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SUMMARY A finite buffer shared by multiple packet queues is con-

sidered. Partitioning the buffer to maximize total throughput is formulated

as a resource allocation problem, the solution is shown to be achieved by

a greedy incremental algorithm in polynomial time. The optimal buffer

allocation strategy is applied to different models for a wireless downlink.

First, a set of parallel M/M/1/mi queues, corresponding to a downlink with

orthogonal channels is considered. It is verified that at high load, optimal

buffer partitioning can boost the throughput significantly with respect to

complete sharing of the buffer. Next, the problem of optimal combined

buffer allocation and channel assignment problems are shown to be sep-

arable in an outage scenario. Motivated by this observation, buffer allo-

cation is considered in a system where users need to be multiplexed and

scheduled based on channel state. It is observed that under finite buffers in

the high load regime, scheduling simply with respect to channel state with

a simply partitioned buffer achieves comparable throughput to combined

channel and queue-aware scheduling.

key words: Buffer partitioning, multiuser wireless communication,

throughput optimal, finite buffer, complete sharing, complete partitioning,

greedy allocation, scheduling, MaxWeight.

1. INTRODUCTION

Memory is a limited resource in communication devices.

While communication, computation and memory capabil-

ities continuously increase, with the advance of standards

and systems such as 3G and broadband wireless MAN, there

is also a substantial increase in the demand for bandwidth

and memory. For example, a typical WiMax base station

is supposed to serve a metropolitan area with hundreds of

users demanding high speed multimedia applications. With

a limited memory space, buffer management is necessary for

maximum performance in such a multiuser system.

Sharing limited buffer space among multiple packet

streams is a problem that previously attracted interest in the

context of shared-memory switches [1] and wireline net-

works [2]. The two opposite extremes of buffer manage-

ment are Complete Sharing (CS) and Complete Partitioning
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(CP). In Complete Sharing, packets that arrive are placed in

the buffer as long as there is room, regardless of which ses-

sion they belong to; whereas in CP, the buffer is divided into

disjoint partitions dedicated to each active session. CS pos-

sesses a degree of flexibility, and can under some conditions

achieve higher utilization of the buffer. However, it has the

drawback that a high-rate session, or one which is highly

bursty, could completely occupy the memory space, caus-

ing low-rate sessions to suffer packet drops, or be dropped

altogether (for example, if they have delay constraints.)

Another drawback of a CS architecture specific to a

shared wireless link is the potential loss of multiuser diver-

sity. Exploiting multiuser diversity, i.e., the increasing prob-

ability of finding good channels as the number of users in-

creases [3] requires the base station to have packets to trans-

mit to each user [4]. When some sessions “hog” the buffer,

blocking others, potentially the full multiuser channel ca-

pacity region cannot be used, thus limiting throughput. Par-

titioning the buffer presents a sure remedy to the “hogging”

problem, as it does not let users enter each other’s space.

While there may be obvious drawbacks of partitioning as

well, such as its inflexibility, it performs extremely well in

the high-load regime [1], which is the motivation for this

work.

A multiuser wireless downlink may work in the over-

loaded regime for several reasons. Such a system typically

serves various uncoordinated users, as in fixed wireless [5]

Internet access, as well as in cellular systems. It is to be

expected that sessions initiated by various user applications

do not have correct estimates of the transmission rate avail-

able to them, as the total number of sessions is dynamic, as

well as the channel itself. Under such uncertainties, oper-

ating close to instability may be preferable to occasionally

idling and not fully utilizing the tight wireless resource, as

consequent packet drops may be tolerated by higher-layer

mechanisms (such as TCP). That is, perhaps the unstable

regime is a practical reality in wireless systems.

While higher layer mechanisms can adjust arrival rate

for stable data transmission, they do not obviate the need to

address the overloaded regime because their response times

are typically much longer than coherence times of outdoor

channels [6], [7], and the system could easily become over-

loaded between congestion window updates.

Hence, we claim that optimal buffer partitioning can be

used together with higher layer mechanisms in order to bet-

ter utilize wireless resources. As an example, consider the

situation depicted in Figure 1 where the last hop along the
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network routing path is wireless. The buffers at the wireless

transmitter will need to have a sufficient number of pack-

ets to be able to exploit multiuser diversity and operate at a

timescale determined by the state of wireless channel. The

queue lengths here could be capped at the optimal partition-

ing levels. The TCP’s that work end to end could be respon-

sible for satisfying a long-term rate requirement to ensure

that the right number of packets is maintained. The buffer

partitioning problem also reveals a trade-off between buffer

utilization and multiuser diversity and the tradeoff between

giving individual throughput guarantees to low rate users

and maximizing overall throughput.
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Fig. 1 End-to-end network connection of multiple users with a shared

wireless last hop.

Buffer partitioning can also be performed jointly with

user scheduling. This more general problem of optimal joint

buffer management and scheduling under finite memory is

still open. It has been shown [8] that maximum weight

matching between queue lengths and channel rates at any

time (in short, MaxWeight (see [9], for example.)), which

is a well known throughput optimal algorithm under infi-

nite buffers, is not optimal under finite buffers. Though

not necessarily optimal, MaxWeight provides a solid bench-

mark for the throughput of a finite buffer system. Note that

MaxWeight requires making rate allocation decisions based

on joint queue and channel state information, hence is inher-

ently cross-layer. We believe that being able to separate the

rate allocation problem from the buffer management prob-

lem carries practical value, as it can be cumbersome to keep

physical layer algorithms informed about queue state. The

search in this direction is clearly encouraged by suboptimal-

ity of MaxWeight.

1.1 Related Work

The work on buffer management in the literature mostly fo-

cused on shared memory switches in wired networks. The

main problem is finding the buffer occupancy threshold,

above which the new arrivals are dropped. For example

in [1], Irland computationally finds the optimal buffer shar-

ing policy, that finds a simple threshold rule, which per-

forms close to optimal. Kamoun and Kleinrock [2] defined

some hybrid schemes in addition to complete sharing and

partitioning. These schemes provide the minimum number

of dedicated buffers and/or determine a maximum instanta-

neous occupancy limit for each session. Simulation results

indicate that as the load increases the optimal allocation con-

verges to a complete partitioning. Foschini and Gopinath

[10] analytically determine the structure of the optimal shar-

ing policies. The optimal policy involves limiting the buffer

occupancy and dedicating some buffer space for each ses-

sion. Krishnan et. al. [11] propose a dynamic buffer par-

titioning mechanism, which can be difficult to implement

in practice. Optimum scheduling and memory management

with finite buffer space was studied in [8]. A closed form

optimal scheduling policy was found for 2×2 switches with

equal arrival rates [8]. The policy involves push-out, where

an existing packet is discarded in favor of a new arrival,

which may be difficult from an implementation perspective.

To the best of our knowledge, the buffer partitioning

problem has not been previously addressed in the context of

wireless networks. A related idea of modifying the Trans-

port Control Protocol for exploiting multiuser diversity was

presented by Andrew et.al. [12].

1.2 Contributions

This paper mainly asks two questions: (1) Given a finite

buffer, how should we partition it among users with given

arrival and service rates to maximize total throughput? (2)

How good is throughput performance in a multiuser wire-

less link if the buffer is simply partitioned and then schedul-

ing is done without regard to queue state? In answer to the

first question, an optimal iterative algorithm for allocating

buffer space among an array of (G/G/1/m) queues which

uses the average drop probability expression as a function

of the number of buffers, m, is derived. The uniqueness

of the resulting throughput maximizing buffer distribution

is shown. The second question is explored under different

wireless communication scenarios. We first consider the

problem of allocating to a set of users a set of orthogonal

channels with occasional outage. We obtain the encourag-

ing result that the problems of channel and buffer allocation

are separable in this case. Next, a probabilistic scheduling

policy proposed for a two-user model with on-off channels

is optimized and shown to be also separable. Simulation re-

sults indicate that the proposed policy achieves a throughput

performance close to that of MaxWeight. We then consider

a more realistic downlink multiuser system, where N inde-

pendent packet arrival processes are separately queued to be

sent by a single transmitter over a wireless channel, whose

state evolves according to a stationary stochastic process.

The service model depends on how the data streams are mul-

tiplexed to be transmitted. We compare dynamic scheduling

based solely on channel state (specifically, selecting the user

with the strongest channel on each scheduling decision) with

MaxWeight, and see that the throughput performance gap is

small.

We start by presenting the basic buffer partitioning
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problem in the next section.

2. BUFFER PARTITIONING

In a system of N users sharing a total buffer pool of size

B, the set of feasible buffer partitions, Ψ, is defined as the

following:

Ψ =















m = (m1,m2, ...,mN), mi ∈ Z+ :

N
∑

i=1

mi ≤ B















Accordingly, an arriving packet of user i is accepted if there

are less than mi packets belonging to user i in the queue,

otherwise, it is blocked†.

Partitioning is not necessarily throughput-optimal. In

fact, a dynamic allocation of buffer space among queues ac-

cording to a coordinate-convex policy where
∑N

i=1 mi > B

(that is, users are allowed to spill over to each other’s al-

location) may result in higher throughput [2], [10]. There

are also push-out type of policies [13] where an existing

packet in the queue can be dropped in case of arrival of an-

other packet. However, partitioning was observed to per-

form very well (and is perhaps optimal) for unbalanced and

high loads [2]. It is shown in [10] that optimal policy for

two user balanced high load case is equally partitioning the

available buffer for users. Benefit of buffer partitioning for

unbalanced load are also discussed in [11], [14] under differ-

ent data and flow models. The rest of the paper will be about

optimal partitioning and its joint application with scheduling

in a number of scenarios.

2.1 Maximizing Total Throughput under Buffer Partition-

ing

Our optimization rests on the concavity and monotonicity of

throughput with respect to both arrival rate and buffer space

in an M/G/1/m system [15], under a fixed service time dis-

tribution. Consider a set of queues {i, 1 ≤ i ≤ N} that work

in parallel. Let T (λi,m) be the throughput of the ith queue,

with arrival rate λi when a waiting room of m packets is

allocated to this queue. In the rest, we use the shorthand

Ti(m) to mean T (λi,m). We denote by ∆Ti(m) the increase

in throughput that would result from increasing the buffer

space in queue i to m + 1.

∆Ti(m) = Ti(m + 1) − Ti(m) (1)

Increasing the waiting room always increases the through-

put [15], [16], so ∆Ti(m) > 0. But, concavity implies dimin-

ishing returns, i.e ∆Ti(m + 1) < ∆Ti(m) ∀m.

The buffer allocation that maximizes total throughput

is a solution to the following optimization problem:

†In queues occurring in practical communication systems
(such as routers and switches) keeping track of the number of pack-
ets belonging to each session can be computationally intensive.
Approaches for keeping approximate partitions, such as random-
ized methods, can be developed. We leave these outside the scope
of this paper.

Problem 1: max

N
∑

i=1

Ti(mi) s.t.m ∈ Ψ

We now present an iterative algorithm for calculating the

optimal allocation that exploits the monotonicity and con-

cavity of throughput function. As no user will be denied

service in our model††, we must allocate a buffer space of

at least one unit to each user. The remaining buffer space of

B − N units then need to be distributed among the N users.

The following pseudo-code summarizes the algorithm.

Optimal Partitioning Algorithm (OP):

1. Initialize the allocation: mi = 1 ∀i

2. Compute ∆Ti(mi) for all i

3. While Br ,
∑

i mi < B, do step 4

4. For j = arg maxi ∆Ti(mi), m j := m j + kmax

where kmax = max{k = 1, 2, . . . , B − Br |∆T j(m j + k − 1) ≥

∆Ti(mi)∀i , j}

This algorithm is equivalent to the method reported in

[17] as a computationally efficient version of Shih’s algo-

rithm [18], which solves a quite general optimal resource

allocation problem. In our context, the basic idea of the

algorithm is to greedily allocate one more buffer space in

each step to the user (or one of the users) that would incur

the maximum increase in throughput from that additional

buffer space. Because of the monotonicity and concavity of

the ∆Ti(mi)’s, the increase in throughput in each iteration

is non-increasing with buffer size for each user. Taking ad-

vantage of this fact, the number of computations needed is

reduced by allocating not one, but k ≥ 1 buffer spaces at a

time to the winner of each iteration, if after an increase of

k − 1 it will still be the winner among all queues in terms

of throughput increase per added buffer. We next prove the

optimality of algorithm OP, and then discuss its complexity.

Theorem 1: Algorithm OP results in an optimal solution

to Problem 1.

Proof. We refer the interested reader to the proof in [17],

yet, for completeness, we include a concise proof of opti-

mality here: Let {m∗
i
} be an optimal allocation. By feasi-

bility,
∑

m∗
i
≤ B. The total throughput with this allocation

is:

N
∑

i=1

Ti(m
∗
i ) =

N
∑

i=1

[(Ti(m
∗
i ) − Ti(m

∗
i − 1))

+ (Ti(m
∗
i − 1) − Ti(m

∗
i − 2)) + . . .

. . . +(Ti(2) − Ti(1)) + Ti(1)]

=

N
∑

i=1

Ti(1) +

N
∑

i=1

m∗
i

∑

k=1

∆Ti(k)

††Combining buffer allocation with admission or flow control is
very interesting, yet outside the scope of this work.
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Note that after initialization of each user with one unit

of buffer, every possible allocation of the total B buffer

spaces to the N users corresponds to choosing B − N

numbers out of the following set of size (B − N)N:

{∆T1(1),∆T1(2), . . . ,∆T1(B−N), . . . ,∆TN(1), . . . ,∆TN(B−

N)}. OP performs an iteration for each next buffer unit, de-

ciding which user to allocate this buffer unit. There are a

total of B − N units of buffer left after initialization, hence

B − N iterations in total. In iteration k, OP choses the high-

est of number among the yet unchosen elements of the set.

Since for each i, ∆Ti(m
k
i
) are non-increasing from one it-

eration to the next, the algorithm is equivalent to choos-

ing the largest B − N largest numbers in the set {∆Ti(mi)},

i = 1, 2, ...,N, m ∈ Ψ. The resulting sum cannot be smaller

than
∑N

i=1 Ti(m
∗
i
). As OP also respects feasibility, we con-

clude that the sum throughput of OP cannot exceed the op-

timal, and is therefore equal to the optimal,
∑N

i=1 Ti(m
∗
i
).

2.1.1 Complexity

OP makes a total of B − N selections in step 4, and per se-

lection (except the final one) it makes N − 1 comparisons.

Overall, no more than B elements of the set {∆Ti(mi)} are

computed. So overall, OP makes O(B) computations and

O(N(B − N)) comparisons. Therefore, this is a polynomial-

time algorithm. Incidentally, note that the problem amounts

to selecting the B − N largest entries out of a set of size

N(B − N). Hence, depending on the relative sizes of B and

N it may be possible to reduce the computations further us-

ing a binary search in this set, akin to “bubble-sort”. In

fact, a -considerably more difficult to state- algorithm us-

ing Lagrange multipliers and the binary search idea, with

complexity O(N2(logB)2) is reported in [19]. This could be

advantageous for B≫ N.

Next, we consider the application of optimal buffer al-

location in several scenarios.

3. APPLICATIONS

We start by presenting the solution of the M/M/1/mk case.

Next, we investigate an idealized a model of a system with

parallel channels that undergo independent outage corre-

sponding to Case 1 in the Introduction. We state and solve

joint buffer allocation and channel assignment problem. We

then turn to a setting where users or groups of users share

the channel in time, which belongs to Case 2 defined in

the Introduction. This time, the buffer allocation problem

is solved for parallel M/G/1/mk queues.

3.1 Parallel M/M/1/mk Queues

Consider parallel M/M/1/mk systems such that
∑

k mk = B.

We want to know the throughput-maximizing {mi}. Av-

erage throughput T and packet drop probability Pd of the

M/M/1/m queue [20] are:

T (λ, ρ,m) = λ(1 −
(1 − ρ)ρm

1 − ρm+1
) (3)

Pd(ρ,m) =
(1 − ρ)ρm

1 − ρm+1
(4)

Application of OP with the above throughput expres-

sion yields the optimal buffer partitions. We observe that

even for parallel queues with Poisson arrivals and memory-

less service distribution, optimal partitions can yield a sig-

nificant increase in throughput compared to an even buffer

allocation, as exhibited by numerical results some of which

are presented in Figure 2. This observation motivates con-

sidering other application scenarios for optimal partitioning.
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Optimal buffer allocation is compared to even buffer allocation in parallel
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switched from even partitioning to optimal partitioning in M/D/1/K queues.

Percentage increase is higher for higher number of users sharing the buffer.

Note that the percentage increase in the throughput be-

comes higher as more users share the available buffer space.

This is due to monotone decreasing property of ∆Ti(m).

3.2 Parallel M/D/1/mi Queues

Towards a somewhat more realistic service model, consider

a finite memory constraint, and packets of fixed length.

There are parallel channels with constant rate, hence the ser-

vice times are deterministic. For M/D/1/K, the buffer occu-

pancy probabilities are, Pk = RkP0, k = 1, ...,K, where
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Rk =

k
∑

i=1

(−1)k−ieAi[
(Ai)k−i

(k − i)!
+

(Ai)k−i−1

(k − i − 1)!
] f or k ≥ 2(5)

R1 = eA − 1 and A is the load factor. From
∑K

j=0 P j = 1, we

have, the blocking probability P0 =
1

1+
∑K

j=1 R j
and normalized

throughput T = 1 − P0. The effect of optimally partitioning

buffers is observed in Figure 3.

3.3 FDMA with Channel Outage

Consider a frequency division multiple access (FDMA)

multi-user downlink. There are N users, and a frequency

band will be allocated to each user. Each frequency band

exhibits outage at random times, that is, the SNR dips be-

low a level that can support the (fixed) code rate being used.

On every channel, the outage periods are i.i.d. across time,

and the starting times of outage events form a renewal pro-

cess. The probability of outage depends on the frequency

band used, and not on which user is using this channel†.
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(0,0) (1,0) (2,0)

(K,1)

(K,0)

λλλλ

µµµµ

αααα
ββββ

λλλ
λ

Fig. 4 State transition diagram for joint channel and queue states. Chan-

nel is either on or off and queue states are allowed up to allocated buffer

K.

The channel outage process of each user is assumed to

be a continuous time Markov chain with rate of transitions

α and β for on to off and off to on transitions respectively.

For channel i we have,

pout
i =

βi

αi + βi

(6)

Various settings for α and β model various rates of chan-

nel variation with respect to arrival rate. The case where

α, β ≪ λ, µ, modeling a channel variation timescale much

slower than arrivals, is particularly interesting, because in

the limit α→ 0, β→ 0 (α/β being constant), a closed-form

expression can be written for long term-average drop rate.

In this extreme case, both outage durations and the periods

between two outages are long enough for sufficiently many

packet arrivals and services such that the queue reaches

steady-state. Since the queue reaches steady-state in both

outage and non-outage, each user’s queue behaves like an

M/M/1/mi queue during non-outage, and is full (contains

exactly mi packets) during outage. Specifically, let queue i

†The channel statistics not depending on user (and hence re-
ceiver location) may correspond, for example, to the case when
the receivers are geographically clustered far away from the base
station.

be served in frequency band i, whose outage probability is

pout
i

. In this regime, the queue is full at steady state in out-

age, so the stationary probability of drop in outage is 1. In

the non-outage case the packet drop probability is Pd(ρ,m).

The overall long term average drop rate for user i is then:

P
avg

di
(λ, pout

i ,mi) = (1 − pout
i )Pdi

(λ,mi) + pout
i (7)

Correspondingly, the long-term average throughput is:

T (λ, pout,m) = λ[1 − P
avg

d
(λ, pout,m)] (8)

= (1 − pout)λ[1 − Pd(λ,m)] (9)

The algorithm to find optimal buffer allocation can be

applied with a slight modification in this case.

∆T out
i (mi, p

out
i ) = (1−pout

i )λi[Pd(λi,mi)−Pd(λi,mi+1)](10)

Under these assumptions, the introduction of outage chan-

nel to the problem brings forth a new dimension in terms

of optimization: assigning the channels to users for opti-

mal total throughput. Channels with outage probabilities

p1, p2, . . . , pN are matched to the users in a one-to-one fash-

ion.

Problem 2: Given λi and available channels’ outage prob-

abilities pi, maximize
∑

i(1 − pπ(i))Ti(λi,mi) subject to
∑

i mi = M and mi ≥ 1, where π is any permutation of

i = 1, 2, ...,N.

We shall reach the solution of Problem 2 in Theorem 3,

which will show that the problems of buffer allocation and

channel assignment are separable in our outage formulation:

The optimal solution is a best-channel highest-arrival rate

allocation, i.e., channel assignment is based on arrival rate

but not on queue (buffer) state. We start by noticing that the

throughput functions are “monotone inverse disuniting”.

Two monotone positive real functions are monotone

disuniting if their difference diverges to infinity. Note that

monotone functions have well-defined inverse functions. In

our analysis, we will use the same idea for inverses and we

introduce monotone inverse disuniting functions.

Definition 1: Monotone Inverse Disuniting Functions

The pair of functions f1 and f2 are said to be monotone in-

verse disuniting if

1. f1 : ℜ+ → I1 and f2 : ℜ+ → I2, I1, I2 ⊂ ℜ
+ are

monotone increasing with f1(x) > f2(x) ∀x ∈ ℜ+.

2. ∀y1, y2 ∈ I1 ∩ I2 , y1 > y2 ⇒

( f −1
2

(y1) − f −1
1

(y1)) > ( f −1
2

(y2) − f −1
1

(y2))

The following theorem is useful in finding the jointly

optimal resource allocation.

Theorem 2: Let M be a positive constant and

S , {(x1, x2) : x1 + x2 ≤ M, x1 ≥ 1, x2 ≥ 1}

If f1, f2 are monotone inverse disuniting and α1 > α2 > 0,

max
x∈S
{α1 f1(x1) + α2 f2(x2)} > max

x∈S
{α1 f2(x2) + α2 f1(x1)}
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Proof of Theorem 2 can be found in the Appendix.

Note that this theorem is valid if the arguments of functions

f1 and f2 are assumed real numbers, though they are inte-

gers in the problem. However, the argument in the proof is

almost always true for the integer case also (see Appendix).

Corollary 1: For α1 > α2 > ... > αK > 0, and ( fi, f j)

∀i < j are monotone inverse disuniting, permutation π∗ that

solves the joint optimization problem

max
π,x∈S

απ(i) fi(xi)

is the identity permutation π∗(i) = i

Proof. Assume another permutation π′(i) , i solves the joint

optimization problem. There exists at least two indices i1, i2
such that i1 < i2 and π′(i1) > π′(i2) so that απ′(i1) < απ′(i2).

If above theorem is applied to these two indices, it is de-

duced that another permutation π
′′

with π
′′

(i1) = π′(i2)

and π
′′

(i2) = π′(i1) yields better, which is a contradiction.

Hence, the identity permutation π∗(i) = i yields the joint

optimal.

Lemma 1: For λ1 > λ2, let fi(m) = T (λi,m) i = 1, 2 as

in Eqn 8. f1 and f2 are monotone inverse disuniting with

f1(m) > f2(m) ∀m ∈ ℜ+.

Proof of Lemma 1 can be found in the Appendix.

Theorem 3: Suppose λ1 > λ2 > ... > λK and pout
1
≤ pout

2
≤

... ≤ pout
K

. Optimal channel allocation that solves Problem 2

is π∗(i) = i.

Proof: The result immediately follows from Theorem 2 and

Lemma 1.

It is of interest whether the separation of the channel-

aware scheduling and buffer partitioning can be carried on

to more general multiplexers.

3.4 User Selection and Multiplexing in a Time-Varying

Channel

Now, we generalize our service model to cover the alloca-

tion mechanism of Case 2 in the Introduction. Here, rather

than having parallel channels, the transmitter allows the

transmission of packets of a proper subset of users at each

time. Hence, there is a scheduling decision that needs to

be made: which user/users to select at each time to trans-

mit the data of. In greatest generality, this scheduling de-

cision could be a function of all that is known: instanta-

neous channel states and time-average channel coding rates

available to each user, as well as the instantaneous queue

states and long term packet arrival rates of each user. We

will restrict attention to schedulers that are informed of ar-

rival rates and instantaneous channel states. Specifically, we

shall consider the following type of policy: the scheduling

decision is made based only on channel state (without re-

spect to queue state). The queues are handled by a buffer

partitioning policy. The buffer partitions are calculated as a

function of average arrival rates, and the long-term average

transmission rates (note that the average transmission rates

are a function of the scheduling policy.)

Our ultimate goal is to understand whether the schedul-

ing and buffer management problems are separable. Toward

that goal, we first explore the issue on a two-user problem

with on-off channels, the exact analysis of which will pro-

vide insight for the more general problem considered in the

remainder of the paper.

3.4.1 Scheduling for Channels with Outage

Consider the model depicted in Figure 6. There is a

single-user transmitter, shared by two users. Packet arrival

streams of the two users are Poisson with rates λ1 and λ2.

W.l.o.g, let λ1 > λ2. Packet sizes are i.i.d., exponential with

mean 1 unit. At any time, the channel states of the two users

are independently “on” with probability po and “off” with

probability 1 − po (symmetric channels).

There is a scheduler that controls which user will ac-

cess the transmitter. The scheduler works as follows: during

epochs where only one of the channels is “on”, the corre-

sponding user is selected for transmission, and its data is

transmitted (at unit rate.) When both channels are “on”,

user 1 will be selected with probability a, and user 2 will

be selected for transmission with probability 1 − a. As in

the outage model of subsection 3.3, we assume that chan-

nel change is slow so that scheduling epochs will be long

enough (with respect to packet transmission) for the queues

to reach steady-state in each epoch. Hence, whenever a user

i is selected, its buffer size evolves as an M/M/1/mi queue,

where mi is the buffer partition assigned to it. The question

we want to answer is the joint optimization of mi and a, and

whether the optimization of one depends on the other, in this

very simple setup.

The long term average fraction of time each user is ef-

fectively in outage is given by:

pout
1 = (1 − po) + (1 − a)p2

o (11)

pout
2 = (1 − po) + ap2

o (12)

Then long term throughput of user i is:

T (λi,mi, a) = (1 − pout
i )λi















1 −
λ

mi

i
(1 − λi)

1 − λ
mi+1
i















(13)
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Single−User

Transmitter

Scheduler

Channel

Drops

Packet

A(t)  A(t)
1 2

Partitioned Buffer

Fig. 6 The model for two user joint buffer management and user schedul-

ing in a time-varying channel

We now proceed to apply the M/M/1/m optimal parti-

tioning results to find the buffer allocation and state the joint

buffer allocation-scheduling problem as follows:

Problem 3: max T1(λ1,m1, a) + T2(λ2,m2, a) (14)

subject to

m1,m2 ≥ 1, m1 + m2 ≤ B, 0 ≤ a ≤ 1

Interestingly, the partitioning and channel allocation

problems turn out to be separable. We summarize the op-

timal policy in the following theorem:

Theorem 4: Let (a∗,m∗
1
,m∗

2
) be a solution of Problem 3.

The following are true: (1) If λ1 = λ2, then a∗ = 0.5, and

if λ1 > λ2, then a∗ = 1. (2)(m∗
1
,m∗

2
) are found by running

algorithm OP with the throughput functions stated above.

Proof. If λ1 = λ2, then by symmetry, a = 1/2. Let λ1 > λ2.

First, by the previous separation theorem, it is clear that a >

1/2. The proof is based on the fact that ∂
∂a

[T1(λ1,m
∗
1
(a), a)+

T2(λ2,m
∗
2
(a), a)] > 0 where m∗

1
(a) and m∗

2
(a) are the op-

timizing buffer allocations for fixed a > 1/2. More pre-

cisely, let a be fixed and m∗
i
(a) be the corresponding buffer

allocation. Since ∂
∂a

[

T1(λ1,m
∗
1
(a), a) + T2(λ2,m

∗
2
(a), a)

]

=

p2
0

(

f1(m∗
1
) − f2(m∗

2
)
)

where f1 and f2 are monotone inverse

disuniting functions as discussed in Theorem 3. An implicit

result of Theorem 2 is that f1(m∗
1
) > f2(m∗

2
) because other-

wise it would be possible to obtain better total throughput

by assigning worst channel to the higher rate user. In con-

clusion, for fixed buffer allocation, it is possible to increase

total throughput by incrementally increasing a. Since this

result is true for all a and corresponding optimal buffer allo-

cations, then the optimizing value of a must be 1.

It will be interesting to compare this policy with the

benchmark queue-aware scheduling algorithm MaxWeight

(MW). In this setting, MW reduces to selecting the user with

longest queue when channels of both users are “on”. Figs.

7 and 8 depict the comparison of the proposed policy and

MW: we see that the performance of the simple scheduler

with optimal partitioning is very close to MaxWeight with

equal partitioning. Here, the significance of partitioning to

throughput is exhibited clearly: MW with CS has a through-

put that falls with increasing load. This is due to “hogging”

of the buffer by the first user.

3.4.2 The General Case

In this section we consider a more general case of a mul-

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

x

y

 

 

The Proposed Joint Policy

Equal Partition + MaxWeight

Complete Sharing + MaxWeight

Fig. 7 Performance comparison of the proposed joint policy and policies

with MW scheduling. B=5 buffers per user, Po = 0.3 and λ2 = 0.1.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

x

y

 

 

The Proposed Joint Policy

MW + Equal Part.

MW + CS

Fig. 8 Performance comparison of the proposed joint policy and policies

with MW scheduling. B=5 buffers per user. Po = 0.5. λ2 = 0.4.

tiuser downlink, where the achievable rates to different re-

ceivers vary in time. The scheduler at the transmitter end

will select one queue at a time. When the scheduler selects

a queue, the packet (if any) at the head that queue will be

transmitted to the corresponding user’s receiver.

A set of assumptions will be made, to model the num-

ber of packets in queue i as an M/G/1/mi queueing process,

for each i = 1, 2, . . . ,N. In particular, suppose arrivals are

Poisson processes at rates λi, i = 1, 2, . . . ,N, and packet

lengths are constant. The effect of varying channel cod-

ing rates is captured by the assumption that the transmission

time of a packet of user i being random with some distri-

bution function FTi
. We assume that the transmission times

of any two users are independent and identically distributed,

such that fTn
(t) = fT (t), ∀ n, where T is a nonnegative ran-

dom variable. Furthermore, the transmission times for any

user are assumed to be independent across time.

As soon as the service of a packet is finished, a decision

will be made about the next queue to serve. This decision

is in general a function of the current achievable rates of the

users, equivalently, current transmission times, drawn inde-

pendently from the distribution FT (t). For example, if the

goal is to maximize sum rate, or instantaneous throughput,

the corresponding decision rule is to select the user with the

highest instantaneous rate, i.e., lowest of the instantaneous

Ti’s. The resulting service time experienced by any given

packet is the sum of the scheduling duration (the amount of

time the packet spends at the head of line waiting to get se-
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lected by the scheduler), and the actual transmission time in

the channel. By the independence across time of channel

state processes, the service times of are IID. Thus, queue

i, i = 1, 2, . . . ,N, is an M/G/1/mi system, where mi is the

buffer allocated to it.

To get an approximate expression for average through-

put, we will use Gelenbe’s approximation [21] for M/G/1/m

packet drop probability for a queue with arrival rate λ, ser-

vice rate µ, and service times X:

PG
d (λ, µ,m) =

λ(µ − λ)e
−2

(µ−λ)(m−1)

λ+µs2

µ2 − λ2e
−2

(µ−λ)(m−1)

λ+µs2

(15)

In the above expression, s2 =
Var(X)

E(X)2 .

The resulting approximate throughput is:

T (λ, µ,m) = λ(1 − PG
d (λ, µ,m)) (16)

It can be verified that throughput in (16) is monotone in-

creasing and concave with respect to λ and m. Hence,

the incremental buffer allocation algorithm also solves the

throughput maximization problem here.

(1) Scheduling The User with the Best Channel State

Let us first focus on a scheduling rule that selects the user

with the best channel at any given time (with ties broken

uniformly at random). We will call this policy MC (which

stands for Max Channel). Under this selection rule, the

probability that user i is selected to receive service in a

scheduling interval is simply 1/N:

Pr(Ti = min{T1, . . . ,TN}) = 1/N (17)

The transmission time of the chosen user is the min-

imum of N exponential r.v’s. Let us call the transmission

time of the user selected at the nth scheduling interval be

Qn. Note that Qn ∼ Q, which is again exponential with

mean equal to τ/N. The mean service time of a user con-

sists of repeated trials until success. Let K be the number

of scheduling decisions up to and including the decision on

which user i is selected. K is a geometric random variable.

At each trial a user is selected and that user transmits. The

total service time of a user therefore is the sum of a geomet-

ric number of IID exponential transmission durations, with

the expectation and variance computed as below:

E[X] = E[

K
∑

n=1

Qn] = E[K]E[Q] = N
τ

N
= τ (18)

Thus, µ = 1/E(X) = 1/τ. The variance is:

(2) Round Robin Scheduling (TDM)

Under a simple round-robin scheduling policy, which cor-

responds loosely to a TDM (time division multiplexing)

scheme, the parameters s2 and µ can be computed as:

E[X] = E[

N
∑

n=1

Tn] = NE[T ] = Nτ (19)

Hence µ = 1/E(X) = 1/(Nτ), and:

Var[

N
∑

n=1

Tn] = NVar[T ] = N(τ)2 (20)

So, for TDM scheduling under exponential transmission du-

rations, s2 = 1/N.

Of course, there are numerous other possibilities than

MC and TDM for the scheduling rule. In fact, these are two

of the simplest: the first, MC, seeks to maximize instan-

taneous rate alone, and is oblivious to long term through-

put or fairness among users. On the other hand, the sec-

ond, TDM, divides time evenly and fairly between users,

but will consequently achieve a much smaller stability re-

gion than possible. They are both simple protocols corre-

sponding to two different extremes. As a third scheduling

policy, we shall consider MaxWeight (MW), which selects

a queue to serve with the instantaneously highest ratio of

queue size to transmission duration, also leads to a set of

M/G/1/m queues. This policy makes use of queue states

in addition to channel states, and as mentioned in the intro-

duction, throughput optimal under infinite buffers. Toward

understanding whether partitioning mechanisms can make

queue-blind policies perform close to queue-aware policies,

in the next section a simulation experiment comparing these

three scheduling mechanisms running side by side will be

conducted.

4. A Comparison of Queue-Aware and Queue-Blind

Policies on a Wireless Downlink

In previous sections, optimal partitioning methods have

been given and shown to perform well under certain ideal-

ized scenarios. In two particular scenarios, it was shown that

it is optimal to make the scheduling decision and the optimal

buffer partition settings independently of each other, that is,

the problems of scheduling and buffer partitioning are sep-

arable in those cases. A natural question to ask is whether

such separation extends to less extreme and more practical

wireless communication settings.

Approximate throughput expressions were derived in

the previous section under certain assumptions for packet ar-

rival processes and transmission durations, for two schedul-

ing policies: MaxChannel and TDM. Using those through-

put expressions, approximately optimal partitions can be set

for a system using the respective scheduling policy, under

the given channel statistics. Throughput expressions for

MaxWeight under finite buffer is less tractable, so to obtain

numerical values for throughput, we shall resort to simula-

tion. Note that, as MaxWeight calculates the ratio of backlog

to transmission duration for each user in any scheduling in-

stant, and selects the queue with the highest ratio to serve, it

relies on cross-layer information. In contrast, the other two

scheduling rules, TDM, which is a simple round-robin pol-

icy, and MaxChannel, which selects the user with the best

channel, do not require queue state information to schedule,

hence they are simpler policies.
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Users will be modeled to have IID channels as in the

analysis of the previous section. Their queues will have dif-

ferent loads, however, because of the different arrival rates,

λi. We will let the λi of some of the users span a wide range

while others’ rates stay constant. This way, the throughput

performance as the total load on the system increases (and

gets more unbalanced) can be observed.

Different buffer management policies will lead to dif-

ferent throughput behaviors for a given scheduling rule. We

will consider complete sharing (CS) and equal partitioning

(EP) of the buffer for all three scheduling rules. Optimal

partitioning (OP) is not meaningful for MaxWeight (as it

inherently controls the queue sizes) and will only be con-

sidered for MaxChannel and TDM. The CS policy allows

an incoming packet, regardless of which stream it is from,

to be accommodated if there is available space in the buffer.

On the other hand, EP reserves equal buffer spaces for each

user, and does not packets use another stream’s space. OP

policy is the one proposed in Section 2 with the throughput

expression given in Eq. 16 substituted. The first and sec-

ond order statistics of transmission duration on the channel

is assumed to be known to the buffer manager.

4.0.3 Simulation Setting and Results
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MW + EP

MC + OP

MC + EP

MW + CS

MC + CS

TDM + CS

TDM + CS

Fig. 9 N=2 and B=5 buffers per user. ρ2 = 0.3. MC-OP performs quite

close to MW.

The scheduling policies described above have been run

on a long sequence of Poisson packet arrivals, for various ar-

rival rates. For each data point, 106 packet arrivals have been

simulated. An arriving packet is accepted if the buffer man-

agement (whether it is CS, EP or OP) has room for it, and

the scheduling is done at the end of service of each packet.

Figure ?? depicsts the results of this simulation exper-

iment on a 2 user system where λ2 = 0.3 is held constant,

and λ1 is varied. The service time distribution in the channel

is exponential with mean 1, hence from equation µ = 1 for

each user under MC, and µ = 0.5 for each user under TDM.

Total throughput for different policies are depicted in Figs.

9 and 10. Loads and throughput are normalized according

to µ = 0.5. Fig. 10 plots the results of the case ρ2 = 0.6, for

otherwise unchanged settings.

The multiuser diversity gain of MC over TDM is

clearly observed: as expected, throughput is nearly doubled

when going from TDM to MaxChannel. Throughput behav-

ior of MaxWeight under CS and EP is also interesting. All

scheduling policies observe a steady drop in throughput af-

ter some load level under complete sharing, when the high

rate users start occupying the buffer under Complete Shar-

ing, which allows this to happen. Partitioning prevents this,

and it is clear that MaxWeight also benefits from partition-

ing. MaxWeight is observed to outperform the others, how-

ever it is noteable that MaxChannel scheduling with parti-

tioning performs quite close to MaxWeight. It should also

be noted that Optimal Partitioning does not seem to achieve

a big gain under these settings on top of equal partitioning.
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0.9
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MC + OP

MW + CS

MC + CS

TDM + CS

TDM + EP

MC + EP

Fig. 10 N=2 and B=5 buffers per user. Load of user 1 is changing in the

x-axis while ρ2 = 0.5

Next, we perform an experiment where the loads are

unbalanced, in a 5-user downlink. The results are shown in

Fig. 11. While MW scheduling outperforms the others, MC

+ OP policy follows it closely. The advantage of optimal

partitioning is once again observed.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.5

1

1.5

2

2.5

3

3.5

4

x

y

Fig. 11 N=5 and B=5 buffer per user. A realistic unbalanced load

regime: x-axis represents load of user 1 and ρ2 = 0.2 ρ3 = 0.8, ρ4 = 0.3,

ρ5 = 0.9

4.1 Discussion of the Experimental Results

5. CONCLUSION

This paper has examined buffer partitioning as a buffer man-

agement method that can allow multiuser diversity gain
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without a very complex scheduling algorithm in a finite

buffer wireless downlink.

We started by showing the optimality of a polynomial-

time iterative algorithm for finding partitions, and adapted

it for various wireless communication models. We showed

the separability of the optimal buffer partitioning and user

scheduling or channel assignment problems under several

simple models.

For optimum throughput on a time-varying mul-

tiuser wireless channel, opportunistic communication is

necessary- that is, one must take advantage of times at which

groups of users experience high channel gain, by send-

ing at high rate to those users. In order for such channel

scheduling to be effective, one needs to have a sufficient

supply of packets belonging to the selected group of users,

hence preventing starvation of queues crucial under realis-

tic finite-buffer constraints. We have observed that under

unbalanced or bursty load, a shared queue can lead to star-

vation, whereas partitioning buffers according to the arrival

and service statistics is effective in keeping high throughput.

A throughput-maximizing algorithm under finite buffers for

a time-varying multiuser channel is not known, however, we

have observed from detailed simulations that optimal parti-

tioning coupled with simple channel-aware scheduling has

similar performance to MaxWeight with equal partitioning,

which is the best available benchmark to our knowledge. We

conclude that these results encourage further study of opti-

mal scheduling for multiuser wireless channels under finite

buffer constraints, as well as low complexity practical ap-

proaches such as buffer partitioning.

6. APPENDIX

6.1 Proof of Theorem 2

Proof. Let Z = maxx∈S {α1 f2(x2)+α2 f1(x1)}, x∗ = (x∗
1
, x∗

2
) =

arg maxx∈S {α1 f2(x2) + α2 f1(x1)}. It is enough to show that

there exists some (x∗∗
1
, x∗∗

2
) ∈ S such that α1 f1(x∗∗

1
) +

α2 f2(x∗∗
2

) > Z. To show this, we will consider two cases:

1: Assume f1(x∗
1
) ≥ f2(x∗

2
). Then setting x∗∗

1
= x∗

1
and x∗∗

2
=

x∗
2

and exchanging the channels, α1 f1(x∗∗
1

) + α2 f2(x∗∗
2

) > Z.

2:Assume now f1(x∗
1
) < f2(x∗

2
). Let’s exchange the chan-

nels and define x∗∗∗
1
= f −1

1
( f2(x∗

2
)) and x∗∗∗

2
= f −1

2
( f1(x∗

1
)).

Note that by definition we have α1 f1(x∗∗∗
1

) + α2 f2(x∗∗∗
2

) =

Z. The same throughput is achieved with total buffer

X∗∗∗ = f −1
1

( f2(x∗
2
)) + f −1

2
( f1(x∗

1
)). In the previous allo-

cation, total buffer was X∗ = x∗
1
+ x∗

2
= f −1

1
( f1(x∗

1
)) +

f −1
2

( f2(x∗
2
)). Because of the monotone disuniting prop-

erty (and for f1(x∗
1
) < f2(x∗

2
)), we have f −1

2
( f2(x∗

2
)) −

f −1
1

( f2(x∗
2
)) > f −1

2
( f1(x∗

1
)) − f −1

1
( f1(x∗

1
)). After rearranging

we get, f −1
2

( f2(x∗
2
))+ f −1

1
( f1(x∗

1
)) > f −1

2
( f1(x∗

1
))+ f −1

1
( f2(x∗

2
)).

This means that X∗∗∗ < X∗. The same throughput is achieved

with smaller buffer memory. Hence, there exists some allo-

cation (x∗∗
1
, x∗∗

2
) ∈ S such that α1 f1(x∗∗

1
) + α2 f2(x∗∗

2
) > Z.

Now, assume arguments of f1 and f2 are restricted to

integers. We can let the optimization be performed over in-

tegers. Then, the steps in the proof can be applied the same

way in general. But there is an exceptional case in which

monotone inverse disuniting property may not be sufficient.

Let f −1
1

( f2(x∗
2
)) = I1+d1 and f −1

2
( f1(x∗

1
)) = I2+d2 such that Ii

and di for i = 1, 2 are integer and fractional parts of the cor-

responding numbers. If d1 < 0.5, d2 > 0.5, I1+I2 = B−1 and

d1 + d2 < 1, then a resource of amount 1− (d1 + d2) is avail-

able but integer arguments can not be obtained by adding

that amount. So, one has to decrease one of the arguments

and increase the other. Adding the remaining fractional re-

source by decreasing one of the arguments and increasing

the other may not yield better total throughput.

6.2 Proof of Lemma 1

Proof. The derivative w.r.t. m is
−ρm+1(1−ρ) ln ρ

(1−ρm+1)2 , which is al-

ways positive. The derivative w.r.t. ρ is
1+mρm+1−(m+1)ρm

(1−ρm+1)2 ,

which is also greater than zero (The nominator of the deriva-

tive is a convex function with minimum of zero). Therefore

the first condition is satisfied.

As for the second condition, after some rearrangement,

we get f −1
i

(y) =
ln

(

ρi−y

ρi(1−y)

)

ln ρi
. Let’s define F21(y) = f −1

2
(y) −

f −1
1

(y).

F21(y) =
ln

(

ρ2−y

ρ2(1−y)

)

ln ρ2

−
ln

(

ρ1−y

ρ1(1−y)

)

ln ρ1

(21)

F′21(y) = (
1

ρ1 − y
)

1

ln ρ1

−(
1

1 − y
)

1

ln ρ1

−(
1

ρ2 − y
)

1

ln ρ2

+(
1

1 − y
)

Collecting common terms once more, we get,

F′21(y) =
1

ln ρ2

(

ρ2 − 1

(ρ2 − y)(1 − y)

)

+
1

ln ρ1

(

ρ1 − 1

(ρ1 − y)(1 − y)

)

(23)

We know that y < 1 and y < ρ1, ρ2, therefore we need to

check for the positivity of the terms
ρi−1

ln ρi
, i = 1, 2. For both

of the cases ρi > 1 and ρi < 1, it is positive therefore the

inverse difference function F21(y) is increasing in y. Hence,

the pair of functions are monotone inverse disuniting.
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