
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Approximating the Safely Reusable Set of Learned Facts⋆

Domagoj Babíc, Alan J. Hu

Computer Science Department
University of British Columbia

The date of receipt and acceptance will be inserted by the editor

Abstract. Despite many advances, today’s software model
checkers and extended static checkers still do not scale well
to large code bases, when verifying properties that depend on
complex interprocedural flow of data. An obvious approach
to improve performance is to exploit software structure. Al-
though a tremendous amount of work has been done on ex-
ploiting structure at various levels of granularity, the fine-
grained shared structure among multiple verification condi-
tions has been largely ignored. In this paper, we formalize the
notion of shared structure among verification conditions, and
propose a novel and efficient approach to exploit this sharing
by safely reusing facts learned while checking one verifica-
tion condition to help solve the others. Experimental results
show that this approach can improve the performance of ver-
ification, even on path- and context-sensitive and dataflow-
intensive properties.

1 Introduction

Recent advances in formal verification have brought the
long-time dream of automatic formal verification of software
closer to reality. The hope is that a programmer would need
only specify desired correctness properties — or the verifica-
tion tool could have pre-specified properties, such as proper
locking-unlocking, or adherence to an Application Program-
ming Interface — and the tool would fully automatically con-
struct the formal logical model and verify whether the desired
correctness properties hold.

Verification conditions (VCs) are the logical formulas,
constructed from a system and desired correctness proper-
ties, such that the validity of the verification conditions cor-
responds to the correctness properties holding. Constructing

⋆ This work was supported in part by a research grant from the Natural
Sciences and Engineering Research Council of Canada and a Microsoft Re-
search Graduate Fellowship. This paper is based on and extended from a
paper published in the 2007 Haifa Verification Conference.

and proving VCs are both essential steps in software verifica-
tion, and both have been active areas of research. In this pa-
per, we focus on proving the validity of VCs more efficiently.

The trend today is to use automated decision procedures
to prove or disprove the computed VCs. Unfortunately, this
process is computationally extremely expensive and is the
main bottleneck to the wider application of formal and semi-
formal software verification methods. Previous work has fo-
cused on the computation of VCs (e.g., [1,2]), abstraction to
make the VCs simpler for the decision procedure (e.g., [3,
4]), and the efficiency of the decision procedures themselves
(e.g., [5–9]).

This paper explores a different direction for improving ef-
ficiency — namely, exploiting shared structure among multi-
ple VCs at the level of individual expressions — and proposes
a technique that exploits this structure. Since solving VCs
is typically expensive, elimination of this redundancy has
the potential to significantly improve performance of static
checking. In this paper, we present our insights, formalizethe
notion of shared structure, and propose an algorithm for ex-
ploiting this shared structure by safely reusing facts learned
while checking one verification condition to help solve the
others. We provide experimental evidence that our approach
can cut runtime by almost one third and reduce the number
of timeouts.

2 Background

The work in this paper fits in the context of static checking of
software. The distinction between static checking (e.g., [10–
13]) and model checking [14,15] has become fuzzy, but his-
torically, static checking has emphasized fast bug huntingand
scalability to large software, at the expense of precision (and
often soundness and/or completeness), whereas model check-
ing has emphasized precision and soundness, with the pri-
mary research challenge being scalability. In both paradigms,
though, the verification task typically consists of checking a

2 Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts

LLVM
frontend

Light-weight
function

pointer alias
analysis

Precise
symbolic

execution with
simplification

Verification
condition
filtering

Decision
procedure

(Spear)

Calysto

SSA

SSALLVM
backend

Assembly
code

C,C++,...

reports

Fig. 1.High-Level CALYSTO Architecture

large number of properties, e.g., there could be thousands of
user-supplied assertions in a large codebase, or even more
automatically generated checks, such as that pointer derefer-
ences are non-null, array accesses are in-range, locking pro-
tocols are observed, etc. Our goal in this paper is to exploit
the shared structure among the many verification conditions.

More precisely, we have noticed that many VC share
common formulas, which usually correspond to prefixes/suf-
fixes of shared paths in the analyzed program. One way to
exploit this insight is to use classical incremental satisfiabil-
ity [16–18]. If constraints of one VC were a subset of con-
straints of the next one, we could simply take all the con-
straints (clauses, in the context of SAT solving) learned while
solving the first VC and reuse them when we move to the
next VC. Unfortunately, in practice, VCs usually share only
a subset of constraints and it is rare to find pairs of VCs that
can be ordered by the subset relation. So, when moving from
one VC to another, decision procedures have to remove the
constraints that do not belong to the next VC being solved,
as well as all the learned constraints dependent on the re-
moved set of constraints. This can be done, but requires te-
dious bookkeeping of all dependencies among the original
and learned constraints, i.e., one has to record a potentially
very large implication graph. In this paper, we present a very
lightweight technique for approximating the set of constraints
that can be safely reused, while avoiding the need for keeping
the large implication graphs.

Our work is based on our extended static checker CA-
LYSTO [19]. The high-level architecture of CALYSTO is
shown in Fig. 1. CALYSTO is designed as a compiler pass,
in the spirit of Hoare’s “verifying compiler” grand chal-
lenge [20]: it accepts the compiler’s intermediate represen-
tation, in static single assignment (SSA) form [21], performs
various verification checks, issues bug reports and warnings,
and then passes semantically unmodified SSA on to the com-
piler backend.

Internally, the CALYSTO system consists of three stages,
supported by an automatic theorem prover, SPEAR. The first
stage is a lightweight function pointer alias analysis, which
constructs (a sound approximation of) the call graph, in-
cluding indirect calls through function pointers. We sacrifice
some precision, by using a sound, flow-sensitive, but context-
insensitive alias analysis, tracking only the function pointers.
The next stage is symbolic execution [22], which executes

the program using symbolic instead of concrete values. CA-
LYSTO symbolically executes functions in the analyzed pro-
gram, computing symbolic definitions for each modified vari-
able and memory location. These symbolic definitions are
used to create the verification conditions (VCs). The sym-
bolic execution machinery allows generating VCs for any as-
sertion at any point in the program. CALYSTO currently sup-
ports user-supplied assertions (written as boolean expressions
in whatever programming language the compiler front-end is
parsing), but in the spirit of static checking, also automati-
cally generates VCs to check that each pointer dereference
cannot be NULL. The last stage consists of checking and fil-
tering the verification conditions. In principle, the VCs could
be sent directly to a theorem prover for checking, and this ap-
proach is used in most other tools. We have found, however,
that both efficiency and usability can be improved by control
and filtering of what VCs are checked. The main efficiency
gain is due tostructural abstraction[23], where CALYSTO

exploits natural function-call boundaries for abstraction and
lazily refines only those function effects that are needed tore-
fute or demonstrate a concrete violation of a VC. The actual
validity-checking of VCs is done by SPEAR, which is a sound
and complete, fully automatic theorem prover that supports
Boolean logic, bit-vector operations, and bit-accurate arith-
metic.

Although the work in this paper is built on CALYSTO, we
believe that the contribution of this paper can be applied to
any static checker or software model checker that uses a de-
cision procedure to check VCs, assuming some reasonable
properties of the VCs (see Sec. 3). Considerable research
went into the specific design decisions behind CALYSTO’s
architecture [19,24], but the general pattern — a compiler
front-end to analyze the software, a formal analysis to gener-
ate multiple VCs for multiple program properties, and a de-
cision procedure back-end to check the VCs – is common.

3 Definitions and Assumptions

In this section, we give definitions of some basic concepts
required for understanding the rest of the paper and present
the assumptions on which our method relies.

Verification Conditions (VCs).VCs are logical formulas,
constructed from a system and desired correctness properties,
such that the validity of VCs corresponds to the correctness
of the system. Commonly, correctness properties in programs
are specified with assertions, which can be either written by
programmers, or automatically generated (e.g., [25]). If all
the assertions in the program are valid, the program is consid-
ered to be correct with respect to the given set of assertions.

A predicate that represents the condition under which
some assertion is reachable in the program code will be called
the reachability predicate. LetRstand for a reachability pred-
icate andα be the asserted condition. The VC is then given
by R⇒ α, intuitively saying that if there is a feasible path to
α, the assertion condition should be valid.

Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts 3

Common
Subexpression

Elimination
(CSE)

Spear Format
SMT QF_BV Expression

Simplifier

Gate-Minimal
CNF Encoder

Search
Parameters

(UN)SAT

Spear

CNF
Simplifer

Structure-
aware

SAT solver

Fig. 2. High-Level SPEARArchitecture

Verification conditions can be computed by intra- or inter-
procedural analysis. To achieve high precision, approaches
based on intra-procedural analysis require user-providedin-
terface invariants. In practice, however, programmers seldom
provide these invariants. Verification conditions computed by
inter-procedural analysis tend to be large and based on code
spread throughout many function calls.

Decision Procedure.We are interested in bit-precise soft-
ware verification in order to be able to catch frequent integer
under/over-flow bugs1. So, all of our analysis will be assum-
ing bit-vector arithmetic. Our bit-vector arithmetic decision
procedure SPEAR2 is based on a SAT solver and supports all
standard bit-vector arithmetic operators on finite bit-vectors,
including expensive operators (like multiplication and divi-
sion). Although we use bit-vector arithmetic, the contribution
is largely independent of the chosen logic.

SPEAR’s architecture is illustrated in Fig. 2. SPEAR sim-
plifies expressions in two steps: First, common subexpres-
sion elimination merges (structurally) equivalent expressions.
Common subexpression elimination (CSE) is a simple, but
very important optimization for decision procedures based
on SAT solvers. SPEAR eliminates common subexpressions
by simple structural hashing. Second, a simple term-rewriting
engine simplifies the expressions starting at the leaves of the
maximally-shared graph representing the formula and mov-
ing toward the root. The engine performs operations like
constant-propagation (e.g.,a + 0 = a), constant-collection
(e.g.,a+1+2 = a+3), simple deduction (e.g.,a < b∧a >

b = false), redundancy elimination (e.g.,ITE(φ ,a,a) = a),
partial canonicalization (e.g.,ite(φ ,φ ∧ a,b) = ite(φ ,a,b)),
strength-reduction (e.g., 3∗a= a << 1+a), and so on.

Programs contain non-linear operators, and to be bit-
precise, one must have a decision procedure that supports
them. A number of different methods have been developed
for linear bit-vector arithmetic, but few of them are applica-
ble to non-linear operators. We use the bit-blasting approach:

1 For instance, the 2004 JPEG security exploit (see e.g., [26]).
2 http://www.domagoj.info/indexspear.htm

Variables are encoded as bit-vectors of suitable size, and op-
erators are replaced by digital circuits corresponding to that
operator. In effect, VCs become large digital circuits, which
can be converted to CNF using Tseitin’s transform [27] and
given to a SAT solver. We use gate-optimal circuit encoding,
trying to minimize the number of gates.

The CNF simplifier performs variable elimination [28]
and elimination of satisfied clauses and falsified literals [29].

The core of SPEAR is a DPLL-style [30] SAT solver.
SPEAR incorporates a number of novel optimizations. How-
ever, one of the most important features of SPEAR and its
core is configurability: every single search parameter, which
is typically hard-coded in most off-the-shelf decision proce-
dures, can be set on the command line. The full flexibility
and power of this configurability becomes obvious in combi-
nation with automatic tuning [31].

When automated decision procedures are used for prov-
ing VCs, the validity of a verification conditionVC is usually
proven by asking the decision procedure to prove unsatisfia-
bility of the formulaVC = false. Its satisfiability means that
there is a possible bug in the program from which the VC was
constructed.

In our setting, we wish to check multiple VCs. There-
fore, to identify and use the sharing between the VCs, we
cache subterms of the VCs (and clean the cache periodically),
while using classical structural hashing to reuse the expres-
sions already present in the cache. When we learn a context-
independent fact about a certain term (using the techniques
presented in this paper), we associate it with the term itself.
Later, if the term becomes a part of another VC, we automati-
cally add the context-independent fact when we pass the new
VC to the decision procedure.

Representation.As mentioned, we represent VCs as acyclic
graphs. This representation simplifies the reasoning about
the structure of the formulas. In addition, using simple node
hash tables, we eliminate all common sub-expressions. Such
graphs, in which all redundancies have been eliminated, are
known as maximally-shared graphs:

Definition 1 (Maximally-Shared Graph).
Given an acyclic graphG = (N,E), let L stand for a label-
ing functionL : N −→ string. Define the arity of a noden,
denoted as|n|, as the number of outgoing edges. The out-
going edges are ordered, and thei-th edge of a noden will
be denoted aschildi(n). Two operator nodesn1 andn2 are
defined to be equivalent (n1 , n2) if and only if |n1| = |n2|,
L (n1) = L (n2), and

∀i : 0≤ i ≤ |n1| : childi(n1) , childi(n2).

(This is standard bisimulation equivalence, but applied toa
graph representing the static structure of a VC, rather than
the more typical application to a transition system.) GraphG
is maximally-shared if¬∃n1,n2 ∈ N : n1 6= n2∧n1 , n2.

CALYSTO computes verification conditions directly as max-
imally-shared graphs. The graph representation can be trans-
formed into a conjunction of expressions by standard renam-
ing. We shall identify nodes in the graph with the variables

4 Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts

n0

n2

n3

n4

n5 n6

n7

n1

Fig. 3.Dominance Relation. Given the acyclic graph above, some dominance
relationships include:n1≫n1,n1≫n3,n0≫ n3,n0≫ n5,n4≫ n6, andn2 6≫
n4.

used for renaming. This is a one-to-one mapping. We shall
represent equality (resp. disequality) in formulas and algo-
rithms as= (resp.6=), while in the code snippets and graphs
= will stand for assignment, and== (resp.!=) for equality
(resp. disequality).

Graph Relations.If there is an edge connecting two nodes,
n−→m∈ E, thenn is apredecessorof m, andm is asucces-
sor of n. The set of predecessors of a noden will be denoted
asPred(n), and the set of its successors asSucc(n). The nodes
in the transitive closure ofPred(n) areancestorsof n, and the
nodes in the transitive closure ofSucc(n) aredescendantsof
n, denotedDesc(n).

Dominance Relation.To analyze the shared subgraphs, we
rely upon the dominance relation [32]:

Definition 2 (Dominance Relation).
A noden dominates nodem if and only if all the paths from
the entry node tom go throughn, written asn≫m. If n 6= m,
n strictly dominatesm, denotedn≫m.

The dominance relation (illustrated in Fig. 3) is a par-
tial order (reflexive, antisymmetric, and transitive) and can
be computed inO(Nα(E,N)) [33] time, whereα is the ex-
tremely slowly growing inverse of Ackermann’s function. In
practice, a simplerO(E logN) algorithm [33] is faster, even
for very large graphs, and that is what we are using for the
results in this paper.

The dominance relation, as defined above, requires a
unique entry node. The technique presented in this paper al-
ways considers the root node that represents a single VC to be
the entry node for the computation of the dominance relation.

Assumptions.The work presented in the paper relies on sev-
eral assumptions, which are either almost always satisfied
in practice or can be satisfied with a trivial amount of post-
processing.

First, the decision procedure must be able to identify facts
of the formvariable= constantthat are implied by formulas
being solved. For instance, if the decision procedure is based
on a SAT solver, learned unit literals are such facts. Decision
procedures based on the Nelson-Oppen [9] framework gen-
erate conjunctions of equalities (providing that the individual
theories are convex), and it is easy to extract the equalities
that satisfy our requirement.

Second, we assume complete propagation of equalities
with constants, i.e., we require that the decision procedure
generates facts of the forma = 7,b = 7,c = 7 instead of
a = 7,b = a,c = b. This is trivial to accomplish by a lin-
ear time constant propagation post-processing even if the de-
cision procedure does not make such guarantees. Assuming
that the formula is satisfiable, both SAT solvers and E-graphs
[34], on which the Nelson-Oppen framework is based, satisfy
this requirement.

Third, we assume that the proper sub-expressions of a VC
are logically consistent. Every expression that can be trans-
lated into an acyclic circuit-like representation satisfies this
requirements because circuits themselves are logically con-
sistent — every input produces some output. If the consis-
tency assumption were violated, then the decision procedure
could imply arbitrary implicants. The consistency assumption
ensures that the implicants derived from a sub-expression are
meaningful. Two small examples provide the intuition behind
this assumption.

Example 1.Consider an obviously inconsistent formulaa <

0∧ a > 0. By introduction of fresh variablesn0, · · · ,n2 we
get:

n0 = a < 0

n1 = a > 0

n2 = n0∧n1

This is a logically consistent set of constraints which corre-
sponds to the circuit-like representation in Fig. 4. Note that
the constraints forcen2 to be alwaysfalse, but the constraints
themselves are satisfiable. Variablen2 corresponding to the
root node in Fig. 4 can be seen as acircuit output.

As mentioned earlier, the goal is to prove validity of a VC,
i.e., that the value of the output node is always true. We can
check this by adding the constraintroot node= false and then
checking satisfiability. If the resulting formula is satisfiable,
the original VC is not valid. Only by adding the additional
constraint can the constraints become inconsistent, as in the
next example.

Example 2.Given the formula:VC = (a > b⇒ a≥ b), we
can construct the set of constraints:

n0 = a > b

n1 = a≥ b

n2 = n0⇒ n1

which is consistent. Now, to check validity, we add constraint
n2 = false to the set, forcing the output tofalse. The set of

Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts 5

&&

< >

a 0

n2

n0 n1

Fig. 4.Small Maximally-Shared Graph Representinga< 0∧a> 0. Succes-
sors of non-commutative operators are ordered in the natural order (from
left to right). Operator nodes are labelled with the operator (inscribed)
and the name of corresponding variable used in renaming (adjacent to the
node).

a b

n0

=>
n2

n1

> >=

Fig. 5.Graph Corresponding to the Set of Constraints in Example 2.

constraints becomes unsatisfiable, meaning that the original
VC was valid.

4 Exploiting Shared Structure

In software, many paths share common statements, which
means that computed VCs will share common sub-
expressions. However, it is less obvious how to exploit that
structure.

A direct approach would be to construct a single formula
as the disjunction of all (negated) verification conditions, give
it to the theorem prover, and for each solution, report a bug,
then add a blocking clause to eliminate the failing verification
condition (a single disjunct) from further consideration.3 Ev-
erything that the theorem prover learns while checking one
(disjunct in the) VC can be re-used when looking for addi-
tional solutions, so this is a “perfect solution”. Unfortunately,
it suffers from the same problem as clause learning in a SAT
solver: there is too much information that is learned, with
very little of it being useful later. The information overload
is especially problematic because our verification analysis is
interprocedural: the brute-force direct approach would com-
pute the single VC (the disjunction of the negated VCs for all
assertions) for the entire program, potentially forcing the de-
cision procedure to explore completely different parts of the
verified program in a single run. The added blocking clauses
are bound to become obsolete at certain point, but it is hard to
detect that without having any information about the structure
of the program. Alternatively, heuristic removal of blocking
clauses might produce repeated error traces correspondingto
the same assertion violation, or even worse, failure to termi-
nate.

3 In a simple usage model of formal verification, a tool might naturally
stop as soon as it finds a false VC and report an error. In the static-checking
style that we follow, however, where there may be many thousands of auto-
matically generated assertions to check, and where there may be occasional
false error reports, it is much more useful to try to recover from errors and
continue checking as many assertions as possible on each run, much as a
compiler will report multiple errors during a compilation.Hence, we need a
mechanism to continue checking VCs despite finding a failingVC.

Instead, in CALYSTO, the approach we use is to compute
a single VC per assertion in each context. Given a predicateφ
representing a VC in the caller, welift the VC into the calling
context in two steps: First, we substitute the formal param-
eters of the callee with the actual parameters in the caller’s
context (the same substitution is carried out for the memory
locations that the callee accesses). Second, the predicatethat
represents the conditions under which the callee is called,say
ψ , is used to construct an implicationψ ⇒ φ , which repre-
sents our VC lifted to the caller’s context.4

Computing a single VC per assertion in each context
slices out the part of the program that is relevant to the asser-
tion and context we are interested in, drastically improving
the performance of decision procedures. Once a VC is either
proved valid, or a counterexample is found, the entire VC is
discarded, and we proceed to the next VC. While such an
approach avoids bloating the clause database with blocking
clauses, it also, unfortunately, discards the knowledge gained
about sub-expressions shared by multiple VCs.

In this paper, we seek to distill out implicants learned
while solving one VC that are useful for solving another VC.
Regrettably, not all implicants can be re-used, because they
can depend on the context of the first VC, which might not
be true of the other VC. The crux of the problem is that deci-
sion procedures can propagate information in any direction.
Consider the VC shown in Fig. 5 with the additional con-
straintn2 = false. Most decision procedures would start solv-
ing the VC by propagating constants. Fromn2 = false, it fol-
lows thatn0 = true andn1 = false. Fromn1 = false it follows
thata < b. The last implicant contradictsa > b, hence the set

4 A naı̈ve application of this technique leads to an exponential blowup, as
more and more VCs have to be lifted through the call graph. An optimiza-
tion technique that we implemented in CALYSTO lifts only VCs that depend
on formal parameters, globals, or memory locations reachable through for-
mals or globals. While this technique can lead to spurious errors being re-
ported from unreachable code, we found that in practice a simple dead-code
elimination pass eliminates a vast majority of such spurious warnings. An
even better approach would be to check the validity of each VCbefore lift-
ing: valid VCs are independent of the calling context and need not be lifted,
and counterexamples that are independent of the calling context can be re-
ported as local bugs right away. Although we believe that such an optimiza-
tion would be extremely valuable, we haven’t had time to implement it. A
more detailed discussion is given in [24].

6 Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts

of constraints represented by the graph is unsatisfiable. This
propagation of information fromaboveintroduces assump-
tions that might not hold in all other contexts. Any other VC
that contains the sub-expression represented byn2 and does
not enforcen2 = false cannot reuse the previously computed
solution.

Intuitively, we want a way to figure out which implicants
were implied frombelow. For instance, if a decision proce-
dure can infer that noden2 is alwaystrue just by considering
its descendants, then the same decision procedure will be able
to infer the same result ifn2 appears as a sub-expression of
any other VC. In other words,n2 = true becomes acontext-
independent invariant.

The concept of “context” can be defined in many ways.
Since we study the fine-grained structure of expressions com-
puted from software, it is helpful to define context on the
maximally-shared graphs as follows: We say that an expres-
sion represented by a node in a maximally-shared graph is
context-independent if its value is uniquely implied by its
sub-expressions, otherwise the relation is context-dependent.
For instance, in Example 2 (Fig. 5) the implicantn0 = true is
context-dependent because the implication chain came from
the predecessorn2. On the other hand,n2 = true is a context-
independent invariant as it follows from the nodes belown2.

Decision procedures can generate a large number of im-
plicants. For example, SAT solvers usually generate a single
implicant per conflict. Keeping even only 10% of implicants
from each VC requires excessive amounts of memory. In ad-
dition, not all implicants are context-independent invariants.
So, we use a more restricted form of invariants to represent
learned facts:

Definition 3 (Node Fixation). Let n be some node in a
maximally-shared graph andψ an invariant derived by the
decision procedure of the formn = constant. We shall say
that n is fixed by the decision procedure. Define predicate
fixDP (n) to be true iff n is fixed by the decision procedure.
If fixDP (n) = true, define operatorFixValDP (n) to be an op-
erator that returns theconstantto which the noden was fixed.

The invariants derived by the decision procedure repre-
sent knowledge gained about the solved VC; these invariants
can be either context-dependent or context-independent. We
need to separate out the context-independent ones, as those
can be used later when other VCs are solved. So, we define a
subset of nodes that were fixed by the decision procedure in
a context-independent manner as:

Definition 4 (Fixation from Below). Let n be a node fixed
by the decision procedure toFixValDP (n). If the invariant
n= FixValDP (n) was derived only by considering a subgraph
rooted atn, we shall say thatn wasfixed from below. Define
predicatefix↑ (n) to betrue iff n is fixed from below.

There are two basic approaches to establishing context
independence. First, the decision procedure could record the
implication graph for each inferred relation. Second, one
could attempt to reconstruct the chain of reasoning from the

relations produced by the decision procedure once it ter-
minates. In our experience, the first approach is impracti-
cal for decision procedures based on SAT solvers, as it re-
quires excessive resources, and slows down the core of the
solver by several orders of magnitude. However, it might
be a viable approach within the Nelson-Oppen framework
if all the combined theories are convex [9]5. We present a
reconstruction-based approach: a simple algorithm that given
a set of nodes fixed by the decision procedure, efficiently
computes a safe approximation of the set of nodes fixed in
a context-independent manner.

4.1 Algorithm

Depending on the client, the queries to the decision proce-
dures might be available all at once, or computed in a lazy
manner. For example, a static checker that relies on some
form of abstraction might compute incrementally more re-
fined VCs, or process the call graph of the verified applica-
tion in an incremental manner. Other clients, like invariant
generators, might construct a number of queries at once, and
ask for invariants common to all the queries. Because CA-
LYSTO performs structural abstraction [23], we focus on the
case where queries are posed in an online manner: VCs are
checked one-by-one and future queries are not known. Obvi-
ously, the same algorithm can also handle the case where all
VCs are available in advance.

Algorithm 1 computes a safe approximation of the set of
nodes that are fixed from below. The values of nodes fixed
from below are stored in an associative tableFixed, indexed
by the nodes. Later, if another VC contains a noden that ex-
ists in the table, the value that is read from the table,Fixed[n],
is used to create an additional constraintn= Fixed[n]. Adding
this additional constraint to the set of constraints represent-
ing the VC being solved saves computation effort because
the decision procedure can immediately start propagating the
Fixed[n] constant.

Line 4 performs some basic technical checks. The value
of the root node is fixed from above (tofalse because we are
checking for unsatisfiability), so the root node is eliminated
from consideration. Note that there is no reason why the root
node couldn’t be fixed from below as well. However, in that
case, our analysis is not capable to resolve whether the impli-
cation chain came from above or from below. In order to re-
solve this ambiguity, the theorem prover would need to track
implication graphs — a technique which we consider too ex-
pensive.

Only three basic types of nodes can be present in the ex-
pression graph: constants, variables, and operators. Constants
are always fixed from below, variables are always considered
unconstrained, so it makes sense to attempt to fix the values
of only the operator nodes.

5 Modular arithmetic, as well as the theory of integers, are not convex,
so even decision procedures based on Nelson-Oppen framework would need
some form of bookkeeping, similar to implication graphs, tobe able to ex-
actly identify a set of assumptions from which each implicant was implied.

Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts 7

Fig. 6. Context-Independent (I) and Context-Dependent (II,III) Propagation
of Knowledge.

Intuitively, the algorithm works as follows. Lines 5–7
check whether the node dominates all its descendants. Ifn
does not dominate some descendantd, it follows that d is
reachable from the root of the graph by at least one path that
does not go throughn. Consequently,d appears in at least
two contexts (one represented by the path that passes through
n and the other by path that avoidsn). Without reconstruct-
ing the implication graph that led the decision procedure to
imply n = FixValDP (n), it is not possible to distinguish be-
tween these cases: (I) The invariant was implied from below,
relying only on the descendants ofn. (II) The invariant was
implied from above, possibly all the way from the root node.
(III) The constant propagation chain came from above, avoid-
ing n, fixed the value of some descendant ofn, which in turn
implied the invariant. All three cases are illustrated in Fig. 6.
The dominance test eliminates the third case. The purpose
of lines 8–10 is to eliminate the second case. Obviously, if
no predecessor ofn was fixed, the constant propagation chain
must have come from below. Remember that we assume com-
plete propagation of constants, so each constant propagation
chain has to have its beginning and its end. The nodes that
pass both tests can be safely considered fixed from below.

Implementations should mark visited nodes and avoid re-
visiting them. As each node has to be visited only once, and
each node can have at most|N| descendants and predecessors
together (G is acyclic), the worst case complexity isO(|N|2),
but that is a very pessimistic bound, especially since our VCs
tend to be sparse graphs in practice. We found that in prac-
tice the algorithm runs almost in linear time if a depth-first-
search is used to iterate over the descendants in lines 5–7. In-
tuitively, the deeper the node is, the larger the probability that
it is shared (simpler expressions are more frequently shared
than complex ones). Hence, the probability of running into a
node not dominated byn is becoming larger as we get fur-
ther away fromn (downwards). The dominance relation can
be computed inO(|N|α(|N|, |E|)), as noted before.

Algorithm 1 Approximation of the Set of Nodes Fixed from
Below. PredicateisConstant(n) returnstrue if the noden is
a constant node, predicateisRoot(n) returnstrue if the node
n represents a VC (root of the graph), whileisOperator(n)
is true iff n represents an operator. Results of the analysis
are stored in the tableFixed, indexed by nodes. The set of
descendants (resp. predecessors) of a noden is denoted as
Desc(n) (resp.Pred(n)).

1: procedure FIX (n,Fixed)
2: for each s∈ Succ(n) do
3: FIX(s,Fixed)

4: if ¬isRoot(n)∧ isOperator(n)∧fixDP (n) then
5: for each d ∈Desc(n) do
6: if ¬isConstant(d)∨n 6≫ d then
7: return
8: for each p∈ Pred(n) do
9: if fixDP (p) then

10: return
11: Fixed[n]← FixValDP (n)

How good is the approximation? The algorithm is able to
fix only the nodes that are at the end of a constant propagation
chain. Intuitively, the last fixed node in the constant propa-
gation chain is the node that required the largest amount of
reasoning. For instance, letn1, · · · ,nk be a sequence of nodes
whose values were fixed from below, all lying on the same
path. Assume that there arek VCs such that the first contains
n1, the secondn2 but notn1, and so on. The last VC con-
tains onlynk. Since all node values were fixed from below,
it is likely that the decision procedure will repeat the same
steps while solving each of thosek VCs, so eventually, all
nodes in the constant propagation chain might become fixed
from below, and constraintsni = FixValDP (ni) can be used
later if any of theni nodes becomes a part of other VCs. Even
though this approximation is crude, it is very fast even for
large VCs. In Sec. 5, we will evaluate whether the algorithm
is fast enough and can find enough context-independent in-
variants to improve overall performance.

To prove that Alg. 1 really computes a set of nodes fixed
from below, we start with the following lemma.

Lemma 1. Let n be the subgraph of graph G such that n is
fixed by the decision procedure fixDP (n) = true. Assume that
∀p ∈ Pred(n) : ¬fixDP (p) and ∀d ∈ Desc(n) : n≫ d, then
fix↑ (n) = true

Proof. As n dominates all descendants, the decision proce-
dure could have inferred thatn = FixValDP (n) by a chain of
constant propagations either from the descendants inG of n
or from its ancestors. Due to the definition of dominance, the
constant propagation chain can enter the subgraph rooted at
n only passing throughn, or has to start in the subgraph and
propagate upwards. According to our assumptions (Sec. 3),
the decision procedure completely propagates constants. So,
if the chain starts in some ancestor ofn, at least one prede-
cessor has to be fixed. If that’s not the case, we can deduce
that n = FixValDP (n) must have been implied from the de-
scendants ofn.

8 Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts

Algorithm 2 Checking the Validity of VCs with Shared
Structure. Function TRANSLATE translates the graph repre-
sentation to a representation suitable for the decision proce-
dure. SOLVE is the call to the decision procedure with the set
of constraintsC.

1: clear tableFixed
2: for each VCi do
3: C← TRANSLATE(VCi)∪VCi = false

4: for each n∈ Desc(VCi) do
5: if n is a valid index into tableFixed then
6: C←C∪n = Fixed[n]

7: status←SOLVE(C)
8: if status= satisfiablethen
9: Report bug

10: FIX(VCi ,Fixed)

Theorem 1. All of the expressions n= FixValDP (n) com-
puted by Alg. 1 are context-independent invariants.

Proof. Follows directly from Lemma 1.

Fixed nodesni cannot be simply replaced with con-
stantsFixValDP (ni). Rather, one has to add constraintni =
FixValDP (ni) as an additional constraint to the database of
constraints that the decision procedure keeps. For instance, if
n = (a≤ 0) is a subgraph of one VC, and the algorithm fixes
the value ofn to true, and replaces noden with true, then
some other VC which contains subgraphm= n∧a> 0 would
be true as well, which is wrong. If only constraintn = true

is added to the constraint database,mbecomesfalse. In other
words, replacing the fixed nodes with constants is disallowed
because it breaks dependencies among sub-expressions. Note
that adding the additional constraint does not introduce in-
consistency, because the same invariant would be inferred
when the other VC is solved, but by adding it right away we
speed-up the convergence and avoid redundant computation.

Finally, we give the overall algorithm (Alg. 2) to verify
multiple VCs with sharing, as implemented in CALYSTO.
Given a graph representation of a VC, the main loop first
translates the graph into the form suitable for the given deci-
sion procedure, producing a set of constraintsC, and negates
the VC. For each noden whose value was fixed from be-
low, the algorithm adds the corresponding constraintn =
FixValDP (n) to the set of constraints. The decision procedure
is called with the set of constraints as a parameter. If the de-
cision procedure finds the negated VC satisfiable, it reports
a possible bug and continues. In the last step, Alg. 1 visits
the nodes in the graph, and computes an approximation of
the set of nodes whose values were fixed from below by the
most recent call to the decision procedure, for use in solving
subsequent VCs.

4.2 Example

In this section, we go through an example that is similar to
what we have found in practice. The example illustrates ex-
pression sharing among VCs. Variablesa,b,c are machine

integers, ands,t,u,v,y,x are boolean variables. All operators
used in the example are standard C-like operators.6

1 i n t f (i n t a , i n t b , bool s , bool t) {
2 i f (a % 2) { a ++; }
3 i f (b % 2) { b ++; }
4

5 i n t c = a ∗ b ;
6 i n t d = c & 3 ;
7 bool u = (d != 0) ;
8 bool v = (s == t) ;
9 bool y = (u | | s) ;

10 bool x = (y | | v) ;
11

12 i f (x) {
13 a s s e r t (t) ; / / VC1
14 . . .
15 } e l s e {
16 a s s e r t ((a + b) % 2 == 0) ; / / VC2
17 . . .
18 }
19 . . .
20 }

There are two assertions in the example: the first assertion
can be violated, while the second cannot. Lines 2–3 incre-
ment odd numbers, so at line 5 botha andb are even. Thus,
their product is a multiple of four. Therefore, the last two bits
of the product will be zero, even in the case of an overflow.
Hence,d is always zero.

In our implementation, the VCs are computed directly
as maximally-shared graphs, as shown in Fig. 8, from the
SSA [35] provided by the compiler front-end. A large part of
the graph is shared. This sharing is especially valuable when
expensive operations are shared, like multiplication. The
computed graphs correspond to logical formulas in Fig. 7.

How would a SAT-based decision procedure handle these
constraints? Each VC is solved independently of the oth-
ers, and additional constraints are kept only for nodes fixed
from below. We start solvingVC1 by adding the constraint
VC1 = false. The decision procedure could deduce by con-
stant propagation from the root:x = true,t = false, and those
are all the invariants that can be found by trivial constant
propagation. A typical SAT solver could continue with enu-
meration of possible solutions that would satisfy nodec,
which corresponds to the product of two conditionally de-
fined variables. Ifa (resp.b) is odd, it will be incremented,
soa (resp.b) is even at line 5. As mentioned previously, the
least significant bit of even numbers is zero, so the two least
significant bits of a product of even numbers are zero as well.
Hence, the decision procedure eventually impliesd = 0. By
constant propagation it follows thatu = false. At that point,
the decision procedure has to make another case split, and by
settings= true, VC1 is satisfied, meaning that the assertion
can be violated. WhenVC1 is being solved, nodeu dominates
all leaves of its subgraph (each root node is solved indepen-
dently, so VC2 still doesn’t exist at this point). Nodeu was

6 Operator % is the modulo operator, & is bitwise-and,|| is logical-or, and
++ is post-increment.

Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts 9

VC1:

(

(

(

(

ite(a0%2= 0,a0 +1,a0)∗ ite(b0%2= 0,b0 +1,b0)
)

&3
)

6= 0

)

∨s∨ (s= t)

)

⇒ t

VC2: ¬

(

(

(

(

ite(a0%2= 0,a0 +1,a0)∗ ite(b0%2= 0,b0 +1,b0)
)

&3
)

6= 0

)

∨s∨ (s= t)

)

⇒

(

(

(

ite(a0%2= 0,a0 +1,a0)+ ite(b0%2= 0,b0 +1,b0)
)

%2
)

= 0

)

Fig. 7. Two Verification Conditions. Corresponding maximally-shared graphs are shown in Fig. 8. The first VC is satisfiable, but not valid, while the second is
valid.

0

==

||

NOT

VC2

=>

==

||

s

=>

VC1

t

d

* +

%
c

3

&

!=

0

b1a1
ITE

T

+

1

2

%

!=

0

if
FITE

T

+

1

2

%

!=

0

if
F

u

v

x

y

a b

2

Fig. 8. Maximally-Shared Graph Representing Two Negated VCs. To sim-
plify the graph layout, some constants are not shared. Edgesof if-then-else
(ITE) nodes are labelled withif for the condition branch, andT (resp.F)
for true (resp.false) branches.

not fixed from above, but considering the subgraph rooted
atu, the decision procedure was able to infer thatu = false.
Since both conditions required by the Alg. 1 are met,u can be
marked as fixed from below. Later, whenVC2 is constructed,
the additional constraintu = false can be added to the set of
constraints. Adding the constraint quickly prunes away most
of the left branch ofVC2, focusing the effort on the right
branch. Since the sum of two even numbers is divisible by
two, the right branch istrue, meaning thatVC2 = false is un-
satisfiable. Hence, the second assertion is valid.

5 Experimental Results

To test our approach, we used CALYSTO to generate VCs for
six real-world, publicly-available C/C++ applications, rang-
ing in size from 4 to 126 thousand lines of code (KLOC) be-
fore preprocessing. The benchmarks are the Bftpd ftp server,
the Dspam spam filter, our boolean satisfiability solver HY-
PERSAT, the Licq ICQ chat client, the Wine Windows OS
emulator, and the Xchat IRC client. For each program, for
each pointer dereference, we generated a VC to check that
the pointer is non-NULL (omitting VCs that were solved triv-
ially by our expression simplifier). Although we demonstrate
our approach on checking for NULL pointers, our method
is independent of the property being verified, as long as the
assumptions in Sec. 3 are met.

The experimental results are given in Table 1. The run-
times represent the time our SAT-based bit-vector arithmetic
decision procedure SPEAR needed for solving all the VCs
and include computation of the dominance relation. On only
one of the smaller benchmarks, Licq, was the new approach
somewhat slower. In all other cases, the new approach is
faster. On Wine, the largest benchmark, the proposed ap-
proach speeds up the solving phase by 32%. There were also
fewer timeouts with the new approach (meaning that the re-
ported results are lower bounds on the speedup).

We attempted to understand why on some benchmarks
(like Wine) our technique is very effective, while on others
(like Licq) it is ineffective. Like any learning technique,our
technique interacts with the solver’s heuristics and therefore
impacts the sequence of decisions made by the solver. The de-
cision procedures community has tried to explain why certain
decision heuristics work (and certain don’t) for a long time
(e.g., [36–38]), but still very little is known about heuristics,
and frequently every researcher has his/her own interpreta-
tion. For those reasons, it is very difficult to give a definitive
qualitative and quantitative analytical answer about whento
apply our technique. The decision should be made empiri-
cally. Our conjecture is, though, that applications that are im-
plemented in a modular fashion, with well-defined narrow in-
terfaces that are often used, are a good candidate for using
our technique, as it is likely that our technique will be ableto
learn context-independent facts about those interfaces.

The key question is whether the derived context-
independent invariants are able to accelerate the solver
enough to overcome the cost of deriving them. We profiled

10 Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts

Benchmark KLOC #VCs Base Approach New Approach
Time (sec) Timeouts Time (sec) Timeouts

Bftpd v1.6 4 1130 725.8 0 582.5 0
HyperSAT v1.7 9 1363 5.3 0 5.1 0
Licq v1.3.4 20 2009 199.6 0 214.5 0
Dspam v3.6.5 37 8627 3478.6 8 3157.6 6
Xchat v2.6.8 76 8090 368.5 0 365.8 0
Wine v0.9.27 126 9000 1881.4 2 1266.7 0

Table 1.The first column gives the name and version of the benchmark. KLOC is the number of source code lines, in thousands, before preprocessing. #VCs is
the number of checked VCs. As is typical, almost all VCs are UNSAT, since satisfiable VCs correspond to bug reports. The next four columns give the total VC
checking time in seconds (including timeouts) and the number of timeouts, for the base approach (i.e., the same system without the newly proposed method)
vs. the newly proposed method. The timeout limit was 300 secs. Experiments were on a dual-processor AMD X2 4600+ machine with 2 GB RAM, running
Linux 2.6.15. Memory consumption was not a bottleneck on anyof the benchmarks.

the runtimes of CALYSTO on the benchmarks in Table 1 and
found that the computation of nodes fixed from below was
dwarfed by the solving time and did not even show in the
profile data.

Our decision procedure, SPEAR, was already highly opti-
mized, and features several techniques (like abstraction,lazy
interpretation [23], gate-optimal VC encoding, and several
others) that result in significant performance improvements
over a standard, direct “bit-blasting” translation of the VCs
into SAT. The results presented in Table 1 clearly show that
exploiting shared structure can push a state-of-the-art static
checker even further.

6 Related Work

We know of no closely related work on exploiting shared
structure between multiple verification conditions. However,
there is a large body of work that influenced, or could be in-
fluenced by, this work.

Static Checking.Our work on CALYSTO is in the tradition
of extended static checking [11]. In particular, CALYSTO was
inspired by ESC/Java [39], Saturn [13], and Boogie [40]. Our
overall goal was to provide complete automation, yet main-
tain the precision of a bit-accurate software model checker
like CBMC [41], while matching or exceeding the scalability
of static checkers like Boogie or Saturn.

Previous works (e.g., [40,39]) often construct only one
VC per function, and analyze each function independently of
others (this is possible only if users provide pre- and post-
conditions for every function). In this usage mode, it is un-
likely that anything except pre- and post- conditions will be
shared. While the total number of VCs is smaller, this ap-
proach reports only one possible assertion violation per func-
tion. In contrast, software compilers tend to do extensive error
recovery (e.g., [42]) to report as many errors as possible, so
that programers can fix multiple bugs in each, potentially time
consuming, compilation cycle. Our usage model accepts the
same philosophy by analyzing a larger number of VCs and
reporting multiple error violations at once.

Verification Conditions.Traditionally, VCs are computed by
Dijkstra’s weakest precondition transformer [43], as is done
for example in ESC/Java and Boogie. A naı̈ve representation
of VCs computed by the weakest precondition can be expo-
nential in the size of the code fragment being checked, but
this blow-up can be avoided by the introduction of fresh vari-
ables to represent intermediate expressions [27,1,2]. Equiva-
lently, we keep the formulas in the form of maximally shared
graphs, making structural reasoning easier, as illustrated in
this paper. This representational difference is otherwisein-
significant.

What sets this paper apart from previous work on VCs
is our focus on exploiting common sub-expressions shared
among multiple VCs. We explore how much we can learn
from solving a set of VCs and how we can apply that knowl-
edge to solve the remaining VCs more efficiently.

Learning. Our contribution can be viewed as an automatic
learning technique. Given a set of VCs, the technique learns
from the implicants that a decision procedure implied, and
attempts to reuse that knowledge later if the remaining VCs
share some sub-expressions with the already solved ones.

Learning is an efficient technique for speeding up deci-
sion procedures, and has been especially effective in boolean
satisfiability (SAT) solvers [44]. The new aspect of the prob-
lem that we are considering iscontext-dependence— facts
learned about a shared subgraph while solving one VC might
not hold in the context of others.

Stump and Dill [45] proposed context-dependent caching
and proof compression for an Edinburgh LF decision pro-
cedure, but they considered caching only for subgraphs
of a single formula and did not consider sharing between
multiple formulas. While solving each individual VC, our
static checker CALYSTO already eliminates common sub-
expressions, and our bit-vector arithmetic decision procedure
SPEAR features its ownintra-VC learning (caching) mech-
anism. In contrast, the contribution of the present paper is
inter-VC learning.

While solving even a single VC, decision procedures can
produce a large number of context-dependent implicants. In
practice, a small percentage of them end up being useful,
so aggressive implicant deletion strategies [46] are needed.

Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts 11

These experimental results motivated us to focus on simple
context-independent implicants of the form of equality with
a constant.

Incremental Decision Procedures.Our contribution can also
be viewed as a type of incremental decision procedure, where
the goal is to solve multiple, related problem instances while
reusing information from one instance to another. The early
work of Hooker [47] considered incremental Boolean satis-
fiability in a simplistic setting, without learning and clause
deletion. Strichman [17], in his generalization of the work
by Silva and Sakallah [16], noticed that in the context of
bounded model checking, the clauses that depend only on the
structure of the model remain valid when the unrolling depth
is increased. This was one of the first applications of incre-
mental satisfiability. Since Eén and Sörensson implemented
efficient incremental interface in their MiniSAT solver [18],
incremental satisfiability has found a large number of applica-
tions in various domains. Some automated theorem provers,
like Yices [5] and CVC [48], feature push/pop commands
that allow undoing logical reasoning since the last checkpoint
(push). These push/pop techniques are not applicable to our
problem: In order to avoid the worst-case exponential cost of
interprocedural path-sensitivity and context-sensitivity, CA-
LYSTO performs structural abstraction [23] of VCs, which
means it is not knowna priori which nodes will end up be-
ing shared, so every single sub-expression would need to be
pushed as a new context. So, the push/pop commands are not
a viable solution to our problem.

Structure Exploitation.Many researchers have looked into
how to exploit structure for more efficient verification. Roun-
tev at al. [49] observed that large libraries change less fre-
quently than the applications that use them, so the libraries
can be pre-analyzed for speeding up verification of the appli-
cations. Conway et al. [50] observed that programs are usu-
ally modified in small incremental steps. So, after the applica-
tion was verified once, only the modified functions and func-
tions that transitively call them have to be re-verified. Within
a single codebase, our previous work [23] showed how the
structure of a single interprocedural verification condition can
be exploited at a function-level granularity. In this paper, we
explore a new dimension of the problem that has not (to the
best of our knowledge) been explored before. Namely, we
are interested in elimination of redundancy at a finer level
of granularity — individual expressions. This redundancy is
inherent to any software verification technique simply be-
cause a large majority of execution paths share some com-
mon sequence of statements. Our technique is orthogonal to
the above mentioned approaches, and can be combined with
them.

7 Future Work

It would be useful to improve the quality of approximation
of the set of nodes fixed from below, while maintaining the

low computational cost. Since we observed more structure-
sharing in practice than our technique is able to exploit, we
believe that improvements in that direction could provide
even more significant speedups.

Finding more expressive context-independent invariants
could also boost the performance of static checking. Such
context-independent learning would probably run into similar
problems as learning in decision procedures — which impli-
cants to keep and for how long. Considering that learning has
proven itself in SAT solvers as an indispensable technique
without which no solver today is competitive, we believe that
this direction is particularly promising.

We have focused on the case where VCs are solved one-
by-one. If multiple VCs are available all at once, solving the
VCs in a different, heuristically-chosen order might allowde-
riving more context-independent invariants. Furthermore, it
should be possible to analyze the maximally shared graph to
quickly find the shared subgraphs between the multiple VCs.
Only these nodes need to be considered as candidates to be
context-independent invariants, reducing the overhead ofour
approach.

8 Conclusion

We have demonstrated a novel way to exploit shared,
expression-level structure available in verification conditions.
The approach relies on simple invariants inferred by au-
tomatic decision procedures. The proposed technique com-
putes a subset of those invariants which can be used safely
in a context-independent manner. Our experimental results
demonstrate that the technique can substantially improve the
performance of static checking. As scalability is the primary
limitation of automatic software verification tools, thesere-
sults are a step towards more widely applicable, practical for-
mal verification of software.

References

1. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: gen-
erating compact verification conditions. In: Proceedings of the
28th ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages (POPL’01). Volume 36., New York,
NY, USA, ACM Press (2001) 193–205

2. Leino, K.R.M.: Efficient weakest preconditions. Information
Processing Letters93 (2005) 281–288

3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Auto-
matic predicate abstraction of C programs. In: Proceedings
of the ACM SIGPLAN 2001 Conference on Programming lan-
guage design and implementation (PLDI’01). Volume 36., New
York, NY, USA, ACM Press (2001) 203–213

4. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strich-
man, O., Brady, B.A.: Deciding bit-vector arithmetic with ab-
straction. In Grumberg, O., Huth, M., eds.: Proceedings of the
13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’07). Volume
4424 of Lecture Notes in Computer Science (LNCS)., Springer
(2007) 358–372

12 Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts

5. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver
for DPLL(T). In Ball, T., Jones, R.B., eds.: Proceedings of the
18th International Conference on Computer Aided Verification
(CAV’06). Volume 4144 of Lecture Notes in Computer Science
(LNCS)., Springer (2006) 81–94

6. Ball, T., Lahiri, S.K., Musuvathi, M.: Zap: Automated theo-
rem proving for software analysis. In Sutcliffe, G., Voronkov,
A., eds.: Proceedings of the 12th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’05). Volume 3835 of Lecture Notes in Computer Sci-
ence (LNCS)., Springer (2005) 2–22

7. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A.,
Tinelli, C.: DPLL(T): Fast Decision Procedures. In Alur, R.,
Peled, D.A., eds.: Proceedings of the 16th International Con-
ference on Computer Aided Verification (CAV’04). Volume
3114 of Lecture Notes in Computer Science (LNCS)., Springer-
Verlag (2004) 175–188

8. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik,
S.: Chaff: engineering an efficient SAT solver. In: Proceedings
of the 38th Design Automation Conference (DAC’01), ACM
Press (2001) 530–535

9. Nelson, G.: Techniques for program verification. PhD thesis,
Stanford University, Stanford, California, USA (1980)

10. Johnson, S.: Lint, a C Program Checker. Technical Report65,
Bell Laboratories (1977)

11. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended
static checking. Technical Report SRC-RR-159, Compaq Sys-
tems Research Center, Palo Alto, California, USA (1998) Now
available from HP Labs.

12. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system
rules using system-specific, programmer-written compilerex-
tensions. In: Proceedings of the 4th conference on Symposium
on Operating System Design & Implementation (OSDI’00),
Berkeley, California, USA, USENIX Association (2000) 1–1

13. Xie, Y., Aiken, A.: Scalable error detection using boolean
satisfiability. In: Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages
(POPL’05). Volume 40., New York, NY, USA, ACM Press
(2005) 351–363

14. Clarke, E.M., Emerson, E.A.: Design and synthesis of syn-
chronization skeletons using branching time temporal logic. In
Kozen, D., ed.: Workshop on Logics of Programs. (1981) 52–71
Published 1982 as Lecture Notes in Computer Science Num-
ber 131.

15. Queille, J.P., Sifakis, J.: Specification and verification of con-
current systems in Cesar. In: 5th International Symposium on
Programming, Springer (1981) 337–351 Lecture Notes in Com-
puter Science Number 137.

16. Silva, J.P.M., Sakallah, K.A.: Robust search algorithms for test
pattern generation. In: Proceedings of the 27th International
Symposium on Fault-Tolerant Computing (FTCS ’97), Wash-
ington, DC, USA, IEEE Computer Society (1997) 152

17. Shtrichman, O.: Pruning Techniques for the SAT-Based
Bounded Model Checking Problem. In: Proceedings of the
11th IFIP WG 10.5 Advanced Research Working Confer-
ence on Correct Hardware Design and Verification Methods
(CHARME’01), London, UK, Springer-Verlag (2001) 58–70

18. Eén, N., Sörensson, N.: An Extensible SAT-solver. (2004) 502–
518

19. Babić, D., Hu, A.J.: Calysto: Scalable and precise extended
static checking. In: 30th International Conference on Software
Engineering (ICSE’08). (2008) 211–220

20. Hoare, C.A.R.: The verifying compiler: A grand challenge for
computing research. Journal of ACM50 (2003) 63–69

21. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck,
F.K.: Efficiently computing static single assignment form and
the control dependence graph. ACM Transactions on Program-
ming Languages and Systems13 (1991) 451–490

22. King, J.C.: Symbolic execution and program testing. Commu-
nications of the ACM19 (1976) 385–394

23. Babić, D., Hu, A.J.: Structural Abstraction of Software Verifi-
cation Conditions. In Damm, W., Hermanns, H., eds.: Proceed-
ings of the 19th International Conference on Computer Aided
Verification (CAV’07). Volume 4590 of Lecture Notes in Com-
puter Science (LNCS)., Springer (2007) 371–383

24. Babić, D.: Exploiting Structure for Scalable SoftwareVerifi-
cation. PhD thesis, University of British Columbia, Computer
Science Department (2008)

25. Ball, T., Rajamani, S.K.: SLIC: A Specification Languagefor
Interface Checking (of C). Technical Report MSR-TR-2001-21,
Microsoft Research (2001)

26. Babić, D., Musuvathi, M.: Modular Arithmetic DecisionPro-
cedure. Technical Report MSR-TR-2005-114, Microsoft Re-
search Redmond (2005)

27. Tseitin, G.S.: On the complexity of derivation in propositional
calculus. In Siekmann, J., Wrightson, G., eds.: Automationof
Reasoning 2: Classical Papers on Computational Logic 1967–
1970. Springer, Berlin, Heidelberg (1983) 466–483

28. Eén, N., Biere, A.: Effective Preprocessing in SAT Through
Variable and Clause Elimination. In Bacchus, F., Walsh, T.,
eds.: Proceedings of the 8th International Conference on The-
ory and Applications of Satisfiability Testing (SAT’05). Volume
3569 of Lecture Notes in Computer Science (LNCS)., Springer
(2005) 61–75

29. Eén, N., Sörensson, N.: An extensible SAT solver. In: Pro-
ceedings of the 6th International Conference on theory and Ap-
plications of Satisfiability Testing (SAT’03). Volume 2919of
Lecture Notes in Computer Science (LNCS)., Santa Margherita
Ligure, Italy, Springer (2003) 502–518

30. Davis, M., Logemann, G., Loveland, D.: A machine program
for theorem-proving. Communications of the ACM5 (1962)
394–397

31. Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting Verifi-
cation by Automatic Tuning of Decision Procedures. In: Pro-
ceedings of the Formal Methods in Computer Aided Design
(FMCAD’07), Washington, DC, USA, IEEE Computer Society
(2007) 27–34

32. Prosser, R.T.: Applications of boolean matrices to the analysis
of flow diagrams. In: Proceedings of the 16th Eastern Joint
Computer Conference, New York, Spartan Books (1959) 133–
138

33. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dom-
inators in a flowgraph. ACM Transactions on Programming
Languages and Systems (TOPLAS)1 (1979) 121–141

34. Detlefs, D., Nelson, G., Saxe, J.S.: Simplify: A TheoremProver
for Program Checking. Technical Report HPL-2003-148, HP
Laboratories Palo Alto (2003)

35. Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Global value num-
bers and redundant computations. In: Proceedings of the 15th

ACM SIGPLAN-SIGACT symposium on Principles of Pro-
gramming Languages (POPL’88), New York, NY, USA, ACM
Press (1988) 12–27

36. Bhalla, A., Lynce, I., de Sousa, J., Marques-Silva, J.: Heuristic
backtracking algorithms for SAT. In: Proceedings of the 4th In-

Domagoj Babić, Alan J. Hu: Approximating the Safely Reusable Set of Learned Facts 13

ternational Workshop on Microprocessor Test and Verification
(MTV’03), Austin, Texas, USA (2003) 69–74

37. Silva, J.P.M.: The Impact of Branching Heuristics in Proposi-
tional Satisfiability Algorithms. In: Proceedings of the 9th Por-
tuguese Conference on Artificial Intelligence (EPIA’99). Vol-
ume 1695 of Lecture Notes in Computer Science (LNCS).,
Springer (1999) 62–74

38. Shacham, O., Zarpas, E.: Tuning the VSIDS Decision Heuris-
tic for Bounded Model Checking. In: Proceedings of th 4th In-
ternational Workshop on Microprocessor Test and Verification,
Common Challenges and Solutions (MTV’03), IEEE Computer
Society (2003) 75–79

39. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe,
J.B., Stata, R.: Extended static checking for Java. In: Proceed-
ings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation (PLDI’02). Volume 37.,
New York, NY, USA, ACM Press (2002) 234–245

40. Leino, K.R.M., Müller, P.: A verification methodology for
model fields. In Sestoft, P., ed.: Proceedings of the 15th Eu-
ropean Symposium on Programming (ESOP’06), held as part
of the Joint European Conferences on Theory and Practice of
Software (ETAPS’06). Volume 3924 of Lecture Notes in Com-
puter Science (LNCS)., Springer-Verlag (2006) 115–130

41. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency
of C and Verilog programs using bounded model checking.
In: Proceedings of the 40th conference on Design automation
(DAC’03), New York, NY, USA, ACM Press (2003) 368–371

42. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co.,
Inc., Boston, Massachusetts, USA (1986)

43. Dijkstra, E.W., Scholten, C.S.: Predicate calculus andprogram
semantics. Springer-Verlag New York, Inc., New York, NY,
USA (1990)

44. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Effi-
cient conflict driven learning in a boolean satisfiability solver.
In: Proceedings of the International Conference on Computer-
Aided Design (ICCAD’01), Piscataway, New Jersey, USA,
IEEE Press (2001) 279–285

45. Stump, A., Dill, D.L.: Faster proof checking in the edin-
burgh logical framework. In Voronkov, A., ed.: Proceedings
of the 18th International Conference on Automated Deduction
(CADE’02). Volume 2392 of Lecture Notes in Computer Sci-
ence (LNCS)., London, UK, Springer-Verlag (2002) 392–407

46. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An efficient
SAT solver. In: Proceedings of the 7th International Conference
on Theory and Applications of Satisfiability Testing (SAT’04).
Volume 3542 of Lecture Notes in Computer Science (LNCS).
(2004) 360–375

47. Hooker, J.N.: Solving the incremental satisfiability problem.
Journal of Logic Program.15 (1993) 177–186

48. Stump, A., Barrett, C.W., Dill, D.L.: CVC: A CooperatingVa-
lidity Checker. In: Proceedings of the 14th International Confer-
ence on Computer Aided Verification (CAV’02). Volume 2404
of Lecture Notes in Computer Science (LNCS)., London, UK,
Springer-Verlag (2002) 500–504

49. Rountev, A., Kagan, S., Marlowe, T.J.: Interproceduraldataflow
analysis in the presence of large libraries. In Mycroft, A.,
Zeller, A., eds.: Proceedings of the 15th International Confer-
ence on Compiler Construction (CC’06), held as a part of the
Joint European Conferences on Theory and Practice of Soft-
ware (ETAPS’06). Volume 3923 of Lecture Notes in Computer
Science (LNCS)., Springer (2006) 2–16

50. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: In-
cremental algorithms for inter-procedural analysis of safety
properties. In Etessami, K., Rajamani, S.K., eds.: Proceedings
of the 17th International Conference on Computer Aided Veri-
fication (CAV’05). Volume 3576 of Lecture Notes in Computer
Science (LNCS)., Berlin, Germany, Springer (2005) 449–461

