Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Approximating the Safely Reusable Set of Learned Facts

Domagoj Babic, Alan J. Hu

Computer Science Department
University of British Columbia

The date of receipt and acceptance will be inserted by theredi

Abstract. Despite many advances, today’s software modeland proving VCs are both essential steps in software verifica
checkers and extended static checkers still do not scale wetion, and both have been active areas of research. In this pa-
to large code bases, when verifying properties that depend oper, we focus on proving the validity of VCs more efficiently.
complex interprocedural flow of data. An obvious approach The trend today is to use automated decision procedures
to improve performance is to exploit software structure. Al to prove or disprove the computed VCs. Unfortunately, this
though a tremendous amount of work has been done on exprocess is computationally extremely expensive and is the
ploiting structure at various levels of granularity, theefin main bottleneck to the wider application of formal and semi-
grained shared structure among multiple verification condi formal software verification methods. Previous work has fo-
tions has been largely ignored. In this paper, we formalizet cused on the computation of VCs (e.g., [1,2]), abstraciion t
notion of shared structure among verification conditions, a make the VCs simpler for the decision procedure (e.g., [3,
propose a novel and efficient approach to exploit this sigarin 4]), and the efficiency of the decision procedures themselve
by safely reusing facts learned while checking one verifica{e.g., [5-9]).
tion condition to help solve the others. Experimental ressul This paper explores a different direction for improving ef-
show that this approach can improve the performance of verficiency — namely, exploiting shared structure among multi-
ification, even on path- and context-sensitive and dataflowple VCs at the level of individual expressions — and proposes
intensive properties. a technique that exploits this structure. Since solving VCs
is typically expensive, elimination of this redundancy has
the potential to significantly improve performance of stati
checking. In this paper, we present our insights, formalize
1 Introduction notion of shared structure, and propose an algorithm for ex-
ploiting this shared structure by safely reusing factsredr

Recent advances in formal verification have brought theWh|le checking one verification condition to help solve the

long-time dream of automatic formal verification of softear others. We provide experimental evidence that our approach

closer to reality. The hope is that a programmer would neefan cut runtime by almost one third and reduce the number

only specify desired correctness properties — or the verific of timeouts.
tion tool could have pre-specified properties, such as prope
locking-unlocking, or adherence to an Application Program
ming Interface — and the tool would fully automatically con-
struct the formal logical model and verify whether the degir
correctness properties hold. The work in this paper fits in the context of static checking of
Verification conditions (VCs) are the logical formulas, software. The distinction between static checking (eX+{

constructed from a system and desired correctness propet3]) and model checking [14, 15] has become fuzzy, but his-
ties, such that the validity of the verification conditiorms¢ torically, static checking has emphasized fast bug hurativdy
responds to the correctness properties holding. Constguct Scalability to large software, at the expense of preciséom(

* This work was supported in part by a research grant from therbla -Often Soundness-andlor co_mpleteness), whereas m-OdeI-CheC-k
Sciences and Engineerl)’i%g Resea?ch C)(/Juncil of Cangda andraddit Re- ing has emphasized precision and soundness, with the pri-

search Graduate Fellowship. This paper is based on anddeddrom a ~ Mary research (_:ha”.enge being ?Calabi”t)’- _|n both parae{ig
paper published in the 2007 Haifa Verification Conference. though, the verification task typically consists of checkin

2 Background

2 Domagoj Babic, Alan J. Hu: Approximating the Safely Réalss&Set of Learned Facts

Light-weight » the program using symbolic instead of concrete values. C
C,C++ SSA : Decision
— VM function procedure LYsTo symbolically executes functions in the analyzed pro-
frontend pointer alias
analysis (Spear) gram, computing symbolic definitions for each modified vari-

able and memory location. These symbolic definitions are

Asseroly csa Precise Verification used to create the verification conditions (VCs). The sym-
oo o ymbolie conition bolic execution machinery allows generating VCs for any as-
simplification fitering sertion at any point in the programaCrsTo currently sup-

ports user-supplied assertions (written as boolean esipres
in whatever programming language the compiler front-end is
parsing), but in the spirit of static checking, also autamat
Fig. 1. High-Level CaLysTO Architecture cally generates VCs to check that each pointer dereference
cannot be NULL. The last stage consists of checking and fil-
tering the verification conditions. In principle, the VCaubd
large number of properties, e.g., there could be thousahds &€ sent directly to a theorem prover for checking, and this ap
user-supplied assertions in a large codebase, or even moRsoach is used in most other tools. We have found, however,
automatically generated checks, such as that pointerateref that both efficiency and usability can be improved by control
ences are non_nu”, array accesses are in_range, |Ockd]qg prand filtering of what VCs are checked. The main efficiency
tocols are observed, etc. Our goal in this paper is to exploifjain is due tostructural abstractior[23], where Q\LYsTO

the shared structure among the many verification conditions€Xploits natural function-call boundaries for abstractmnd
More precise|y, we have noticed that many VC SharelaZily refines Only those function effects that are needed-+o

common formulas, which usua”y Correspond to prefixes/suf.fute or demonstrate a concrete violation of a VC. The actual

fixes of shared paths in the analyzed program. One way tdalidity-checking of VCs is done byrEAR, which is a sound
exploit this insight is to use classical incremental satisfi ~ and complete, fully automatic theorem prover that supports
ity [16—18]. If constraints of one VC were a subset of con- Boolean logic, bit-vector operations, and bit-accuratthar
straints of the next one, we could simply take all the con-metic.
straints (clauses, in the context of SAT solving) learnedavh Although the work in this paper is built onALYsTO, we
solving the first VC and reuse them when we move to thebelieve that the contribution of this paper can be applied to
next VC. Unfortunately, in practice, VCs usually share only any static checker or software model checker that uses a de-
a subset of constraints and it is rare to find pairs of VCs tha€ision procedure to check VCs, assuming some reasonable
can be ordered by the subset relation. So, when moving fronRroperties of the VCs (see Sec. 3). Considerable research
one VC to another, decision procedures have to remove th&ent into the specific design decisions behindL@sTo’s
constraints that do not belong to the next VC being solvedarchitecture [19,24], but the general pattern — a compiler
as well as all the learned constraints dependent on the rdront-end to analyze the software, a formal analysis to gene
moved set of constraints. This can be done, but requires teate multiple VCs for multiple program properties, and a de-
dious bookkeeping of all dependencies among the originafision procedure back-end to check the VCs — is common.
and learned constraints, i.e., one has to record a potgntial
very large implication graph. In this paper, we present g ver o)
lightweight technique for approximating the set of coristsa. 3 Definitions and Assumptions
that can be safely reused, while avoiding the need for keepin
the large implication graphs. In this section, we give definitions of some basic concepts
Our work is based on our extended static checker C required for understanding the rest of the paper and present
LysTo [19]. The high-level architecture of ALYSTO is the assumptions on which our method relies.
shown in Fig. 1. @LYSTO is designed as a compiler pass,
in the spirit of Hoare's “verifying compiler” grand chal- Verification Conditions (VCs)VCs are logical formulas,
lenge [20]: it accepts the compiler’s intermediate repmese constructed from a system and desired correctness pregerti
tation, in static single assignment (SSA) form [21], pemfier such that the validity of VCs corresponds to the correctness
various verification checks, issues bug reports and washing of the system. Commonly, correctness properties in program
and then passes semantically unmodified SSA on to the conare specified with assertions, which can be either written by
piler backend. programmers, or automatically generated (e.g., [25])llIf a
Internally, the @QLYSTO system consists of three stages, the assertions in the program are valid, the program is densi
supported by an automatic theorem provereSR. The first ered to be correct with respect to the given set of assertions
stage is a lightweight function pointer alias analysis, ckihi A predicate that represents the condition under which
constructs (a sound approximation of) the call graph, in-some assertion is reachable in the program code will bectalle
cluding indirect calls through function pointers. We sficei the reachability predicate. LR stand for a reachability pred-
some precision, by using a sound, flow-sensitive, but céntex icate anda be the asserted condition. The VC is then given
insensitive alias analysis, tracking only the functiompeis. by R=- a, intuitively saying that if there is a feasible path to
The next stage is symbolic execution [22], which executesx, the assertion condition should be valid.

reports

Domagoj Babi¢, Alan J. Hu: Approximating the Safely Reus&et of Learned Facts 3

Spear Format Common S Variables are encoded as bit-vectors of suitable size, pad o
SMT QF_BV B s\ ihexpression Expression N— i ireui i
expres press erators are replaced by digital circuits correspondindnéd t
Elimination Simplifier
(CSE) operator. In effect, VCs become large digital circuits, ethi

— can be converted to CNF using Tseitin's transform [27] and
Parameters given to a SAT solver. We use gate-optimal circuit encoding,
trying to minimize the number of gates.

The CNF simplifier performs variable elimination [28]
and elimination of satisfied clauses and falsified litera8j[

Stucture The core of $EAR is a DPLL-style [30] SAT solver.
Sﬁféﬂ’;ﬂﬂi Siﬁg‘"ﬁer aware SPEAR incorporates a number of novel optimizations. How-
SAT solver ever, one of the most important features ¢fE8R and its

core is configurability: every single search parameterctvhi
is typically hard-coded in most off-the-shelf decision gge
(UN)SAT dures, can be set on the command line. The full flexibility
and power of this configurability becomes obvious in combi-
nation with automatic tuning [31].
When automated decision procedures are used for prov-
ing VCs, the validity of a verification conditioviC is usually
Verification conditions can be Computed by intra- or inter- proven by asking the decision procedure to prove unsatisfia-
procedural analysis. To achieve high precision, appraacheyility of the formulaVC = false. Its satisfiability means that

based on intra-procedural analysis require user-provited there is a possible bug in the program from which the VC was
terface invariants. In practice, however, programmexdsel constructed.

Fig. 2. High-Level S’EARArchitecture

provide these invariants. Verification conditions compluig In our setting, we wish to check multiple VCs. There-
inter-procedural analysis tend to be large and based on codgyre, to identify and use the sharing between the VCs, we
spread throughout many function calls. cache subterms of the VCs (and clean the cache periodically)

while using classical structural hashing to reuse the expre
Decision Procedure.We are interested in bit-precise soft- gjgng already present in the cache. When we learn a context-
ware verification in order to be able to catch frequent intege independent fact about a certain term (using the techniques
under/over-flow bugss So, all of our analysis will be assum- presented in this paper), we associate it with the ternfitsel
ing bit-vector arithmetic. Our bit-vector arithmetic dsion | ater, if the term becomes a part of another VC, we automati-

procedure _SEARZ is based on a SAT solver and supports all ca|ly add the context-independent fact when we pass the new
standard bit-vector arithmetic operators on finite bittées, \/C tg the decision procedure.

including expensive operators (like multiplication andidi

sion). Although we use bit-vector arithmetic, the conttibn ~ Representation.As mentioned, we represent VCs as acyclic

is largely independent of the chosen logic. graphs. This representation simplifies the reasoning about
SPEARS architecture is illustrated in Fig. 2P&ARsIm- the structure of the formulas. In addition, using simpleaod

plifies expressions in two steps: First, common subexpreshash tables, we eliminate all common sub-expressions. Such

sion elimination merges (structurally) equivalentexpi@ss. graphs, in which all redundancies have been eliminated, are

Common subexpression elimination (CSE) is a simple, buknown as maximally-shared graphs:

very important optimizat.ior) for decision procedures b_aseq)efinition 1 (Maximally-Shared Graph).

on S_AT solvers. S8EAR eh_mmates common subexpre_sspns Given an acyclic grapts = (N, E), let . stand for a label-

by simple structural hashing. Second, a simple term-rawgrit ing function.¢ : N — string. Define the arity of a node,

engine simplifies the expressions starting at the leavdseof t denoted asn|, as the number of outgoing edges. The out-

maximally-shared graph representing the formula and mov'going edges are ordered, and fHi edge of a node will

ing toward the root. The engine performs operations Iikebe denoted ashildi(n). Two operator nodes; andn; are

constant-propagation (e.ga,+ 0 = a), constant-collection defined to be equivalent{ 2 ny) if and only if |ny| = |ny),

(e.g.,.a+1+2=a+3), simple deduction (e.ca, < bra> Z(m) = .2(ny), and

b = false), redundancy elimination (e.glTE(@,a,a) = a), _ _ . .

partial canonicalization (e.gite(@, @ A a,b) = ite(@,a, b)), Vi1 0 <i<|ng|: childi(ny) £ childi (np).

strength-reduction (e.g. <= a << 1+a), and so on. (This is standard bisimulation equivalence, but applied to
Programs contain non-linear operators, and to be bitgraph representing the static structure of a VC, rather than

precise, one must have a decision procedure that supportie more typical application to a transition system.) Gr&ph

them. A number of different methods have been developegs maximally-shared if-3n;,n € N :ny % np Ang £ no.

for linear bit-vector arithmetic, but few of them are applic

. . : CALYsTO computes verification conditions directly as max-
ble to non-linear operators. We use the bit-blasting apgroa P y

imally-shared graphs. The graph representation can bs-tran
1 For instance, the 2004 JPEG security exploit (see e.g.).[26] formed into a conjunction of expressions by standard renam-
2 http:/iww.domagoj.info/indexspear.htm ing. We shall identify nodes in the graph with the variables

4 Domagoj Babic, Alan J. Hu: Approximating the Safely Réalss&Set of Learned Facts

First, the decision procedure must be able to identify facts
of the formvariable= constanthat are implied by formulas
being solved. For instance, if the decision procedure isdbas
on a SAT solver, learned unit literals are such facts. Deuisi

procedures based on the Nelson-Oppen [9] framework gen-
erate conjunctions of equalities (providing that the indiixal
theories are convex), and it is easy to extract the equalitie
that satisfy our requirement.
Second, we assume complete propagation of equalities
@ with constants, i.e., we require that the decision proaedur
generates facts of the formm= 7,b = 7,c = 7 instead of
@ a=7,b=ac=b. This is trivial to accomplish by a lin-
ear time constant propagation post-processing even iféhe d
@ cision procedure does not make such guarantees. Assuming
that the formula is satisfiable, both SAT solvers and E-gsaph

Fig. 3. Dominance Relation. Given the acyclic graph above, somertime [3_4]’ on WhICh the Nelson-Oppen framework is based, satisfy

relationships includen; > ny, Ny 3> ng, No > N3, No > N, Ng > N, andny 3% this requirement.

Na. Third, we assume that the proper sub-expressions of a VC
are logically consistent. Every expression that can bestran
lated into an acyclic circuit-like representation satisfibis

used for renaming. This is a one-to-one mapping. We shall€quirements because circuits themselves are logicatly co

represent equality (resp. disequality) in formulas anad-alg Sistent — every input produces some output. If the consis-
rithms as= (resp.s), while in the code snippets and graphs tency assumption were violated, then the decision proeedur

= will stand for assignment, ang= (resp.! =) for equality ~ couldimply arbitrary implicants. The consistency asstorpt
(resp. disequality). ensures that the implicants derived from a sub-expresseéon a

meaningful. Two small examples provide the intuition behin
Graph Relations.If there is an edge connecting two nodes, this assumption.
n— me E, thennis apredecessoof m, andmis asucces-
sor of n. The set of predecessors of a nodeill be denoted
asPred(n), and the set of its successorsag¢n). The nodes
in the transitive closure d?red(n) areancestor®f n, and the
nodes in the transitive closure 8tic¢n) aredescendantsf n=a<0
n, denotedesgn).

Example 1.Consider an obviously inconsistent formala
0Aa> 0. By introduction of fresh variablesg,--- ,n, we
get:

nn=a>0

Dominance Relation.To analyze the shared subgraphs, we N2 = No /ANy

rely upon the dominance relation [32]: This is a logically consistent set of constraints which eerr

sponds to the circuit-like representation in Fig. 4. Notat th
the constraints force, to be alwaydalse, but the constraints
themselves are satisfiable. Varialle corresponding to the
root node in Fig. 4 can be seen asiuit output]

Definition 2 (Dominance Relation).

A noden dominates noden if and only if all the paths from
the entry node ton go throughn, written asn>>m. If n#£m,
n strictly dominatesn, denotech > m.

The dominance relation (illustrated in Fig. 3) is a par- As mentioned earlier, the goal is to prove validity of a VC,

tial order (reflexive, antisymmetric, and transitive) arhc &+ that.the valug of the output.node Is always true. We can
be computed i?(Na (E, N)) [33] time, whereq is the ex- check this by adding the constrainbt_node= false and then

tremely slowly growing inverse of Ackermann’s function. In checki_ng satisfia}bility. I the resulting formula Is Sam.ﬂ.e’
practice, a simpleZ’(ElogN) algorithm [33] is faster, even the orlg_mal VC is not Val'd' Only by ad_dmg the add|t|or_1al
for very large graphs, and that is what we are using for theconstraint can the constraints become inconsistent, deein t
results in this paper. next example.

The dominance relation, as defined above, requires gyample 2.Given the formulavVC = (a> b= a> b), we
unique entry node. The technique presented in this paper akan construct the set of constraints:
ways considers the root node that represents a single VC to be
the entry node for the computation of the dominance relation np=a>b

n=a>b

Assumptions.The work presented in the paper relies on sev-
eral assumptions, which are either almost always satisfied
in practice or can be satisfied with a trivial amount of post-which is consistent. Now, to check validity, we add consitrai
processing. n, = false to the set, forcing the output talse. The set of

N =Np=Mm

Domagoj Babic, Alan J. Hu: Approximating the Safely Reusa®et of Learned Facts

Fig. 4. Small Maximally-Shared Graph Representamg 0Aa> 0. Succes-
sors of non-commutative operators are ordered in the dattdar (from
left to right). Operator nodes are labelled with the operdioscribed)
and the name of corresponding variable used in renamingdewj to the
node).

constraints becomes unsatisfiable, meaning that the atigin
VC was valid. N

4 Exploiting Shared Structure

n2

5 3

2

Fig. 5. Graph Corresponding to the Set of Constraints in Example 2.

=

Instead, in @LYSTO, the approach we use is to compute
a single VC per assertion in each context. Given a predigate
representing a VC in the caller, Vift the VC into the calling
context in two steps: First, we substitute the formal param-
eters of the callee with the actual parameters in the csller’
context (the same substitution is carried out for the memory
locations that the callee accesses). Second, the prethedte

In software, many paths share common statements, whicRepresents the conditions under which the callee is caitd,

means that computed VCs will share common sub-y is used to construct an implicatiap= @, which repre-
expressions. However, it is less obvious how to exploit thatsents our VC lifted to the caller's contéet.

structure.

Computing a single VC per assertion in each context

A direct approach would be to construct a single formulasjices out the part of the program that is relevant to therasse

as the disjunction of all (negated) verification conditiggise

tion and context we are interested in, drastically imprgvin

it to the theorem prover, and for each solution, report a bugthe performance of decision procedures. Once a VC is either

then add a blocking clause to eliminate the failing verifaat
condition (a single disjunct) from further consideratfBy-

proved valid, or a counterexample is found, the entire VC is
discarded, and we proceed to the next VC. While such an

erything that the theorem prover learns while checking oneapproach avoids bloating the clause database with blocking

(disjunct in the) VC can be re-used when looking for addi-

tional solutions, so this is a “perfect solution”. Unforataly,

it suffers from the same problem as clause learning in a SAT

solver: there is too much information that is learned, with
very little of it being useful later. The information ovesd

is especially problematic because our verification ansligsi
interprocedural: the brute-force direct approach wouleh-co

clauses, it also, unfortunately, discards the knowledgeegla
about sub-expressions shared by multiple VCs.

In this paper, we seek to distill out implicants learned
while solving one VC that are useful for solving another VVC.
Regrettably, not all implicants can be re-used, because the
can depend on the context of the first VC, which might not
be true of the other VC. The crux of the problem is that deci-

pute the single VC (the disjunction of the negated VCs for allsjon procedures can propagate information in any direction

assertions) for the entire program, potentially forcing de-
cision procedure to explore completely different partshef t

Consider the VC shown in Fig. 5 with the additional con-
straintn, = false. Most decision procedures would start solv-

verified program in a single run. The added blocking clausesng the VC by propagating constants. Frog= false, it fol-
are bound to become obsolete at certain point, butitis lard tjows thatny = true andn; = false. Fromn; = false it follows

detect that without having any information about the strcect
of the program. Alternatively, heuristic removal of bloagi
clauses might produce repeated error traces correspotuding
the same assertion violation, or even worse, failure toiterm
nate.

3 In a simple usage model of formal verification, a tool mightunally
stop as soon as it finds a false VC and report an error. In thie-steecking
style that we follow, however, where there may be many thodsaf auto-
matically generated assertions to check, and where theydomaccasional
false error reports, it is much more useful to try to recovent errors and
continue checking as many assertions as possible on eacmuah as a
compiler will report multiple errors during a compilatioHence, we need a
mechanism to continue checking VCs despite finding a fality

thata < b. The last implicant contradicts> b, hence the set

4 A naive application of this technique leads to an expoakbtowup, as
more and more VCs have to be lifted through the call graph. panoza-
tion technique that we implemented imCrsTo lifts only VCs that depend
on formal parameters, globals, or memory locations redehabough for-
mals or globals. While this technique can lead to spuriousreteing re-
ported from unreachable code, we found that in practice plsinead-code
elimination pass eliminates a vast majority of such spwisarnings. An
even better approach would be to check the validity of eactbefore lift-
ing: valid VCs are independent of the calling context anddneat be lifted,
and counterexamples that are independent of the callintexiocan be re-
ported as local bugs right away. Although we believe thahsuctoptimiza-
tion would be extremely valuable, we haven't had time to ienpént it. A
more detailed discussion is given in [24].

6 Domagoj Babic, Alan J. Hu: Approximating the Safely Réalss&Set of Learned Facts

of constraints represented by the graph is unsatisfiabis. Threlations produced by the decision procedure once it ter-
propagation of information fronaboveintroduces assump- minates. In our experience, the first approach is impracti-
tions that might not hold in all other contexts. Any other VC cal for decision procedures based on SAT solvers, as it re-
that contains the sub-expression representemblnd does quires excessive resources, and slows down the core of the
not enforcen, = false cannot reuse the previously computed solver by several orders of magnitude. However, it might
solution. be a viable approach within the Nelson-Oppen framework
Intuitively, we want a way to figure out which implicants if all the combined theories are convex J9We present a
were implied frombelow For instance, if a decision proce- reconstruction-based approach: a simple algorithm tiveigi
dure can infer that nod® is alwaystrue just by considering a set of nodes fixed by the decision procedure, efficiently
its descendants, then the same decision procedure willbe abcomputes a safe approximation of the set of nodes fixed in
to infer the same result ifi; appears as a sub-expression of a context-independent manner.
any other VC. In other words, = true becomes @ontext-
independent invariant .
The concept of “context” can be defined in many Ways.4'1 Algorithm
Since we study the fine-grained structure of expressions com
puted from software, it is helpful to define context on the Depending on the client, the queries to the decision proce-
maximally-shared graphs as follows: We say that an expresdures might be available all at once, or computed in a lazy
sion represented by a node in a maximally-shared graph ig1anner. For example, a static checker that relies on some
context-independent if its value is uniquely implied by its form of abstraction might compute incrementally more re-
sub-expressions, otherwise the relation is context-cégremn ~ fined VCs, or process the call graph of the verified applica-
For instance, in Example 2 (Fig. 5) the implicagt= true is tion in an incremental manner. Other clients, like invafrian
context-dependent because the implication chain came frorgenerators, might construct a number of queries at once, and
the predecessop. On the other hanah, = true is a context- ask for invariants common to all the queries. Because C
independent invariant as it follows from the nodes betew ~ LYSTO performs structural abstraction [23], we focus on the
Decision procedures can generate a large number of imcase where queries are posed in an online manner: VCs are
plicants. For example, SAT solvers usually generate asinglchecked one-by-one and future queries are not known. Obvi-
implicant per conflict. Keeping even only 10% of implicants ously, the same algorithm can also handle the case where all
from each VC requires excessive amounts of memory. In adVCs are available in advance.

dition, not all implicants are context-independent inaats. Algorithm 1 computes a safe approximation of the set of
So, we use a more restricted form of invariants to representodes that are fixed from below. The values of nodes fixed
learned facts: from below are stored in an associative tabieed, indexed

by the nodes. Later, if another VC contains a nadkat ex-
Definition 3 (Node Fixation). Let n be some node in a istsin the table, the value that is read from the talBibesd[n],
maximally-shared graph ang an invariant derived by the is used to create an additional constrairt Fixed/n]. Adding
decision procedure of the form= constant We shall say this additional constraint to the set of constraints regmes
that n is fixed by the decision procedurBefine predicate ing the VC being solved saves computation effort because
fixpp () to betrue iff nis fixed by the decision procedure. the decision procedure can immediately start propagétiag t
If fixgp (N) = true, define operatoFixValpp (n) to be an op- Fixedn] constant.
erator that returns theonstanto which the noda was fixed. Line 4 performs some basic technical checks. The value

of the root node is fixed from above (false because we are

The invariants derived by the decision procedure reF)re'checking for unsatisfiability), so the root node is elimatht

sent knowledge gained about the solved VC; these Invariantg, ., consideration. Note that there is no reason why the root

can be either context-dependent or context-independent. Wnode couldn't be fixed from below as well. However, in that

need to separate out the context-independent ones, as thoggse oyr analysis is not capable to resolve whether thé-impl
can be used later when other VCs are solved. So, we def'ne@ation chain came from above or from below. In order to re-

subset of _nodes that were fixed b¥ the decision procedure 'Wolve this ambiguity, the theorem prover would need to track
a context-independent manner as: implication graphs — a technique which we consider too ex-

Definition 4 (Fixation from Below). Let n be a node fixed penswle. hree basi t nod b in th
by the decision procedure teixValpp (n). If the invariant Only three basic types of nodes can be present in the ex-

n = FixValpp (n) was derived only by considering a subgraph pressllon gr?phacfonst?)ntls, varla_blgis, and opleratorstﬂqgs d
rooted atn, we shall say that wasfixed from belowDefine &' &ways 'Xj rom ekow, variables are away.: corr]13| elre
predicateix; (n) to betrue iff nis fixed from below. unconstrained, so it makes sense to attempt to fix the values

of only the operator nodes.

There are two basic approaches to establishing context . : _
independence. First, the decision procedure could reberd t __Viodular arithmetic, as well as the theory of integers, areauvex,
. so even decision procedures based on Nelson-Oppen frafnewatd need
implication graph for each 'nferred_ relation. S_econd1 ON€some form of bookkeeping, similar to implication graphspeoable to ex-
could attempt to reconstruct the chain of reasoning from thexctly identify a set of assumptions from which each impltazas implied.

Domagoj Babic, Alan J. Hu: Approximating the Safely Reusa®et of Learned Facts 7

Algorithm 1 Approximation of the Set of Nodes Fixed from
Below. PredicatésConstantn) returnstrue if the noden is
a constant node, predicagRoot(n) returnstrue if the node
n represents a VC (root of the graph), whig®©perator(n)
is true iff n represents an operator. Results of the analysis
I I are stored in the tablBixed, indexed by nodes. The set of
I I I descendants (resp. predecessors) of a modedenoted as
Des¢n) (resp.Pred(n)).
1: procedure Fix (n, Fixed)
I 2: for eachs € Sucgn) do
3 Fix (s, Fixed)
4 if =isRoot(n) AisOperator(n) Afixpp (n) then
5 for eachd € Des¢n) do
6: if misConstantd) v n % d then
7
8
9

return
for each p € Pred(n) do
if fixpp (P) then
return
11: Fixedn] < FixValpp (n)

Fig. 6. Context-Independent (I) and Context-Dependent (ll,IH)fagation
of Knowledge. 10:

How good is the approximation? The algorithm is able to
f fix only the nodes that are at the end of a constant propagation
chain. Intuitively, the last fixed node in the constant propa
agation chain is the node that required the largest amount of
reasoning. For instance, lef, - - - , ng be a sequence of nodes
ghose values were fixed from below, all lying on the same

Intuitively, the algorithm works as follows. Lines 5-7
check whether the node dominates all its descendants. |
does not dominate some descendanit follows thatd is
reachable from the root of the graph by at least one path th
does not go through. Consequentlyd appears in at least

two contexts (one represented by the path that passes throu
(P y P P ath. Assume that there a@&/Cs such that the first contains

n and the other by path that avoids Without reconstruct- h & b d The last VC
ing the implication graph that led the decision procedure to™» the slecons_z ut lTOtndl' anl S0 on. f_e j‘?t bC(Im-
imply n = FixValpp (n), it is not possible to distinguish be- tains onlyr. Since all node values were fixed from below,

tween these cases: (I) The invariant was implied from below,it is likely that the decision procedure will repeat the same

relying only on the descendants mf(Il) The invariant was Steps vyhile solving each of tho_keVCs,_ SO _eventually, aII_
implied from above, possibly all the way from the root node. nodes in the constant prgpagathn chain might become fixed
(1) The constant propagation chain came from above, avoid from below, and constraints = FixValp (i) can be used
ing n, fixed the value of some descendantpfvhich in turn later if any of then; nodes becomes a part of other VCs. Even

implied the invariant. All three cases are illustrated ig.F. though this approximation is crude, it is very fast even for

The dominance test eliminates the third case. The purposlélrge VCs. In Sec. 5, we will evaluate whether the algorithm

of lines 8-10 is to eliminate the second case. Obviously, ifis ff"‘St enOl_.lgh and can find enough context-independent in-
no predecessor ofwas fixed, the constant propagation chain variants to improve overall performance. i
must have come from below. Remember that we assume com- 10 Prove that Alg. 1 really computes a set of nodes fixed
plete propagation of constants, so each constant propagati "o below, we start with the following lemma.

chain has to have its beginning and its end. The nodes thatemma 1. Let n be the subgraph of graph G such that n is
pass both tests can be safely considered fixed from below. fixed by the decision proceduredp(n) = true. Assume that

Implementations should mark visited nodes and avoid re-Vp € Pred(n) : ~fixpp (p) and vd € Desgn) - n > d, then

visiting them. As each node has to be visited only once, ancslxT (n) = true

each node can have at mgist descendants and predecessorsProof. As n dominates all descendants, the decision proce-
together G is acyclic), the worst case complexityd& |N|?), dure could have inferred that= FixValpp (n) by a chain of

but that is a very pessimistic bound, especially since ous VC constant propagations either from the descendan@ain

tend to be sparse graphs in practice. We found that in pracer from its ancestors. Due to the definition of dominance, the
tice the algorithm runs almost in linear time if a depth-first constant propagation chain can enter the subgraph rooted at
search is used to iterate over the descendants in linesb—7. In only passing through, or has to start in the subgraph and
tuitively, the deeper the node is, the larger the probatitiat ~ propagate upwards. According to our assumptions (Sec. 3),
it is shared (simpler expressions are more frequently sharethe decision procedure completely propagates constamts. S
than complex ones). Hence, the probability of running into aif the chain starts in some ancestormfat least one prede-
node not dominated by is becoming larger as we get fur- cessor has to be fixed. If that's not the case, we can deduce
ther away fromn (downwards). The dominance relation can that n = FixValpp (n) must have been implied from the de-
be computed i (|N|a (|N], |E|)), as noted before. scendants or.

8 Domagoj Babic, Alan J. Hu: Approximating the Safely Réalss&Set of Learned Facts

Algorithm 2 Checking the Validity of VCs with Shared integers, and,t,u,v,y,x are boolean variables. All operators
Structure. Function RANSLATE translates the graph repre- used in the example are standard C-like operédtors.
sentation to a representation suitable for the decisiongsro
dure. DLVE is the call to the decision procedure with the set
of constraint<. ’

int f(int a, int b, bool s, bool t) {
if (a% 2) { a++; }

: 0 X
1: clear tableFixed j 1T (b % 2) { b+t }
2. for eachVC; do : _ .
3 C« TRANSLATE(VG)UVG = false Z :2: 3 _ 2 :; 2'.
4: for eachn € Des¢VG) do . bool u = (d - 0):
5: if nis a valid index into tabl&ixedthen \ bool v = (s — t)f
6: C « Cun= Fixedn| . bool y = (u || s);l
7: status—SoLVE(C) 10 bool x = (y || Vv);
8: if status= satisfiablethen 1
9: Report bug 12 if (x) {
10: FIx (VG;, Fixed) 13 assert(t); // VC1
14 P
15 } else {
Theorem 1. All of the expressions & FixValpp (n) com- 1 assert((a + b) % 2 == 0);// VC2
puted by Alg. 1 are context-independent invariants. v ! e
18
Proof. Follows directly from Lemma 1. 10 ce

20

Fixed nodesn; cannot be simply replaced with con- o] .
stantsFixValpp (nj). Rather, one has to add constramt= There_ are two assertions in the example: theflrst assertion
FixValpp (nj) as an additional constraint to the database of¢an be violated, while the_ second cannot. Lines 2-3 incre-
constraints that the decision procedure keeps. For instiinc Mment odd numbers, so at line 5 batlandb are even. Thus,
n= (a< 0) is a subgraph of one VC, and the algorithm fixes their product is a multiple of four. Therefore, the last twitsb
the value ofn to true, and replaces node with true, then of the product will be zero, even in the case of an overflow.
some other VC which contains subgrapk-nAa>Owould ~ Henced is always zero.
betrue as well, which is wrong. If only constraimt= true In our implementation, the VCs are computed directly
is added to the constraint databasegecomesalse. In other ~ @s maximally-shared graphs, as shown in Fig. 8, from the
words, replacing the fixed nodes with constants is disaktbwe SSA [35] provided by the compiler front-end. A large part of
because it breaks dependencies among sub-expressioas. N&t€ graph is shared. This sharing is especially valuablewwhe
that adding the additional constraint does not introduee in €xpensive operations are shared, like multiplication. The
consistency, because the same invariant would be inferre@omputed graphs correspond to logical formulas in Fig. 7.
when the other VC is solved, but by adding it right away we ~ How would a SAT-based decision procedure handle these
speed-up the convergence and avoid redundant computatiogonstraints? Each VC is solved independently of the oth-

Finally, we give the overall algorithm (Alg. 2) to verify €rs, and additional constraints are kept only for nodes fixed
multiple VCs with sharing, as implemented inAGrSTO. from below. We start solvinyCl by adding the constraint
Given a graph representation of a VC, the main loop firstVC1 = false. The decision procedure could deduce by con-
translates the graph into the form suitable for the giveri-dec stant propagation from the root:= true,t = false, and those
sion procedure, producing a set of constra@tand negates are all the invariants that can be found by trivial constant
the VC. For each noda whose value was fixed from be- Propagation. A typical SAT solver could continue with enu-
low, the algorithm adds the corresponding constraint ~ meration of possible solutions that would satisfy nade
FixValpp (n) to the set of constraints. The decision procedurewhich corresponds to the product of two conditionally de-
is called with the set of constraints as a parameter. If the defined variables. Ifa (resp.b) is odd, it will be incremented,
cision procedure finds the negated VC satisfiable, it report§oa (resp.b) is even at line 5. As mentioned previously, the
a possible bug and continues. In the last step, Alg. 1 visitdeast significant bit of even numbers is zero, so the two least
the nodes in the graph, and computes an approximation oignificant bits of a product of even numbers are zero as well.
the set of nodes whose values were fixed from below by thdience, the decision procedure eventually imptles 0. By

most recent call to the decision procedure, for use in sglvin constant propagation it follows that= false. At that point,
subsequent VCs. the decision procedure has to make another case split, and by

settings = true, VCL1 is satisfied, meaning that the assertion
can be violated. WheWiCl1 is being solved, node dominates

all leaves of its subgraph (each root node is solved indepen-
dently, so VC2 still doesn't exist at this point). Nodewvas

4.2 Example

In this section, we go through an example that is similar to
what we have_ found in practice. T_he example '”UStrat_eS €X- 6 Operator % is the modulo operator, & is bitwise-afids logical-or, and
pression sharing among VCs. Variabiesh, ¢ are machine ++ is post-increment.

Domagoj Babic, Alan J. Hu: Approximating the Safely Reusa®et of Learned Facts 9

VC1: ((((ite(ap%2 = 0,29+ 1, ag) * ite(lp%2 = 0,bg + 1, bg))&3) #O) VsV (s_t)> =t
VC2: - (((ite(ap%2 = 0,a0 + 1, ao) * ite(bo%2 = 0, b + 1, bg))&3) ;éo) VSv(s_t)> =

(((ite(ag%2 = 0,a + 1,30) + ite(bg%2 = 0, by + 1, by))%2) - o)

Fig. 7. Two Verification Conditions. Corresponding maximally-stthgraphs are shown in Fig. 8. The first VC is satisfiable, butalid, while the second is
valid.

VC1 VC2 5 Experimental Results

To test our approach, we used¥sTo to generate VCs for
six real-world, publicly-available C/C++ applicationsng-

ing in size from 4 to 126 thousand lines of code (KLOC) be-
fore preprocessing. The benchmarks are the Bftpd ftp server
the Dspam spam filter, our boolean satisfiability solver H
PERSAT, the Licq ICQ chat client, the Wine Windows OS
emulator, and the Xchat IRC client. For each program, for
each pointer dereference, we generated a VC to check that
the pointer is non-NULL (omitting VCs that were solved triv-
ially by our expression simplifier). Although we demonstrat
our approach on checking for NULL pointers, our method
is independent of the property being verified, as long as the
assumptions in Sec. 3 are met.

The experimental results are given in Table 1. The run-
times represent the time our SAT-based bit-vector aritiomet
decision procedure AR needed for solving all the VCs
and include computation of the dominance relation. On only
one of the smaller benchmarks, Licq, was the new approach
somewhat slower. In all other cases, the new approach is
faster. On Wine, the largest benchmark, the proposed ap-
proach speeds up the solving phase by 32%. There were also
fewer timeouts with the new approach (meaning that the re-
ported results are lower bounds on the speedup).

Fig. 8. Maximally-Shared Graph Representing Two Negated VCs. ifb si

plify the graph layout, some constants are not shared. Eafgéshen-else We attempted to understand why on some benchmarks
(ITE) nodes are labelled withf for the condition branch, and (resp.F) (like Wine) our technique is very effective, while on others
for true (resp.false) branches. (like Licq) it is ineffective. Like any learning techniqueyr

technique interacts with the solver’s heuristics and thoeee
impacts the sequence of decisions made by the solver. The de-
cision procedures community has tried to explain why certai
decision heuristics work (and certain don't) for a long time
(e.g., [36—38]), but still very little is known about heuits,
and frequently every researcher has his/her own interpreta
tion. For those reasons, it is very difficult to give a defirgti
not fixed from above, but considering the subgraph rootedjualitative and quantitative analytical answer about wizen
atu, the decision procedure was able to infer that false. apply our technique. The decision should be made empiri-
Since both conditions required by the Alg. 1 are meatan be cally. Our conjecture is, though, that applications thatiar-
marked as fixed from below. Later, wh®¥@2 is constructed, plemented in a modular fashion, with well-defined narrow in-
the additional constraint = false can be added to the set of terfaces that are often used, are a good candidate for using
constraints. Adding the constraint quickly prunes awaytmosour technique, as it is likely that our technique will be atole
of the left branch ofVC2, focusing the effort on the right learn context-independent facts about those interfaces.
branch. Since the sum of two even numbers is divisible by The key question is whether the derived context-
two, the right branch isrue, meaning tha¥C, = falseisun- independent invariants are able to accelerate the solver
satisfiable. Hence, the second assertion is valid. enough to overcome the cost of deriving them. We profiled

10 Domagoj Babic, Alan J. Hu: Approximating the Safely Rele Set of Learned Facts

Benchmark KLOC | #VCs Base Approach New Approach
Time (sec)| Timeouts || Time (sec)| Timeouts
Bftpd v1.6 4| 1130 725.8 0 582.5 0
HyperSAT v1.7 9| 1363 5.3 0 51 0
Licqvl1l.3.4 20 | 2009 199.6 0 2145 0
Dspam v3.6.5 37 | 8627 3478.6 8 3157.6 6
Xchat v2.6.8 76 | 8090 368.5 0 365.8 0
Wine v0.9.27 126 | 9000 1881.4 2 1266.7 0

Table 1. The first column gives the name and version of the benchmadr&is the number of source code lines, in thousands, befeacessing. #VCs is
the number of checked VCs. As is typical, almost all VCs areS4I since satisfiable VCs correspond to bug reports. Thefaexcolumns give the total VC
checking time in seconds (including timeouts) and the nurobémeouts, for the base approach (i.e., the same systéoutithe newly proposed method)
vs. the newly proposed method. The timeout limit was 300.dexgeriments were on a dual-processor AMD X2 4600+ machiitle 2/GB RAM, running
Linux 2.6.15. Memory consumption was not a bottleneck ondafrtfie benchmarks.

the runtimes of GLYsTO on the benchmarks in Table 1 and Verification Conditions. Traditionally, VCs are computed by
found that the computation of nodes fixed from below wasDijkstra’s weakest precondition transformer [43], as isi€o
dwarfed by the solving time and did not even show in thefor example in ESC/Java and Boogie. A naive representation
profile data. of VCs computed by the weakest precondition can be expo-
Our decision procedure FEAR, was already highly opti- nential in the size of the code fragment being checked, but
mized, and features several techniques (like abstradéiap, this blow-up can be avoided by the introduction of fresh-vari
interpretation [23], gate-optimal VC encoding, and selera ables to represent intermediate expressions [27,1, 2Jv&qu
others) that result in significant performance improversent lently, we keep the formulas in the form of maximally shared
over a standard, direct “bit-blasting” translation of th€d/ graphs, making structural reasoning easier, as illustrate
into SAT. The results presented in Table 1 clearly show thathis paper. This representational difference is otherwise
exploiting shared structure can push a state-of-the-aticst significant.
checker even further. What sets this paper apart from previous work on VCs
is our focus on exploiting common sub-expressions shared
among multiple VCs. We explore how much we can learn
6 Related Work from solving a set of VCs and how we can apply that knowl-
edge to solve the remaining VCs more efficiently.

We know of no closely related work on exploiting shared Learning. Our contribution can be viewed as an automatic
structure between multiple verification conditions. Hoagv learning technique. Given a set of VCs, the technique learns
there is a large body of work that influenced, or could be in-from the implicants that a decision procedure implied, and

fluenced by, this work. attempts to reuse that knowledge later if the remaining VCs
share some sub-expressions with the already solved ones.
Static Checking.Our work on Q\LYSTO is in the tradition Learning is an efficient technique for speeding up deci-

of extended static checking [11]. In particulaniGsTowas sion procedures, and has been especially effective in Apole
inspired by ESC/Java [39], Saturn [13], and Boogie [40]. Oursatisfiability (SAT) solvers [44]. The new aspect of the prob
overall goal was to provide complete automation, yet main-em that we are considering @ntext-dependence- facts
tain the precision of a bit-accurate software model checketearned about a shared subgraph while solving one VC might
like CBMC [41], while matching or exceeding the scalability not hold in the context of others.
of static checkers like Boogie or Saturn. Stump and Dill [45] proposed context-dependent caching
Previous works (e.g., [40,39]) often construct only oneand proof compression for an Edinburgh LF decision pro-
VC per function, and analyze each function independently ofcedure, but they considered caching only for subgraphs
others (this is possible only if users provide pre- and post-of a single formula and did not consider sharing between
conditions for every function). In this usage mode, it is un- multiple formulas. While solving each individual VC, our
likely that anything except pre- and post- conditions widl b static checker ELYsTO already eliminates common sub-
shared. While the total number of VCs is smaller, this ap-expressions, and our bit-vector arithmetic decision pilaoe
proach reports only one possible assertion violation pecfu SPEAR features its owrintra-VC learning (caching) mech-
tion. In contrast, software compilers tend to do extensikare anism. In contrast, the contribution of the present paper is
recovery (e.g., [42]) to report as many errors as possible, sinter-VClearning.
that programers can fix multiple bugs in each, potentiatheti While solving even a single VC, decision procedures can
consuming, compilation cycle. Our usage model accepts theroduce a large number of context-dependent implicants. In
same philosophy by analyzing a larger number of VCs andoractice, a small percentage of them end up being useful,
reporting multiple error violations at once. S0 aggressive implicant deletion strategies [46] are rokede

Domagoj Babic, Alan J. Hu: Approximating the Safely Reusa®et of Learned Facts 11

These experimental results motivated us to focus on simpléow computational cost. Since we observed more structure-
context-independent implicants of the form of equalityhwit sharing in practice than our technique is able to exploit, we

a constant. believe that improvements in that direction could provide
even more significant speedups.
Incremental Decision ProceduresOur contribution can also Finding more expressive context-independent invariants

be viewed as a type of incremental decision procedure, whereould also boost the performance of static checking. Such
the goal is to solve multiple, related problem instancedevhi context-independentlearning would probably run into Eimi
reusing information from one instance to another. The earlyproblems as learning in decision procedures — which impli-
work of Hooker [47] considered incremental Boolean satis-cants to keep and for how long. Considering that learning has
fiability in a simplistic setting, without learning and cka1 proven itself in SAT solvers as an indispensable technique
deletion. Strichman [17], in his generalization of the work without which no solver today is competitive, we believettha
by Silva and Sakallah [16], noticed that in the context of this direction is particularly promising.
bounded model checking, the clauses that depend only onthe We have focused on the case where VCs are solved one-
structure of the model remain valid when the unrolling depthby-one. If multiple VCs are available all at once, solving th
is increased. This was one of the first applications of increVCs in a different, heuristically-chosen order might allde+
mental satisfiability. Since Eén and Sorensson impleatent riving more context-independent invariants. Furthermdre
efficient incremental interface in their MiniSAT solver [[18 should be possible to analyze the maximally shared graph to
incremental satisfiability has found a large number of aapli quickly find the shared subgraphs between the multiple VCs.
tions in various domains. Some automated theorem prover®nly these nodes need to be considered as candidates to be
like Yices [5] and CVC [48], feature push/pop commands context-independent invariants, reducing the overheadiof
that allow undoing logical reasoning since the last chetkpo approach.
(push). These push/pop techniques are not applicable to our
problem: In order to avoid the worst-case exponential cbst o
interprocedural path-sensitivity and context-sensith\Ca- 8 Conclusion
LysTo performs structural abstraction [23] of VCs, which
means it is not knowm priori which nodes will end up be- We have demonstrated a novel way to exploit shared,
ing shared, so every single sub-expression would need to bexpression-level structure available in verification atinds.
pushed as a new context. So, the push/pop commands are rithhe approach relies on simple invariants inferred by au-
a viable solution to our problem. tomatic decision procedures. The proposed technique com-
putes a subset of those invariants which can be used safely
Structure Exploitation.Many researchers have looked into in a context-independent manner. Our experimental results
how to exploit structure for more efficient verification. Reu demonstrate that the technique can substantially impitove t
tev at al. [49] observed that large libraries change less freperformance of static checking. As scalability is the priyna
guently than the applications that use them, so the litgarielimitation of automatic software verification tools, these
can be pre-analyzed for speeding up verification of the applisults are a step towards more widely applicable, practizal f
cations. Conway et al. [50] observed that programs are usumal verification of software.
ally modified in smallincremental steps. So, after the ayapli
tion was verified once, only the modified functions and func-
tions that transitively call them have to be re-verified.mit ~ References
a single codebase, our previous work [23] showed how the
structure of a single interprocedural verification cormlittan 1. Flanagan, C., Saxe, J.B.: Avoiding exponential explusien-
be exploited at a function-level granularity. In this papee erating compact verification conditions. In: Proceedinpthe
explore a new dimension of the problem that has not (to the 28" ACM SIGPLAN-SIGACT symposium on Principles of
best of our knowledge) been explored before. Namely, we ~ Programming Languages (POPL01). Volume 36., New York,
are interes_ted in_eli_m_ination of redundanc_y at a finer Iev_el . 'E;nL;SQQfAM Fgf?ii?e(r?tox?vle)atggt_i(r)gcon ditions. Inforica
_of granularity — individual expressions. Thl_s redundar&:y i Processing Letter3 (2005) 281—288
inherent to any software verification technique simply be- 3 ga| T, Majumdar, R., Millstein, T., Rajamani, S.K.:
cause a large majority of execution paths share some com- matic predicate abstraction of C programs. In: Proceedings
mon sequence of statements. Our technique is orthogonal to of the ACM SIGPLAN 2001 Conference on Programming lan-
the above mentioned approaches, and can be combined with guage design and implementation (PLDI’01). Volume 36., New
them. York, NY, USA, ACM Press (2001) 203-213
4, Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.Kicls
man, O., Brady, B.A.: Deciding bit-vector arithmetic with-a
7 Future Work straction. In Grumberg, O., Huth, M., eds.: Proceedinghef t
13 International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS'07). Volume
It would be useful to improve the quality of approximation 4424 of Lecture Notes in Computer Science (LNCS)., Springer
of the set of nodes fixed from below, while maintaining the (2007) 358-372

12

;

~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Domagoj Babic, Alan J. Hu: Approximating the Safely Rele Set of Learned Facts

Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Setv
for DPLL(T). In Ball, T., Jones, R.B., eds.: Proceedingsta t

18" International Conference on Computer Aided Verification 21.

(CAV'06). Volume 4144 of Lecture Notes in Computer Science

(LNCS)., Springer (2006) 81-94

Ball, T., Lahiri, S.K., Musuvathi, M.: Zap: Automated the

rem proving for software analysis. In Sutcliffe, G., Voromk

A., eds.: Proceedings of the 2anternational Conference on

Logic for Programming, Artificial Intelligence, and Reastmn

(LPAR’05). Volume 3835 of Lecture Notes in Computer Sci-

ence (LNCS)., Springer (2005) 2—-22

. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A.,
Tinelli, C.: DPLL(T): Fast Decision Procedures. In Alur,R.
Peled, D.A., eds.: Proceedings of théMmiternational Con-
ference on Computer Aided Verification (CAV’04). Volume
3114 of Lecture Notes in Computer Science (LNCS)., Springer
Verlag (2004) 175-188

. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Mali
S.: Chaff: engineering an efficient SAT solver. In: Procegdi

of the 38" Design Automation Conference (DAC'01), ACM 26.

Press (2001) 530-535
. Nelson, G.: Techniques for program verification. PhD ithes
Stanford University, Stanford, California, USA (1980)
Johnson, S.: Lint, a C Program Checker. Technical R&%ort
Bell Laboratories (1977)
Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.téhded

static checking. Technical Report SRC-RR-159, Compaq Sys28.

tems Research Center, Palo Alto, California, USA (1998) Now
available from HP Labs.

Engler, D., Chelf, B., Chou, A., Hallem, S.: Checkingteys
rules using system-specific, programmer-written compaber
tensions. In: Proceedings of th& 4onference on Symposium

on Operating System Design & Implementation (OSDI'00), 29.

Berkeley, California, USA, USENIX Association (2000) 1-1
Xie, Y., Aiken, A.: Scalable error detection using bawie
satisfiability. In: Proceedings of the B2ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages

(POPL'05). Volume 40., New York, NY, USA, ACM Press 30.

(2005) 351-363

Clarke, E.M., Emerson, E.A.: Design and synthesis of syn
chronization skeletons using branching time temporalcofyi
Kozen, D., ed.: Workshop on Logics of Programs. (1981) 52-71
Published 1982 as Lecture Notes in Computer Science Num-
ber 131.

Queille, J.P., Sifakis, J.: Specification and verifimatf con-

current systems in Cesar. In: 5th International Symposiom o 32.

Programming, Springer (1981) 337—351 Lecture Notes in Com-
puter Science Number 137.

Silva, J.P.M., Sakallah, K.A.: Robust search algorgHar test
pattern generation. In: Proceedings of thé"2nternational
Symposium on Fault-Tolerant Computing (FTCS '97), Wash-
ington, DC, USA, IEEE Computer Society (1997) 152
Shtrichman, O.:
Bounded Model Checking Problem. In: Proceedings of the
11" IFIP WG 10.5 Advanced Research Working Confer-

ence on Correct Hardware Design and Verification Methods35.

(CHARME'01), London, UK, Springer-Verlag (2001) 58-70
Eén, N., Sorensson, N.: An Extensible SAT-solver0O@Q®02—
518

Babi¢, D., Hu, A.J.: Calysto: Scalable and precise reded
static checking. In: 30th International Conference on\Bafe
Engineering (ICSE’08). (2008) 211-220

20.

22.

23.

24.

25.

27.

31.

33.

Pruning Techniques for the SAT-Based34.

36.

Hoare, C.A.R.: The verifying compiler: A grand challerfgr
computing research. Journal of ACBO (2003) 63—69

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N. egkd
F.K.: Efficiently computing static single assignment fornda
the control dependence graph. ACM Transactions on Program-
ming Languages and Systerh3(1991) 451-490

King, J.C.: Symbolic execution and program testing. Gom
nications of the ACML9 (1976) 385-394

Babic, D., Hu, A.J.: Structural Abstraction of Softearerifi-
cation Conditions. In Damm, W., Hermanns, H., eds.: Proceed
ings of the 18" International Conference on Computer Aided
Verification (CAV’'07). Volume 4590 of Lecture Notes in Com-
puter Science (LNCS)., Springer (2007) 371-383

Babi¢, D.: Exploiting Structure for Scalable Softwaerifi-
cation. PhD thesis, University of British Columbia, Comgut
Science Department (2008)

Ball, T., Rajamani, S.K.: SLIC: A Specification Langudge
Interface Checking (of C). Technical Report MSR-TR-2001-2
Microsoft Research (2001)

Babict, D., Musuvathi, M.: Modular Arithmetic Decisidtro-
cedure. Technical Report MSR-TR-2005-114, Microsoft Re-
search Redmond (2005)

Tseitin, G.S.: On the complexity of derivation in propiosal
calculus. In Siekmann, J., Wrightson, G., eds.: Automatibn
Reasoning 2: Classical Papers on Computational Logic 1967—
1970. Springer, Berlin, Heidelberg (1983) 466—483

Eén, N., Biere, A.: Effective Preprocessing in SAT Tuiglo
Variable and Clause Elimination. In Bacchus, F., Walsh, T.,
eds.: Proceedings of thé"@nternational Conference on The-
ory and Applications of Satisfiability Testing (SAT’05). Mme
3569 of Lecture Notes in Computer Science (LNCS)., Springer
(2005) 61-75

Eén, N., Sorensson, N.: An extensible SAT solver. w-P
ceedings of the'8 International Conference on theory and Ap-
plications of Satisfiability Testing (SAT'03). Volume 2918
Lecture Notes in Computer Science (LNCS)., Santa Margherit
Ligure, Italy, Springer (2003) 502-518

Davis, M., Logemann, G., Loveland, D.: A machine program
for theorem-proving. Communications of the ACBA(1962)
394-397

Hutter, F., Babi¢, D., Hoos, H.H., Hu, A.J.. Boostingrifie
cation by Automatic Tuning of Decision Procedures. In: Pro-
ceedings of the Formal Methods in Computer Aided Design
(FMCAD’07), Washington, DC, USA, IEEE Computer Society
(2007) 27-34

Prosser, R.T.: Applications of boolean matrices to thadysis

of flow diagrams. In: Proceedings of the!A@astern Joint
Computer Conference, New York, Spartan Books (1959) 133—
138

Lengauer, T., Tarjan, R.E.: A fast algorithm for findingna
inators in a flowgraph. ACM Transactions on Programming
Languages and Systems (TOPLAIS)1979) 121-141

Detlefs, D., Nelson, G., Saxe, J.S.: Simplify: A Theormver

for Program Checking. Technical Report HPL-2003-148, HP
Laboratories Palo Alto (2003)

Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Global valumau
bers and redundant computations. In: Proceedings of tfe 15
ACM SIGPLAN-SIGACT symposium on Principles of Pro-
gramming Languages (POPL'88), New York, NY, USA, ACM
Press (1988) 12-27

Bhalla, A., Lynce, I., de Sousa, J., Marques-Silva, &uristic
backtracking algorithms for SAT. In: Proceedings of tHeld-

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Domagoj Babic, Alan J. Hu: Approximating the Safely Reusa®et of Learned Facts 13

ternational Workshop on Microprocessor Test and Verifozati
(MTV'03), Austin, Texas, USA (2003) 69-74

Silva, J.P.M.: The Impact of Branching Heuristics in fsi-
tional Satisfiability Algorithms. In: Proceedings of th& ®or-
tuguese Conference on Artificial Intelligence (EPIA99pIV
ume 1695 of Lecture Notes in Computer Science (LNCS).,
Springer (1999) 62-74

Shacham, O., Zarpas, E.: Tuning the VSIDS Decision Heuri
tic for Bounded Model Checking. In: Proceedings of th k-
ternational Workshop on Microprocessor Test and Veriforati
Common Challenges and Solutions (MTV’03), IEEE Computer
Society (2003) 75-79

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson,,Gaxe,
J.B., Stata, R.: Extended static checking for Java. In: &&dc
ings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation (PLDI'02). Volume 37.,
New York, NY, USA, ACM Press (2002) 234-245

Leino, K.R.M., Miller, P.. A verification methodologyif
model fields. In Sestoft, P., ed.: Proceedings of thd Bhi-
ropean Symposium on Programming (ESOP’06), held as part
of the Joint European Conferences on Theory and Practice of
Software (ETAPS’06). Volume 3924 of Lecture Notes in Com-
puter Science (LNCS)., Springer-Verlag (2006) 115-130
Clarke, E.M., Kroening, D., Yorav, K.: Behavioral castsincy

of C and Verilog programs using bounded model checking.
In: Proceedings of the 4D conference on Design automation
(DAC’03), New York, NY, USA, ACM Press (2003) 368-371
Aho, A.V,, Sethi, R., Ullman, J.D.: Compilers: prinapl tech-
nigues, and tools. Addison-Wesley Longman Publishing Co.,
Inc., Boston, Massachusetts, USA (1986)

Dijkstra, E.W., Scholten, C.S.: Predicate calculus gnogram
semantics. Springer-Verlag New York, Inc., New York, NY,
USA (1990)

Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.:fiEf
cient conflict driven learning in a boolean satisfiabilityveo.

In: Proceedings of the International Conference on Conmpute
Aided Design (ICCAD'01), Piscataway, New Jersey, USA,
IEEE Press (2001) 279-285

Stump, A., Dill, D.L.: Faster proof checking in the edin-
burgh logical framework. In Voronkov, A., ed.: Proceedings
of the 18" International Conference on Automated Deduction
(CADE’02). Volume 2392 of Lecture Notes in Computer Sci-
ence (LNCS)., London, UK, Springer-Verlag (2002) 392—-407
Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An efficien
SAT solver. In: Proceedings of th&'International Conference

on Theory and Applications of Satisfiability Testing (SAF)0
Volume 3542 of Lecture Notes in Computer Science (LNCS).
(2004) 360-375

Hooker, J.N.: Solving the incremental satisfiabilitpigem.
Journal of Logic Program5 (1993) 177-186

Stump, A., Barrett, C.W., Dill, D.L.: CVC: A Cooperating-
lidity Checker. In: Proceedings of thetf4nternational Confer-
ence on Computer Aided Verification (CAV’02). Volume 2404
of Lecture Notes in Computer Science (LNCS)., London, UK,
Springer-Verlag (2002) 500-504

Rountev, A., Kagan, S., Marlowe, T.J.: Interproceddedhflow
analysis in the presence of large libraries. In Mycroft, A,
Zeller, A., eds.: Proceedings of thed3nternational Confer-
ence on Compiler Construction (CC’06), held as a part of the
Joint European Conferences on Theory and Practice of Soft-
ware (ETAPS’06). Volume 3923 of Lecture Notes in Computer
Science (LNCS)., Springer (2006) 2—-16

50. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A: |

cremental algorithms for inter-procedural analysis ofesaf
properties. In Etessami, K., Rajamani, S.K., eds.: Praoged
of the 1" International Conference on Computer Aided Veri-
fication (CAV’05). Volume 3576 of Lecture Notes in Computer
Science (LNCS)., Berlin, Germany, Springer (2005) 449-461

