
 1 Copyright © 2010 by ASME

Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference

IDETC/CIE 2010
August 15 – September 18, 2010, Montreal, Quebec, CA

DETC2010/CIE-28272

ANALYSIS OF THE STRUCTURE AND EVOLUTION OF AN OPEN-SOURCE COMMUNITY

Hao-Yun Huang, Qize Le and Jitesh H. Panchal*

School of Mechanical and Materials Engineering

Washington State University, Pullman, WA 99163 (USA)

*Corresponding Author. E-mail: panchal@wsu.edu

ABSTRACT
Open-source processes are based on the paradigm of self-

organized communities as opposed to traditional hierarchical

teams. These processes have not only been successful in the

software development domain, but are increasingly being used

in the development of physical products. In order to

successfully adapt open-source processes to product

realization there is a need to understand how open-source

communities self-organize and how that impacts the

development of the products. Towards the direction of

fulfilling this need, we present an analysis of an existing open-

source community involved in developing a web-based

content-management platform, Drupal. The approach is based

on the analysis of networks using techniques such as social

network analysis, degree distribution, and hierarchical

clustering. Openly available information on the Drupal

website is utilized to perform the analysis of the community.

The data is transformed into two weighted undirected

networks: networks of people and networks of Drupal

modules. Both the structure of these networks and their

evolution during the past six years are studied. The networks

are visualized by mapping them into images. Based on the

analysis, it is observed that the structure of the Drupal

community has the characteristics of a scale-free network,

which is similar to many other complex networks in diverse

domains. Finally, key trends in the evolution of the networks

are identified and the possible explanations for those trends

are discussed.

1. FRAME OF REFERENCE: OPEN-SOURCE
PROCESSES

During the past two decades, open-source processes have

gained significant popularity in the software development

domain. Various successful products such as Linux, Apache,

and Mozilla have shown that open-source processes can be as

successful as the processes followed by traditional

organizations. The concept of open-source has not only been

used in the software development domain but also been

recently implemented in physical product development.

Examples include open-source 3D printers [1], electronics

prototyping platforms [2], cell phones [3], cars [4, 5],

prosthetics [6], machine tools, robots, and other socially-

relevant design projects [7]. In physical product development,

open-source refers to the openness of the information such as

design details, schematics, CAD models, bills of materials,

associated software, etc. The success of open-source processes

in physical product development is driven by the fact that

physical products are also information products during the

design phase, and accelerated by the reducing prices of 3D

printing capabilities.

Open-source processes emerged in software products

earlier than in physical products because software products

have characteristics particularly suitable for open-source

processes. The development of both software products and

physical products can be divided into four phases: design,

manufacturing, distribution, and upgrade. In the design phase,

both software and physical products can be viewed as

information-based products defined of requirements, functions

and detail designs, which can be recorded electronically. In the

manufacturing phase, software products can be manufactured

(programmed) by individuals using computers, while physical

products need to be manufactured by specific physical tools

and machines. In the distribution phase, software products can

be shared through the Internet at (almost) zero cost, but

physical products need to be transported from one site to

another. In the upgrade phase, the software products can be

upgraded by simply re-compiling the upgraded software code

whereas physical products need to be re-manufactured. By

comparing software and physical products in the four product

development phases, it is clear that software products are

easier to manufacture, distribute and upgrade than physical

products even by individuals without many resources. Hence,

open-source processes emerged in software development.

With the increasing availability of 3D printing

capabilities, open-source processes have also started gaining

popularity in physical product development. In the design

phase, physical products are also information-based products

whose documents can be easily shared by individuals. So the

file:///C:/Users/Grad-Student/AppData/Local/Temp/panchal@wsu.edu

 2 Copyright © 2010 by ASME

open-source processes can be applied during the design phase,

examples include Open Source Car [4, 5], and Open

Prosthetics Project [6]. With the development of the rapid

prototyping technology, open source processes can also be

extended into product manufacturing. A 3D printer is a

convenient tool for individuals to prototype physical products

using CAD models. Besides, some physical products such as

electronic hardware can be manufactured directly from

electronic design documents. These designs can be

downloaded from the Internet. In these cases, the

manufacturing and upgrading phases can also be carried out

through open source processes. As a summary, many physical

product development projects have started utilizing open-

source processes. In a recent article, Anderson [8] projects that

open-source will revolutionize the way in which innovative

products are designed and developed. Given the increasing

adoption of open-source as a new paradigm for product

realization, it is becoming important to understand its

underlying dynamics.

Open-source processes are significantly different from

traditional product development processes because they are

based on bottom-up design by self-organized communities as

opposed to top-down design by hierarchical organizations.

They are driven by participants choosing their activities based

on their own goals and interests instead of being driven by

top-down hierarchical control as in the case of traditional

product development. Open-source products are always under

continuous development and evolution. In traditional product

development, the effect of organizational structure on the

product is well recognized [9]. According to Conway [10],

“any organization that designs a system (defined more broadly

than just information systems) will inevitably produce a

design whose structure is a copy of the organization's

communication structure”. Hence, the organizations strive to

align the organizational structures with the product structures.

However, in the case of open-source processes, no

organizational structures are imposed at the beginning of the

process. The structure of the organization evolves as new

participants join and collaborate with existing participants.

The collaboration between different participants is based on

the product structure and is driven by the dependencies

between subsystems, implying the effect of product structure

on community structure. Hence, in open-source processes, the

products and communities undergo interdependent co-

evolution. In order to successfully utilize open-source

processes for product realization, we believe that the

knowledge of this interdependent co-evolution is crucial.

The knowledge can be gained by understanding a) the

structure and evolution of communities, b) the structure and

evolution of products, and c) the interdependence between

structures and evolution of communities and products. The

focus in this paper is on the first aspect, i.e., understanding the

structure and evolution of open-source communities. In the

following section, existing literature is discussed and the gap

is identified. The proposed approach, involving the analysis of

an existing open-source community, is discussed in Section 3.

The results from the execution of the approach for a specific

open-source community are presented in Section 4. Finally,

closing thoughts are presented in Section 5.

2. REVIEW OF EXISTING LITERATURE

Existing literature on open-source processes is primarily

focused on open-source software (OSS) development because

of highly developed processes, large number of communities

and significant amounts of data on OSS development. A

general discussion of the factors affecting the success of open-

source software development is presented by Weber [11]. OSS

is a public good provided by volunteers – the “source code”

used to generate the programs is freely available to read, use

and modify [12]. An OSS development project is typically

initiated by an individual or a small group with ideas which

can realize their intellectual, personal, or business interests

[13]. Various researchers have presented empirical and

quantitative studies on the structure of OSS communities

based on the data from existing OSS projects. Raymond [14]

describes the Linux development community as the “Bazaar”

structure. Cox [15] presents initial thoughts of “town councils”

structure in OSS community based on Linux 8086 project. The

author conceptually illustrates the community structure for

Linux 8086 project. Weber [11] discusses different types of

organization structures in various OSS projects. For example,

the community structure of the Linux project reflects a

pyramid structure whereas the community structure of the

BSD project is represented as concentric circles. The

structures concluded by Weber are based on direct observation

of communities without rigorous mathematical analysis.

Crowston and Howison [16] discuss community centralization

in OSS development communities by analyzing data from the

bug-tracking system in SourceForge. The authors demonstrate

that the community centralization or decentralization is not a

characteristic of OSS projects. Crowston and Howison [17]

later analyze hierarchy and centralization of the OSS

communities of Apache, Savannah and SourceForge by

employing social network analysis (SNA) metrics. They

conclude that large projects are less centralized and

hierarchical, as compared to smaller projects. Xu and Madey

[18] discuss role distribution and degree distribution in the

SourceForge community. Xu and co-authors [19], and Gao

and Madey [20] study topological properties of open-source

communities, including degree distribution, diameter,

clustering coefficient, centrality and component distribution

by modeling OSS communities as complex social networks.

They also observe small-world [21] and scale-free [22]

network properties in the SourceForge community. Xu et al.

[23] present the structure of OSS communities by calculating

the modularity of the network, which is defined as the fraction

of edges within communities minus the expected value of the

same quantity if edges fall in a random network, and analyzing

the groups that exist in the SourceForge network.

The studies discussed above are focused on analyzing the

community structures. Some efforts have also been carried out

on the evolution of the communities. White et al. [24]

introduced the analysis of social structure over time using

snapshots of data. Nakakoji et al. [25] discuss the evolution of

communities in the form of role changes of the members in

OSS communities, and conclude that there are two factors

determining the evolution of OSS communities: the existence

of motivated members, and the social mechanisms of

 3 Copyright © 2010 by ASME

communities. Weiss et al. [26] trace the evolution of a

community by taking snapshots of its membership at regular

intervals and establish a major hypothesis that OSS

communities grow through a process of preferential

attachment. de Souza et al. [27] represent a framework for

software modules and software developers, and study software

project communications at two points in time. The authors

analyze the movements of developers across different modules

of software systems. Howison et al. [28] investigate the

structure of OSS development communities over time using

snapshots of data to understand the dynamics of social

structures in OSS development communities. They examine

three properties of the social structures, namely, centralization,

network center, and stability of participation. Wiggins et al.

[29] analyze the dynamics of OSS development communities

and find a variation in communication centralization and

decentralization in the OSS development communities. Open-

source software development is a special case of mass-

collaborative product development [30]. Panchal [31] presents

an agent-based model to model the evolution of products in

such bottom-up processes. Panchal later extends the model to

explore the co-evolution of communities and products [32]. Le

and Panchal [33] study the effect of product architecture on

the evolution of products in mass-collaborative processes.

Existing studies are limited in the analysis of open-source

communities because of the lack of: a) simultaneous analysis

of structure and evolution, b) comprehensive analysis of the

different aspects of the community structure, c) trends and

patterns in the evolution of communities. Finally, integrated

analysis of the evolution of communities and the products has

not been carried out. In this paper, we perform a

comprehensive study of the community structure and

evolution. The study is based on the data from Drupal [34],

which is an open-source software for building community-

based websites. The reason for studying Drupal is that there is

freely available data, detailed documentations, and highly

developed community associated with this project. Besides,

Drupal is widely used as a basic framework of web

development and is a very successful MCPD tool. The PIs are

also studying the Sourceforge community to ensure the

generality of the results. The objective is to understand the

evolutionary characteristics of open source projects that span

both software and physical products. The study of open source

software project will lead to a) fundamental knowledge which

can be applied to both software products and physical products

based on their commonalities in the design phase and b) new

techniques enabling individuals involved in manufacturing,

upgrade and distribution phases.

3. APPROACH ADOPTED FOR THE ANALYSIS OF
STRUCTURE AND EVOLUTION OF OPEN-
SOURCE COMMUNITIES

The approach adopted is this paper is based on network

analysis. The communities are modeled as social networks,

defined by participants connected by collaboration links. A

social network is defined by a set of interrelated social entities.

Social network analysis has been used to analyze diverse

systems such as author and paper networks [35], online

communities on websites such as Yahoo and Flickr [36], and

OSS communities. The overall approach adopted in this paper

is highlighted in Figure 1.

Figure 1 - The approach used to analyze the

structure and evolution of open-source communities
as networks

3.1. Data Collection

In the first step, raw data about the participants and the

product modules they contribute to are extracted from the

database. This raw data is used to derive information about the

relationships between individuals and their related modules.

The raw data can be in the form of a simple table which shows

the participants and the modules. In order to study the

evolution of the community network, the following

information is collected: a) the joining dates of individuals, b)

the dates of individuals' first contribution, and c) their

contributions to different modules.

Figure 2 (left) is a sample information table from

www.drupal.org, which includes information about the

participants' activities on a module named “Activity”. It

contains information about the user name ("User" column), the

first and last time each user made a revision of this module

("First commit" and "Last Commit" columns), and the number

of times each user revised this project (the “Commits”

column). Each Drupal module has an information table similar

to Figure 2 (left). After collecting the information from all the

modules, the overall information table as shown in Figure 2

(right) is generated.

3.2. Generation of the Networks

From the information table generated in the data

collection step, community networks are created to model the

relationships within the community. First, we build a network

consisting of two types of nodes - people and projects. The

development of each module is a project in Drupal. Hence,

Step1: Data Collection (Section 3.1)

OSS Community

Step 2: Creation of bipartite network (Section 3.2)

Output: adjacency matrix of networks A and B

Converting bipartite network to the network with

single type of nodes

Network of Nodes A Network of Node B

Step 3: Network Analysis (Section 3.3)

Network Structure

Analysis (Section 4.1)

Network Evolution

Analysis (Section 4.2)

Approaches:

Social network parameters analysis (Section 3.3.1)

Degree distribution (Section 3.3.2)

Clustering and re-sequencing (Section 3.3.3)

Network structure image method (Section 3.3.4)

Results and assumptions of both networks

Step 4: Closing Thoughts (Section 5)

http://www.drupal.org/

 4 Copyright © 2010 by ASME

each module represents a project node and each participant

represents a person node in the network. Such a network is

called a bipartite network, G = {S1  S2, E}, which consists of

two disjoint sets of nodes S1 and S2 and a set of edges E such

that each edge in E connects a node in S1 to a node in S2. An

example of a bipartite graph is shown in Figure 3, where S1 =

{a, b, c, d, e, f, g} and S2 = {1, 2, 3, 4}. In the case of the

open-source software network, assume that S1 and S2 represent

people and projects respectively.

The links in the network connect a person with a project.

Hence, a link represents a person working on a module. The

bipartite network can be weighted or binary. If a binary matrix

is used, then the links only represent the presence of

relationship between people and projects. However, if a

weighted network is used, the weights on the links can be used

to represent the amount of effort invested by the participants

on corresponding modules. An indicator of the amount of

effort is the number of commits by a person to a module.

Figure 3 - Example of a bipartite network and the two

derived networks

In Figure 3, a binary bipartite graph is illustrated. The

bipartite graph G can be transformed into two weighted

undirected graphs G1 = {S1, E1} and G2 = {S2, E2} consisting

of people (S1) and projects (S2) respectively. Figure 3 provides

an illustration of graphs G1 and G2 derived from a bipartite

graph. Two people in G1 are connected by an edge if both of

them share at least one project. Similarly, two projects in G2

are linked if they have at least one common participant. The

weights associated with edges E1 represent the number of

projects shared by a set of people. Similarly, the weights in

graph G2 represent the number of common participants shared

by projects. The graphs can be also represented in matrix form

as shown in the figure. An adjacency matrix of a network with

n nodes is an n x n matrix, where an element 𝑎𝑖𝑗 denotes the

weight on the edge from node i to node j and 0 denotes no

connection between nodes i and j. The diagonal elements are

conventionally set to 1. The graphs G1 and G2 are used for

analysis discussed in Section 3.3.

3.3. Metrics for Network Analysis

The adjacency matrix serves as a basic input for the

network analysis process. After creating the adjacency matrix,

the network properties are explored using different

approaches. In this paper, the following approaches are used to

determine the characteristics of the networks: social network

metrics, degree distribution, clustering and re-sequencing, and

network structure image method. These approaches are

discussed in Sections 3.3.1 through 3.3.4.

3.3.1. Social Network Analysis (SNA) Metrics

As discussed earlier, the OSS community is modeled as a

social network comprising of participants, projects, and the

relationships among participants and projects. In order to

characterize the key features of the OSS network, we use

Social Network Analysis (SNA) metrics [37]. SNA is a

theoretical and methodological paradigm for examining

complex social structures [38]. Social networks can be either

directed or undirected. The arcs may also carry weights to

represent the strengths of the relationships between actors

[39]. The following SNA metrics are used in this paper:

degree, clustering coefficient, diameter, shortest path, density,

connectedness, and degree centrality.

a) Degree is the number of nearest neighbors of a vertex

[40]. In an undirected graph, the degree of a vertex v is

the number of edges incident with v and is denoted by

deg(v) or kv [41]. The degree distribution, P(k), of a

network is defined as the fraction of nodes in the network

with degree k [42]. In a bipartite network, two degree

distributions corresponding to both types of nodes are

important. The joint degree distribution of a network,

P(k1, k2), represents the probability that a randomly

selected edge is connected to nodes with degrees k1 and k2

[43, 44]. The joint degree distribution is different from the

conditional probability P(k2 | k1) which measures the

probability that a given node of degree k1 is connected to

a node of degree k2. The metric of degree describes the

number of relationships one participant has. The degree

distribution represents the fraction of participants in the

community with the same number of relationships.

1 0 0 1 0 0 0

0 1 1 1 0 0 0

0 1 1 1 0 0 0

1 1 1 1 1 1 1

0 0 0 1 1 1 0

0 0 0 1 1 1 0

0 0 0 1 0 0 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
1

2

3

4

a

b

d

c

e

f

g

1
2

3

4

a

b

d

c

e

f

g

G = {S1, S2, E}

a b c d e f g

1 2 3 4

1

2

3

4

a

b

c

d

e

f

g

G1 = {S1, E1}

G2 = {S2, E2}

Matrix M1

Matrix M2

Figure 2 - Illustration of the data-gathering step

Sample information obtained from Drupal website

Module Name
Module

ID

Person's

Name

Person

ID

Completed

(weeks ago)

Started

(weeks ago)

Module A 1 Person A 1 37 52

Module A 1 Person B 2 37 37

Module A 1 Person C 3 42 52

Module B 1 Person D 4 52 104

Module B 1 Person E 5 104 260

Module C 2 Person F 6 208 260

… … … … … …

Obtained information assembled in a table

 5 Copyright © 2010 by ASME

b) Clustering coefficient is the probability that two nearest

neighbors of a vertex are also the nearest neighbors of one

another [40]. The clustering coefficient reflects the

“cliquishness” of the mean closest neighborhood of a

vertex. Large clustering coefficient indicates the rate at

which information can be spread in the community.

c) Diameter is the largest distance between any two nodes of

a connected network [41]. The diameter of a network

indicates how “big” the network is. Hence, the metric of

diameter provides information about how large the

community is.

d) Shortest path is the shortest path of vertices and edges

that links two vertices in a network [45]. The average

shortest path can describe whether there exists the “small

world phenomenon” [46] within the community.

e) Density of a network is the average proportion of links

incident with nodes in the network [47]. The density of a

network ranges from 0 (if there are no links present) to 1

(if all possible links are present). A network with density

of 1 is also called a complete network. The density of a

network with n nodes and m links is:

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
2𝑚

𝑛(𝑛 − 1)

High density of the community means that on average

each participant has a large number of relationships that

enable participants to communicate with each other.

f) Connectedness represents the ratio of the number of pairs

in the directed graph that are reachable relative to the

number of ordered pairs.

g) Degree Centrality measures the degree of inequality or

variance in the network as a percentage of that of a

perfect star network of the same size. For a network

G=(V,E) with n nodes, the degree centrality CD(v) for a

node v is [48],:

CD V =
degree (v)

n − 1

 The degree centrality of a network G is:

CD(G) =
 CD v ∗ − CD(vi)

n
i=1

n − 2

 where CD v ∗ is the highest degree centrality of a node

in the network. CD(vi) is the degree centrality of a node i in

the network. The degree centrality of the entire community is

also called degree centralization, which measures the

inequality of the relationships among participants in the

community.

Social network analysis tools are used for evaluating the

metrics discussed above. The most widely used tools are

Structure [49], Gradap [50], UCInet [51] and Network

Workbench [52]. Other social network analysis tools are

discussed by Huisman et al. [53] and Freeman [48]. UCInet is

used for the results presented in this paper.

3.3.2. Degree Distribution and Scale-Free Network

The degree of a node is the number of links connected to

it. The degree distribution is the possibility distribution of all

the degrees in the entire network. Recent research has found

that degree distribution in many real-world networks satisfies

a power law [54], y=bx
a
 where b and a are constants and y

denotes the number of nodes with degree x. A network whose

degree distribution follows a power law is called scale-free

network. Scale-free networks have a property that only a few

of nodes (called “hubs”) have a high degree, while most other

nodes are only connected to a few nodes. Scale-free networks

have different characteristics as compared to random

networks.

3.3.3. Hierarchical Clustering

Clustering is an approach for assigning a set of objects

into subsets (clusters) such that the objects within a cluster are

closer to each other as compared to the objects in different

clusters [55]. Hierarchical clustering involves recursive

clustering using previously assigned clusters [56]. At the

highest level of the hierarchy, all objects are within one

cluster. At the lowest level, each object is its own cluster and

the number of clusters is equal to the number of objects.

Between the highest and lowest levels, various intermediate

levels of clusters are generated based on the similarity (or

closeness) or distance between different objects. Various

measures such as Euclidean distance, Manhattan distance,

maximum distance, Mahalanobis distance, and cosine

similarity are commonly be used. Hierarchical clustering is

used in statistical data analysis, pattern recognition, and data

mining applications. In weighted networks, the weights can be

used to represent the similarity or dissimilarity between nodes.

For the OSS social networks discussed in this paper, the

weights represent the closeness between people and modules.

Clusters of people represent participants working closely with

each other. The result of hierarchical clustering is a tree with

closely related nodes closer to each other and the dissimilar

nodes distant from each other. The relative sizes of clusters

and their overlap convey significant information about the

network structure.

3.3.4. Network Structure Image Method

For complex networks with a large number of nodes, the

visualization of the clusters as nodes and links is difficult. An

alternate visualization approach is based on the image

representation of a matrix. The image corresponding to an

adjacency matrix provides a convenient visual representation

of the network structure. A network structure image is

generated by mapping each element of the matrix into a point

in the image. Hence, an n x n matrix maps into an image with

a size of n x n pixels. The color of a point in the image

corresponds to the values of the elements in the matrix. This

image method is usually combined with the hierarchical

clustering method to visualize the clusters within networks.

4. CASE STUDY - DRUPAL NETWORK

The approaches discussed in the previous section are

utilized to analyze the structure and evolution of Drupal

 6 Copyright © 2010 by ASME

community (www.drupal.org). Drupal is an open-source

content-management system, which allows the creation of

community-based websites. The Drupal framework consists of

a core and a large number of modules developed by users

using open-source techniques. Drupal has been chosen for this

study because of its strong community and the easy access to

participant and module data for analysis. The Drupal project

was started in 2000 and it currently has a large community of

contributors. There are different types of users who interact

with the Drupal community. Passive Users are users who only

download and use the software but do not contribute to the

code. Active Users contribute to the discussion board and

identify bugs but do not modify the code. Co-developers

modify the codes, fix bugs, and add new features to the

software. Core developers contribute largely to the core of the

Drupal code and coordinate co-developers‟ work. Project

leaders are the project administrators who manage the

direction of the entire project. For the analysis presented in

this paper, only co-developers, core developers, and project

leaders are considered. Activities such as the identification of

bugs and contributions to discussions on the bulletin boards

are not considered in this paper. The bipartite network created

for the analysis of Drupal community consists of two types of

nodes – a) the people (participants), and b) the projects

(modules) they contribute to. The analyses discussed in

Section 3 are carried out for the Drupal data. The analysis of

the structure of networks is discussed in Section 4.1 and the

analysis of network evolution is presented in Section 4.2.

4.1. Analysis of Network Structure

4.1.1. General Discussion of the Network Data

The data was collected for Drupal 5.x in August 2009.

The data consists of 1907 projects (modules) and 1217

participants who contributed the code during the nine years

from the start of the project in the year 2000. The data is used

to create the bipartite network consisting of people and project

from which two networks, discussed in Section 3.2, are

created. The two networks are referred to as people network

and project network. The characteristics of the two networks

are listed in Table 1.

Table 1 - Characteristics of the People and Project
networks

Network
Average

Degree

Central-

ization

Average

Distance

Average

Density

Clustering

Coefficient

Connect-

edness

People 24.62 1.26% 2.86 0.0202 0.74 0.4465

Project 42.14 2.71% 2.87 0.0221 0.83 0.5454

It is observed that both the networks are similar in terms

of the metrics listed in the table. For networks with over 1000

nodes, the average distance between the nodes of 2.86 and

2.87 are very low. The degree centrality of both networks is

also low. The average degrees of the nodes in the two

networks are of 24.62 and 42.14. With the low average

degrees, we can assume that both networks are in a low-scale

unitary connection. The low average density in both networks

implies that different people develop most of the projects, and

there are more co-developers than core developers. From the

table, it is also observed that both the networks have low

average distances and high clustering coefficients. The

combination of low average distance and high clustering

coefficient denotes that this network is highly connected. In

network analysis, this is called “small-world” phenomenon.

Small world phenomenon means that any two individuals in

the network are likely to be connected through a short

sequence of intermediate acquaintances [46]. With over a

million possible links in people network and three millions in

project network, the connectedness, 0.4465 in people network

and 0.5454 in project network, show high extent of

connectivity of the two networks. These characteristics

provide basic information about the network structure. Further

details are obtained by degree distribution and clustering in the

following sections.

4.1.2. Degree Distribution of the Networks

The degree distributions are plotted in Figure 4 and

Figure 5. Figure 4 contains the degree distributions of the

nodes in the bipartite network whereas Figure 5 contains the

degree distributions of the people and project networks. The

points in Figure 4 represent the number of people working on

different modules and the number of modules on which

different people contribute to. On the other hand, the points in

Figure 5 represent the number of projects linked to other

projects through common contributors (left) and the number of

people linked to other people (right). The X and Y axes in

both the figures are the degree cardinality and the number of

nodes in different degree cardinality respectively. It is

observed that the degree distributions of the networks are

linear on a log-log scale indicating a scale-free topology of all

three networks. Such a scale-free topology has been observed

in many biological, technical, and social networks. The

community of Sourceforge has also been shown to have a

similar degree distribution.

In a scale free network topology, there is a small set of

nodes with a large number of links with other nodes, and a

large number of nodes with small number of connections. The

nodes with a large number of connections are called the

“hubs”. The hubs in the project network are the key projects

that provide the core functions of Drupal. The hubs in people

network are the small number of core developers who

communicate with and support a large number of other

participants. In the bipartite network, the “hubs” can be either

core developers or key projects.

A widely accepted model for generating a scale-free

network is the preferential attachment model. According to

this model, networks grow through the addition of nodes. New

nodes preferentially attach to other nodes with high degree.

Hence, the probability of attachment of a new node to existing

nodes is proportional to the degrees of the existing nodes. We

believe that the model explains the emergence of scale-free

networks in the open-source domain because the modules that

have higher number of participants develop faster, thereby

increasing the modules‟ utility, and hence attract even more

participants.

file:///D:/Jitesh/Publications/InProgress/_10.ASME.IDETC/Drupal/www.drupal.org

 7 Copyright © 2010 by ASME

4.1.3. Network Structure Analysis through Clustering

In this section, we analyze the structure of the network

using clustering techniques. The original and clustered

networks are visualized using images corresponding to the

adjacency matrices of the networks. Figure 6 is a black and

white image corresponding to the binary bipartite network

with people and project nodes. The horizontal and vertical

axes correspond to people and projects respectively. Each

pixel in the image represents a pair of nodes. The weight of a

link between the pair of nodes corresponds to a color in the

image. For example, in Figure 6, black color represents no link

between the nodes and white color represents a link with

weight = 1, indicating a link between a person and a project.

The people and projects are arranged in the increasing order of

their IDs.

3D plots are used to visualize the adjacency matrices

corresponding to the weighted people and project networks.

The plots are shown in Figure 7(a) and Figure 8 (a)

respectively. The z-axis corresponds to the weights of links

connecting nodes on x and y axes. The weights on the links

are used as the similarity measure for clustering purposes.

This is because the larger weights on people networks indicate

that people are working together on greater number of

projects. Similarly, larger weights on the project networks

indicate that the projects share greater number of participants.

Hence, the larger the weights, closer the nodes are.

Figure 6 - Adjacency Matrix Image of the Bipartite

Network
The adjacency matrices are clustered and the

corresponding plots are shown in Figure 7(b) and Figure 8(b).

0

0.2

0.4

0.6

0.8

1

1.2

1

P
ro

je
c
ts

People

Figure 4 - Degree distribution of two types of nodes in the bipartite network

Figure 5 - Degree distribution of projects (left) and people (right) networks

0

0.2

0.4

0.6

0.8

1

1.2

1

N
u

m
b

e
r

o
f

P
e
o

p
le

 w
h

o
 w

o
rk

 o
n

d

if
fe

re
n

t
p

ro
je

c
ts

Number of Projects

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Degree Distribution of People (log-log)

0

0.2

0.4

0.6

0.8

1

1.2

1

N
u

m
b

e
r

o
f

P
ro

je
c
ts

 w
h

ic
h

 a
 g

ro
u

p

o
f
p

e
o

p
le

 w
o

rk
s
 o

n

Number of People in a Group
10

0
10

1
10

2
10

3
10

0

10
1

10
2

10
3

10
4

Degree Distribution of Projects (log-log)

0

0.2

0.4

0.6

0.8

1

1.2

1

D
e
g

re
e
 C

a
rd

in
a
li

ty
 i

n
 P

e
o

p
le

N

e
tw

o
rk

Number of Nodes

0

0.2

0.4

0.6

0.8

1

1.2

1

D
e
g

re
e
 C

a
rd

in
a
li

ty
 i

n
 P

ro
je

c
t

N
e
tw

o
rk

Number of Nodes
10

0
10

1
10

2
10

3
10

0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

 8 Copyright © 2010 by ASME

From these plots of the clustered networks, it is clear that there

are few participants near the bottom-right corner who have

connections with a lot of other people. These participants are

the core developers who contribute to the entire project and

oversee the work of other participants. These participants are

also highly connected with each other. The other participants

are weakly connected and have a few links with each other. As

we discussed in the previous section, this kind of distribution

is due to the scale free nature of the network. Hence, the plots

provide an indication of the different roles of the individuals.

Similar characteristic is also observed in the project network

shown in Figure 8.

In addition to the highly skewed distribution of links

between nodes, we also observe clusters of nodes appearing as

blocks in the images. The blocks indicate sets of participants

or projects that are highly connected with each other. The

highly connected participants are similar to teams of

individuals working together in traditional product realization.

The difference, however, is that these clusters (teams) in open-

source are emergent as opposed to being pre-defined as in

traditional product realization.

Figure 7 - Adjacency matrix plots of people network

before and after clustering

Figure 8 - Adjacency matrix image of project network

before and after clustering

4.2. Analysis of Network Evolution

In Section 4.1, we discussed network structure of Drupal

using the data from August 2009. Drupal was founded in

2000, rapidly growing from 12 developers and 23 projects to

1217 developers and 1907 projects. The network evolution

analysis is aimed at understanding how the bipartite, people,

and project networks grow over time. From the analysis of

network evolution, our objective is to identify characteristics

of the network that change over time and the characteristics

that are invariant with time. The knowledge about the

evolution of these networks can be used to direct community

growth.

4.2.1. Generation of Snapshots of Networks at
Different Intervals

During nine years of development, Drupal community has

grown by a factor of about 100, both in terms of the number of

participants and modules. In order to analyze the evolution of

the community, six snapshots of the data are generated based

on the time when people joined the community and time when

projects were created. The snapshots are generated at intervals

of one year, starting with year 4. Different snapshots of data

are not generated for the first three years because most of the

evolution in the network took place between years 4 and 9 of

the project. The number of participants (people) and modules

a) Before clustering

b) After clustering

a) Before clustering

b) After clustering

 9 Copyright © 2010 by ASME

(projects) at different snapshots are shown in Figure 9. It is

observed that the number of participants and modules has

grown exponentially. The exponential curve fit for both is

shown in the figure, which provides an important indicator of

evolution of the Drupal community.

Figure 9 - Number of people and modules at different

times

4.2.2. Evolution of the Network Characteristics

The social network metrics are used to analyze the

characteristics of the six snapshots of the people and project

networks. The results are shown in Table 2. The trends in the

evolution of the networks are analyzed using average degree,

degree centrality, average density, clustering coefficient and

connectedness.

In Figure 10(a), the average degree of the nodes in the

networks is plotted at different time steps. The plots show

three stages in the networks‟ evolution - the first stage where

the average degree increases, the second stage during which

the average degree reduces, and finally the third stage where

the mean degree remains relatively constant. The three stages

are observed in both product network and the project network.

We believe that this trend can be explained as follows. During

the first phase, only the core developers contribute to the

project. All the developers closely collaborate with each other.

Any addition to the number of core developers results in the

increase in the degree of all the nodes in the network. Hence,

the average degree increases during this first phase. This

phenomenon has also been discussed as an initial euphoria

among the co-developers and core-developers [36]. During the

second phase, as more developers join the network, the

number of participants and modules (i.e., nodes in the

network) increase at a rate faster than the number of links.

Hence, the mean degree reduces. During the third phase, the

existing participants explore other modules and initiate

collaborations with other participants.

Figure 10(b) shows the degree centrality of the network as

a function of time. The degree centrality of both the networks

shows a steep decline during the initial phase, indicating the

significant difference between the nodes with highest degree

and the other nodes. During the initial years of an open-source

project, core-developers play an important role in the

development of the project. At that time, some project leaders

start lots of projects while others start only a few. This causes

the significant difference seen in the figure. During the later

phases, there are more choices of projects for people to

contribute to, which results in a gradually decreasing curve.

Table 2 - Highlights of the Drupal network evolution

Network Year
Average

Degree

Degree

Centrality

Average

Density

Clustering

Coefficient

Connect-

edness

P
ro

je
ct

s

9 54.5 0.2034 0.7174 0.868 0.8254

8 91.7 0.1513 0.5559 0.912 0.7116

7 57.9 0.0810 0.1392 0.853 0.6148

6 45.8 0.0429 0.0517 0.838 0.5981

5 39.2 0.0307 0.0262 0.841 0.4945

4 42.1 0.0271 0.0221 0.827 0.5454

P
eo

p
le

9 24.0 0.1405 0.4800 0.842 0.7420

8 32.7 0.0561 0.3031 0.855 0.6959

7 32.8 0.0341 0.1155 0.816 0.5685

6 30.3 0.0227 0.0553 0.787 0.5084

5 24.8 0.0157 0.0277 0.754 0.3943

4 24.6 0.0126 0.0202 0.740 0.4465

The average density of the networks is plotted in Figure

10(c). The trend of the average density is similar to the degree

centrality. It reduces steeply during the initial phase and then

reduces gradually during the later phases. During the initial

phase, there is a closely connected group of core-developers

and project leaders, which means that the nodes are highly

connected in both project and people networks. In order to

maintain the same density of a network, the number of links

must increase at a rate equal to the square of the number of

nodes. However, we observe that rate of increase of the

number of links is almost equal to the rate of increase in

nodes. Hence, the density reduces as shown in Figure 10(c).

The clustering coefficients of the people and project

networks are plotted in Figure 10(d). After reaching their

peaks in a short time, both the curves undergo a steady

decline. We believe that the reason for the downtrend is the

exponential increase in participants in the Drupal network.

Further, the core modules of Drupal were developed during

the first phase, resulting in the high clustering of the people

network. The closely related core modules result in higher

initial clustering coefficients. Despite its decline, the

clustering coefficients in both networks are still high

compared to random networks. The low average node distance

in both networks combined with the high clustering coefficient

is a characteristic of scale-free and small-world networks.

4.2.3. Evolution of Scale-free Property

In Section 4.1.2, we discuss the degree distribution of the

two networks. In this section, we explore how the degree

distributions of the Drupal network change over time. The

degree distributions of the participant network for three

snapshots of data are shown in Figure 11.

It is observed that during each data snapshot, the form of

the degree distribution remains the same – power law. The

only difference is in terms of the parameters of the power law.

The coefficient increases while the exponent decreases with

time as shown in the figure. Faloutsos [57] has shown that the

frequency, 𝑓 of an outdegree, 𝑑, is proportional to the out-

degree to the power of a constant 𝑘.

y = 8.5157e0.8416x

y = 19.116e0.7618x

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7

Years

Growth of the number of
modules and participants

Participants

Modules

4 5 6 7 8 93 10

 10 Copyright © 2010 by ASME

Figure 10 - Average degree, degree centrality, average density, and clustering coefficients of Project and
People Networks with respect to time

Figure 11 - Evolution of the power-law coefficients for the people network

0

20

40

60

80

100

4 5 6 7 8 9

Years

a) Average Degree

Project Network People Network

0

0.05

0.1

0.15

0.2

0.25

4 5 6 7 8 9

Years

b) Degree Centrality

Project Network People Network

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 5 6 7 8 9

Years

c) Average Density

Project Network People Network

0.7

0.75

0.8

0.85

0.9

0.95

1

4 5 6 7 8 9

Years

d) Clustering Coefficient

Project Network People Network

y = 29.671x-1.132

y = 189.84x-1.635

y = 1050.6x-2.004

0.1

1

10

100

1000

10000

1 10 100Degree

Degree distribution of participants at different times

-2.5

-2

-1.5

-1

-0.5

0

0

200

400

600

800

1000

1200

0 1 2 3 4 5

y = x

Years








Time = 9 years

Time = 4 years

Time = 7 years

Power law parameters vs. Time

4 5 6 7 8 9

 11 Copyright © 2010 by ASME

From Figure 11, we have obtained the relationship from

our data, the frequency and degree:

𝑓 = 𝛽 × 𝑑𝛼

where 𝑑 is the degree and 𝑓 is the frequency of a degree,

α and β are constants.

It is observed that there is an approximate exponential

relationship between α and β in bipartite network. This helps

in eliminating one constant α or β in the equation of frequency

and degree. Hence, the evolution of the Drupal network far

from arbitrary and follows some common trends observed in

complex networks [57]. Currently, we have obtained the

equation of frequency and degree with only one constant. In

future work, we will determine whether there is a relationship

between the constant and other parameters of the network,

such as the number of nodes or links of the network.

4.2.4. Analysis of Network Structure Evolution

In this section, we present the adjacency matrix for the

snapshots of network at different times. In both people and

project networks the row and column sequences, which stand

for participants and projects are ordered for Years 6-9. This

method is effective for observing the evolution of the network

structure. Figure 12 shows the adjacency matrices of the

people network at different times as 3D plots. The participant

IDs are organized in an increasing order based on the time

when they joined Drupal project. Hence, the developer who

joined Drupal four years ago has an ID greater than the

participant who joined two years ago. Similarly, the projects‟

IDs are also arranged in increasing order.

The heights of the bars in Figure 12 indicate the values in

the adjacency matrix. In Figure 12(a), we observe that almost

every participant has strong collaborations with others. In the

second plot, more participants are added and the strengths of

collaboration between newly added participants are weaker.

The strengths of collaboration between existing participants

continue to become stronger, as indicated by the change in

heights of bars corresponding to existing participants. Finally,

the plot corresponding to Year 9 shows the presence of small

groups of participants who collaborate with almost everyone

in the network, which signifies that these are participants who

joined later but became core developers. Similar trends are

observed in the projects network displayed in Figure 13. The

block close to the origin refers to the core modules. The height

corresponding to the core modules increases as more and more

modules are added.

5. CLOSING THOUGHTS

Open-source software development community is

different from a closed-source software development team.

Participants in open-source software development community

collaborate equally based on their own interests, while close-

source software development team is formed in hierarchical

structures in which tasks are clearly defined and people are

needed to report to their direct supervisor. In this paper, an

analysis of the structure and evolution of an open-source

software development community is presented. The primary

objective of this analysis is to understand patterns in

community structures and trends in their evolution. An

Figure 12 - Adjacency Matrix Image of Evolution of People Network

a) Year 6

c) Year 8

b) Year 7

d) Year 9

 12 Copyright © 2010 by ASME

understanding of such patterns and trends, and their impact on

the product evolution can potentially be used for guiding

open-source projects. We believe that the patterns of

community structures are similar in both open-source software

and hardware. The analysis is carried out using existing open-

source software development communities because of the

availability of data from successful projects. Based on the

analysis, it was observed that community structures display

scale-free characteristics, which have been observed in a large

number of other social, technical and biological networks. The

hypothesis is that the scale-free network topology is a result of

preferential attachment of individuals to well-developed

projects. In this paper, the changes in the scale-free

characteristics of the network are also discussed.

Further research in this area would involve developing a

simulation model to validate the hypothesis by developing the

community network in a bottom-up manner using local

decisions. The model to simulate the growth of community

will based on attachment kernel, which is defined as the

probability that a newly introduced participant links to an

existing participant which already has k links. Parameters will

include initial number of people and projects, probability of

starting a new project p, and k0 which is a constant based on

Krapivsky and Redner’s model [58].

6. REFERENCES

1. Olliver, V., 2005, Construction of Rapid Prototyping

Testbeds Using Meccano, [cited January 21, 2010];

Web Link:

http://staff.bath.ac.uk/ensab/replicator/Downloads/M

eccanoFDMfinal.pdf.

2. Oxer, J. and Blemings, H., 2009, Practical Arduino:

Cool Projects for Open Source Hardware, New

York, NY: APress.

3. OpenMoko, 2008, OpenMoko, [cited April 11,

2008]; Web Link: http://www.openmoko.com/.

4. Oscar Project, 2008, Oscar: Reinvent Mobility,

[cited 8 February 2008]; Web Link:

http://www.theoscarproject.org/.

5. Rally Fighter, Product Brochure, [cited February 05,

2010]; Web Link: http://www.local-

motors.com/assets/rally-fighter-brochure.pdf.

6. Open Prosthetics, 2008, The Open Prosthetics

Project: An Initiative of the Shared Design Alliance,

[cited April 11, 2008]; Web Link:

http://openprosthetics.org/.

7. Sawhney, N., Griffith, S., Maguire, Y., and Prestero,

T., 2002, "ThinkCycle: Sharing Distributed Design

Knowledge for Open Collaborative Design,"

International Journal of Technologies for the

Advancement of Knowledge and Learning

(TechKnowLogia), 4(1), pp. 49-53.

8. Anderson, C., February 2010, In the Next Industrial

Revolution, Atoms are the New Bits, Wired

Magazine.

9. Sosa, M. E., Eppinger, S. D., and Rowles, C. M.,

2004, "The Misalignment of Product Architecture

and Organizational Structure in Complex Product

Development," Management Science, 50(12), pp.

1674-1689.

Figure 13 - Adjacency Matrix Image of Evolution of Project Network

a) Year 6

c) Year 8

b) Year 7

d) Year 9

http://staff.bath.ac.uk/ensab/replicator/Downloads/MeccanoFDMfinal.pdf
http://staff.bath.ac.uk/ensab/replicator/Downloads/MeccanoFDMfinal.pdf
http://www.openmoko.com/
http://www.theoscarproject.org/
http://www.local-motors.com/assets/rally-fighter-brochure.pdf
http://www.local-motors.com/assets/rally-fighter-brochure.pdf
http://openprosthetics.org/

 13 Copyright © 2010 by ASME

10. Conway, M. E., 1968, "How do Committees Invent,"

Datamation, 14(5), pp. 28-31.

11. Weber, S., 2004, The Success of Open Source:

Harvard University Press.

12. Bessen, J. E., 2006, "Open Source Software: Free

Provision of Complex Public Goods", in The

Economics of Open Source Software Development,

(J. Bitzer and P.J.H. Schroder, Editors), Elsevier:

Amsterdam.

13. von Hippel, E. and Krogh, G. v., 2003, "Open Source

Software and the "Private-Collective" Innovation

Model: Issues for Organization Science,"

Organization Science, 14(2), pp. 209-223.

14. Raymond, E. S., 2001, The Cathedral & the Bazaar:

Musings on Linux and Open Source by an Accidental

Revolutionary: O'Reilly Media, Inc.

15. Cox, A., 1998, Cathedrals, Bazaars and the Town

Council, [cited January 11, 2010]; Web Link:

http://slashdot.org/features/98/10/13/1423253.shtml.

16. Crowston, K. and Howison, J., 2005, "The Social

Structure of Free and Open Source Software

Development," First Monday (online only), 10(2).

17. Crowston, K. and Howison, J., 2006, "Hierarchy and

Centralization in Free and Open Source Software

Team Communications," Knowledge, Technology,

and Policy, 18(4), pp. 65-85.

18. Xu, J. and Madey, G., 2004, Exploration of the Open

Source Software Community, NAACSOS 2004:

Pittsburgh, PA.

19. Xu, J., Christley, S., and Madey, G., 2006,

"Application of Social Network Analysis to the Study

of Open Source Software", in The Economics of

Open Source Software Development, (J. Bitzer and

P.J.H. Schröder, Editors), Elsevier: Amsterdam.

20. Gao, Y. and Madey, G., 2007, "Network Analysis of

the SourceForge.net Community", in The Third

International Conference on Open Source Systems

(OSS 2007), IFIP WG 2.13, Limerick, Ireland.

21. Watts, D. J. and Strogatz, S., 1998, "Collective

Dynamics of „Small-World‟ Networks," Nature, 393,

pp. 440-442.

22. Barabasi, A.-L. and Albert, R., 1999, "Emergence of

Scaling in Random Networks," Science, 286(5439),

pp. 509-512.

23. Xu, J., Christley, S., and Madey, G., 2005, "The

Open Source Software Community Structure", in

NAACSOS2005, Notre Dame, IN.

24. White, H. C., Boorman, S. A., and Brieger, R. L.,

1976, "Social Structure from Multiple Networks I.

Blockmodels of Roles and Positions," American

Journal of Sociology, 81(4), pp. 730-780.

25. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida,

K., and Ye, Y., 2002, "Evolution Patterns of Open-

Source Software Systems and Communities", in

IWPSE '02: Proceedings of the International

Workshop on Principles of Software Evolution, New

York, NY, ACM Press, pp. 76-85.

26. Weiss, M., Moroiu, G., and Zhao, P., 2006,

"Evolution of Open Source Communities", in

Proceedings of the International Conference on Open

Source Systems, Springer, pp. 21-32.

27. de Souza, C., Froehlich, J., and P., D., 2005,

"Seeking the Source: Software Source Code as a

Social and Technical Artifact", in GROUP ’05 ACM,

Sanibel Island, pp. 197-202.

28. Howison, J., Inoue, K., and Crowston, K., 2006,

"Social Dynamics of Free and Open Source Team

Communications", in Proceedings of the IFIP 2nd

International Conference on Open Source Software,

Boston, USA.

29. Wiggins, A., Howison, J., and Crowston, K., 2008,

"Social Dynamics of FLOSS Team Communication

across Channels", in Proceedings of the Fourth

International Conference on Open Source Software

(IFIP 2.13), Milan, Italy.

30. Panchal, J. H. and Fathianathan, M., 2008, "Product

Realization in the Age of Mass Collaboration", in

ASME Design Automation Conference, New York

City, NY, USA. Paper Number: DETC2008-49865.

31. Panchal, J. H., 2009, "Agent-based Modeling of Mass

Collaborative Product Development Processes,"

Journal of Computing and Information Science in

Engineering, 9(3), pp. (031007)1-12.

32. Panchal, J. H., 2009, "Co-Evolution of Products and

Communities in Mass-Collaborative Product

Development - A Computational Exploration", in

International Conference on Engineering Design

(ICED'09), Stanford, CA. Paper Number:

ICED‟09/147.

33. Le, Q. and Panchal, J. H., 2009, "Modeling the Effect

of Product Architecture on Mass Collaborative

Processes - An Agent-based Approach", in 2009

ASME International Design Engineering and

Technical Conferences, Computers and Information

in Engineering, San Diego, CA. Paper Number:

DETC2009/CIE-86798 (under review for the Journal

of Computing and Information Sciences in

Engineering).

34. Drupal, 2008, Drupal: Community Plumbing, [cited

July 20, 2008]; Web Link: http://drupal.org/.

35. Börner, K., Maru, J. T., and Goldstone, R. L., 2004,

"The Simultaneous Evolution of Author and Paper

Networks," Proceedings of National Academy of

Sciences (PNAS), 101(Supplement 1), pp. 5266-5273

36. Kumar, R., Novak, J., and Tomkins, A., 2006,

"Structure and Evolution of Online Social Networks",

in 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining,

Philadelphia, PA.

37. Newman, M. E. and Girvan, M., 2004, "Finding and

Evaluating Community Structure in Networks,"

Physics Review, E, 69(2), pp. 026113.

38. Emirbayer, M. and Goodwin, J., 1994, "Network

Analysis, Culture, and the Problem of Agency," The

American Journal of Sociology, 99(6), pp. 1411-

1454.

http://slashdot.org/features/98/10/13/1423253.shtml
http://drupal.org/

 14 Copyright © 2010 by ASME

39. Hanneman, R. A. and Riddle, M., 2005, Introduction

to Social Network Methods, [cited 2008 January 12];

Web Link: http://faculty.ucr.edu/~hanneman/.

40. Dorogovtsev, S. N. and Mendes, J. F. F., 2002,

"Evolution of Networks," Advances in Physics, 51(4),

pp. 1079-1187.

41. Chartrand, G. and Zhang, P., 2005, Introduction to

Graph Theory, New York: McGraw Hill.

42. Newman, M. E. J., 2003, "The Structure and

Function of Complex Networks," SIAM Review,

45(2), pp. 167–256.

43. Mahadevan, P., Krioukov, D., Fomenkov, M.,

Dimitropoulos, X., Claffy, K. C., and Vahdat, A.,

2006, "The Internet AS-Level Topology: Three Data

Sources and One Definitive Metric," ACM

SIGCOMM Computer Communication Review, 36(1),

pp. 17-26.

44. Zhou, S. and Mondragón, R. J., 2007, "Structural

Constraints in Complex Networks," New Journal of

Physics, 9(6), pp. 173(1-11).

45. Newman, M. E. J., 2001, "Scientific Collaboration

Networks. II. Shortest Paths, Weighted Networks,

and Centrality " Physical Review E, 64(1), pp.

016132.

46. Kleinberg, J., 2000, "The Small-World Phenomenon:

An Algorithm Perspective", in Proceedings of the

Thirty-Second Annual ACM Symposium on Theory of

Computing Portland, Oregon, United States, pp. 163 -

170.

47. Wasserman, S., and Katherine Faust, 1994, Social

Network Analysis: Methods and Applications,

Cambridge: Cambridge University Press.

48. Freeman, L. C., 1988, "Computer Programs and

Social Network Analysis," Connections, 11, pp. 26-

31.

49. Bur, R. S., 1982, Toward a Structural Theory of

Action: Network Models of Social Structure,

Perception and Action, New York: Academic Press.

50. Sprenger, K. J. A. and Stokman, F. N., 1995,

GRADAP: Graph Definition and Analysis Package,

Groningen, ProGamma, [cited.

51. Borgatti, S. P., Everett, M.G. and Freeman, L.C.,

2002, Ucinet for Windows: Software for Social

Network Analysis, Analytic Technologies: Harvard,

MA.

52. NWB Team, 2006, Network Workbench Tool,

Indiana University, Northeastern University, and

University of Michigan, [cited June 10, 2009]; Web

Link: http://nwb.slis.indiana.edu.

53. Huisman, M. and van Duijn, M. A. J., 2005,

"Software for Statistical Analysis of Social

Networks", in Proceeding of the Sixth International

Conference on Logic and Methodology, Amsterdam,

The Netherlands.

54. Barabási, A. L., 2002, Linked: The New Science of

Networks, New York: Perseus.

55. Schaeffer, S. E., 2007, "Graph Clustering," Computer

Science Review, 1(1), pp. 27-64.

56. Romesburg, C. H., 2004, Cluster Analysis for

Researchers, North Carolina: Lulu Press.

57. Faloutsos, M., Faloutsos, P., and Faloutsos, C., 1999,

"On Power-Law Relationships of the Internet

Topology", in SIGCOMM '99: Proceedings of the

Conference on Applications, Technologies,

Architectures, and Protocols for Computer

Communication, Cambridge, MA, pp. 251 - 262.

58. Krapivsky, P. L. and Redner, S., 2001, "Organization

of Growing Random Networks," Physical Review E,

63(6), pp. 066123.

http://faculty.ucr.edu/~hanneman/
http://nwb.slis.indiana.edu/

