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ABSTRACT 
Open-source processes are based on the paradigm of self-

organized communities as opposed to traditional hierarchical 

teams. These processes have not only been successful in the 

software development domain, but are increasingly being used 

in the development of physical products. In order to 

successfully adapt open-source processes to product 

realization there is a need to understand how open-source 

communities self-organize and how that impacts the 

development of the products. Towards the direction of 

fulfilling this need, we present an analysis of an existing open-

source community involved in developing a web-based 

content-management platform, Drupal. The approach is based 

on the analysis of networks using techniques such as social 

network analysis, degree distribution, and hierarchical 

clustering. Openly available information on the Drupal 

website is utilized to perform the analysis of the community. 

The data is transformed into two weighted undirected 

networks: networks of people and networks of Drupal 

modules. Both the structure of these networks and their 

evolution during the past six years are studied. The networks 

are visualized by mapping them into images. Based on the 

analysis, it is observed that the structure of the Drupal 

community has the characteristics of a scale-free network, 

which is similar to many other complex networks in diverse 

domains. Finally, key trends in the evolution of the networks 

are identified and the possible explanations for those trends 

are discussed. 

1. FRAME OF REFERENCE: OPEN-SOURCE 
PROCESSES 

During the past two decades, open-source processes have 

gained significant popularity in the software development 

domain. Various successful products such as Linux, Apache, 

and Mozilla have shown that open-source processes can be as 

successful as the processes followed by traditional 

organizations. The concept of open-source has not only been 

used in the software development domain but also been 

recently implemented in physical product development. 

Examples include open-source 3D printers [1], electronics 

prototyping platforms [2], cell phones [3], cars [4, 5], 

prosthetics [6], machine tools, robots, and other socially-

relevant design projects [7]. In physical product development, 

open-source refers to the openness of the information such as 

design details, schematics, CAD models, bills of materials, 

associated software, etc. The success of open-source processes 

in physical product development is driven by the fact that 

physical products are also information products during the 

design phase, and accelerated by the reducing prices of 3D 

printing capabilities. 

Open-source processes emerged in software products 

earlier than in physical products because software products 

have characteristics particularly suitable for open-source 

processes. The development of both software products and 

physical products can be divided into four phases: design, 

manufacturing, distribution, and upgrade. In the design phase, 

both software and physical products can be viewed as 

information-based products defined of requirements, functions 

and detail designs, which can be recorded electronically. In the 

manufacturing phase, software products can be manufactured 

(programmed) by individuals using computers, while physical 

products need to be manufactured by specific physical tools 

and machines. In the distribution phase, software products can 

be shared through the Internet at (almost) zero cost, but 

physical products need to be transported from one site to 

another. In the upgrade phase, the software products can be 

upgraded by simply re-compiling the upgraded software code 

whereas physical products need to be re-manufactured. By 

comparing software and physical products in the four product 

development phases, it is clear that software products are 

easier to manufacture, distribute and upgrade than physical 

products even by individuals without many resources. Hence, 

open-source processes emerged in software development.  

With the increasing availability of 3D printing 

capabilities, open-source processes have also started gaining 

popularity in physical product development. In the design 

phase, physical products are also information-based products 

whose documents can be easily shared by individuals. So the 
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open-source processes can be applied during the design phase, 

examples include Open Source Car [4, 5], and Open 

Prosthetics Project [6]. With the development of the rapid 

prototyping technology, open source processes can also be 

extended into product manufacturing. A 3D printer is a 

convenient tool for individuals to prototype physical products 

using CAD models. Besides, some physical products such as 

electronic hardware can be manufactured directly from 

electronic design documents. These designs can be 

downloaded from the Internet. In these cases, the 

manufacturing and upgrading phases can also be carried out 

through open source processes. As a summary, many physical 

product development projects have started utilizing open-

source processes. In a recent article, Anderson [8] projects that 

open-source will revolutionize the way in which innovative 

products are designed and developed. Given the increasing 

adoption of open-source as a new paradigm for product 

realization, it is becoming important to understand its 

underlying dynamics.  

Open-source processes are significantly different from 

traditional product development processes because they are 

based on bottom-up design by self-organized communities as 

opposed to top-down design by hierarchical organizations. 

They are driven by participants choosing their activities based 

on their own goals and interests instead of being driven by 

top-down hierarchical control as in the case of traditional 

product development. Open-source products are always under 

continuous development and evolution. In traditional product 

development, the effect of organizational structure on the 

product is well recognized [9]. According to Conway [10], 

“any organization that designs a system (defined more broadly 

than just information systems) will inevitably produce a 

design whose structure is a copy of the organization's 

communication structure”. Hence, the organizations strive to 

align the organizational structures with the product structures. 

However, in the case of open-source processes, no 

organizational structures are imposed at the beginning of the 

process. The structure of the organization evolves as new 

participants join and collaborate with existing participants. 

The collaboration between different participants is based on 

the product structure and is driven by the dependencies 

between subsystems, implying the effect of product structure 

on community structure. Hence, in open-source processes, the 

products and communities undergo interdependent co-

evolution. In order to successfully utilize open-source 

processes for product realization, we believe that the 

knowledge of this interdependent co-evolution is crucial.  

The knowledge can be gained by understanding a) the 

structure and evolution of communities, b) the structure and 

evolution of products, and c) the interdependence between 

structures and evolution of communities and products. The 

focus in this paper is on the first aspect, i.e., understanding the 

structure and evolution of open-source communities. In the 

following section, existing literature is discussed and the gap 

is identified. The proposed approach, involving the analysis of 

an existing open-source community, is discussed in Section 3. 

The results from the execution of the approach for a specific 

open-source community are presented in Section 4. Finally, 

closing thoughts are presented in Section 5.  

2. REVIEW OF EXISTING LITERATURE 

Existing literature on open-source processes is primarily 

focused on open-source software (OSS) development because 

of highly developed processes, large number of communities 

and significant amounts of data on OSS development. A 

general discussion of the factors affecting the success of open-

source software development is presented by Weber [11]. OSS 

is a public good provided by volunteers – the “source code” 

used to generate the programs is freely available to read, use 

and modify [12]. An OSS development project is typically 

initiated by an individual or a small group with ideas which 

can realize their intellectual, personal, or business interests 

[13]. Various researchers have presented empirical and 

quantitative studies on the structure of OSS communities 

based on the data from existing OSS projects. Raymond [14] 

describes the Linux development community as the “Bazaar” 

structure. Cox [15] presents initial thoughts of “town councils” 

structure in OSS community based on Linux 8086 project. The 

author conceptually illustrates the community structure for 

Linux 8086 project. Weber [11] discusses different types of 

organization structures in various OSS projects. For example, 

the community structure of the Linux project reflects a 

pyramid structure whereas the community structure of the 

BSD project is represented as concentric circles. The 

structures concluded by Weber are based on direct observation 

of communities without rigorous mathematical analysis. 

Crowston and Howison [16] discuss community centralization 

in OSS development communities by analyzing data from the 

bug-tracking system in SourceForge. The authors demonstrate 

that the community centralization or decentralization is not a 

characteristic of OSS projects. Crowston and Howison [17] 

later analyze hierarchy and centralization of the OSS 

communities of Apache, Savannah and SourceForge by 

employing social network analysis (SNA) metrics. They 

conclude that large projects are less centralized and 

hierarchical, as compared to smaller projects. Xu and Madey 

[18] discuss role distribution and degree distribution in the 

SourceForge community. Xu and co-authors [19], and Gao 

and Madey [20] study topological properties of open-source 

communities, including degree distribution, diameter, 

clustering coefficient, centrality and component distribution 

by modeling OSS communities as complex social networks. 

They also observe small-world [21] and scale-free [22] 

network properties in the SourceForge community. Xu et al. 

[23] present the structure of OSS communities by calculating 

the modularity of the network, which is defined as the fraction 

of edges within communities minus the expected value of the 

same quantity if edges fall in a random network, and analyzing 

the groups that exist in the SourceForge network. 

The studies discussed above are focused on analyzing the 

community structures. Some efforts have also been carried out 

on the evolution of the communities. White et al. [24] 

introduced the analysis of social structure over time using 

snapshots of data. Nakakoji et al. [25] discuss the evolution of 

communities in the form of role changes of the members in 

OSS communities, and conclude that there are two factors 

determining the evolution of OSS communities: the existence 

of motivated members, and the social mechanisms of 
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communities. Weiss et al. [26] trace the evolution of a 

community by taking snapshots of its membership at regular 

intervals and establish a major hypothesis that OSS 

communities grow through a process of preferential 

attachment.  de Souza et al. [27] represent a framework for 

software modules and software developers, and study software 

project communications at two points in time. The authors 

analyze the movements of developers across different modules 

of software systems. Howison et al. [28] investigate the 

structure of OSS development communities over time using 

snapshots of data to understand the dynamics of social 

structures in OSS development communities. They examine 

three properties of the social structures, namely, centralization, 

network center, and stability of participation. Wiggins et al. 

[29] analyze the dynamics of OSS development communities 

and find a variation in communication centralization and 

decentralization in the OSS development communities. Open-

source software development is a special case of mass-

collaborative product development [30]. Panchal [31] presents 

an  agent-based model to model the evolution of products in 

such bottom-up processes. Panchal later extends the model to 

explore the co-evolution of communities and products [32]. Le 

and Panchal [33] study the effect of product architecture on 

the evolution of products in mass-collaborative processes. 

Existing studies are limited in the analysis of open-source 

communities because of the lack of: a) simultaneous analysis 

of structure and evolution, b) comprehensive analysis of the 

different aspects of the community structure, c) trends and 

patterns in the evolution of communities. Finally, integrated 

analysis of the evolution of communities and the products has 

not been carried out. In this paper, we perform a 

comprehensive study of the community structure and 

evolution. The study is based on the data from Drupal  [34], 

which is an open-source software for building community-

based websites. The reason for studying Drupal is that there is 

freely available data, detailed documentations, and highly 

developed community associated with this project. Besides, 

Drupal is widely used as a basic framework of web 

development and is a very successful MCPD tool. The PIs are 

also studying the Sourceforge community to ensure the 

generality of the results. The objective is to understand the 

evolutionary characteristics of open source projects that span 

both software and physical products. The study of open source 

software project will lead to a) fundamental knowledge which 

can be applied to both software products and physical products 

based on their commonalities in the design phase and b) new 

techniques enabling individuals involved in manufacturing, 

upgrade and distribution phases.   

3. APPROACH ADOPTED FOR THE ANALYSIS OF 
STRUCTURE AND EVOLUTION OF OPEN-
SOURCE COMMUNITIES 

The approach adopted is this paper is based on network 

analysis. The communities are modeled as social networks, 

defined by participants connected by collaboration links. A 

social network is defined by a set of interrelated social entities. 

Social network analysis has been used to analyze diverse 

systems such as author and paper networks [35], online 

communities on websites such as Yahoo and Flickr [36],  and 

OSS communities. The overall approach adopted in this paper 

is highlighted in Figure 1. 

 

 
Figure 1 - The approach used to analyze the 

structure and evolution of open-source communities 
as networks 

3.1. Data Collection 

In the first step, raw data about the participants and the 

product modules they contribute to are extracted from the 

database. This raw data is used to derive information about the 

relationships between individuals and their related modules. 

The raw data can be in the form of a simple table which shows 

the participants and the modules. In order to study the 

evolution of the community network, the following 

information is collected: a) the joining dates of individuals, b) 

the dates of individuals' first contribution, and c) their 

contributions to different modules.  

Figure 2 (left) is a sample information table from 

www.drupal.org, which includes information about the 

participants' activities on a module named “Activity”. It 

contains information about the user name ("User" column), the 

first and last time each user made a revision of this module 

("First commit" and "Last Commit" columns), and the number 

of times each user revised this project (the “Commits” 

column). Each Drupal module has an information table similar 

to Figure 2 (left). After collecting the information from all the 

modules, the overall information table as shown in Figure 2 

(right) is generated. 

3.2. Generation of the Networks 

From the information table generated in the data 

collection step, community networks are created to model the 

relationships within the community. First, we build a network 

consisting of two types of nodes - people and projects. The 

development of each module is a project in Drupal. Hence, 

Step1: Data Collection (Section 3.1)

OSS Community

Step 2: Creation of bipartite network (Section 3.2)

Output: adjacency matrix of networks A and B

Converting bipartite network to the network with 

single type of nodes

Network of Nodes A Network of Node B

Step 3: Network Analysis (Section 3.3)

Network Structure 

Analysis (Section 4.1)

Network Evolution 

Analysis (Section 4.2)

Approaches: 

Social network parameters analysis (Section 3.3.1)

Degree distribution (Section 3.3.2)

Clustering and re-sequencing (Section 3.3.3)

Network structure image method (Section 3.3.4)

Results and assumptions of both networks

Step 4: Closing Thoughts (Section 5)

http://www.drupal.org/
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each module represents a project node and each participant 

represents a person node in the network. Such a network is 

called a bipartite network, G = {S1  S2, E}, which consists of 

two disjoint sets of nodes S1 and S2 and a set of edges E such 

that each edge in E connects a node in S1 to a node in S2. An 

example of a bipartite graph is shown in Figure 3, where S1 = 

{a, b, c, d, e, f, g} and S2 = {1, 2, 3, 4}. In the case of the 

open-source software network, assume that S1 and S2 represent 

people and projects respectively. 

The links in the network connect a person with a project. 

Hence, a link represents a person working on a module. The 

bipartite network can be weighted or binary. If a binary matrix 

is used, then the links only represent the presence of 

relationship between people and projects. However, if a 

weighted network is used, the weights on the links can be used 

to represent the amount of effort invested by the participants 

on corresponding modules. An indicator of the amount of 

effort is the number of commits by a person to a module. 

 
Figure 3 - Example of a bipartite network and the two 

derived networks 
 

In Figure 3, a binary bipartite graph is illustrated. The 

bipartite graph G can be transformed into two weighted 

undirected graphs G1 = {S1, E1} and G2 = {S2, E2} consisting 

of people (S1) and projects (S2) respectively. Figure 3 provides 

an illustration of graphs G1 and G2 derived from a bipartite 

graph. Two people in G1 are connected by an edge if both of 

them share at least one project. Similarly, two projects in G2 

are linked if they have at least one common participant. The 

weights associated with edges E1 represent the number of 

projects shared by a set of people. Similarly, the weights in 

graph G2 represent the number of common participants shared 

by projects. The graphs can be also represented in matrix form 

as shown in the figure. An adjacency matrix of a network with 

n nodes is an n x n matrix, where an element 𝑎𝑖𝑗  denotes the 

weight on the edge from node i to node j and 0 denotes no 

connection between nodes i and j. The diagonal elements are 

conventionally set to 1. The graphs G1 and G2 are used for 

analysis discussed in Section 3.3. 

3.3. Metrics for Network Analysis 

The adjacency matrix serves as a basic input for the 

network analysis process. After creating the adjacency matrix, 

the network properties are explored using different 

approaches. In this paper, the following approaches are used to 

determine the characteristics of the networks: social network 

metrics, degree distribution, clustering and re-sequencing, and 

network structure image method. These approaches are 

discussed in Sections 3.3.1 through 3.3.4. 

3.3.1. Social Network Analysis (SNA) Metrics 

As discussed earlier, the OSS community is modeled as a 

social network comprising of participants, projects, and the 

relationships among participants and projects. In order to 

characterize the key features of the OSS network, we use 

Social Network Analysis (SNA) metrics [37]. SNA is a 

theoretical and methodological paradigm for examining 

complex social structures [38]. Social networks can be either 

directed or undirected. The arcs may also carry weights to 

represent the strengths of the relationships between actors 

[39]. The following SNA metrics are used in this paper: 

degree, clustering coefficient, diameter, shortest path, density, 

connectedness, and degree centrality. 

a) Degree is the number of nearest neighbors of a vertex 

[40]. In an undirected graph, the degree of a vertex v is 

the number of edges incident with v and is denoted by 

deg(v) or kv [41]. The degree distribution, P(k), of a 

network is defined as the fraction of nodes in the network 

with degree k [42]. In a bipartite network, two degree 

distributions corresponding to both types of nodes are 

important. The joint degree distribution of a network, 

P(k1, k2), represents the probability that a randomly 

selected edge is connected to nodes with degrees k1 and k2 

[43, 44]. The joint degree distribution is different from the 

conditional probability P(k2 | k1) which measures the 

probability that a given node of degree k1 is connected to 

a node of degree k2. The metric of degree describes the 

number of relationships one participant has. The degree 

distribution represents the fraction of participants in the 

community with the same number of relationships. 
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Figure 2 - Illustration of the data-gathering step 

Sample information obtained from Drupal website

Module Name
Module

ID

Person's 

Name

Person 

ID

Completed

(weeks ago)

Started

(weeks ago)

Module A 1 Person A 1 37 52

Module A 1 Person B 2 37 37

Module A 1 Person C 3 42 52

Module B 1 Person D 4 52 104

Module B 1 Person E 5 104 260

Module C 2 Person F 6 208 260

… … … … … …

Obtained information assembled in a table
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b) Clustering coefficient is the probability that two nearest 

neighbors of a vertex are also the nearest neighbors of one 

another [40]. The clustering coefficient reflects the 

“cliquishness” of the mean closest neighborhood of a 

vertex. Large clustering coefficient indicates the rate at 

which information can be spread in the community. 

c) Diameter is the largest distance between any two nodes of 

a connected network [41]. The diameter of a network 

indicates how “big” the network is. Hence, the metric of 

diameter provides information about how large the 

community is. 

d) Shortest path is the shortest path of vertices and edges 

that links two vertices in a network [45]. The average 

shortest path can describe whether there exists the “small 

world phenomenon” [46] within the community.  

e) Density of a network is the average proportion of links 

incident with nodes in the network [47]. The density of a 

network ranges from 0 (if there are no links present) to 1 

(if all possible links are present). A network with density 

of 1 is also called a complete network. The density of a 

network with n nodes and m links is:  

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
2𝑚

𝑛(𝑛 − 1)
 

High density of the community means that on average 

each participant has a large number of relationships that 

enable participants to communicate with each other.  

f) Connectedness represents the ratio of the number of pairs 

in the directed graph that are reachable relative to the 

number of ordered pairs.  

g) Degree Centrality measures the degree of inequality or 

variance in the network as a percentage of that of a 

perfect star network of the same size. For a network 

G=(V,E) with n nodes, the degree centrality CD(v) for a 

node v is [48],: 

CD V =
degree (v)

n − 1
 

 The degree centrality of a network G is: 

CD(G) =
  CD v ∗ − CD(vi) 

n
i=1

n − 2
 

 where CD v ∗  is the highest degree centrality of a node 

in the network. CD(vi) is the degree centrality  of a node i in 

the network. The degree centrality of the entire community is 

also called degree centralization, which measures the 

inequality of the relationships among participants in the 

community. 

Social network analysis tools are used for evaluating the 

metrics discussed above. The most widely used tools are 

Structure [49], Gradap [50], UCInet [51] and Network 

Workbench [52]. Other social network analysis tools are 

discussed by Huisman et al. [53] and Freeman [48]. UCInet is 

used for the results presented in this paper. 

3.3.2. Degree Distribution and Scale-Free Network 

The degree of a node is the number of links connected to 

it. The degree distribution is the possibility distribution of all 

the degrees in the entire network. Recent research has found 

that degree distribution in many real-world networks satisfies 

a power law [54], y=bx
a
 where b and a are constants and y 

denotes the number of nodes with degree x. A network whose 

degree distribution follows a power law is called scale-free 

network. Scale-free networks have a property that only a few 

of nodes (called “hubs”) have a high degree, while most other 

nodes are only connected to a few nodes. Scale-free networks 

have different characteristics as compared to random 

networks. 

3.3.3. Hierarchical Clustering 

Clustering is an approach for assigning a set of objects 

into subsets (clusters) such that the objects within a cluster are 

closer to each other as compared to the objects in different 

clusters [55]. Hierarchical clustering involves recursive 

clustering using previously assigned clusters [56]. At the 

highest level of the hierarchy, all objects are within one 

cluster. At the lowest level, each object is its own cluster and 

the number of clusters is equal to the number of objects. 

Between the highest and lowest levels, various intermediate 

levels of clusters are generated based on the similarity (or 

closeness) or distance between different objects. Various 

measures such as Euclidean distance, Manhattan distance, 

maximum distance, Mahalanobis distance, and cosine 

similarity are commonly be used. Hierarchical clustering is 

used in statistical data analysis, pattern recognition, and data 

mining applications. In weighted networks, the weights can be 

used to represent the similarity or dissimilarity between nodes. 

For the OSS social networks discussed in this paper, the 

weights represent the closeness between people and modules. 

Clusters of people represent participants working closely with 

each other. The result of hierarchical clustering is a tree with 

closely related nodes closer to each other and the dissimilar 

nodes distant from each other. The relative sizes of clusters 

and their overlap convey significant information about the 

network structure. 

3.3.4. Network Structure Image Method 

For complex networks with a large number of nodes, the 

visualization of the clusters as nodes and links is difficult. An 

alternate visualization approach is based on the image 

representation of a matrix. The image corresponding to an 

adjacency matrix provides a convenient visual representation 

of the network structure. A network structure image is 

generated by mapping each element of the matrix into a point 

in the image. Hence, an n x n matrix maps into an image with 

a size of n x n pixels. The color of a point in the image 

corresponds to the values of the elements in the matrix. This 

image method is usually combined with the hierarchical 

clustering method to visualize the clusters within networks.  

4. CASE STUDY - DRUPAL NETWORK 

The approaches discussed in the previous section are 

utilized to analyze the structure and evolution of Drupal 
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community (www.drupal.org). Drupal is an open-source 

content-management system, which allows the creation of 

community-based websites. The Drupal framework consists of 

a core and a large number of modules developed by users 

using open-source techniques. Drupal has been chosen for this 

study because of its strong community and the easy access to 

participant and module data for analysis. The Drupal project 

was started in 2000 and it currently has a large community of 

contributors. There are different types of users who interact 

with the Drupal community. Passive Users are users who only 

download and use the software but do not contribute to the 

code. Active Users contribute to the discussion board and 

identify bugs but do not modify the code. Co-developers 

modify the codes, fix bugs, and add new features to the 

software. Core developers contribute largely to the core of the 

Drupal code and coordinate co-developers‟ work. Project 

leaders are the project administrators who manage the 

direction of the entire project. For the analysis presented in 

this paper, only co-developers, core developers, and project 

leaders are considered. Activities such as the identification of 

bugs and contributions to discussions on the bulletin boards 

are not considered in this paper. The bipartite network created 

for the analysis of Drupal community consists of two types of 

nodes – a) the people (participants), and b) the projects 

(modules) they contribute to. The analyses discussed in 

Section 3 are carried out for the Drupal data. The analysis of 

the structure of networks is discussed in Section 4.1 and the 

analysis of network evolution is presented in Section 4.2.  

4.1. Analysis of Network Structure 

4.1.1. General Discussion of the Network Data 

The data was collected for Drupal 5.x in August 2009. 

The data consists of 1907 projects (modules) and 1217 

participants who contributed the code during the nine years 

from the start of the project in the year 2000. The data is used 

to create the bipartite network consisting of people and project 

from which two networks, discussed in Section 3.2, are 

created. The two networks are referred to as people network 

and project network. The characteristics of the two networks 

are listed in Table 1. 

 

Table 1 - Characteristics of the People and Project 
networks 

Network 
Average 

Degree 

Central-

ization 

Average 

Distance 

Average 

Density 

Clustering 

Coefficient 

Connect-

edness 

People 24.62 1.26% 2.86 0.0202 0.74 0.4465 

Project 42.14 2.71% 2.87 0.0221 0.83 0.5454 

 

It is observed that both the networks are similar in terms 

of the metrics listed in the table. For networks with over 1000 

nodes, the average distance between the nodes of 2.86 and 

2.87 are very low. The degree centrality of both networks is 

also low. The average degrees of the nodes in the two 

networks are of 24.62 and 42.14. With the low average 

degrees, we can assume that both networks are in a low-scale 

unitary connection. The low average density in both networks 

implies that different people develop most of the projects, and 

there are more co-developers than core developers. From the 

table, it is also observed that both the networks have low 

average distances and high clustering coefficients. The 

combination of low average distance and high clustering 

coefficient denotes that this network is highly connected. In 

network analysis, this is called “small-world” phenomenon. 

Small world phenomenon means that any two individuals in 

the network are likely to be connected through a short 

sequence of intermediate acquaintances [46]. With over a 

million possible links in people network and three millions in 

project network, the connectedness, 0.4465 in people network 

and 0.5454 in project network, show high extent of 

connectivity of the two networks. These characteristics 

provide basic information about the network structure. Further 

details are obtained by degree distribution and clustering in the 

following sections. 

 

4.1.2. Degree Distribution of the Networks 

The degree distributions are plotted in Figure 4 and 

Figure 5. Figure 4 contains the degree distributions of the 

nodes in the bipartite network whereas Figure 5 contains the 

degree distributions of the people and project networks. The 

points in Figure 4 represent the number of people working on 

different modules and the number of modules on which 

different people contribute to. On the other hand, the points in 

Figure 5 represent the number of projects linked to other 

projects through common contributors (left) and the number of 

people linked to other people (right). The X and Y axes in 

both the figures are the degree cardinality and the number of 

nodes in different degree cardinality respectively. It is 

observed that the degree distributions of the networks are 

linear on a log-log scale indicating a scale-free topology of all 

three networks. Such a scale-free topology has been observed 

in many biological, technical, and social networks. The 

community of Sourceforge has also been shown to have a 

similar degree distribution. 

In a scale free network topology, there is a small set of 

nodes with a large number of links with other nodes, and a 

large number of nodes with small number of connections. The 

nodes with a large number of connections are called the 

“hubs”. The hubs in the project network are the key projects 

that provide the core functions of Drupal. The hubs in people 

network are the small number of core developers who 

communicate with and support a large number of other 

participants. In the bipartite network, the “hubs” can be either 

core developers or key projects.  

A widely accepted model for generating a scale-free 

network is the preferential attachment model. According to 

this model, networks grow through the addition of nodes. New 

nodes preferentially attach to other nodes with high degree. 

Hence, the probability of attachment of a new node to existing 

nodes is proportional to the degrees of the existing nodes. We 

believe that the model explains the emergence of scale-free 

networks in the open-source domain because the modules that 

have higher number of participants develop faster, thereby 

increasing the modules‟ utility, and hence attract even more 

participants.  

file:///D:/Jitesh/Publications/InProgress/_10.ASME.IDETC/Drupal/www.drupal.org
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4.1.3. Network Structure Analysis through Clustering 

In this section, we analyze the structure of the network 

using clustering techniques. The original and clustered 

networks are visualized using images corresponding to the 

adjacency matrices of the networks. Figure 6 is a black and 

white image corresponding to the binary bipartite network 

with people and project nodes. The horizontal and vertical 

axes correspond to people and projects respectively. Each 

pixel in the image represents a pair of nodes. The weight of a 

link between the pair of nodes corresponds to a color in the 

image. For example, in Figure 6, black color represents no link 

between the nodes and white color represents a link with 

weight = 1, indicating a link between a person and a project. 

The people and projects are arranged in the increasing order of 

their IDs.  

3D plots are used to visualize the adjacency matrices 

corresponding to the weighted people and project networks. 

The plots are shown in Figure 7(a) and Figure 8 (a) 

respectively. The z-axis corresponds to the weights of links 

connecting nodes on x and y axes. The weights on the links 

are used as the similarity measure for clustering purposes. 

This is because the larger weights on people networks indicate 

that people are working together on greater number of 

projects. Similarly, larger weights on the project networks 

indicate that the projects share greater number of participants. 

Hence, the larger the weights, closer the nodes are.  

 
Figure 6 - Adjacency Matrix Image of the Bipartite 

Network 
The adjacency matrices are clustered and the 

corresponding plots are shown in Figure 7(b) and Figure 8(b). 
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Figure 4 - Degree distribution of two types of nodes in the bipartite network 

 
Figure 5 - Degree distribution of projects (left) and people (right) networks 
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From these plots of the clustered networks, it is clear that there 

are few participants near the bottom-right corner who have 

connections with a lot of other people. These participants are 

the core developers who contribute to the entire project and 

oversee the work of other participants. These participants are 

also highly connected with each other. The other participants 

are weakly connected and have a few links with each other. As 

we discussed in the previous section, this kind of distribution 

is due to the scale free nature of the network. Hence, the plots 

provide an indication of the different roles of the individuals. 

Similar characteristic is also observed in the project network 

shown in Figure 8. 

In addition to the highly skewed distribution of links 

between nodes, we also observe clusters of nodes appearing as 

blocks in the images. The blocks indicate sets of participants 

or projects that are highly connected with each other. The 

highly connected participants are similar to teams of 

individuals working together in traditional product realization. 

The difference, however, is that these clusters (teams) in open-

source are emergent as opposed to being pre-defined as in 

traditional product realization. 

 

 
Figure 7 - Adjacency matrix plots of people network 

before and after clustering 
  

 
Figure 8 - Adjacency matrix image of project network 

before and after clustering 

4.2. Analysis of Network Evolution  

In Section 4.1, we discussed network structure of Drupal 

using the data from August 2009. Drupal was founded in 

2000, rapidly growing from 12 developers and 23 projects to 

1217 developers and 1907 projects. The network evolution 

analysis is aimed at understanding how the bipartite, people, 

and project networks grow over time. From the analysis of 

network evolution, our objective is to identify characteristics 

of the network that change over time and the characteristics 

that are invariant with time. The knowledge about the 

evolution of these networks can be used to direct community 

growth. 

4.2.1. Generation of Snapshots of Networks at 
Different Intervals 

During nine years of development, Drupal community has 

grown by a factor of about 100, both in terms of the number of 

participants and modules. In order to analyze the evolution of 

the community, six snapshots of the data are generated based 

on the time when people joined the community and time when 

projects were created. The snapshots are generated at intervals 

of one year, starting with year 4. Different snapshots of data 

are not generated for the first three years because most of the 

evolution in the network took place between years 4 and 9 of 

the project. The number of participants (people) and modules 

a) Before clustering

b) After clustering

a) Before clustering

b) After clustering
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(projects) at different snapshots are shown in Figure 9. It is 

observed that the number of participants and modules has 

grown exponentially. The exponential curve fit for both is 

shown in the figure, which provides an important indicator of 

evolution of the Drupal community.  

 
Figure 9 - Number of people and modules at different 

times 

4.2.2. Evolution of the Network Characteristics 

The social network metrics are used to analyze the 

characteristics of the six snapshots of the people and project 

networks. The results are shown in Table 2. The trends in the 

evolution of the networks are analyzed using average degree, 

degree centrality, average density, clustering coefficient and 

connectedness.  

In Figure 10(a), the average degree of the nodes in the 

networks is plotted at different time steps. The plots show 

three stages in the networks‟ evolution - the first stage where 

the average degree increases, the second stage during which 

the average degree reduces, and finally the third stage where 

the mean degree remains relatively constant. The three stages 

are observed in both product network and the project network. 

We believe that this trend can be explained as follows. During 

the first phase, only the core developers contribute to the 

project. All the developers closely collaborate with each other. 

Any addition to the number of core developers results in the 

increase in the degree of all the nodes in the network. Hence, 

the average degree increases during this first phase. This 

phenomenon has also been discussed as an initial euphoria 

among the co-developers and core-developers [36]. During the 

second phase, as more developers join the network, the 

number of participants and modules (i.e., nodes in the 

network) increase at a rate faster than the number of links. 

Hence, the mean degree reduces. During the third phase, the 

existing participants explore other modules and initiate 

collaborations with other participants.  

Figure 10(b) shows the degree centrality of the network as 

a function of time. The degree centrality of both the networks 

shows a steep decline during the initial phase, indicating the 

significant difference between the nodes with highest degree 

and the other nodes. During the initial years of an open-source 

project, core-developers play an important role in the 

development of the project. At that time, some project leaders 

start lots of projects while others start only a few. This causes 

the significant difference seen in the figure. During the later 

phases, there are more choices of projects for people to 

contribute to, which results in a gradually decreasing curve.  

 

Table 2 - Highlights of the Drupal network evolution 

Network Year 
Average 

Degree 

Degree 

Centrality 

Average 

Density 

Clustering 

Coefficient 

Connect-

edness 

P
ro

je
ct

s 

9 54.5 0.2034 0.7174 0.868 0.8254 

8 91.7 0.1513 0.5559 0.912 0.7116 

7 57.9 0.0810 0.1392 0.853 0.6148 

6 45.8 0.0429 0.0517 0.838 0.5981 

5 39.2 0.0307 0.0262 0.841 0.4945 

4 42.1 0.0271 0.0221 0.827 0.5454 

P
eo

p
le

 

9 24.0 0.1405 0.4800 0.842 0.7420 

8 32.7 0.0561 0.3031 0.855 0.6959 

7 32.8 0.0341 0.1155 0.816 0.5685 

6 30.3 0.0227 0.0553 0.787 0.5084 

5 24.8 0.0157 0.0277 0.754 0.3943 

4 24.6 0.0126 0.0202 0.740 0.4465 

 

The average density of the networks is plotted in Figure 

10(c). The trend of the average density is similar to the degree 

centrality. It reduces steeply during the initial phase and then 

reduces gradually during the later phases. During the initial 

phase, there is a closely connected group of core-developers 

and project leaders, which means that the nodes are highly 

connected in both project and people networks. In order to 

maintain the same density of a network, the number of links 

must increase at a rate equal to the square of the number of 

nodes. However, we observe that rate of increase of the 

number of links is almost equal to the rate of increase in 

nodes. Hence, the density reduces as shown in Figure 10(c). 

The clustering coefficients of the people and project 

networks are plotted in Figure 10(d). After reaching their 

peaks in a short time, both the curves undergo a steady 

decline. We believe that the reason for the downtrend is the 

exponential increase in participants in the Drupal network. 

Further, the core modules of Drupal were developed during 

the first phase, resulting in the high clustering of the people 

network. The closely related core modules result in higher 

initial clustering coefficients. Despite its decline, the 

clustering coefficients in both networks are still high 

compared to random networks. The low average node distance 

in both networks combined with the high clustering coefficient 

is a characteristic of scale-free and small-world networks. 

4.2.3. Evolution of Scale-free Property 

In Section 4.1.2, we discuss the degree distribution of the 

two networks. In this section, we explore how the degree 

distributions of the Drupal network change over time. The 

degree distributions of the participant network for three 

snapshots of data are shown in Figure 11.  

It is observed that during each data snapshot, the form of 

the degree distribution remains the same – power law. The 

only difference is in terms of the parameters of the power law. 

The coefficient increases while the exponent decreases with 

time as shown in the figure. Faloutsos [57] has shown that the 

frequency, 𝑓 of an outdegree, 𝑑, is proportional to the out-

degree to the power of a constant 𝑘.  
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Figure 10 - Average degree, degree centrality, average density, and clustering coefficients of Project and 
People Networks with respect to time 

 

 

 

Figure 11 - Evolution of the power-law coefficients for the people network 
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From Figure 11, we have obtained the relationship from 

our data, the frequency and degree: 

𝑓 = 𝛽 × 𝑑𝛼  

where 𝑑 is the degree and 𝑓 is the frequency of a degree, 

α and β are constants.  

It is observed that there is an approximate exponential 

relationship between α and β in bipartite network. This helps 

in eliminating one constant α or β in the equation of frequency 

and degree. Hence, the evolution of the Drupal network far 

from arbitrary and follows some common trends observed in 

complex networks [57]. Currently, we have obtained the 

equation of frequency and degree with only one constant. In 

future work, we will determine whether there is a relationship 

between the constant and other parameters of the network, 

such as the number of nodes or links of the network. 

4.2.4. Analysis of Network Structure Evolution 

In this section, we present the adjacency matrix for the 

snapshots of network at different times. In both people and 

project networks the row and column sequences, which stand 

for participants and projects are ordered for Years 6-9. This 

method is effective for observing the evolution of the network 

structure. Figure 12 shows the adjacency matrices of the 

people network at different times as 3D plots. The participant 

IDs are organized in an increasing order based on the time 

when they joined Drupal project. Hence, the developer who 

joined Drupal four years ago has an ID greater than the 

participant who joined two years ago. Similarly, the projects‟ 

IDs are also arranged in increasing order.  

The heights of the bars in Figure 12 indicate the values in 

the adjacency matrix. In Figure 12(a), we observe that almost 

every participant has strong collaborations with others. In the 

second plot, more participants are added and the strengths of 

collaboration between newly added participants are weaker. 

The strengths of collaboration between existing participants 

continue to become stronger, as indicated by the change in 

heights of bars corresponding to existing participants. Finally, 

the plot corresponding to Year 9 shows the presence of small 

groups of participants who collaborate with almost everyone 

in the network, which signifies that these are participants who 

joined later but became core developers. Similar trends are 

observed in the projects network displayed in Figure 13. The 

block close to the origin refers to the core modules. The height 

corresponding to the core modules increases as more and more 

modules are added. 

 

5. CLOSING THOUGHTS 

Open-source software development community is 

different from a closed-source software development team. 

Participants in open-source software development community 

collaborate equally based on their own interests, while close-

source software development team is formed in hierarchical 

structures in which tasks are clearly defined and people are 

needed to report to their direct supervisor. In this paper, an 

analysis of the structure and evolution of an open-source 

software development community is presented. The primary 

objective of this analysis is to understand patterns in 

community structures and trends in their evolution. An 

 

Figure 12 - Adjacency Matrix Image of Evolution of People Network 

a) Year 6

c) Year 8

b) Year 7

d) Year 9
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understanding of such patterns and trends, and their impact on 

the product evolution can potentially be used for guiding 

open-source projects. We believe that the patterns of 

community structures are similar in both open-source software 

and hardware. The analysis is carried out using existing open-

source software development communities because of the 

availability of data from successful projects. Based on the 

analysis, it was observed that community structures display 

scale-free characteristics, which have been observed in a large 

number of other social, technical and biological networks. The 

hypothesis is that the scale-free network topology is a result of 

preferential attachment of individuals to well-developed 

projects. In this paper, the changes in the scale-free 

characteristics of the network are also discussed.  

Further research in this area would involve developing a 

simulation model to validate the hypothesis by developing the 

community network in a bottom-up manner using local 

decisions. The model to simulate the growth of community 

will based on attachment kernel, which is defined as the 

probability that a newly introduced participant links to an 

existing participant which already has k links. Parameters will 

include initial number of people and projects, probability of 

starting a new project p, and k0 which is a constant based on 

Krapivsky and Redner’s model [58].   
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