspend a certification or license or the disbursal of state aid. It also can place the offending party on probation for up to 2 years.
4. It may impose an administrative fine not exceeding $\$ 500$ for each violation of any of this chapter's provisions.

When determining a penalty, factors such as the severity of the violation or the probability that death or serious harm may occur are considered. An arthropod control program may cooperate with another county, district, or municipality, but it must first be approved by FDACS.

13.5 STORAGE AND HANDLING REQUIREMENTS

Part 19 of FIFRA addresses storage, disposal, transportation, and recall of pesticides. This chapter allows the EPA to require registration information regarding safe storage and disposal. It also allows the EPA to establish requirements for the transportation, storage, and disposal of the pesticide, any container of the pesticide, any rinsate containing the pesticide, or any other material used to contain or collect excess or spilled quantities of the pesticide. In addition, the registrant may be required to show evidence of sufficient finances and resources to carry out a recall and subsequent disposition if necessary.

Pesticide Management and Disposal Regulations were addressed initially in the 1988 amendments to Section 19 of FIFRA. These amendments expanded the authority of EPA to regulate the storage, transportation, and disposal of pesticides, containers, rinsates, and contaminated materials. This amendment also ended EPA's requirement to accept canceled and suspended pesticides for disposal and directed the Agency to develop new regulations governing the recall of pesticides. New container design and residue removal regulations also were implemented.

Three phases were established to handle the task of writing pesticide management and disposal regulations:

- Phase I established recall plans, requirements for storage of recalled pesticide, storage and disposal plans, indemnification procedures, and transportation requirements for suspended and canceled products.
- Phase II focused on pesticide container and containment requirements and established residue removal and container refilling procedures, design standards to promote closed systems, construction standards that will encourage recycling, and containment standards for bulk storage and product transfer.
- Phase III regulations covered pesticide package storage, management of excess pesticides and rinsate, mixing/loading spill control procedures, and additional transportation requirements.

Pesticide mixing/loading facilities are built to reduce the potential for soil, groundwater, and surface water contamination. In general, facilities that are designed and operated with environmental protection in mind must comply with the four basic laws pertinent to pesticide mixing/loading operations. The four fundamental laws are:

- FIFRA
- Resource Conservation and Recovery Act (RCRA)
- Comprehensive Environmental Response, Compensation and Liability Act (CERCLA)
- Clean Water Act (CWA)

While there are state regulations that specify how a pesticide mixing and loading facility is to be built and operated, there are no federal regulations.

Chapter 487 F.S. prohibits the handling, transportation, storage, display, distribution, or disposal of pesticides in such a manner which will endanger human beings, the environment, food, feed, or any other products.

Concerning the application of pesticides, FIFRA and Chapters 388 and 487 F.S. prohibit the use of any registered pesticide in a manner inconsistent with its labeling. The label includes enforceable language concerning label rates, target sites, and disposal requirements.

The FDACS require storage of pesticides used by mosquito control operations to meet certain requirements established in rule 5E-13.0371(4). These pesticides must be stored and maintained so they are not accessible to unauthorized persons. Secured storage can be: fences with a minimum six feet of height, door locks, valve locks, electronic security systems, disabling of mobile storage units, blocking of access, ingress or egress, or any other reasonable method to prevent or deter theft or unauthorized use. Buildings used to store pesticides should be of rigid construction so unauthorized entry can not be achieved. If a portable
building is used for storage of pesticides, the building must be secured in place so it can not be towed or otherwise removed by unauthorized persons.

13.6 OTHER REGULATIONS AND INITIATIVES

13.6.1 Clean Air Act

Although the Federal Clean Air Act (CAA) has little effect on the mosquito control industry, the potential for regulating application drift does exist. Each individual state, based upon its State Implementation Plan, could potentially regulate methods which release pesticides, either as particulates or as organic emissions, into the air.

13.6.2 Comprehensive Environmental Response Compensation and Liability Act

Numerous pesticide ingredients and formulations are regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), commonly known as Superfund. However, pesticides applied as per label instructions are exempt.

13.6.3 Department of Transportation

Before a material is shipped domestically, it must be determined if it meets one or more of the Department of Transportation (DOT) hazard class definitions. Pesticides are frequently subject to DOT regulations. If a pesticide is classified as hazardous, it must be properly packaged, described, and certified on shipping papers. DOT also requires training to be provided to all HAZMAT employees regarding the safe transportation of hazardous materials, including emergency response.

13.6.4 Resource Conservation and Recovery Act

Mosquito control pesticide wastes can be regulated under the Federal Resource Conservation and Recovery Act (RCRA). Examples include: unused pesticides that are listed or are considered hazardous waste, certain discarded residue or rinsate from containers, nonempty pesticide containers or pesticide residue consisting of contaminated soil, water, or other debris resulting from the cleanup of a spilled pesticide.

13.6.5 Reduced Risk Pesticides Initiative

To reduce human health and environmental risks, the EPA developed the Voluntary Reduced Risk Pesticides Initiative to encourage the registration of lower risk pesticide products containing new active ingredients. The long-term
strategy will develop criteria for identification of such pesticides, streamline the registration process, improve the availability of information to users, and reward those who develop such reduced risk pesticides.

13.6.6 Public Lands

Chapter 388 F.S. addresses arthropod control on Florida's publically-owned lands by recognizing that some environmentally sensitive and biologically productive public lands may be subject to arthropod control measures. Such activities must be approved by the appropriate agency and performed by the local arthropod control agency using methods and materials which are minimally necessary yet economically feasible to abate a public health or nuisance problem, while causing the least hazard to natural resources. If the local arthropod control agency proposes a public lands control plan to the agency and if it is not acceptable, and they can not agree on a plan, the FCCMC can recommend a control plan. Chapter 388 F.S. outlines the steps that can be taken if an agreement cannot be reached.

13.7 RECOMMENDATIONS FOR STORAGE AND HANDLING OF PESTICIDES

At times it is necessary to store or transport pesticides in a different container than that in which it was shipped. This different container is frequently referred to as a "service container." When using such a service container, it is recommended that the following information be securely attached to it:

Pesticide Concentrate

1. The name, address, and telephone number of the user's firm
2. Product name
3. EPA Registration Number
4. Name and percentage of active ingredients
5. Signal word from the registered label

Use-Dilution Preparation

1. The name, address, and telephone number of the user's firm
2. Product name preceded by the word diluted
3. EPA Registration Number preceded by the words "derived from"
4. Name and percentage of active ingredient as diluted
5. Signal word from the registered label

A reference copy of the EPA approved labeling for the product must be kept at the firm's office. Also, the pesticide in the service container cannot be sold or distributed for use by any other person.

13.8 CERTIFICATION AND TRAINING

In 1992, the Florida Department of Health and Rehabilitative Services, Pest, Mosquito and Dog Fly Control program was transferred to the FDACS. This program was renamed the Bureau of Entomology and Pest Control.

Certification of pesticide applicators in Florida is conducted by two state Bureaus within FDACS. They are the Bureau of Pesticides and the Bureau of Entomology and Pest Control.

Through Chapter 388 F.S., the Bureau of Entomology and Pest Control is responsible for the regulation of mosquito control workers through Public Health Pest Control certification. They administer certification exams and enforce applicable laws and rules. FDACS establishes criteria for the certification of all private and public arthropod control applicators and program directors and requires appropriate record keeping and reporting. No certification is required of private applicators controlling arthropods on their own individual residential or agricultural property. Chapter 5E-13 of the Florida Administrative Code (FAC) establishes the criteria for certification of applicators.

To comply with FIFRA requirements, two categories are included within the Public Health Control License.

1. Public Health: The Public Health category includes public applicators using or supervising the use of restricted use pesticides in public health programs for the management and control of pests having medical, public health, or nuisance importance. To obtain this license, practical knowledge of vector disease transmission as it relates to application programs is required, as well as recognition, life cycles, and habitats of relevant pests and knowledge of environmental conditions that may affect public health arthropod control, and knowledge of the importance and employment of non-chemical control methods, such as sanitation, waste disposal, and drainage.
2. Aerial: The Aerial category includes public applicators who apply any pesticide used for public health arthropod control from an aircraft. Licensure in this category is issued only in conjunction with licensure in the Public Health Category. To obtain the aerial license, practical knowledge must be demonstrated of the principles and practices of aerial pest control and the safe application of pesticides by aerial methodologies.

To obtain a license, a passing grade of 70% is required. Individuals who score below 70% may retake the test, as often as desired, in accordance with testing schedules.

The Bureau of Entomology and Pest Control sponsors training programs for preparation to take the exams. This includes training in the core area (i.e., pesticide handling and safety) from the County Cooperative Extension Service
offices. Training in public health pest control is offered by FDACS and through the FMCA Dodd Short Courses.

Licenses must be renewed every four years. Sixteen CEUs (Continuing Education Units) are required within the four years for renewal of the licenses. Reexamination is required if the license is not renewed within 90 days of the expiration date. FAC 5E-13 requires Public Health Pest Control applicators to keep accurate pesticides use records. These records must be retained for a period of three years and made available to FDACS upon request.

FAC 5E-13 further requires that all new mosquito control directors must already have, or obtain, Public Health Pest Control certification. Within six months of being hired, all new mosquito control directors must take and pass a directors' exam, which is a comprehensive evaluation of the knowledge required to administer a mosquito control program in Florida, including budget planning and pesticide calibration.

Funds are appropriated annually by the Florida Legislature to support the Public Health Pest Control Program, which is administered by the FDACS Bureau of Entomology and Pest Control. There are no fees collected in administration of this program.

13.9 AERIAL REGULATIONS

Aerial mosquito control operations are regulated under the Code of Federal Regulations (CFR) Title 14, Part 137, which governs agricultural aircraft operations within the United States. Aircraft owned and operated by government organizations, such as mosquito control districts, are entitled, but not required, to be operated as "public aircraft." "Public aircraft" are exempt from many, but not all, of the requirements of Part 137.

Mosquito control organizations operating "civil" (i.e., not "public") aircraft are required to obtain an Agricultural Aircraft Operator Certificate under Part 137, which entails presenting for inspection at least one "certificated and airworthy aircraft" and appropriately rated aircraft pilot who must pass a knowledge and skill test to demonstrate competency in aerial agricultural operations. Additionally, the pilot is required to meet certain prior experience requirements before conducting operations over a congested area.

Part 137 Subpart C outlines general operating rules for agricultural aircraft, many of which are not applicable to "public" aircraft. Of note, however, is that this is the only regulation which allows agricultural aircraft "during the actual dispensing operation" to operate at altitudes "required for the proper accomplishment of the agricultural aircraft operation." All aircraft, civil and public, are otherwise required to maintain the minimum safe altitudes outlined in Part 91 ("General

Operating and Flight Rules") of the regulation, which are significantly higher than would be practical for any sort of mosquito control aerial operations.

In sections 137.43 through 137.47 allowances are made for agricultural aircraft which are not equipped with radios, transponders, position lights, or basic instruments to permit them to operate in some areas of controlled airspace after prior coordination with the appropriate authorities.

Arguably the most noteworthy part of this regulation is Section 137.51, which delineates requirements for operation over "congested areas" and does not exempt "public" aircraft from compliance. In addition to obtaining "prior written approval" from an appropriate government official having jurisdiction over each municipality involved (usually accomplished by way of an open-ended letter of approval), the organization must provide prior notice of each operation to the public through newspapers, radios, etc., and have each operation approved by the local Federal Aviation Administration (FAA) Flight Standards District Office (FSDO).

To circumvent the redundancy of submitting a complete plan with all of the required information for each and every operation, most mosquito control organizations opt to publish a yearly "congested area plan" which meets all of the requirements outlined in the section and submit it to the local FSDO for approval. Once approved, this plan serves as a kind of "contract" between the mosquito control organization and the FAA, defining exactly how the organization will conduct its business and usually then only requires that a facsimile notification be sent to the FSDO advising them of the intended treatment area, times, pilot(s), and aircraft before each night's flight activities.

It should be noted that each FSDO's designated representative has complete discretion in approving a specific aerial operation over his or her jurisdiction's congested areas. Accordingly, although some sections of Part 137 exempt "public" aircraft from being certified as airworthy, or pilots from being appropriately licensed, or the organization from being inspected, such organizations may be prohibited from operating over congested areas if the FAA official with jurisdiction feels the operation cannot be conducted with an appropriate degree of safety. Additionally, the FAA gives no precise definition of a "congested area." Operators who are unsure of whether or not they are operating over a congested area should consult their local FSDO to make this determination.

There is often some confusion as to what information is required to be included in a congested area plan. Apart from the features briefly outlined in Part 137.51, i.e. "consideration of obstructions to flight; the emergency landing capabilities of the aircraft to be used; and any necessary coordination with air traffic control," the regulation does not give specific details as to the required content. A more complete description can be found in the FAA Inspector's Handbook 8700.1

Chapter 120, Evaluate a Part 137 Congested Area Operations Plan, Section 2, Paragraph 3) D. Operators may request a copy of this paragraph from their FSDO for clarification. The same chapter of the Handbook requires the FAA designated representative, or "Principal Operations Inspector," in accepting the plan, to provide a written approval and to stamp, date and sign each page of the plan.

Of further note, some mosquito control organizations, although operating regularly as "public" aircraft, opt to additionally obtain a Part 137 Agricultural Aircraft Operator Certificate. This certificate allows the operator, should the need arise and with the approval of FDACS and in compliance with Florida Statute, to accept reimbursement for assisting other organizations with aerial mosquito control applications. Acceptance of any kind of reimbursement for these services, to include fuel and pesticide, negates the "public" status of government-operated aircraft and requires the operator to hold a Part 137 certificate, except in circumstances where "the government on whose behalf the operation is conducted certifies to the Administrator of the FAA that the operation is necessary to respond to a significant and imminent threat to life or property (including natural resources) and that no service by a private operator is reasonably available to meet the threat." This arrangement is a significant "gray area" and should be navigated carefully, with prior consultation and approval of appropriate FAA representatives having jurisdiction over both organizations' areas, to avoid incurring considerable fines and disciplinary action.

13.9.1 Aircraft Registration, Security, and Storage

The FDACS requires that aircraft used for mosquito control in Florida be registered annually with the Department on or before June 30 of each year. In addition, these aircraft shall be secured when not in use, either by storage in a locked building, mechanically disabled from flying, locked in place, or any other reasonable method that would prevent or deter theft or unauthorized use. Any purchase, sale, rental, leasing, or transfer of ownership of a mosquito control aircraft required to be registered with the Department must be reported to the Department within 24 hours of the transaction.

Appendix I

ACKNOWLEDGMENTS AND AWARDS

Over the past decade, Florida mosquito control programs and professionals have been honored for their commitment to saltmarsh source reduction programs. As a result of these efforts to benefit wetland resources, several individuals and programs have received environmental awards of high distinction.

U.S. Fish and Wildlife Service Conservation Service Award to Jack Salmela

Under the direction of Leon Jack Salmela, Brevard County undertook the state's largest source reduction program. Jack's care, perseverance, and success in maintaining these marshes for both mosquito control and wildlife resources was highlighted in 1986, when he received the U.S. Department of Interior, Fish and Wildlife Service's Conservation Service Award.

As described by the U.S. Fish and Wildlife Service:
This award is the highest honor bestowed by the Secretary to private citizens and groups for direct contributions to the mission and goals of the Department. It was presented to Mr. Salmela for his endless contributions to wildlife conservation through effective mosquito control techniques and his personal dedication to effective management of wildlife resources.

Florida Department of Environmental Regulation Secretary's Environmental Award to the Saint Lucie County Mosquito Control District

In January 1990 for their innovative impoundment management program, the St. Lucie County Mosquito Control District (Frank Evans, Director, and James David, Assistant Director) received the Florida Department of Environmental Regulation Secretary's Environmental Award. This award was for Wetland enhancement and management, which has significantly contributed to protection, conservation, or restoration of the air, water, or natural resources of the State.

Florida Mosquito Control Association's Provost Award

The Florida Mosquito Control Association's (FMCA) Provost award is given to FMCA members who have devoted their careers to mosquito control, while at the same time showing profound concern for the environment. For four recipients of
this award, their individual commitment to environmentally sound saltmarsh management was a large factor in their receiving this prestigious honor. In 1987, Jack Salmela (Director of Brevard Mosquito Control District) was awarded this honor largely for his work in the wetlands management and conservation efforts in association with the U.S. Fish and Wildlife Service on the Merritt Island National Wildlife Refuge.

In 1994, the Provost award was presented to E. John Beidler, Director of the Indian River Mosquito Control District, who was instrumental in initiating and overseeing impoundment research undertaken in the 1980s to identify the impoundment management techniques which are most environmentally compatible. This research led to the general acceptance and implementation of Rotational Impoundment Management (RIM), which is the impoundment management technique most commonly used along the Indian River Lagoon. John also has been a member of the Florida Coordinating Council on Mosquito Control since 1986.

Dr. Jorge Rey, a wetlands scientist at the University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory (FMEL), received the Provost Award in 2001. Dr. Rey has worked on saltmarsh management issues since he arrived at FMEL in 1978. In the early 1980s, he was one of the scientists who approached the Indian River Mosquito Control District (IRMCD) suggesting a cooperative project with the Harbor Branch Oceanographic Institution and IRMCD to investigate the ecological effects of impoundment management. This federally funded project lasted for eight years and was the foundation on which RIM was based. Jorge has been a member of the Subcommittee on Managed Marshes since it was created in 1986.

In 2007, Dr. George O’Meara received the Provost Award. A Full Professor at the FMEL, Dr. O'Meara is a mosquito biology expert and a tireless visionary whose goal was to provide mosquito control research-based information to allow for more efficient, effective, and environmentally proper management. His work has contributed to reduced pesticide usage, minimizing habitat alterations while reducing mosquito populations, evaluating wastewater and stormwater treatment impacts on mosquito populations, and ensuring that mosquito control impacts are taken into consideration as Florida continues to provide strategies to manage water resources.

National Association of Counties Achievement Award

St. Lucie County Mosquito Control received the 1991 National Association of Counties Achievement Award for the restoration of tidal flushing to their coastal impoundments.

Appendix II

BEST MANAGEMENT PRACTICES FOR MOSQUITO CONTROL IN STORMWATER MANAGEMENT FACILITIES

VOLUSIA COUNTY MOSQUITO CONTROL

The surface storage of stormwater required by state and local regulations has created mosquito larval habitats. Our goal is to eliminate larval mosquito production from stormwater management facilities. This effort requires a basic understanding of mosquito life cycles and habitats. The immature stages of mosquitoes (eggs, four instars of larvae, and pupae) use permanently or intermittently wet habitats. The most pestiferous mosquitoes lay eggs on damp ground that periodically floods. These eggs may survive for years between floodings. Primary disease vectoring mosquitoes lay eggs on the water's surface. Some mosquitoes can develop to adults in as few as six days. Top minnows are the most effective predator of immature mosquitoes in permanent or semipermanent water bodies that are free of vegetation. The use of this information can result in proper design, construction, and maintenance of stormwater management facilities to prevent mosquito production.

Three elements are important to assure that a stormwater management facility does not produce mosquitoes:

1) Design of the proper facility for the site - based on soils and other site constraints
2) Proper construction and certification by the designer
3) Guaranteed maintenance of the system

These three elements, when done together, can achieve the goal of no mosquito production from stormwater facilities.

Design

The three basic types of designs are wet, dry, and intermittent systems. Designs should be based on site characteristics and sound engineering principles and include consideration of soils, seasonal high water table, and pre-development drainage characteristics. The Soil Survey of Volusia County provides good but less detailed information that should be field validated. Slopes should allow ease of maintenance and for small children to extricate themselves. Maintenance plans
should be carefully reviewed to prevent additional problems. The soil technician at the Volusia County Agriculture Center is available for free consultation on soil and water tables.

Wet system retention or detention facilities are usually used in a high water table situation. The permanent water table can maintain top minnows, provided there is eighteen inches of water during the driest periods. The bottom should be graded to avoid isolated pockets of standing water. A maintenance easement of at least fifteen feet should surround the facility above the high water line. Wetland plantings are discouraged as they cause mosquito or maintenance problems.

Dry systems (retention areas or swales) are best used in low water table, permeable soils. These areas should be designed to be dry within three days of a rainfall event based on a twenty-five year frequency storm of twenty-four hour duration. A good rule of thumb is to place the bottom one foot above the seasonal high water table. Where this minimum freeboard cannot be achieved by raising the retention area, a wet system should be used. We do not recommend the use of underdrains to control water elevations because of their expense, susceptibility to failure, and frequency of maintenance. As an alternative to surface storage, we have regularly approved underground exfiltration systems in low water table soils. The pipe should be placed at least one foot above the seasonal high water table. The inlet sumps may produce a few mosquitoes, but the maintenance value outweighs this easily treated problem. These systems can be maintained regularly and easily by jetting the pipe with a Vac-type truck unit.

The least desirable system is an intermittently wet/dry system. It is used at a site where overriding design criteria exist such as tree preservation in a high water table soil. These undesirable systems can be significantly improved by utilizing minnow reservoirs, constructed of Florida Department of Transportation type "C" catch basins. The tops of the catch basins are installed at ground level with a minimum depth of two feet with a solid bottom and grated top. The catch basin becomes a protected refuge for minnows when the retention facility is dry. Each individual depression within the retention area will require one reservoir. Maintenance of these reservoirs can be done by hand or with a jet/pump system. A small permanent water pond in one part of the facility could act in a similar fashion. Retrofitting existing facilities that function as intermittent wet/dry systems, contrary to the original design, would benefit from this revised design.

Construction

Inlets and outlets should be constructed with erosion protection devices. Construction should be done with hydraulic excavators or similar equipment to avoid depressions. A professional engineer should certify that the facilities have been constructed according to the proposed plans.

Maintenance

An agreement in the stormwater management permit should specifically identify the party responsible for maintenance. A maintenance schedule - and a procedure to insure that maintenance is carried out - also are important. Mandated maintenance is an important element in local stormwater regulations. Side slopes should be kept free of weeds. Grass should be properly managed to prevent erosion. Weed management (chemical and/or physical removal) should be used in permanent water facilities. Requests to stock top minnows in wet facilities can be made to Volusia County Mosquito Control. Tire tracks in roadside swales and other activities that cause ruts and depressions in dry facilities should be avoided.

This guidance allows professionals involved in stormwater management to prevent a problem with some simple solutions. It is possible to solve existing problems using the same information. It is our hope that this document will convince people to become a part of the solution - not part of the problem. Proper surface storage of stormwater to eliminate mosquito production is one of the most inexpensive and environmentally sensitive approaches to mosquito control available today.

APPENDIX III

HISTORY OF RESISTANCE

Chronology of Insecticide Resistance in Florida Mosquitoes ${ }^{1}$	
1943	- Dade County uses DDT to control mosquitoes.
1945	- Pinellas County uses DDT in thermal aerosols to control Aedes taeniorhynchus.
1949	- Florida mosquito control depends almost exclusively on DDT. - Brevard County reports DDT no longer provides adequate control of Ae. taeniorhynchus.
1950	- Laboratory tests confirm DDT resistance in Ae. taeniorhynchus.
1955	- DDT, BHC, and dieldrin no longer control saltmarsh Aedes. - Malathion is shown effective for controlling resistant Aedes.
1957	- Malathion use is widespread in the state. - Baseline susceptibility field data with malathion are established in Indian River County. - Florida State Board of Health issues policy that OPs be used only as adulticides.
1958	- No areas of state can be termed non-resistant to DDT. - Shiloh strain of Ae. taeniorhynchus is established.
1960	- Baseline susceptibility data for malathion and Ae. aegypti are obtained.
1961	- Ae. aegypti is shown resistant to DDT in Key West.
1963	- Program is established to monitor insecticide resistance in mosquitoes. - There is no confirmed resistance to any OP in the state. - Fenthion and naled are effective against Ae. taeniorhynchus.
1965	- Lee County reports poor results with aerially applied malathion for Ae. taeniorhynchus control. - Advanced degree of resistance to malathion (RR 6-20 and 12-74 for LC_{50} and LC_{90} respectively) is detected in offshore islands populations of Ae. taeniorhynchus in Sarasota and Lee Counties [$\mathrm{RR}=$ resistance ratio (RR)]. - Culex nigripalpus and Cx. salinarius are susceptible to malathion.

1966	- Malathion resistance is reconfirmed in laboratory tests. - First confirmed report of OP resistance in the state is published. - U.S. Department of Agriculture (USDA) attempts to document the extent of malathion resistance. All field strains tested are resistant to malathion (RR 3-30 and 5-170 for LC_{50} and LC_{90} respectively). - IONA strain of Ae. taeniorhynchus is established and shows resistance to malathion.
1967	- Malathion resistance in Ae. taeniorhynchus occurs throughout the state. - There are no other confirmed reports of OP resistance. - Field data shows it takes more malathion to control Ae. taeniorhynchus than it did in 1959. - Malathion resistance is developing.
1968	- A reversion in malathion resistance (9 to 3 and 52 to 6 for LC_{50} and LC_{90} respectively) occurs in the Sanibel Island population of $A e$. taeniorhynchus. It is connected to a decrease in malathion usage in Lee County.
1969	- Researchers report a significant difference between glass and polypropylene beakers when testing Abate ${ }^{\circledR}$ and Dursban ${ }^{\circledR}$. They use only glass beakers. - Baselines are established for Abate ${ }^{\circledR}$, fenthion, and Dursban ${ }^{\circledR}$.
1971	- USDA workers confirm that Ae. taeniorhynchus from Allenhurst remain highly resistant to malathion (RR 28 and 46 for LC_{50} and LC_{90} respectively).
1972	- Monitoring continues and shows little variation in resistance levels.
1974	- Zoecon Corporation scientists coined the term "biorational insecticide" to describe the approach of developing environmentally safe insecticides based on understanding insect physiology (Djerassi et al. 1974).
1975	- First commercial use of methoprene (Altosid IGR).
1976	- Culex nigripalpus shows signs in the laboratory of becoming resistant to malathion.

1979	- Cottondale strain of $C x$. quinquefasciatus is established. - Tampa strain of Cx. quinquefasciatus is shown to be resistant to chlorpyrifos (RR3 and 6), naled (RR 3 and 8), fenthion (RR 4 and 1), malathion (RR8 and 17), and temephos (RR 6 and 39) all for LC_{50} and LC_{90} respectively. - The first published report of resistance in this species in the state appears.
1982	- Temephos is used in larval control programs, a deviation from state policy. As a result a program is established to monitor resistance to this insecticide.
1989	- Culex nigripalpus continues to be monitored for resistance. - Malathion is recommended as the treatment of choice.
1998	- Report of methoprene resistance in Aedes taeniorhynchus on 2 barrier islands, Lee County, FL (Dame et al. 1998).
2000	- Report of restoration of susceptibility to methoprene after a 4-year cessation of the use of methoprene (Hornby 2000).
2002	- No indication of methoprene resistance in populations of Aedes taeniorhynchus from the Florida Keys in an area where methoprene formulations had been in use continuously for 20 years (Floore et al. 2002).

REFERENCES

${ }^{1}$ Breaud, T.P. 1993. Insecticide resistance in Florida mosquitoes. Journal of the Florida Mosquito Control Association 66: 14-21.

Djerassi, C., C. Shih-Coleman and J.Diekman. 1974. Insect control of the future: Operational and policy aspects. Science 186: 596-607.

Dame, D.A., G.J. Wichterman and J.A Hornby. 1998. Mosquito (Aedes taeniorhynchus) resistance to methoprene in an isolated habitat. Journal of the American Mosquito Control Association 14: 200-203.

Hornby, J.A. 2000. Re-examination of Ae. taeniorhynchus methoprene susceptibility in Lee County, Florida. In: American Mosquito Control Association Meeting 2000 March 11-16, Atlantic City, NJ.

Floore, T. G., J.P. Smith, K.R. Shaffer and E.T. Schreiber. 2002. Laboratory bioassay studies to determine methoprene susceptibility in a natural population of Ochlerotatus taeniorhynchus from the Florida Keys. Journal of the American Mosquito Control Association 18: 111-113.

Appendix IV

Acronym List

ACOE	Army Corps of Engineers
AES.	Agricultural Environmental Services
AFPMB.	. Armed Forces Pest Management Board
AI.	Active ingredient
ARS.	Agriculture Research Service
ATV.	All terrain vehicle
BMP	Best management practice
Bti.	Bacillus thuringiensis israelensis
Bs.	Bacillus sphaericus
CAA.	Clean Air Act
CEU.	Continuing education unit
CHD.	County Health Department
CFR.	Code of Federal Regulations
CMAVE	Center for Medical, Agricultural, and Veterinary Entomology
CWA.	Clean Water Act
DoD.	Department of Defense
DOT.	Department of Transportation
DDT.	dichloro-diphenyl-trichloroethane
DEET	N,N-diethyl-meta-toluamide
ECC.	Education Coordination Committee
EEE.	Eastern equine encephalitis
EDIS.	Electronic Data Information System
EPA.	United States Environmental Protection Agency
EPI.	University of Florida's Emerging Pathogens Institute
ERP.	Environmental Resource Permit
ESA.	. . Endangered Species Act
FAA.	Federal Aviation Administration
FAC.	Florida Administrative Code
FAMU.	Florida Agricultural and Mechanical University
FCCMC.	Florida Coordinating Council on Mosquito Control
FDACS.	Florida Department of Agriculture and Consumer Services
FDEP.	Florida Department of Environmental Protection
FDER.	Florida Department of Environmental Regulation
FDHRS.	Florida Department of Health and Rehabilitative Services
FDNR.	Florida Department of Natural Resources
FDOH.	Florida Department of Health
FGFWFC.	Florida Game and Fresh Water Fish Commission
FIFRA.	Federal Insecticide, Fungicide and Rodenticide Act
FIT.	Florida Institute of Technology
FMCA. Florida Mosquito Control Association

Index

2,4-D. 59
Abate. 61, 161, 172, 237
acetylcholine. 74, 97
acetylcholinesterase. 153, 180-182
ACOE 44, 47
active ingredient (AI) $68,78,80,98,100,105,180,181,188,198,237$
acute. $70,88,98-103,146,148,152,156,158,172,174,176$
adulticide. 68, 87, 95, 97, 100, 104, 109, 115, 119, 121, 122, 154$156,159,167,183,205,208,218,231$
adulticiding. . . . $24,25,31,50,66,68,78,86,93-95,97-101,103-106,108-115$117-120, 136, 145, 156, 157, 159-162, 167, 178, 186, 219
Aedes aegypti... 22, 31, 33, 35, 39, 90, 95, 125, 134, 198, 199, 214, 215, 217, 247
Aedes albopictus. 31, 35, 39, 60, 61, 95, 125, 130, 134, 194, 210, 215, 217
Aedes sollicitans. 39, 40, 54, 66, 91
Aedes taeniorhynchus. $39,41,66,87,91,128,135,151,159,162,169,178$179, 190, 247-249
Aedes vexans. 40, 54, 128
aerial adulticiding. $98,100,101,103,104,110-115,136,156$
Aerial Training Subcommittee. 226
AES 69, 78, 97, 120, 124
Agnique. 77, 172
Agricultural Environmental Services (AES). 69
Altosand. 77
Altosid. 77, 164, 248
Anopheles $31,33,39,48,50,66,90,95,125,135,168,171,173,181,184$
189-191, 217
Anopheles albimanus. 181
Anopheles arabiensis. $168,184,185,190,191$
Anopheles gambiae. $168,171,181,184,189-191,217$
Anopheles quadrimaculatus 66, 95
application rate. 66
Applicator Training Manual. 20
Army Corps of Engineers (ACOE). 44, 47
arrowhead. 57
Asian tiger mosquito. 31, 35, 125, 194, 214
attractants. 193, 195, 199, 200, 207, 219
autocidal control. 128
autogeny. 128
Avicennia germinans. 41, 83
Bacillus sphaericus (Bs). $70,72-74,89,90,92,124,127,129,130,149,150$163, 172, 173, 183, 205
Bacillus thuringiensis israelensis (Bti). . . . 59, 70, 72-74, 82-84, 88, 89, 124, 127
$129,130,149,150,159,161,167,183,186,188,205,215$
barrier treatments 50, 101, 102, 105, 111, 207, 218
best management practices (BMP). 49, 84, 94, 177, 244
biocontrol. 66, 68, 123-126, 129, 130, 164, 193, 196, 197
biological control. $34,59,67,90,92,123,124,127,130,148,156,196,203$204, 214
biopesticide. 71, 73, 74
biorational materials 159
Brachiola algerae. 125
Bureau of Entomology and Pest Control. $11,14,61,69,87,124,222,224-226$238, 239
carbamates 149, 178, 179, 181-183
carbaryl 179
Center for Medical, Agricultural, and Veterinary Entomology (CMAVE). . . 11, 13
15, 24, 126, 196, 197, 200, 218, 222229
Centropomus undecimalis. 45
CERCLA. 235, 236
certification. . . $50,93,116,121,154,202,214,225-228,233,234,238,239,244$
Chapter 388. . . 2, 19, 26, 42, 68, 70, 146, 154, 161, 204, 231, 232, 234, 237, 238
chemical control.. 23, 57, 59, 60, 146, 148, 149, 155, 177, 188, 194, 197, 202203, 238
chemical trespass. 154
chlorpyrifos. 93, 97, 99, 178, 249
cholinesterase. 74, 97, 155, 168-170
chronic. $135,136,146,154,155,172,173$
chrysanthemums 99
Clean Air Act (CAA). 236
Clean Water Act (CWA) 235
Code of Federal Regulations. 239
Coquillettidia. $4,20,31,34,36,37,39,50,54,57,59,133$
Coquillettidia perturbans... 54, 57, 58, 66
Culex. $31,33,39,40,50,51,53-55,66,72-74,77,90,96,125,129,130$
132-134, 144, 164, 178, 183, 190, 191, 208, 212, 247-249
Culex coronator. 208
Culex nigripalpus $53-55,66,96,132,133,140,144,164,212,213,218$
219, 247-249
Culex pipiens. 72, 90, 183, 191
Culex quinquefasciatus. $33,53,55,73,74,127,129,130,132,190,249$
Culex restuans 53
Culex salinarius. 53, 247
Culicoides. 41, 160
Culiseta. $33,39,58,66,73,133,216$
Culiseta incidens. 73
Culiseta melanura. 58, 66, 133, 216
culverts. 45-47, 221
DDT. $23,24,68,75,145,148,165,173,174,177-179,181,183,192,247$
dengue. $22,29,35,61,131,134,137,195,211,214,215$
Department of Defense (DoD). 196, 197, 200, 202, 211
Dibrom. 111, 163, 208
diflubenzuron. 68, 149
Dimilin. 149
Distichilis spicata. 83
ditching $21,23,38,41-44,47,64,68,151,160,161,196,208$
Dodd Short Courses 25, 110, 225-228, 239
dog heartworm 29, 135, 213
drainage. $22,39,40,43,48,55,56,160,209,238,244$
dredge 21, 23, 42, 44
droplet. $25,81-84,88,94,104,107-114,118-121,207,219$
duplex77
Eastern equine encephalitis (EEE) 29, 58, 60, 61, 131, 133, 136-139, 142144
$148,152,195,205,208,218,211,227$
ecdysone. 71
Educational Data Information Source (EDIS) 91, 127, 168, 227
Education Coordination Committee (ECC) 116, 225
Elops saurus 45
endotoxin 73
enforcement 231, 234
entomopathogenic fungi 188
entomophobia 29, 136
environmental monitoring. 28, 94
Environmental Resource Permit (ERP). 47
Environmental Protection Agency (EPA). . . . 18, 25, 26, 49, 65, 67, 69-74, 77, 8797, 113, 118-120, 146, 148, 149, 155, 158, 165, 166, 197, 232-234, 236, 237
esterases. 180, 183
eutrophication. 161, 173
exotic vegetation 43
extension. $79,89,168,187,193,203,206,210,220,224,227,228,238$
Florida Administrative Code (FAC). 31, 61, 69, 95, 119, 232, 238, 239
Florida Agricultural and Mechanical University (FAMU). . . 12-16, 22, 24, 26, 70110, 124, 202, 203, 222, 228
Florida Department of Environmental Protection (FDEP). 26, 44, 47, 49, 60, 61, 70
Florida Department of Health and Rehabilitative Services (FDHRS). 22, 24-26
138, 221, 222
Federal Aviation Administration (FAA) 116, 240, 241
Federal Insecticide, Fungicide and Rodenticide Act (FIFRA).. . . . 68, 69, 232, 234235, 238
fenthion. 121, 149, 158, 165, 178, 247-249
filariasis. 195, 214
filling. 38, 42, 151
Flight Standards District Office (FSDO). 240
floodwater. 31, 40, 50, 53, 54, 88, 219
Florida Coordinating Council on Mosquito Control (FCCMC). 1, 2, 16, 18, 26, 4264, 196, 233, 237
Florida Department of Agriculture and Consumer Services (FDACS). . . 2, 11, 14 $19,20,22,26,32,33,61,69,71,78,87,93,97,99-102,108,110,115,116$ $118,124,131,138,142,146,153,204,208,211,222,225,226,229,230$ 231-235, 238, 239, 241
Florida Department of Environmental Protection (FDEP). . 11, 14, 26, 44, 70, 211
Florida Department of Health and Rehabilitative Services (FDHRS).. 22, 22, 49

$$
221,238
$$

Florida Institute of Technology (FIT). 25, 27, 208
Florida Legislature. 19, 21, 203, 209, 211, 239
Florida Medical Entomology Laboratory (FMEL).. . . . 2, 12-14, 16, 21, 24, 27, 49 63, 126-128, 188, 202, 208, 202, 203, 208-216, 219, 222, 227-230
Florida Mosquito Control Association (FMCA). 15, 16, 18, 19, 22, 62, 63, 81 $110,116,129,130,144,167,174,189$ 191, 215, 221, 224, 225, 228, 229, 239, 249
Florida Mosquito Control Handbook.. 57, 63, 182, 187, 191, 214
Florida State Board of Health (FSBH).. . . 21, 22, 24, 48, 67, 68, 91, 137, 138, 144 202, 247
Florida Statues (F.S.). 2, 19, 26, 42, 68-70, 146, 153, 154, 161, 204, 231 232, 235, 237, 238
food web.. 147, 159, 160
formulation.. 66, 68, 70, 74, 76, 77, 81, 84, 87, 99, 105, 108, 112, 118 $168,179,181,203$
Gambusia. 124, 129, 161, 196
General Use Pesticides (GUP) . 71, 75
genetic factors. 180
Graphic Information System (GIS). 31, 35, 199, 200, 215, 218, 219
glasswort. 41
Global Positioning System (GPS). 85, 113, 117-119, 218, 219
glyphosate. 59
granule. 79, 81, 82
ground adulticiding. $97,98,100,101,103-106,108,109,112,114,117,118,156$
guidance systems. 113, 117, 118
Harbor Branch Oceanographic Institution (HBOI). 25, 221
health risk.. 35, 144, 152, 170
herbiciding. 66
high marsh. 36, 40-42, 45, 47
high pressure. 107, 114
Idiopathic environmental intolerance (IEI). 153, 162, 163, 170
impoundment. 21, 38, 39, 42-46, 62, 64, 151, 159, 161, 208, 219
Indian River Lagoon (IRL).. 40, 62, 90, 160, 208
inert ingredients. 75
insect growth regulator (IGR). 71, 72, 75, 149, 178, 248
Institute of Food and Agricultural Sciences (IFAS).. . . 2, 12-14, 16, 21, 24, 63, 89
91, 126, 127, 168, 172,188, 202, 208-10, 215, 222, 224, 227
Integrated Pest Management (IPM). 20, 38, 39, 66, 67, 73, 75, 78, 87, 91, 93 $95,123,127,145,147,148,162,177,186$
International Toxic Units (ITU) 73, 74
iprobenfos. 183, 184, 191
isostearyl alcohol. 90
Juncus roemerianus 40
juvenile hormone. 71, 92, 164
$k d r$. 171, 180, 184, 185, 190-192
ladyfish 45
Lagenidium giganteum 68
landing rates. 32, 119
larvae $20,30,34-36,41,57-59,65,66,71-79,81,84,86,87,91,124,125$$128,135,136,147,149,150,157-159,168,170,172,177,182-184$186, 214, 215, 217, 218, 221, 244larval source management (LSM).65, 66
larvicides 20, 34, 55, 56, 59, 65-68, 70-77, 79-82, 84, 87-91, 123, 149, 150$156,159,171,183,186,205,217,218,221,233$
larvivorous fish. $38,39,43,48,50,125,160$
Lepidoptera. 72, 97, 99, 157
low marsh. 40-42
lunar tides. 40
macrocrustaceans 45
maidencane. 57
malaria. $22-24,29,48,68,75,95,131,135,137,168,173,174,181,188-191$195, 199, 201, 213, 214, 217, 218
malathion. . . 68, 93, 97, 98, 109, 111, 121, 149, 154, 155, 157, 158, 163, 165-169$171,173,174,176,178-180,183,184,190,191,247-249$
mammals. 53, 75, 95, 98-103, 148-150
mangrove. $36,41,42,45,46,52,77,83,91,113,219,221$
Mansonia 20, 31, 34, 36, 39, 50, 54, 57-59, 66, 133
Mansonia dyari 54, 57
Mansonia titillans. 54, 57
mean high water line 41
mechanical traps. 32, 126, 127
Megalops atlanticus 45
Metabolic resistance 180
methoprene. $70-72,77,87,89,90,130,149,159,161,163,167,176,178$
189, 248, 249
Miami blue butterfly. 157
microalgae 126
mineral oil. 68
monitoring. $28,30-34,36,50,88,94,109,132,138-140,142,143,147,177$182, 183, 188-190, 197, 205, 206, 208, 219, 248
monomolecular surface films 59, 76, 91, 169
mosquito control in war areas. 23
mosquito surveillance. 28-33, 36, 94, 199, 218, 219
Mote Marine Laboratory. 25, 83, 221
mullet. 45
naled. $93,97,98,111,122,149,154,155,158,163,174,175,178,179,208$
247, 249
National Geodetic Vertical Datum (NGVD). 46
Navy Entomology Center for Excellence (NECE) 201, 202
noticed general permit. 47
nutrient. 45, 52-56
octenol. 33, 195, 199
oil. 65, 68, 75-77, 89, 91, 105-107, 111, 114
Open Marsh Water Management (OMWM) 38, 43, 47, 62, 63, 161
organochlorines. 148
organophosphate. $68,74,152,153,155,166,168,172,173,179-181,190$
192, 208
oviposition sites 23, 42, 160
oxidase. 183, 188, 189, 191
package plants. 49, 51, 52
Papilio aristodemus ponceanus. 157
PBO. 178, 180, 186
pellet. 79
pesticide concentrate. 237
Pesticide Environmental Stewardship Program (PESP). 18, 87
pesticide exposure. $152,155,173$
pesticide management and disposal regulations. 234
Pesticide Review Council. 26, 69
petroleum distillate 106
petroleum oil. 107, 111
PHEREC $24,70,87,110,124,139,187,202-208,218-220,222,228-230$
pickerel weed 57
piperonyl butoxide 178
Pistia. 34, 54
PRC. 69
propoxur 149, 179
protozoan. 125, 135, 198
Psorophora columbiae 66, 96, 135, 219
public education 20, 145, 230
public health. $11-17,20,24,25,27,35,45,70,72,93,95,98-103,110,116$$124,136-139,141,144-147,150,152,154,161,162,167,170,171$187, 197, 201-204, 206, 209-211, 217, 222, 224-228, 232, 233, 237-239
public information 127
public lands. 70, 147, 159, 161, 173, 237
pump 36, 79, 105, 109, 129, 245
pyrethrin 157, 167, 179
pyrethroid $109,114,149,168,178,180,181,184,189-192$
pyrethrum. 68, 99, 100
removal trapping techniques. 126
repellents $126,144,193,195,197,198,200,203,205,207,227$
resistance. $23,24,68,77,87,89,91,98,127,129,130,148,155,167,168$171, 177-193, 195, 198, 205, 206, 208, 218, 222, 228, 247-249
resmethrin. 93, 101, 111, 149, 158, 166, 175, 176, 178, 179
Resource Conservation and Recovery Act. 235, 236
Rhizophora mangle. 41
risks. 19, 44, 45, 67, 87, 94, 107, 108, 145-148, 153, 155, 156, 173, 205, 236
Rivulus. 125
rotary ditching. 43, 44, 47, 161, 208
Rotational Impoundment Management (RIM). 38, 39, 45-47, 161, 219
Salicornia. 41, 45
salt marsh. . . . 24-26, 41-43, 45, 47, 57, 62-64, 66, 79, 91, 128, 135, 160-163, 166 $167,169,171,178,179,204,208,212,218,220,221,233$
saltmarsh mosquitoes $32,33,38-42,54,63,68,159,194,208,212$
saltwort. 41, 83
Scientific Evaluation Section (SES). 69, 70
Scourge. 134
scrub marsh. 41, 44
sedges. 57
septic systems. 51
silica. 76
sills. 44
Sindbis virus (SINV). 217
soil. . . . 44, 51, 52, 55, 56, 69, 73, 99, 124, 149, 160, 161, 220, 235, 236, 244, 245soil salinity44, 160
Solid Waste Management Trust Fund. 61
source reduction.. . $23,26,31,34,38-42,47,48,65,66,68,86,87,110,145,148$$160,164,188,208,215,233$
Spartina alterniflora. 40
Spartina patens. 40
spray drift. $113,114,118,121$
St. Louis encephalitis (SLE). . . . 29, 54, 96, 131-133, 136-139, 142, 144, 148, 151$152,166,171,195,208,211,227$
State II Aid. 48
stormwater. 28, 38, 39, 47-51, 213, 225, 244, 246
Subcommittee on Managed Marshes (SOMM) 26, 42, 47, 64, 233
substrate. 45, 54, 83, 182
sumithrin. 93, 103, 166, 178, 179, 183
surveillance 25, 28-37, 39, 58, 66, 93, 94, 131, 132, 136-144, 152, 156, 159163, 187, 193, 194, 199, 200, 203, 206, 216, 218-220, 229
swales. 51, 79, 245, 246
synergist. 180, 184
synthetic pesticides. 145, 146, 148, 154
target species. . 30, 65, 72, 78, 86, 88, 114, 123, 127, 146, 147, 159, 161, 185, 18645, 46
temephos. $75,78,83,91,92,149,158,178,182,189,196,208,221,249$thermal fog.106, 154, 158
tidal creek. 209, 219
tires $38,39,60,61,75,130,160,214$
toleranceToxorhynchites$125,129,130,214$
transients 45
trypsin modulating oostatic hormone (TMOF). 128, 215
Ultra Low Volume (ULV) $24,25,50,79,81,93,94,106-112,115,121,154$$155,158,198,208,218$United States Department of Agriculture (USDA). . 11, 13, 15, 23, 24, 26, 90, 107125, 126, 145, 174, 196, 197, 202, 229, 248
University of Florida. 2, 12-14, 16, 18, 21, 49, 63, 65, 89, 91, 126, 164, 167
188, 196, 202, 208, 217, 224, 227
University of Miami 217
University of South Florida. 217
wading birds. 160, 212, 216
wastewater $28,38,39,49-56,66,194,198,213$
water hyacinth. 54, 57-59
water hyacinth beetle 59
water lettuce 34, 36, 54, 57-59
water lettuce weevil. 59
water management district. 44, 47, 49, 219
waterfowl. 47, 62, 163, 212
weirs. 46, 48, 221
West Nile encephalitis (WNE). $131,132,148,152,195,208,227$
West Nile virus (WNV). 54, 78, 132, 133, 138-140, 142-144, 195, 205
211-213, 218-220, 223
wetlands ecology. 193, 194, 211
Wing Beats 121, 122, 228
Work Projects Administration (WPA) 21, 23, 41
World War II $22,23,74,76,146,178,196,201$
yellow fever $21,22,35,61,67,131,134,137,195,198,214,217$

