
An Insurgency of Quality
Alan Cooper

Code Freeze 2009
Minneapolis, Minnesota

© 2009 Alan Cooper

Introduction

1

My name is Alan Cooper. As a pioneering independent software
developer since 1975, I’ve written lots of code and created several
successful applications. Many of you know me as the “Father of Visual
Basic”. I invented much of the underlying technology of Microsoft’s
software development tool and sold it to Bill Gates in the late 1980s.

In 1992, I founded what was arguably the first consulting interaction
design company. Over the last 17 years, we’ve worked with literally
hundreds of companies, large and small, on products of every
conceivable variety. Located in San Francisco, Cooper continues
every day to tell the user’s story to practitioners and business
people in a useful and actionable way.

I’ve made several significant contributions to the field of design. Many
of you have used my invention, design personas. My books, including
The Inmates are Running the Asylum, have helped to define a rigorous
discipline of software design.

For the last two years I’ve focused my attention on the growth and
success of agile development methods. There is nothing in the
history of software quite as significant as the agile revolution. While
I’m thrilled by the awesome potential of this new way of thinking, I
remain aware that most revolutions in history have been co-opted
and have failed to live up to their potential.

Alan Cooper
Chairman
Chief Strategy Officer
Cooper

We are here to celebrate our success

We are here today to celebrate the success of agile development.

The craft of agile has clearly demonstrated its immense power to
enhance software development. It has proven its ability to deliver
better quality software, in far less time, and with happier teams.

Similarly, the craft of interaction design has demonstrated great
power to enhance the quality of the software user’s experience.
Skillfully applied, interaction design can also speed the delivery
of better quality software, in less time, with happier teams.

2

“Skillfully applied,

interaction design can also

speed the delivery of better

quality software, in less time,

with happier teams.”

We are here to make mid-course corrections

3

We are also here to consider what mid-course corrections would
improve the results of our work. Today’s search for betterment is
in no way a criticism of our existing practices, and any apparent
disapproval you may hear is simply me grappling with the big
problem of more effectively integrating two groups of equally
intelligent, headstrong practitioners.

Courtesy flyingwithoutfear.com

We are here to make mid-course corrections Terminology wrestling

An unfortunate footnote to all of this success is the constant wrestling
with terminology, titles, and practices in both the design and agile
worlds. Agilists argue interminably; about the differences between
agile coaching and Scrum Mastering; which is better, Scrum or XP?
Or whether you are really agile if you don’t pair program.

Designers argue endlessly about the differences between User
Experience Designers and Interaction Designers; which is better,
contextual enquiry or goal-directed design? Or whether personas
are real or just made up.

Like all of you, I have a position in these battles. I’m in support of
what works best.

In the design world, I have seen a clear difference between those
design practices that are craft-based and those that are art-based.
The latter is based on someone’s opinion, while the former is based
on the demonstrable improvement in the actual end user’s experience.

4

Courtesy http://rcrawford79.wordpress.com/

Terminology wrestling

As in all crafts, there exists a broad collection of skills and techniques,
and the craftsman uses the appropriate subset to solve the problem
at hand. It isn’t about style or authority and it isn’t about ego; it’s
about synthesizing the correct solution. For over 15 years I have used
the term “interaction design” to describe authentic craft-based design,
and that is the term I will use in this talk to differentiate it from other,
less effective forms of design.

This is not to say that what someone calls “experience design” isn’t
an effective craft-based method. You say potayto and I say potahto.
It’s just that there are many practitioners who, although they have
the right words, they lack the fundamental imperative of all agile,
craft-based methods: the success of the end-user.

5

“In the design world, I have seen a
clear difference between those design
practices that are craft-based and
those that are art-based.”

Not process for process’ sake

Agile’s success comes from its ideals more so than from its practices.
Our focus cannot be about process for process’s sake.

Over the last decade, several groups of developers independently de-
rived the basic practices of what we know today as agile. These meth-
ods showed promise, but weren’t yet a coherent approach.

The explosive success of agile only came when a cadre of responsible
craftsmen came together and stated that their goal was to build prod-
ucts that made the end user more successful.

6

Responsible craftsmanship

The Agile Manifesto states that “Our highest priority is to satisfy the
customer”. The document clearly communicates that while agilists
care about individual success, they care more about product success.
Interaction designers agree with these principles completely. I call this
attitude “responsible craftsmanship”.

But software design and development don’t live in the world of
potters and painters, cabinet makers and blacksmiths. We live in
the world of fast-paced, big money, high technology business. And
business hasn’t had to deal with craft on this scale since the dawn
of the industrial revolution.

7

A struggle for power

Over the years, when interaction designers ask me which design
technique works best, I have assured them that this is not so much a
battle of technique as it is a struggle for power. The same holds true
today as we, the responsible craftsmen, wrestle power away from
those people who insist on living in the past.

There is a similar power struggle in the agile world today. Many of the
recent converts to agile are merely going through the motions, but
are not truly committed to the ideals of agile. Lots of developers paper
their walls with post-its, iterate rapidly, and have stand-up meetings,
but like skateboarders who wear Van’s and read Thrasher but never
actually get on a skateboard, these people are poseurs.

The recent “Agile Roots” conference in SLC was an attempt to highlight
this difference and return to the quality ideal. Similarly, the emphasis of
today’s conference is a reassessment of agile to determine what’s real
and what is mere posing.

8

“ . . . we, the responsible

craftsmen, wrestle power

away from those people who

insist on living in the past.”

Courtesy of Plusmo.com

Agile comes from programmers

Agile evolved in its own universe of programmers, invented by
programmers, and centered on code. Better, more responsive code
is a good thing, but it isn’t the only thing. Arguably, the greatest
strength of agile stems from its emphasis on collaboration with
other disciplines.

While this emphasis on collaboration is new to programming, its
value is immediately apparent to agilists.

Collaboration insures that the critical initial steps in software
development are gently guided down more appropriate paths,
resulting in multiplicative benefits as the project proceeds. Even
rudimentary collaboration between relatively inexperienced
practitioners yields significant benefits. But collaboration between
disciplines is a tougher problem than collaborating within a discipline.

9

“Even rudimentary

collaboration between

relatively inexperienced

practitioners yields

significant benefits.”

Courtesy ThoughtWorks

Collaboration

Ironically, the very success of agile collaboration can blind its
adherents to the scale of the problem: there is collaboration where
there was none before, and then there is skilled, trained, effective
collaboration between mutually experienced craftsmen.

I am not criticizing collaboration when I say that most agile
practitioners (and most interaction designers, for that matter) have
yet to engage in high-quality collaboration.

Probably the weakest link in the agile chain is the part where
developers work with customers, users, marketers, analysts, and
subject-matter-experts to determine what the software should do
and how it should behave.

Often, when agilists give these stakeholders just what they ask for,
they still don’t create a successful product.

10

Courtesy of thephotoholic

Collaboration

“The weakest link in the agile chain is the part
where developers work with customers, users,
marketers, analysts, and subject-matter-experts
to determine what the software should do and
how it should behave.”

Part of the problem lies in the sad truth that these other disciplines
are similarly isolated and internally focused on their own particular
specialty which keeps them from understanding the software side
of the problem.

My personal 35-year long software odyssey has made abundantly
clear to me that the task of satisfying the user can only be achieved
by fully integrating both the development and the interaction design
practitioners into a single, self-organizing, self-directed team.

This means that those agile enthusiasts who believe that all other
disciplines, including interaction design, need to march to the agile
drummer are thinking too narrowly. The two disciplines won’t
integrate on one discipline’s turf. They will unite on some common
ground, slightly new to both of them.

11

Smaller difference

But don’t despair; the difference is smaller than you might think.
Interaction designers have been using agile methods (under other
names) for years. Interaction designers have always designed in pairs,
have always rapidly iterated in a discardable medium, have constantly
refactored their work, always begin with a fuzzy, out of focus, yet
complete image of the final product, always are open to outside
advice, suggestion, and direction, and have always judged that
advice on its merit, not on the authority of its source.

12

IxD is the developer’s best friend

I believe that interaction design should be the developer’s best friend,
and an integral part of the agile team. Their common goals and values
make this inevitable.

Most of the other disciplines that developers need to collaborate with
don’t share the responsible craftsman’s concern for product success
and quality.

Typically people in roles such as “business analyst”, “database
administrator”, “documentation writer”, “chief executive officer”,
“graphic designer”, “project manager”, or “code librarian” don’t
have the big view in mind.

13

Problematic collaborationists

This is not a condemnation of these people—frequently they care
deeply and feel hamstrung by their inability to do the right thing.
Most people are merely stymied by their job limitations—they are
way too busy doing the rest of their job, or their discipline hasn’t
sufficiently evolved to address the broader goal of customer
satisfaction. Often the sheer size of their other responsibilities
forces them to assess all software design and programming activities
as “merely technical” and this blinds them to the vital strategic nature
of how their software behaves.

While pursuing their own careers, they can inadvertently obstruct
the development process. Even if they are willing to collaborate, they
might do so only on their own terms.

Interaction designers can be the developer’s most effective
collaborator. This is not true of all those who call themselves
“designer”. In fact, their willingness to collaborate effectively is an
excellent litmus test of their authenticity.

A true interaction designer places the user’s satisfaction at the
forefront; a true interaction designer isn’t too busy with “their” job
to work hand-in-hand with developers; a true interaction designer is
willing to collaborate on the developer’s terms; and a true interaction
designer discusses the trade-offs and participates in the difficult
decision making instead of issuing directives to the programmer. 14

“A true interaction

designer places the

user’s satisfaction

at the forefront.”

White collar

Probably the most troublesome group of necessary collaborationists
is business management. Very few managers have any skill or interest
in software development. All of them are too busy and far too
preoccupied with things that they deem more important than
software development.

15

Blue collar

Most of them are stuck in the industrial age paradigm, where manag-
ers are white-collar, smart, well-educated, and responsible for decid-
ing on the proper course of action, while practitioners are blue-collar,
poorly-educated, and incapable of making informed decisions.

16

Courtesy of Library of Congress, US Dept of War information, Howard R. Hollem,photographer

No collar

Today, in the post-industrial age, “no-collar” knowledge workers
are typically better educated, equally intelligent, and better able
to make informed decisions than any manager is. Worst of all,
managers insist on managing; they restrict resources unnecessarily,
issue ill-considered directives, and let their guesses preempt the
work of the expert practitioners.

After years of trying to reason with managers, I finally came to
realize that the true power lay in the hands of practitioners; of
responsible craftsmen; of us.

17

http://www.flickr.com/photos/maxbraun/149270753/sizes/o/

Responsible craftsmen

I am now convinced that we are engaged in an insurgent war, and that
responsible craftsmen are the only constituent that can honestly see
the problem and the solution, and that we will fight for the greater
good, rather than merely for our own, short-term career goals.

At the turn of the millennium, software developers in this country were
in a bad way. Their basic methodology and approach to development
was rooted in academia or old-skool companies like Microsoft. Their
methods worked, but they were also guaranteed to take a long time
and produce unlovable, unusable products.

The booming open source movement was clear evidence that
developers were unhappy at their day jobs. And those jobs were
drying up, being outsourced to Bangalore, Talinn, and Chengdu.
Communications within the development community were good,
but dialog with the business and design communities was weak.

18

Responsible craftsmen

“The booming open source movement
was clear evidence that developers were
unhappy at their day jobs. And those
jobs were drying up. . . “

While I have no proof, I simply can’t credit the rapid ascent of agile to
anything other than a collective sense shared by the software intelli-
gentsia that, being at a professional nadir, there was nothing to lose by
gambling everything on agile’s radically new vision.

Coincidentally and concurrently, I was arriving at a similar state of
frustration in my attempts to convince business executives that they
needed to pay more and better attention to their software develop-
ment efforts. I struggled to explain that software wasn’t some techni-
cal backwater of the corporation, the way it might have been when
punched cards walked the earth.

19

Peter Drucker: management guru

Ironically, reading the words of one of the greatest business manage-
ment thinkers, Peter Drucker, gave me the courage to finally turn my
attention from business executives to focus instead on practitioners as
the true source of power in the modern company. Drucker presciently
foresaw the rise of the knowledge worker and the growing ineffective-
ness of conventional management.

20

IxDA conference in Savannah

In February 2008 I was honored to give the very first keynote speech
on the first day of the first annual conference of the IxDA, the
Interaction Design Association, in Savannah Georgia. That talk was
brand new, different from this one, but I also called it “An Insurgency of
Quality”. In it, I exhorted the audience of 450 practicing interaction
designers to cease trying to convince managers to respect, support,
and adequately fund software design and development. Instead I
encouraged them to directly seek out developers for some indigenous,
unsanctioned, under-the-radar, yet highly-effective collaboration. As
yet ignorant of the term, I was encouraging them to be agile.

21

Author’s collection

The essence of insurgency

While there are many enlightened executives who clearly see that agile,
collaborative teams are the blueprint of the future, there remain many
more executives who don’t. The war is still in progress, and it is fought
by teams of agile practitioners who believe that by caring exclusively
about the quality of the product and the success and satisfaction of
the user, their career standing will take care of itself. To me, that selfless
commitment is the purest essence of insurgency.

Shortly after that talk in Savannah, I began to investigate the
burgeoning agile movement. To my immense pleasure, I saw many
parallels between the disciplines of interaction design and agile
development. I saw a hunger in agilist’s eyes for collaborative
assistance on the part of designers (and I also saw frustration in the
eyes of developers who had been handed pretty pictures by old-skool
graphic designers and told to implement them without argument).

I’m a big fan of cross-skilling, but the practical limits are real. Any
programming of release quality is beyond the ken of most
non-professional programmers. Likewise, any form and behavior
synthesis of release quality is beyond the interest level of most
non-interaction designers.

22

“Despite the overlap

between their practices,

they each have different

ways of getting things done.

Each practice will need to

accommodate the other

to some extent. Effective

integration is a symbiotic

partnership.”

A symbiotic partnership

Some but not all of the interaction design process fits directly into
the agile framework. In particular, the activity frequently referred to
as “requirements gathering” doesn’t fit well into the agile framework.

The foundation of agile is the rhythm and tempo of the iterative
loop. Coincidentally, the same is true of much of interaction design,
however, not all of interaction design is generative; much of it is
empirical and analytical.

23

Empirical and analytical

This empirical and analytical work, while also iterative, rarely fits into
the rhythm and tempo of software development.

In particular, the universe doesn’t begin at scrum zero. The work
necessary to understand and identify the user, to understand and
aim the business objectives, and the work necessary to imagine the
product’s end-state doesn’t fit into regular time boxes and therefore
should best be performed before programming begins.

The empirical part consists mostly of what is called ethnographic
research. This typically involves lots of travel and coordination with
users and stakeholders scattered around the world. The analytical
part consists mostly of skull-work, organizing and reviewing the
research results, and developing personas from the material. Once
this real-world insight is in-hand, it needs to be written-up for further
reference, and the team can do some basic sanity checking on their
initial assumptions.

Most agile developers would agree that this work has to get done, but
many mistakenly think that this “requirements” stuff is handed to the
designer by some outsider, like marketers or business analysts. On the
contrary, synthesizing the “requirements” is the interaction designer’s
most important job.

24

“The analytical part consists

mostly of skull-work, organiz-

ing and reviewing the research

results, and developing perso-

nas from the material.”

“Requirements” aren’t wine

Outsiders will certainly present the team with long lists of demands,
but satisfying “requirements” isn’t the same as satisfying users.
What’s more, not all “requirements” are actually required.

 “Requirements” handed in from various stakeholders have to
be regarded as raw data to be factored into the larger vision.
Converting “requirements” into design is akin to converting grapes
into wine. In order to do it well, interaction designers need to wrap
their heads around the big vision early in the process, and this critical
work is rarely seen by developers.

Agilists have found that trying to imagine a complete, finished
program is not just a waste of time and effort for them, but can often
lead them into project-killing featuritis, second-system-effect, and
terminal bloat. They know that “you aren’t gonna need it” and
worrying about it or coding for it now is a dangerous trap.

That’s certainly true for developers, but an integral part of designing
the form and behavior of a software solution for end users is imagining
the end-state of the product. One of the core competencies of
interaction designers is this ability to visualize software behavior
without having to code it.

25

“While well-disciplined

developers stay away from

end-state thinking, it is

wrong for them to restrict

others from doing so.”

Agilists fear BDUF

Agilists fear that interaction designers imagine the end-state so they
can freeze it into massive Big Design Up Front documents that will
forever after force the project down some obsolete blind alley to
eventual failure (and this fear is quite justified, as many of our business
manager clients do just that). But that is just an echo of the bad-old-
days. Enlightened collaborating peers simply don’t do that crap.

26

Who is the end user?

Interaction designers imagine the end-state so that they can know with
certainty who the end user will actually be. The end user imagined by
marketers or analysts is often incorrect or inadequately representative.
And if you don’t know who your user is, your software is virtually
guaranteed to fail to satisfy them.

27

What is the actual business case?

Interaction designers imagine the end-state so they can determine
what actual business case the product will address. Just because
business executives and marketing professionals identify an unfulfilled
market need, doesn’t mean that their vision of the product to fill it is
effective, efficient, or even correct. That’s what interaction designers
do better than any other.

28

How can we judge functionality?

Interaction designers imagine the end-state so that they can establish
a performance metric of the necessary tradeoffs that development
demands. They construct a functional vocabulary of the product’s
capabilities and behaviors and the benefits that the user can gain from
them. This is the cauldron where “requirements” are rendered into
something useful. It is also the raw material for the product roadmap,
showing what should bubble to the top of the backlog.

29

Some things don’t fit

Of course, not all of the empirical work can or should be done in
advance; to keep pace with business fluctuations and to test our
hypotheses against the real world must be an ongoing part of the
design process, and it is best done in concert with the programming.

While interaction designers are willing, nay eager, to fit their work
into the agile rhythm, it would be inappropriate to try to squeeze
every aspect of interaction design into the procrustean bed of
agile time boxes.

Just as interaction designers must respect the iterative tempo of the
agile programmers, those programmers need to respect the portion
of the interaction designers work that falls outside of that cadence.

30

Interface design fits well

As you can see, much of what interaction designers concern them-
selves with is strategic vision and product conceptualization. But at
least half of the interaction designer’ job is tactical, focused on screen
design and behavioral problem solving. This work dovetails well with
the agilists time boxed iterations.

This time-boxable, tactical part of interaction design goes by many
names, such as “user centered design” or “user experience design”. I
have always called it “interface design”. Dave Hussman calls it “visual
design”. Regardless of what it’s called, it gives him tremendous value
every single day.

Some developers think that this tactical design is the only thing that
interaction designers do, and many junior practitioners are satisfied
with this role, and the resulting collaboration can be very smooth. The
only downside is that it doesn’t—by itself—result in satisfied users or
successful products.

What makes such tactical design so valuable to developers is that it
is effectively supported by the strategic empirical and analytical work
done previously and that is usually invisible to developers.

31

“Some developers think

that this tactical design

is the only thing that

interaction designers do. . . “

Bricklaying

When a mason, following a line on an architect’s blueprint, builds a
brick wall, he lays one brick after another, repeating the same process
a thousand times. Whenever a programmer finds him or herself writing
the same line of code more than once or twice, he or she will abstract
it into a subroutine or method. In this way, programming differs from
all other crafts: repetition is rare; each line of code is unique, bespoke,
custom-made, and each one brings to the surface a new set of
questions, problems, opportunities, and trade-offs between effort,
commitment, and investment on the developer’s part and power,
usability, and appropriateness on the user’s part.

32

Fractals

Like fractals, this pattern of trade-off-decisions is identical to those
made in the board room, just made more frequently and on a
somewhat smaller scale. Sometimes, these trade-offs can be just as
important in the long term as those made in mahogany-paneled
offices. Because these questions arise endlessly on a day-to-day
basis at the lowest level of implementation, it’s really easy for
business managers to imagine that they are insignificant and only
of interest on a technical level. This is not true.

33

Battlefield choices

These myriad, tiny, yet often vital trade-off-decisions are unique to
software, and I’ve come to think of them as “battlefield choices”.
Much of the impetus for the development of agile methods comes
from a desire to better address such battlefield choices. And this is
exactly where the interaction design discipline excels. Interaction
designers can work side-by-side as an integral part of the agile team,
providing informed guidance for each battlefield choice, helping to
keep the implementation details true to the bigger product vision.

In particular, each one of these battlefield choices usually has a
technical component and a user-facing component. The technical
issues typically can be vanquished with logic and deduction; however,
these most effective technical tools are frequently ineffective at
solving the human-interaction side of the problem.

34

Courtesy IMDB.com

Cognitive illusions

There is a large and rapidly-growing body of scientific evidence
proving that all humans are subject to a plethora of cognitive
illusions and perceptual distortions. Applying logic or deduction
may seem a logical approach, but the illusions that bedevil Homo
sapiens doom such logical design to a tragically bad user experience.
Interaction designers are trained in the craft of unraveling and
extracting the underlying goals that drive a user’s sense of
satisfaction. They can then design software behavior to satisfy
these goals rather than the stakeholder’s firmly-stated but equally
firmly distorted “requirements.”

35

Collaboration leadership over time

I visualize the leadership role in a project changing over time.
This graphic shows what I mean.

On the left side of the chart, at the very beginning, the interaction
designer drives the project by determining the contextual issues
of who the user is and what the business purpose will be. While
stakeholders may desire, or even “require” many features and
behaviors, the team relies on the interaction designer to assess the
tradeoffs involved. He must seek out and assess the potential market
advantage and weigh it against the cost of development. The
interaction designer leads the team to decide with confidence on
the strategic issues facing the product. This keeps the big, conceptual
iterations front-loaded in time, where they are far cheaper to make.
This means that the developers must be available to consult with the
designer to assess the relative cost of each potential feature.

36

Time

Leader-
ship

Interaction
design

Software
development

Collaboration leadership over time

“I visualize the leadership role in a
project changing over time.”

As the project proceeds, the agile developer begins to assume more
of the leadership role simply because the project’s focus shifts from the
user and market to the growing code base. The tempo of time-boxing
now drives the content and pacing of battlefield choices. The
developers and the interaction designers are working shoulder-to-
shoulder in full and constant communication solving the complex
problems that emerge. All team members work to assure that there
are no unforeseen effects.

Soon, the agile developers have taken over the leadership role. Every
day the team’s efforts reveal dozens of new, unforeseeable battlefield
choices. If the choice regards user-facing behavior, then the interaction
designer must be instantly available to consult with the developer to
assess the relative benefit of each potential solution.

37

The small company Product Owner

One of the reasons that agile is so successful in small projects is that
the person who actually owns the product, the entrepreneur, plays
the role of “product owner”.

One of the reasons why agile is often less effective on large projects
is because the person who plays the role of “product owner” doesn’t
know how to own the product.

The Scrum Alliance defines “product owner” as the “single person with
the final authority representing the customer’s interest in backlog
prioritization and requirements questions. This person must be
available to the team at any time.”

There are two inherent weaknesses in this approach. First, the “final
authority” concept is much weaker than the self-organizing team
concept. Wouldn’t it be better to have the team itself have the
information and perspective it needs to make such prioritization
decisions within its own group?

38

The small company Product Owner

The second weakness of this approach is that, in the real-world, the
nominal product owner is simply not going to be “available to the
team at any time”. The product owner is undoubtedly very busy with
other product and project management duties that keep him or her
sufficiently out of the loop so that their attention is never fully
focused on the particular battlefield choices that bedevil the team.

In small start-ups, the single-minded focus of the successful entrepre-
neur is always on customer satisfaction. What’s more, he or she will be,
of necessity, hands-on and participatory. All of this is obviously
compatible with the beliefs, values, and practices of agile.

“One of the reasons why agile is often less
effective on large projects is because the
person who plays the role of ‘product owner’
doesn’t know how to own the product.”

39

The big company Product Owner

In larger companies, however, the product owner is likely just a
salaried employee who has other demands on his or her time, is
pulled by outside commitments, and typically lacks the skills to make
critical decisions regarding how a product should behave. What’s more,
any middle manager on a large, established product line is constrained
by convention, by the sheer magnitude of the existing code base, by
the inertia of the existing team, and by his own lack of self-confidence
in the face of a proven product.

When the agile development team demands tough, decisive
action from the “owner”, they are most likely to get prevarication,
procrastination, trepidation, and tradition.

Being a skilled and effective product owner is a much more difficult
job than most people think.

40

Interaction designers play product owner

Interaction designers, at their strategic best, are superbly
equipped to play the role of product owner effectively, efficiently,
and collaboratively. They speak tech to the developers, speak business
case to the managers, speak user personas to the marketers, and—
being responsible craftsmen—are beholden only to the success
of the project.

Please note that I am not saying that the interaction designer should
“own the product.” I simply believe that the demands of the product
owner role are too difficult and too important for an amateur or
part-timer. What’s more, a weak stick in the product owner role can
have a devastating effect on the entire project. It is very much in the
development team’s best interest to assure that a skilled and
experienced, responsible craftsman play the part. The role is a
perfect fit for a senior interaction designer.

41

The pig and chicken

Most of you have heard the allegory of the pig and chicken. At their
restaurant they serve ham and eggs, which means that the pig is
committed but the chicken is merely involved.

Developers see themselves as fully committed pigs: their professional
standing is linked to the project’s success or failure. Most developers
also view designers as chickens: as mere advisors to the developers,
and their professional standing is independent of the project’s fate.

But a true interaction designer desires and demands to be a pig; to be
committed. They don’t want to merely contribute advice; they want to
buy in to the project and be a full, oinking member of the team.

I realize that for this to happen, developers must put their trust in
interaction designers, and in turn the designers must prove their
commitment by making absolutely sure that their decisions are correct.

I want each developer here to demand pig-quality commitment from
their interaction designer teammates, and I want each interaction
designer here to take pig-level responsibility to do the necessary
homework to make well-researched, defensible, and correct form and
behavior design so that they have the courage to stand by their work.

42

“. . . for this to happen,

developers must put their trust

in interaction designers, and in

turn the designers must prove

their commitment by making

absolutely sure that their

decisions are correct.”

There are no chickens in foxholes

There are no chickens in foxholes.

I believe that many committed teams of equals, integrating agile
development with interaction design, practicing responsible
craftsmanship, will be an immense force. The power of our
combined efforts will be unstoppable in the war for satisfied users
and professionally fulfilled practitioners. This insurgency of quality
will show the world how software was meant to be created.

Thank you!

43

Courtesy http://swervechurch.wordpress.com/2008/12/21/fox-holes/Photo

