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1 A brief primer on probability distributions

1.1 Probability distribution functions

A probability density function (pdf) is defined as any function that satisfies the equation

1 = C

∫ +∞

−∞

p(x)dx . (1)

In many cases, the range of the function is somewhat less than (−∞,+∞) (we’ll revisit this point
in a moment).

Generally, to convert some function p(x) into a pdf, we simply need to normalize it. (NB: not all
functions can be normalized; think back to infinite sums and series from calculus.) To normalize a
function, we simply must identify the constant C that makes Eq. (1) true.

For instance, consider an exponential function p(x) = e−λx, defined on the interval [0,+∞)1:

1 = C

∫ +∞

0
e−λxdx .

Solving this equation for C yields C = λ, and thus the pdf for an exponential distribution is
Pr(x) = λe−λx.

As we’ll see in the next lecture, it can be useful to define a pdf over a more limited interval, e.g.,
the “tail” interval [xmin,+∞).2 Solving the appropriate version of Eq. (1) reveals that this change
only affects the normalization constant C:

Pr(x) = λeλxmine−λx

= λe−λ(x−xmin) .

1Formally, our function must be defined on the entire interval (−∞,+∞), e.g., in the case of the exponential,
we would define it piecewise such that p(x) = 0 for (−∞, 0) and p(x) = e−λx for [0,+∞). But this notation is
cumbersome. It’s simpler and equally clear to assume that unless otherwise stated, the function is defined as given
on the specified range and 0 everywhere else.

2This is called the “tail” of the distribution because it isolates the part of the distribution corresponding to
low-probability events, which, if you squint at the graph, kind of looks like a dog’s tail. Or something.
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1.2 Cumulative distribution functions

The cumulative distribution function (cdf) is defined as the fraction of density that falls below
some particular value x. Mathematically, we say

Pr(X < x) = C

∫ x

−∞

p(y)dy

= λeλxmin

∫ x

xmin

e−λydy

= 1− e−λ(x−xmin) .

Here, we’re using the notation that X denotes a random variable: a value whose distribution is given
by Pr(x). Note that the form of the cdf is very similar to the form of the pdf for the exponential;
this is a special property of exponential distributions (and a few other functions).

1.3 Complementary cumulative distribution functions

Another useful tool will be the complementary cumulative distribution function (ccdf), which is
defined as 1− cdf = 1− Pr(X < x) = Pr(X ≥ x). Mathematically, we say

Pr(X ≥ x) = C

∫
∞

x

p(y)dy

= 1− λeλxmin

∫ x

xmin

e−λydy

= e−λ(x−xmin) .

To illustrate all three types of distribution functions, the next page shows the pdf, cdf and ccdf for
the exponential distribution, with xmin = 0.
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1.4 Independent and identically distributed (iid) variables

Throughout this class, we will model complex systems using probabilistic models. These are helpful
because data produced by complex systems often exhibit fluctuations and variability. Probabilistic
models are a natural way to represent this variability.

One of the assumptions we will often make about our data is that observations are independent
and identically distributed (iid). This means that if we are given a set of data {xi}, each of these xi
observations is an independent draw from a fixed (“stationary”) probabilistic model. Independence
means that

Pr(x1) and Pr(x2) = Pr(x1) Pr(x2) .

That is, the probability of observing two values x1 and x2 is simply the probability of observing x1
multiplied by the probability we observe x2. This implies what’s called conditional independence,
that is,

Pr(x2 |x1) = Pr(x2) .

To give you some intuition about what this means, consider the familiar process of rolling dice. If
we assume that we have 2 regular 6-sided dice and that they are “fair,” then each of the 6 values
occurs with equal probability. If we throw the dice together, the values they display are iid random
variables. If we throw the dice separately, the values they display are iid random variables. If we
throw a long sequence of the dice, all of the values we observe are iid random variables.

1.5 Central Limit Theorem

In some places in the class, we will implicitly or explicitly invoke the central limit theorem,3 which
is a fundamental result from probability theory.

Suppose that we are given a sample of n iid random variables, denoted {X1,X2, . . . ,Xn}, each with
expected value (average) µ and variance σ2. Let Sn be the sample average4 of the values,

Sn =
1

n

n∑
i=1

Xi .

3In the lecture about Lévy flights, we will likely meet the generalized version of the central limit theorem, which
considers random variables with potentially infinite variance. The classic version assumes that the variance is finite,
which is often, but not always, a reasonable assumption.

4We call it the sample average because it’s the average of a sample of observations (random variables). The true
average is defined by the underlying generative process. That is, if p(x) is the probability of x, then the (non-sample
= true) average is defined as 〈x〉 = x̄ =

∫ +∞

−∞
x p(x)dx.
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Note that because the Xi are random variables, the sample average Sn is also a random variable.
The central limit theorem states that, in the asymptotic (thermodynamic) limit of n → ∞, the
random variable

√
n(Sn−µ) converges in distribution to a Normal (Gaussian) distribution N(0, σ2),

i.e., a Normal distribution with zero-mean and σ2 variance.5

That is, in the limit of large sample sizes (infinite data), the error in our estimate (the difference
between the sample average Sn and the true average) converges on 0 at a rate equal to

√
n. (We’ll

revisit this point below when we discuss “standard error” estimates.)

The central limit theorem is an easy thing to demonstrate using a simple numerical simulation.
Consider a uniform distribution X ∼ U(0, 1). This distribution has an expected value E(X) = 1/2.
The following figures show the distribution of 106 estimates of the rescaled error in our estimate√
n(Sn − µ), for three sizes of samples n = {100, 101, 103}.
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Comfortingly, the distribution is indeed Normally distributed, even for small sample sizes. (It’s
hard to see, but these three histograms are in fact different from each other.)

Here’s the Matlab code that produces these figures:

v = [8 64 4096]; % sample sizes to try

m = 10^6; % number of trials in distribution

for n=v

ms = zeros(m,1);

for j=1:m

ms(j) = mean(rand(n,1));

end;

5The Normal distribution is defined Pr(x) = 1/(σ
√
2π)e(x−µ)2/2σ2

.

4



figure; % make a pretty figure

h=hist(sqrt(n).*(ms-0.5),(-1:0.02:1));

g=bar((-1:0.02:1),h); hold on;

plot((-1:0.02:1),(max(h).*0.73).*pdf(’norm’,(-1:0.02:1),0,0.2887),’b-’,’LineWidth’,2);

hold off;

set(g,’BarWidth’,1.0,’FaceColor’,’none’,’LineWidth’,2);

set(gca,’XLim’,[-1 1],’YLim’,[0 1.1*max(h)],’FontSize’,16);

title(strcat(’n=’,num2str(n)),’FontSize’,16);

xlabel(’n^1^/^2(S_n-\mu)’,’FontSize’,16);

ylabel(’frequency’,’FontSize’,16);

end;

1.5.1 Standard errors and error bars

The central limit theorem also underlies the way we calculate standard error estimates, which is a
notion of uncertainty and which is often used to calculate error bars on estimates.

That is, whenever we calculate a sample average from some data, because we assume the data are
random variables, our average is only an estimate of the true average value, and we should also
report our uncertainty. This is what people mean when they say θ̂ ± s.e., where θ̂ denotes the
estimated value (θ, with no hat, is the true value) and s.e. is conventionally a standard error, where
σ̂ is the sample standard deviation.

The formula for the standard error is simply

s.e. =
σ̂√
n

.

The
√
n here is, in fact, the same

√
n from the central limit theorem. Do you see why?

1.6 Law of Large Numbers

In the above example, the factor of
√
n is important as it rescales the distribution of sample means

so that it remains stationary (fixed), as the number of observations in the sample increases. If we
eliminate it, we can see the impact of the law of large numbers, another fundamental result from
probability theory. The “strong” version of this law states that in the limit of infinite data n → ∞,
the sample mean converges on the expected value Sn → µ. That is, with more and more data, our
estimates should become more and more accurate.

Here’s a simple demonstration of this, using the same simulation as above but now showing the
raw distribution of sample means Sn.
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Indeed, as the sample size increases, the distribution of the mean values becomes increasingly “con-
centrated” around the true expected value E(X) = 1/2.

Here’s the Matlab code that produces these figures:

v = [8 64 4096]; % sample sizes to try

m = 1000; % number of trials in distribution

for n=v

ms = zeros(m,1);

for j=1:m

ms(j) = mean(rand(n,1));

end;

figure; % make a pretty figure

h=hist(ms,(0:0.02:1));

g=bar((0:0.02:1),h); hold on;

plot([0.5 0.5],[0 1.09*max(h)],’bo-’,’LineWidth’,2); hold off;

set(g,’BarWidth’,1.0,’FaceColor’,’none’,’LineWidth’,2);

set(gca,’XLim’,[0 1],’YLim’,[0 1.1*max(h)],’FontSize’,16);

title(strcat(’n=’,num2str(n)),’FontSize’,16);

xlabel(’mean value’,’FontSize’,16);

ylabel(’frequency (of 1000)’,’FontSize’,16);

end;

Another way to show the law of large numbers is to plot the sample mean as a function of sample
size, like the next figure. Here, I’m computing Sn many times at each value of n in order to illustrate
the way the variance changes with n. Notice that for large n, the estimate is extremely accurate.
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1.7 Caveats

There are a few caveats, of course. The central limit theorem is quite general and holds even when
some of its assumptions (iid variables with finite mean and variance) are violated. If the indepen-
dence assumption is violated, the convergence rate is decreased, meaning that our estimates are less
accurate than we might believe, if we were to assume independence. Even if we have non-stationary
processes, some statistical calculations may still be reliable, so long as the non-stationary effects
are not too severe. The law of large numbers also holds when some of its assumptions are violated,
e.g., it holds even when the variance of the generating distribution is infinite, which has the impact
of, again, slowing down the convergence.

The take-home message here is that these are powerful and useful assumptions to make in analyzing
and modeling data from complex systems, but they are mainly starting points. Complex systems
often exhibit mixed or non-stationary processes, feedback loops or long-range “memory,” and all
of these effects can reduce the accuracy of the iid assumptions. This is not to say that you should
not start with the simplest and strongest assumptions (iid random variables); rather, you should
start there but then think carefully about how to improve your models relaxing the unrealistic
assumptions.
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