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Abstract

A minimal requirement on allocative efficiency in the social sciences is Pareto
optimality. In this paper, we identify a close structural connection between
Pareto optimality and perfection that has various algorithmic consequences for
coalition formation. Based on this insight, we formulate the Preference Re-
finement Algorithm (PRA) which computes an individually rational and Pareto
optimal outcome in hedonic coalition formation games or any other discrete al-
location setting. Our approach also leads to various results for specific classes
of hedonic games. In particular, we show that computing and verifying Pareto
optimal partitions in general hedonic games, anonymous games, three-cyclic
games, room-roommate games and B-hedonic games is intractable while both
problems are tractable for roommate games, W-hedonic games, and house allo-
cation with existing tenants.
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1. Introduction

Ever since the publication of von Neumann and Morgenstern’s Theory of
Games and Economic Behavior in 1944, coalitions have played a central role
within game theory. The crucial questions in coalitional game theory are which
coalitions can be expected to form and how the members of coalitions should
divide the proceeds of their cooperation. Traditionally the focus has been on
the latter issue, which led to the formulation and analysis of concepts such as
the core, the Shapley value, or the bargaining set. Which coalitions are likely
to form is commonly assumed to be settled exogenously, either by explicitly
specifying the coalition structure, a partition of the players in disjoint coalitions,
or, implicitly, by assuming that larger coalitions can invariably guarantee better
outcomes to its members than smaller ones and that, as a consequence, the grand
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coalition of all players will eventually form. The two questions, however, are
clearly interdependent: the individual players’ payoffs depend on the coalitions
that form just as much as the formation of coalitions depends on how the payoffs
are distributed.

Coalition formation games, which were first formalized by Drèze and
Greenberg [15], model coalition formation in settings in which utility is non-
transferable. In many such situations it is natural to assume that a player’s
appreciation of a coalition structure only depends on the coalition he is a mem-
ber of and not on how the remaining players are grouped. Initiated by Banerjee
et al. [7] and Bogomolnaia and Jackson [9], much of the work on coalition forma-
tion now concentrates on these so-called hedonic games. In this paper, we focus
on Pareto optimality and individual rationality in this rich class of coalition
formation games.

The main question in coalition formation games is which coalitions one may
reasonably expect to form. To get a proper formal grasp of this issue, a number
of stability concepts have been proposed for hedonic games—such as the core or
Nash stability—and much research concentrates on conditions for existence, the
structure, and computation of stable and efficient partitions. Pareto optimal-
ity—which holds if no coalition structure is strictly better for some player with-
out being strictly worse for another—and individual rationality—which holds if
every player is satisfied in the sense that no player would rather be on his own—
are commonly considered minimal requirements for any reasonable partition.1

Another reason to investigate Pareto optimal partitions algorithmically is
that, in contrast to other stability concepts like the core, they are guaranteed
to exist. This even holds if we additionally require individual rationality. More-
over, even though the Gale-Shapley algorithm returns a core stable matching
for marriage games, it is already NP-hard to check whether the core is empty
in almost any generalization, such as roommate games [24], general hedonic
games [6], and games with B- and W -preferences [12, 13]. Interestingly, when
the status-quo partition cannot be changed without the mutual consent of all
players, Pareto optimality can be seen as a stability notion [22].

When, there are indifferences in the preferences, a core stable outcome is not
necessarily Pareto optimal. Thus, Pareto optimality can serve as a refinement
of core stable outcomes. An outcome which is Pareto optimal and a Pareto
improvement over a core stable outcome is called Pareto-stable. This notion
further motivates the need for algorithms to compute Pareto improvements of
given outcomes. Sotomayor and Özak [29] note that “the study of the discrete
two-sided matching models with non-necessarily strict preferences and the search
for algorithms to produce the Pareto-stable matchings is a new and interesting
line of investigation.”

1For example, in the context of TU coalitional games, Aumann [5] states that “the re-
quirement that a feasible outcome y be undominated via one-person coalitions (individual
rationality) and via the all-person coalition (efficiency or Pareto optimality) is thus quite
compelling”. His point can easily be seen to extend to hedonic games as well.
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We investigate both the problem of finding a Pareto optimal and individ-
ually rational partition and the problem of deciding whether a given partition
is Pareto optimal. In particular, our results concern general hedonic games, B-
hedonic and W-hedonic games (two classes of games in which each player’s pref-
erences over coalitions are based on his most preferred and least preferred player
in his coalition, respectively), roommate games, house allocation with existing
tenants, three-cyclic games, room-roommate games, and anonymous games.

Many of our results, both positive and negative, rely on the concept of per-
fection and how it relates to Pareto optimality. A perfect partition is one that
is most desirable for every player. We find (a) that under extremely mild condi-
tions, NP-hardness of finding a perfect partition implies NP-hardness of finding
a Pareto optimal partition (Lemma 1), and (b) that under stronger but equally
well-specified circumstances, feasibility of finding a perfect partition implies fea-
sibility of finding a Pareto optimal partition (Lemma 2). The latter we show
via a Turing reduction to the problem of computing a perfect partition. At the
heart of this algorithm, which we refer to as the Preference Refinement Algo-
rithm (PRA), lies a fundamental insight of how perfection and Pareto optimality
are related. It turns out that a partition is Pareto optimal for a particular pref-
erence profile if and only if the partition is perfect for another but related profile
(Theorem 1). In this way PRA is also applicable to any other discrete allocation
setting.

For general allocation problems, serial dictatorship—which subsequently
chooses the most preferred allocation for a player given a fixed ranking of all
players—is well-established as a procedure for finding Pareto optimal solutions
[see, e.g., 1]. However, it is only guaranteed to do so if the players’ preferences
over outcomes are strict, which is not feasible in many compact representations.
Moreover, when applied to coalition formation games, there can be Pareto opti-
mal partitions that serial dictatorship is unable to find, which may have serious
repercussions if also other considerations, like fairness, are taken into account.
By contrast, PRA handles weak preferences well and is complete in the sense
that it may return any Pareto optimal partition, provided that the subroutine
that computes perfect partitions can compute any perfect partition (Theorem 3).

2. Preliminaries

In this section, we review the terminology and notation used in this paper.

Hedonic games. Let N be a set of n players. A coalition is any non-empty
subset of N . By Ni we denote the set of coalitions player i belongs to, i.e.,
Ni = {S ⊆ N : i ∈ S}. A coalition structure, or simply a partition, is a
partition π of the players N into coalitions, where π(i) is the coalition player i
belongs to.

A hedonic game is a pair (N,R), where R = (R1, . . . , Rn) is a preference
profile specifying the preferences of each player i as a binary, complete, reflexive,
and transitive preference relation Ri over Ni. If Ri is also anti-symmetric we
say that i’s preferences are strict. We adopt the conventions of social choice
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theory by writing S Pi T if S Ri T but not T Ri S—i.e., if i strictly prefers S
to T—and S Ii T if both S Ri T and T Ri S—i.e., if i is indifferent between S
and T .

For a player i, a coalition S in Ni is acceptable if for i being in S is at least
preferable as being alone—i.e., if S Ri {i}—and unacceptable otherwise.

In a similar fashion, for X a subset of Ni, a coalition S in X is said to be
most preferred in X by i if S Ri T for all T ∈ X and least preferred in X by i if
T Ri S for all T ∈ X. In case X = Ni we generally omit the reference to X. The
sets of most and least preferred coalitions in X by i, we denote by maxRi

(X)
and minRi

(X), respectively.
In hedonic games, players are only interested in the coalition they are in.

Accordingly, preferences over coalitions naturally extend to preferences over
partitions and we write π Ri π

′ if π(i)Ri π
′(i). We also say that partition π is

acceptable or unacceptable to a player i according to whether π(i) is accept-
able or unacceptable to i, respectively. Moreover, π is individually rational
if π is acceptable to all players. If there is a pre-existing individually rational
partition π∗, then a mechanism returning a partition π is individually rational
if π(i)Ri π

∗(i) for all i ∈ N .
Given a preference profile R, partition π Pareto dominates another par-

tition π′ if π Rj π
′ for all players j and π′ Pi π for at least one player i. A

partition π is Pareto optimal for R if there is no partition π′ that Pareto dom-
inates it given R. Partition π is, moreover, said to be weakly Pareto optimal
for Ri if there is no π′ with π′ Pi π for all players i.

Classes of hedonic games. The number of potential coalitions grows exponen-
tially in the number of players. In this sense, hedonic games are relatively large
objects and for algorithmic purposes it is often useful to look at classes of games
that allow for concise representations (see Figure 1 for a schematic overview of
the logical interrelationships between the different classes).

For general hedonic games, we will assume that each player expresses his
preferences only over his acceptable coalitions. This representation is also known
as Representation by Individually Rational Lists of Coalitions (RIRLC ) [6].

We now describe classes of hedonic games in which the players’ preferences
over coalitions are induced by their preferences over the other players. For Ri

such preferences of player i over players, we say that a player j is acceptable to i
if j Ri i and unacceptable otherwise. Any coalition containing an unacceptable
player is unacceptable to player i.

B-hedonic and W-hedonic games. For a subset J of players, we denote by
maxRi(J) and minRi(J) the sets of the most and least preferred players in J by i,
respectively. We will assume that maxRi

(∅) = minRi
(∅) = {i}. In a B-hedonic

game the preferences Ri of a player i over players extend to preferences over
coalitions in such a way that, for all coalitions S and T in Ni, we have S Ri T
if and only if either some player in T is unacceptable to i or all players in S are
acceptable to i and j Ri k for all j ∈ maxRi(S \ {i}) and k ∈ maxRi(T \ {i}).
Analogously, in a W-hedonic game (N,R), we have S Ri T if and only if either
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some player in T is unacceptable to i or j Ri k for all j ∈ minRi(S \ {i}) and
k ∈ minRi(T \ {i}).2

Roommate games. The class of roommate games, which are well-known
from the literature on matching theory, can be defined as those hedonic games
in which only coalitions of size one or two are acceptable and preferences Ri

over other players are extended naturally over preferences over coalitions in the
following way: {i, j}Ri{i, k} if and only if j Ri k for all j, k ∈ N .

Marriage games. A marriage game is a roommate game in which the set N
of players can be partitioned into two sets male and female and a player finds
a member of the same sex unacceptable. Moreover, marriage games can also be
seen as B-hedonic or W-hedonic games in which for each player all other players
of the same sex are unacceptable.

Anonymous hedonic games. Anonymous games are a subclass of hedonic
games in which a player’s preferences over coalitions only depends on the coali-
tion sizes.

Three-cyclic games. A three-cyclic game is a hedonic game in which the
set of players is divided into men, women, and dogs and only kind of accept-
able coalitions are man-woman-dog triplets. Furthermore, men only care about
women, women only care about dogs and dogs only care about men.

Room-roommate games. Room-rooommate games are hedonic games in
which the set of players is partitioned into a set A of rooms and a set T of
tenants, the rooms are completely indifferent among all outcomes, and for each
tenant i ∈ T the only coalitions other than {i} that are acceptable are among
{{i, j, r} : i, j ∈ T and r ∈ A}.

Exchange economies of discrete goods. An exchange economy of discrete
goods consists of agents and discrete goods such that agents have complete
preferences over bundles of goods. Special cases include house allocation and
housing markets in which each agent can be allocated at most one good. Ex-
change economies of discrete goods are special cases of the general hedonic games
in which the goods can be treated as agents which are completely indifferent
between outcomes.

Computational Complexity. We will assume familiarity with fundamental
concepts in computational complexity: exponential time, polynomial time,
polynomial-time reductions, worst-case time complexity analysis of an algo-
rithm, NP-, and coNP-completeness. For an accessible overview of these con-
cepts addressed at economists, we refer the reader to the excellent introduction
by Roughgarden [26]. Another short description of these concepts can be found
in Section 1.1 of [6].

2W-hedonic games are equivalent to hedonic games with W-preferences if individually ra-
tional outcomes are assumed. Unlike hedonic games with B-preferences, B-hedonic games
are defined in analogy to W-hedonic games and the preferences are not based on coalition
sizes [cf. 12].
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Figure 1: Classes of hedonic games: the classes within the grey area admit polynomial-time
algorithms to compute and verify Pareto optimal partitions.

3. Perfection and Pareto Optimality

Pareto optimality constitutes a rather minimal efficiency requirement on
partitions. A much stronger condition is that of perfection. We say that a
partition π is perfect if π(i) is a most preferred coalition for all players i. Thus,
every perfect partition is Pareto optimal but not necessarily the other way round.
Perfect partitions are obviously very desirable, but, in contrast to Pareto optimal
ones, they are unfortunately not guaranteed to exist. Nevertheless, there exists
a strong structural connection between the two concepts, which we exploit in
our algorithm for finding Pareto optimal partitions in Section 4.

The problem of finding a perfect partition (PerfectPartition) we formally
specify as follows.

PerfectPartition

Instance: A preference profile R
Question: Find a perfect partition for R.

If no perfect partition exists, output ∅.

We will later see that the complexity of PerfectPartition depends on the
specific class of hedonic games that is being considered. By contrast, the related
problem of checking whether a partition is perfect is an almost trivial problem
for virtually all reasonable classes of games. If perfect partitions exist, they
clearly coincide with the Pareto optimal ones. Hence, an oracle to compute a
Pareto optimal partition can be used to solve PerfectPartition. If this Pareto
optimal partition is perfect we are done, if it is not, no perfect partitions exist.
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Thus, we obtain the following lemma, which we will invoke in our hardness
proofs for computing Pareto optimal partitions.

Lemma 1. For every class of hedonic games for which it can be checked
in polynomial time whether a given partition is perfect, NP-hardness of
PerfectPartition implies NP-hardness of computing a Pareto optimal parti-
tion.

It might be less obvious that a procedure solving PerfectPartition can also
be deployed as an oracle for an algorithm to compute Pareto optimal partitions.
To do so, we first give a characterization of Pareto optimal partitions in terms
of perfect partitions, which forms the mathematical heart of the Preference
Refinement Algorithm to be presented in the next section.

The connection between perfection and Pareto optimality can intuitively
be explained as follows. If all players are indifferent among all coalitions, every
partition is perfect. It follows that the players can always relax their preferences
up to a point where perfect partitions are possible. We find that, if a partition is
perfect for a minimally relaxed preference profile—in the sense that, if any one
player relaxes his preferences only slightly less, no perfect partition is possible
anymore—, this partition is Pareto optimal for the original unrelaxed preference
profile. To see this, assume π is perfect in some minimally relaxed preference
profile and that some player i reasserts some strict preferences he had previously
relaxed, thus rendering π no longer perfect. Now, π does not rank among i’s
most preferred partitions anymore. By assumption, none of i’s most preferred
partitions is also most preferred by all other players. Hence, it is impossible to
find a partition π′ that is better for i than π, without some other player strictly
preferring π to π′. It follows that π is Pareto optimal.

To make this argumentation precise, we introduce the concept of a coars-
ening of a preference profile and the lattices these coarsenings define. Let
R = (R1, . . . , Rn) and R′ = (R′1, . . . , R

′
n) be preference profiles over a set X

and let i be a player. We write Ri ≤i R
′
i if

Ri|{x,y} = R′i|{x,y} for all x ∈ X and all y ∈ X \maxRi(X).

Accordingly, Ri is exactly like R′i, except that in R′i player i may have strict
preferences among some of his most preferred coalitions in Ri. Thus, R′i is finer
than Ri. It can easily be established that ≤i is a linear order for each player i.

We say that a preference profile R = (R1, . . . , Rn) is a coarsening of or
coarsens another preference profile R′ = (R′1, . . . , R

′
n) whenever Ri ≤i R

′
i for

every player i. In that case we also say that R′ refines R and write R ≤ R′.
Moreover, we write R<R′ if R≤R′ but not R′≤R. Thus, if R′ refines R, i.e., if
R ≤ R′, then for each i and all coalitions S and T we have that S R′i T implies
S Ri T , but not necessarily the other way round. It is worth observing that, if a
partition is perfect for some preference profile R, then it is also perfect for any
coarsening of R. The same holds for Pareto optimal partitions.

For preference profiles R and R′ with R ≤ R′, let [R,R′] denote the set
{R′′ : R ≤ R′′ ≤ R′}, i.e., the set of all coarsenings of R′ that also refine R.
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1: (2 , 3 , 1)
R⊥ : 2 : (1 , 2 , 3)

3: (2 , 3 ‖ 1) 3

1: (2 , 3 | 1)
2: (1 , 2 , 3)
3: (2 , 3 ‖ 1) 3

1: (2 , 3 , 1)
2: (1 | 2 , 3)
3: (2 , 3 ‖ 1) 3

1: (2 , 3 , 1)
R : 2 : (1 , 2 , 3)

3: (2 | 3 ‖ 1) 3

1: (2 , 3 | 1)
2: (1 | 2 , 3)
3: (2 , 3 ‖ 1) 3

1: (2 , 3 | 1)
2: (1 , 2 , 3)
3: (2 | 3 ‖ 1) 7

1: (2 , 3 , 1)
2: (1 | 2 , 3)
3: (2 | 3 ‖ 1) 7

1: (2 , 3 | 1)
R> : 2 : (1 | 2 , 3)

3: (2 | 3 ‖ 1) 7

Figure 2: Lattice ([R>, R⊥],≤) for the W-hedonic games (N,R>) and (N,R⊥) where
N = {1, 2, 3}. For better readability, we denote indifference Ii by a comma, strict prefer-
ences Pi by a vertical bar, and unacceptability by a double bar. Thus, e.g., R>3 represents
the W-preferences of player 3 over coalitions such that {2, 3}P>3 {3}P>3 {1, 2, 3} I>3 {1, 3}. A
checkmark indicates that a perfect partition exists for the respective preference profile, a cross
that this is not the case. Thus, we find that partition {{1}, {2, 3}} is perfect for preference
profile R. Moreover, for preference profiles R′ with R < R′ ≤ R>, no perfect partitions exist.
By virtue of Theorem 1, we may conclude that {{1}, {2, 3}} is Pareto optimal for R>.

([R,R′],≤) is a complete lattice with R and R′ as bottom and top element,
respectively (see Figure 2 for an example). We say that R covers R′ if R is a
minimal refinement of R′ with R′ 6= R, i.e., if R′ < R and there is no R′′ such
that R′ < R′′ < R. Observe that, if R covers R′, R and R′ coincide for all but
one player, say i, for whom Ri is the unique minimal refinement of R′i such that
R′i 6= Ri. We also denote Ri by Cover(R′i).

We are now in a position to prove the following theorem, which characterizes
Pareto optimal partitions for a preference profile R as those that are perfect for
coarsenings R′ of R such that for no preference profile R′′ with R′ < R′′ ≤ R
perfect partitions exist. Figure 2 provides an example that illustrates Theo-
rem 1.

Theorem 1. Let (N,R>) and (N,R⊥) be hedonic games such that R⊥ ≤ R>

and π a perfect partition for R⊥. Then, π is Pareto optimal for R> if and only
if there is some R ∈ [R⊥, R>] such that

(i) π is perfect for R, and

(ii) no partition is perfect for any R′ with R < R′ ≤ R>.

Proof. For the if-direction, assume there is some R ∈ [R⊥, R>] such that π
is perfect for R and there is no perfect partition for any R′ ∈ [R⊥, R>] with
R ≤ R′. For contradiction, also assume π is not Pareto optimal for R>. Then,
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there is some π′ such that π′R>j π for all j and π′ P>i π for some i. By R ≤
R> and π being perfect for R, it follows that π′ is a perfect partition for R
as well. Hence, π′ Ii π. Let R′i = R>i ∪ {(X,Y ) : X R>i π

′ and Y R>i π
′} and

R′ = (R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rn). Observe that π′ is perfect for R′ but, as

π′ P ′i π, π is not. It can moreover easily be checked that R < R′ ≤ R>, and a
contradiction follows.

For the only-if direction assume that π is Pareto optimal for R>. Let R be
the finest coarsening of R> in [R>, R⊥] for which π is perfect. Observe that R =
(R1, . . . , Rn) can be defined such that Ri = R>i ∪{(X,Y ) :X R>i π and Y R>i π}
for all i. Since π is perfect for R⊥, we have R⊥ ≤ R. If R = R>, we are done
immediately. Otherwise, consider an arbitrary R′ ∈ [R⊥, R>] with R < R′ and
assume for contradiction that some perfect partition π′ exists for R′. Then, in
particular, π′R′j π for all j. As R ≤ R′, it follows that π′ is also perfect for R

and, by choice of R as the finest coarsening of R> for which π is perfect, π′R>j π

for no j, i.e., π R>j π
′ for all j. Also by choice of π and R < R′, however, π is

not perfect for R′. Hence, π′ P ′i π and thus π′ P>i π for some i. This, however,
contradicts that π is Pareto optimal for R>.

4. The Preference Refinement Algorithm (PRA)

In this section, we present the Preference Refinement Algorithm (PRA), a
general algorithm to compute Pareto optimal and individually rational parti-
tions. We prove that the algorithm satisfies a number of desirable properties
and show compare it to serial dictatorship.

4.1. Formal Description of the Preference Refinement Algorithm

The Preference Refinement Algorithm (PRA) invokes an oracle solving the
problem PerfectPartition and is based on the formal connection between
Pareto optimality and perfection made explicit in Theorem 1.

The idea underlying the algorithm is as follows. To compute a Pareto op-
timal and individually rational partition for a hedonic game (N,R), first find
that coarsening R′ of R in which each player is indifferent among all his accept-
able coalitions and his preferences among unacceptable coalitions are as in R.
In this coarsening, a perfect and individually rational partition is guaranteed
to exist. Then, we search the lattice ([R′, R],≤) for a preference profile that
allows for a perfect partition but none of the profiles refining it do. By virtue of
Theorem 1, every perfect partition for such a preference profile will be a Pareto
optimal partition for R. By only refining the preferences of one player at a time,
we can use divide-and-conquer to conduct the search, thus achieving efficiency
for a number of classes of hedonic games. By employing different search tech-
niques, other desirable properties—such as completeness, egalitarian fairness,
or strategyproofness—can be attained.

A formal specification of PRA is given in Algorithm 1, where Choose({j ∈ N :
Q⊥j 6= Q>j }) returns a player in the set {j ∈ N :Q⊥j 6= Q>j } and Refine(Q⊥i , Q

>
i )

a refinement Q′i with Q⊥i < Q′i ≤ Q>i . A run of PRA is depicted in Figure 3.
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Algorithm 1 Preference Refinement Algorithm (PRA)

Input: Hedonic game (N,R)
Output: Pareto optimal and individually rational partition

1 Q>i ← Ri, for each i ∈ N
2 Q⊥i ← Ri ∪ {(X,Y ) :X Ri {i} and Y Ri {i}}, for each i ∈ N
3 while Q⊥i 6= Q>i for some i ∈ N do
4 i← Choose({j ∈ N :Q⊥j 6= Q>j })
5 Q′i ← Refine(Q⊥i , Q

>
i )

6 if PerfectPartition(N, (Q⊥1 , . . . , Q
⊥
i−1, Q

′
i, Q
⊥
i+1, . . . , Q

⊥
n )) = ∅ then

7 Q>i ← Q′′i where Cover(Q′′i ) = Q′i
8 else
9 Q⊥i ← Q′i

10 end if
11 end while
12 return PerfectPartition(N,Q⊥)

The exact definition of the procedures Choose and Refine may vary, giving rise
to multiple possible settings.3 Still, for every setting, PRA will be sound in
the sense that it invariably returns a Pareto optimal and individually rational
partition for the hedonic game it gets as input. This result is captured by the
following theorem.

Theorem 2. For every hedonic game (N,R), PRA returns an individually
rational and Pareto optimal partition.

Proof. Observe that in the course of running PRA two preference profiles Q>

and Q⊥ are updated. Below we show that

(a) for every assignment of Q⊥ a perfect partition exists,

(b) PRA terminates, and

(c) that at termination there is no preference profile R′ with Q⊥ < R′ ≤ R
for which a perfect partition exists.

PRA then outputs a perfect partition for the final assignment of Q⊥, which, by
virtue of Theorem 1, is Pareto optimal for R.

To see that (a) holds, observe that in steps 1 and 2, Q> and Q⊥ are initial-
ized. For each i ∈ N , Q>i is set to Ri and Q⊥i is set to the finest coarsening
of Ri in which i is indifferent between all coalitions that are acceptable in Ri.
Observe that for this first assignment the singleton partition {{i} : i ∈ N} is
perfect for Q⊥. Due to the condition in step 6, moreover, Q⊥ is only updated to
preference profiles (step 9) for which a perfect partitions exist. This proves (a).

3Thus, PRA is not a single algorithm but rather a class of algorithms. We will slightly
abuse terminology and speak of PRA and subclasses of PRA as single algorithms and implicitly
quantify over the different settings.
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1: (2 , 3 , 1)
Q⊥ : 2 : (1 , 2 , 3)

3: (2 , 3 ‖ 1) 3

1: (2 , 3 | 1)
2: (1 , 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 , 1)
2: (1 | 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 , 1)
2: (1 , 2 , 3)

Q′3 : 3 : (2 | 3 ‖ 1) 3

1: (2 , 3 | 1)
2: (1 | 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 | 1)
2: (1 , 2 , 3)
3: (2 | 3 ‖ 1)

1: (2 , 3 , 1)
2: (1 | 2 , 3)
3: (2 | 3 ‖ 1)

1: (2 , 3 | 1)
R> = Q> : 2 : (1 | 2 , 3)

3: (2 | 3 ‖ 1)

(initial assignment)

1: (2 , 3 , 1)
2: (1 , 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 | 1)
2: (1 , 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 , 1)
2: (1 | 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 , 1)
Q⊥ : 2 : (1 , 2 , 3)

3: (2 | 3 ‖ 1) 3

1: (2 , 3 | 1)
2: (1 | 2 , 3)
3: (2 , 3 ‖ 1)

Q′1 : 1 : (2 , 3 | 1)
2: (1 , 2 , 3)
3: (2 | 3 ‖ 1) 7

1: (2 , 3 , 1)
2: (1 | 2 , 3)
3: (2 | 3 ‖ 1)

1: (2 , 3 | 1)
Q> : 2 : (1 | 2 , 3)

3: (2 | 3 ‖ 1)

(second assignment)

1: (2 , 3 , 1)
2: (1 , 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 | 1)
2: (1 , 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 , 1)
2: (1 | 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 , 1)
Q⊥ : 2 : (1 , 2 , 3)

3: (2 | 3 ‖ 1) 3

1: (2 , 3 | 1)
2: (1 | 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 | 1)
2: (1 , 2 , 3)
3: (2 | 3 ‖ 1)

Q> : 1 : (2 , 3 , 1)
Q′2 : 2 : (1 | 2 , 3)

3: (2 | 3 ‖ 1) 7

1: (2 , 3 | 1)
2: (1 | 2 , 3)
3: (2 | 3 ‖ 1)

(third assignment)

1: (2 , 3 , 1)
2: (1 , 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 | 1)
2: (1 , 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 , 1)
2: (1 | 2 , 3)
3: (2 , 3 ‖ 1)

Q> : 1 : (2 , 3 , 1)
Q⊥ : 2 : (1 , 2 , 3)

3: (2 | 3 ‖ 1) 3

1: (2 , 3 | 1)
2: (1 | 2 , 3)
3: (2 , 3 ‖ 1)

1: (2 , 3 | 1)
2: (1 , 2 , 3)
3: (2 | 3 ‖ 1)

1: (2 , 3 , 1)
2: (1 | 2 , 3)
3: (2 | 3 ‖ 1)

1: (2 , 3 | 1)
2: (1 | 2 , 3)
3: (2 | 3 ‖ 1)

(final assignment)

Figure 3: A run of the Preference Refinement Algorithm (any setting) for the W-hedonic game
(N,R>) as in Figure 2. As before, we denote indifference Ii by a comma, strict preferences Pi

by a vertical bar, and unacceptability by a double bar. The figure depicts the subsequent pref-
erence profiles assigned to Q> and Q⊥. For each for these we have Q′i denote Refine(Q>i , Q

⊥
i ).

A cross indicates that PerfectPartition(Q⊥1 , . . . , Q
⊥
i−1, Q

′
i, Q
⊥
i+1, . . . , Q

⊥
n ) = ∅ and a check-

mark that this is not the case. In this particular example Choose subsequently selects play-
ers 3, 1, and 2. At termination Q>i = Q⊥i for each player i and PRA outputs a perfect

partition in PerfectPartition(Q⊥). In this case, this is {{1}, {2, 3}}, which is Pareto opti-
mal for (N,R>).

For (b), observe that in each iteration of the while-loop a preference profile
in [Q⊥, Q>] is inspected and either Q> is (strictly) coarsened (step 7) or Q⊥

(strictly) refined. Hence, after a finite number of steps, Q⊥i = Q>i for all players i
and the condition of the while-loop is falsified (step 3). The algorithm then
terminates one step later, which proves (b).

Finally, assume for contradiction that (c) does not hold for the final assign-
ment of Q⊥. As at termination Q⊥ = Q>, it follows that there is some R′

with Q> < R′ ≤ R for which there is a perfect partition. Obviously, for
the initial assignment R of Q>, there is no R′ with Q> < R′ ≤ R, let alone
one for which a perfect partition exists. Let Q∗ and Q∗∗ be the last assign-
ments of Q⊥ and Q>, respectively, with the property that there is no R′ with
Q∗∗ < R′ ≤ R that also allows for a perfect partition. Then, in the next iter-
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ation of the while-loop, the condition of the if-clause in step 6 is satisfied i.e.,
for the player i chosen in step 4 and Q′i selected in step 5, no perfect parti-
tion for (Q∗∗1 , . . . , Q

∗∗
i−1, Q

′
i, Q
∗∗
i+1, . . . , Q

∗∗
n ) exists. (If this were not the case, Q⊥

would be updated in step 9 and Q∗ and Q∗∗ are not the last assignments of Q⊥

and Q> with the above property.) As can easily be appreciated, then no perfect
partition exists for any R′ with (Q∗∗1 , . . . , Q

∗∗
i−1, Q

′
i, Q
∗∗
i+1, . . . , Q

∗∗
n ) ≤ R′ ≤ R

either. Let Q′i cover Q′′i . By linearity of the refinement relation on indi-
vidual preferences, Q′′i is unique. Hence, the next assignment of Q> equals
(Q∗∗1 , . . . , Q

∗∗
i−1, Q

′′
i , Q

∗∗
i+1, . . . , Q

∗∗
n ) (step 7). It moreover follows that there is no

perfect partition for any R′ with (Q∗∗1 , . . . , Q
∗∗
i−1, Q

′′
i , Q

∗∗
i+1, . . . , Q

∗∗
n ) < R′ ≤ R.

Hence, Q∗∗ was not the last assignment of Q> with this property, a contradic-
tion.

In other respects, however, the behavior of PRA may depend on the specific
settings of Choose and Refine. Among the many possibilities, we distinguish
the following types of setting.

• Divide-and-conquer (PRADC ). Choose is defined arbitrarily. Refine is
specified such that the number of refinements from Q⊥i to Refine(Q⊥i , Q

>
i )

is the smallest integer larger than half the number of refinements from Q⊥i
to Q>i . For the remainder of the paper, we assume PRADC to be the
default setting of PRA and frequently omit the subscript when the context
is clear.

• Serial dictatorship (PRASD). Choose selects players according to a fixed
order of the players and Refine returns a player’s finest preference rela-
tion, i.e., generally Refine(Q⊥i , Q

>
i ) = Q>i .

• Conservative (PRACons). Choose selects players non-deterministically
and Refine is defined such that Refine(Q⊥i , Q

>
i ) = Cover(Q⊥i ).

• Egalitarian (PRAEgal). Choose selects a player that has been selected the
fewest number of times during the execution or PRA. Refine is defined
such that Refine(Q⊥i , Q

>
i ) = Cover(Q⊥i ).

Completeness—in the sense that for every individually rational and Pareto
optimal partition π of a hedonic game (N,R), there is an execution of PRA
that returns π on input (N,R)—cannot be achieved for all settings of Choose
and Refine. However, for PRACons , which proceeds cautiously by refining
preferences only minimally in each iteration, we have the following result.

Theorem 3. For every hedonic game (N,R) and every partition π that is in-
dividually rational and Pareto optimal for R, there is an execution of PRACons

on input (N,R) that returns a partition π′ such that π Ii π
′ for all i in N .

Proof. By virtue of Theorem 1, for each Pareto optimal and individually rational
partition π for a preference profile R there is some coarsening Q∗ of R where π
is perfect and no perfect partitions exist for any R′ with Q∗ < R′ ≤ R. By indi-
vidual rationality of π, it follows that Q∗ is a refinement of the initial assignment
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of Q⊥. Observe that perfect partitions exist for all R′′ with Q⊥ ≤ R′′ ≤ R∗.
Hence, if Choose selects the appropriate players an appropriate number of times,
the final assignment of Q⊥ is Q∗. It follows that the perfect partition π′ returned
by PerfectPartition on input (N,Q∗), and therewith eventually by PRACons ,
is such that π Ii π

′ for all i in N .

Whether PRA runs in polynomial time depends on a number of factors,
in particular on whether the various subroutines Choose, Refine, Cover, and
PerfectPartition as well as the initial assignment to Q⊥ can be executed
efficiently. Among these tractability of PerfectPartition is the most crucial
and usually the least trivial to prove. The polynomial-time computability of the
other routines can easily be appreciated to hold for all the classes of hedonic
games considered in this paper. The best computational results are achieved
by PRADC , the divide-and-conquer setting of PRA.

Lemma 2. For any class of hedonic games for which any coarsening and
PerfectPartition can be computed in polynomial time, PRADC runs in poly-
nomial time.

Furthermore, if for any given preference profile R and partition π, the coars-
ening Q⊥ of R such that Q⊥i = Ri ∪ {(X,Y ) : X Ri π(i) and Y Ri π(i)} can be
computed in polynomial time, then the it can also be verified in polynomial time
whether a given partition is Pareto optimal. For partitions that are not Pareto
optimal, PRA then yields a partition that Pareto dominates it.

Proof. Under the given conditions, we prove that PRA runs in polynomial time.
We first prove that the while-loop in PRA iterates a polynomial number of
times. In each iteration of the while-loop, for a given player i, Q>i is lowered
or Q⊥i is raised. Due to the divide-and-conquer definition of Refine, Q>i coin-
cides with Q⊥i after a polynomial number of refinements. After this, player i is
not considered for preference refinement. Therefore, even if the representation
of (N,R) may be such that each player differentiates between an exponential
number of coalitions, divide-and-conquer ensures that the while loop in PRA
iterates a polynomial number of times. Having assumed that the crucial subrou-
tine PerfectPartition takes polynomial time, PRA runs in polynomial time
as well.

For the second part of the lemma, we run PRA to find a Pareto optimal
partition that Pareto dominates π if there is any. We therefore modify Step 2
by setting Q⊥i to the coarsening of R′ of R in which for all S ∈ Ni such that
S Ri π(i), it is the case that S I ′i π(i). It is clear that π is a perfect partition
for R′. Since such a coarsening can be computed in polynomial time as stated
by the condition in the lemma, Step 2 takes polynomial time. Since an initial
perfect partition exists for Q⊥i , we run PRA as usual after Step 2.

Observe that PRA not only applies to the canonical representation of general
hedonic games, but also to many natural classes of hedonic games in which
the preferences over coalitions (with possibly exponentially many indifference
classes) for each player are defined implicitly. For example, in W-hedonic games,
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maxRi(N) specifies the set of favorite players of player i, but can also implicitly
represent all those coalitions S such that the least preferred player in S is also
a favorite player for i. In fact, if PerfectPartition can be solved efficiently,
PRADC runs in polynomial time even if there is an exponential number of
equivalence classes. Note that the lattice ([R⊥, R>],≤) inspected by PRA can
be of exponential height and doubly-exponential width in the input (N,R). By
virtue of divide-and-conquer, PRADC also traverses through the lattice in an
orderly and efficient fashion to compute a Pareto optimal partition.

For all the specific classes of hedonic games we consider in this paper, each
player differentiates between a number of equivalence classes that is polynomial
in the input. Therefore, for any of these classes the other settings of PRA
also run in polynomial time, provided that PerfectPartition can be solved
in polynomial time. Hedonic games in which players can possibly distinguish
between a number of equivalences exponential in the input, however, do exist.
For an example consider the class of hedonic games in which each player has
preferences Ri over the other players. These are then used to define a leximin
ordering over coalitions i is a member of defined inductively such that S Ri T
if and only if either minRi(S)Pi minRi(T ) or minRi(S) Ii minRi(T ) and S \
minRi(S)Ri T \minRi(T ). Contingent on the tractability of PerfectPartition
in such classes, PRADC will run in polynomial time, whereas this is not the case
for SD.

4.2. Advantages of PRA over Serial Dictatorship

Serial dictatorship (SD) is a well-studied mechanism in resource allocation,
in which an arbitrary player is chosen as the ‘dictator’ who is then assigned his
most favored allocation and the process is repeated until all players or resources
have been dealt with. In the context of coalition formation, SD is well-defined
only if in every iteration, the dictator has a unique most preferred coalition. In
addition individual rationality can be achieved by giving the dictator his most
preferred allocation that is also acceptable to the other players.

Proposition 1. For general hedonic games, W-hedonic games, and roommate
games, an individually stable and Pareto optimal partition can be computed in
polynomial time when preferences are strict.

Proposition 1 follows from the application of SD to hedonic games with strict
preferences over the coalitions. If the preferences over coalitions are not strict,
then the decision to assign one of the favorite coalitions to the dictator may be
sub-optimal. Even if players express strict preferences over other players, SD
may not work if the preferences induced over coalitions admit ties. Hence, SD
is not applicable to B-hedonic games.

If SD works properly and efficiently in some setting, then so does PRASD , the
serial dictatorship setting of PRA. As in each iteration in Algorithm 1, the same
player i is chosen in step 4 until it cannot be chosen any more and Q>i is each
time chosen in step 5, PRASD emulates serial dictatorship. Note that PRASD

is a generalization of SD that can handle both ties and initial endowments.
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Instead of forming the most preferred coalition of a dictator, PRASD considers
whether a perfect partition can be formed in which the dictator gets one of
his most preferred coalitions while ensuring that the other players also get one
of their most preferred coalitions (in the current coarsened preference profile).
Therefore, in contrast to SD, PRASD can compute a Pareto optimal partition
that is a Pareto improvement over a given partition (also compare Lemma 2),
even when preferences over coalitions are strict.

Abdulkadiroğlu and Sönmez [1] showed that in the case of strict preferences
and house allocation settings, every Pareto optimal allocation can be found by
SD. In the case of coalition formation, however, it is easy to construct a four-
player hedonic game with strict preferences for which there is a Pareto optimal
partition that SD cannot return. Consider, for instance, four players with strict
preferences who are primarily interested in the size of the coalition they are in,
preferring coalitions of size three to those of size two, and those of size two to
being alone or being all together in the grand coalition. Then, any partition in
which players are grouped in pairs is Pareto optimal and individually rational
but not most preferred by any of the players. In this case, PRACons will yield
better results.

Finally, PRA can be used to compute the most egalitarian Pareto optimal
partition, in which the satisfaction level of the worst off player is maximized.
Such a partition is achieved by PRAEgal .

We note that the Top Trading Cycle (TTC) [27] algorithm is another al-
gorithm that achieves Pareto optimality and individual rationality for the re-
stricted setting of housing markets with strict preferences. TTC can be gener-
alized to achieve Pareto optimality and individual rationality in the presence of
ties [see e.g., 4]. However TTC and its generalizations are designed for the ex-
change of a single type of good and cannot handle coalition formation, network
formation, and general exchange economies of discrete goods.

4.3. Strategyproofness

In this subsection, we make some remarks concerning strategyproofness along
with Pareto optimality and individual rationality in coalition formation mech-
anisms. A coalition formation mechanism is strategyproof if for all players i
and all preference profiles R and R′ = (R1, . . . , R

′
i, . . . Rn) it is the case that

f(R) Ri f(R′), i.e, to express one’s true preferences is a dominant strategy. The
following theorem dashes hope for the existence of strategyproof mechanisms for
hedonic games.

Theorem 4 (Alcalde and Barberà [3], Roth [25]). There exists no strategyproof
mechanism that returns an individually rational and Pareto optimal partition
for marriage games if preferences are strict but allow unacceptability and there
are at least four players.

Theorem 4, of course, also applies to superclasses of marriage games. As a
consequence, SD is not strategyproof for general hedonic games, marriage games,
roommate games and W-hedonic game with strict but incomplete preferences
(unacceptability can be expressed).
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In contrast to the negative statement of Theorem 4, strategyproofness can
be achieved if players are unable to express unacceptability of coalitions.

Theorem 5. For general hedonic games with no unacceptability, PRASD is
strategyproof.

The reason is that if a player is not allowed to express any coalition as un-
acceptable then he cannot prevent a dictator from forming a most preferred
coalition in which the player is also present. Theorem 5 applies to all sub-
classes of general hedonic games. As a corollary we also obtain the well-known
statement that for house allocation with strict preferences, serial dictatorship is
Pareto optimal and strategyproof.

5. Specific Computational Results

In this section, we consider the problems Verification (verifying whether
a given partition is Pareto optimal) and Computation (computing a Pareto
optimal partition) for various classes and representations of hedonic games. For
our positive results we show that PerfectPartition can be computed in poly-
nomial time. Tractability of Computation and Verification then generally
follow as a corollary to the first and second part of Lemma 2, respectively. To
show intractability of Computation we show that PerfectPartition cannot
be solved in polynomial time for the respective class of games. Lemma 1 then
gives the result. Hardness of PerfectPartition we usually establish by show-
ing that every instance I of a particular intractable problem can in polynomial
time be reduced to an equivalent instance (N,R) of PerfectPartition. 4

5.1. General hedonic games

As shown in Proposition 1, Pareto optimal partitions can be found efficiently
for general hedonic games with strict preferences. If preferences are not strict,
the problem turns out to be NP-hard. We prove this statement by utilizing
Lemma 1 and showing that PerfectPartition is NP-hard.

Theorem 6. For a general hedonic game, computing a Pareto optimal partition
is NP-hard even when each player has a maximum of four acceptable coalitions
and the maximum size of each coalition is three.

Interestingly, verifying Pareto optimality is coNP-complete even for strict
preferences. This result contrasts with the general observation by Cechlárová
that “in the area of matching theory usually ties are ‘responsible’ for NP-
completeness” [10].

4For a number of classes of games, we find that I is also equivalent to verifying whether
a particular partition π obtainable from I in polynomial time is not weakly Pareto optimal.
If, moreover, this π is always identical to the grand coalition {N} and no player is indifferent
between N and any other coalition—in that case {N} is Pareto optimal if and only if it is
weakly Pareto optimal—we may conclude that Verification is computationally hard as well.
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Theorem 7. For a general hedonic game, verifying whether a given partition π
is Pareto optimal and whether π is weakly Pareto optimal is coNP-complete even
when preferences are strict and π consists of the grand coalition of all players.

5.2. Roommate games

For the class of roommate games, we obtain more positive results.

Theorem 8. For roommate games, an individually rational and Pareto optimal
coalition can be computed in polynomial time.

The statement follows from Lemma 2 and the fact that PerfectPartition

can be solved in polynomial time for W-hedonic games. The latter is proved by a
polynomial-time reduction of PerfectPartition to maximum-weight matching.

By utilizing the second part of Lemma 2, it can be seen that there exists
an algorithm to compute a Pareto optimal improvement of a given roommate
matching which takes time O(n3) · O(n log(n)) = O(n4 log(n)). As a corollary
we get the following.

Theorem 9. For roommate games, it can be checked in polynomial time whether
a given partition is Pareto optimal.

The issue of computing a Pareto optimal improvement of a given ‘status-quo’
roommate matching has already enjoyed some attention in the literature [29, 22].
Morrill [22] examined roommate games with strict preferences and proposed
an algorithm which, for any given matching, finds a Pareto optimal matching
that Pareto dominates the original one. We devise a tailor-made algorithm
for roommate games which finds a Pareto optimal Pareto improvement of a
given matching in O(n3)—the same asymptotic complexity required by Morrill’s
algorithm for the restricted case of strict preferences.

Theorem 10. For roommate games, there exists an algorithm that finds a
Pareto optimal Pareto improvement of a given matching in O(n3), even if pref-
erences contain ties.

5.3. W-hedonic games

We now turn to Pareto optimality in W -hedonic games. Recall that W -
hedonic games may not admit a core stable partition and in fact even checking
whether a core stable partition exists is NP-hard [13]. These negative existence
and computational results in the literature contrast with the following positive
result.

Theorem 11. For W-hedonic games, a partition that is both individually ra-
tional and Pareto optimal can be computed in polynomial time.

The statement follows from Lemma 2 and the fact that PerfectPartition

can be solved in polynomial time for W-hedonic games. The latter is proved by a
polynomial-time reduction of PerfectPartition to a polynomial-time solvable
problem called clique packing.

Due to the second part of Lemma 2, the following is evident.
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Theorem 12. For W-hedonic games, it can be checked in polynomial time
whether a given partition is Pareto optimal or weakly Pareto optimal.

Our positive results for W-hedonic games also apply to hedonic games
with W -preferences as proposed by Cechlárová and Hajduková [12, 13].

5.4. B-hedonic games

For W-hedonic games, a Pareto optimal partition can be computed effi-
ciently, even in the presence of unacceptable players. In the absence of unac-
ceptable players, computing such a partition for B-hedonic games is trivial, as
the partition consisting of the grand coalition is always a solution.

Interestingly, if preferences do allow for unacceptable players, the same prob-
lem becomes NP-hard. The statement is shown by using Lemma 1 and a reduc-
tion from Sat.

Theorem 13. For B-hedonic games, computing a Pareto optimal partition is
NP-hard.

Using similar techniques, we also have the following.

Theorem 14. For B-hedonic games, verifying whether a given partition is
weakly Pareto optimal is coNP-complete.

We expect the result above to hold for (strong) Pareto optimality as well.

5.5. Exchange of multiple types of goods

An exchange economy with multiple types of goods consists of agents who
have complete preferences over bundles of discrete goods. The goods can be
classified into multiple types—e.g., houses, cars etc.— and each agent can be
allocated up to a certain number goods of a certain type [see e.g., 21]. Each good
is either initially owned by some agent or is a social endowment not owned by
any agent. The goal is to achieve an individually rational and Pareto optimal
allocation. The problem can be construed as a coalition formation problem
in which coalitions with two or more agents are unacceptable and goods are
completely indifferent.

We also notice that if there is only type of good, say houses, and each
agent can own a maximum of one house, then the problem reduces to ‘house
allocation with existing tenants’ [2, 4]. House allocation with existing tenants
itself is a hybrid generalization of two classic settings: house allocation problem
and housing markets.5

For house allocation with existing tenants, PRA can be used to compute
individually rational and Pareto optimal outcomes in polynomial time via a
reduction to finding perfect matchings.

5The house allocation problem (also known as the assignment problem) in which agents
have strict preferences over houses, and each agent is allocated a maximum of one house. As
mentioned earlier, serial dictatorship can be used to compute a Pareto optimal allocation for
the classic house allocation setting (with strict preferences). In the classic housing market
setting, each agent owns a house and has strict preferences over all the houses in the market.
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Theorem 15. For house allocation with existing tenants, an individually ra-
tional and Pareto optimal outcome can be computed in polynomial time, even if
preferences contain ties.

On the other hand, the problem of computing a Pareto optimal outcome
becomes NP-hard if there is more than one type of goods. Even two types of
goods suffice for this to hold.

Theorem 16. For exchange economies with multiple types of goods, computing
a Pareto optimal outcome is NP-hard even if there is no unacceptability, there
are only two types of goods, and each agent can own only one good of each type.

As a corollary of the proof idea of Theorem 16 we obtain the following
theorem, which has previously been shown by Cechlárová [Theorem 3, 11].

Theorem 17 (Cechlárová [11]). For exchange economies with multiple types
of goods, verifying whether a given outcome is weakly Pareto optimal is coNP-
complete, even if there are two types of goods, preference are strict, and there is
no unacceptability.

We briefly comment on the strategic aspects of the restricted setting of ex-
change economies of discrete goods. Even if there are no ties in the preferences
and there are only two types of goods, it is known that there exists no strat-
egyproof mechanism that yields an individually rational and Pareto optimal
outcome for exchange economies with multiple types of goods (see, Konishi
et al. [Proposition 4.1, 21]). On the other hand, if unacceptability is not ex-
pressed, PRASD is strategyproof even if there are ties in the preferences. We
get the following as a corollary of Theorem 5.

Corollary 1. For exchange economies with multiple types of goods but with no
unacceptability, PRASD is strategyproof.

Recently, it has been shown that there exists a rather elaborate strategyproof
mechanism that yields a Pareto optimal and individually rational outcome for
the house allocation with existing tenants problem, even when allowing for ties
in the preferences [2, 4].

5.6. Three-cyclic games

Knuth [20] proposed a three-dimensional extension of marriage games in
which there are three sets of agents: men, women and dogs. A feasible matching
is a set of disjoint families, i.e., triples of the form (man, woman, dog). If
each agent has preferences over all pairs from the other two sets, then we call
the game a three-dimensional matching game. Based on Knuth’s idea, Ng and
Hirschberg [23] formalized the cyclic three-dimensional matching setting (which
we will refer to as three-cyclic games) in which men only care about women,
women only care about dogs and dogs only care about men. Recently, Biró and
McDermid [8] proved that for three-cyclic games, checking the existence of a
core stable or a strict core stable matching is NP-complete. We show that even
computing a Pareto optimal outcome is NP-hard for three-cyclic games.
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Theorem 18. For three-cyclic games, computing a Pareto optimal outcome is
NP-hard even if there is no unacceptability.

The corresponding verification problem turns out to be coNP-complete.

Theorem 19. For three-cyclic games, verifying whether a given partition is
weakly Pareto optimal is coNP-complete even for strict preferences.

The intractability results for three-cyclic games carry over to three-
dimensional matching games, the latter being a generalization of the former.

5.7. Room-roommate games

In house allocation, non-sharable items (e.g, jobs or houses) are divided
among the agents. Room-roommate games are a generalization of both house
allocation and roommate games. We see that neither our positive algorithmic
results for house allocation nor those for roommate games extend to room-
roommate games.

Theorem 20. For room-roommate games, computing a Pareto optimal outcome
is NP-hard even if no unacceptability is expressed in the preferences.

Theorem 21. For room-roommate games, verifying whether a given partition
is weakly Pareto optimal is coNP-complete, even for strict preferences.

In the absence of ties, Computation is easier. The individually rational
version of serial dictatorship gives the result.

Theorem 22. For room-roommate games with strict preferences, a Pareto
optimal and individually rational partition can be computed in polynomial time.

5.8. Anonymous games

Anonymous hedonic games are a subclass of hedonic games in which the
players’ preferences over coalitions only depend on coalition sizes. Therefore,
anonymous hedonic games can be represented compactly by preferences lists
over the integers 1, . . . , n. Anonymous hedonic games were first considered
by Bogomolnaia and Jackson [9]. Ballester [6] later examined the complexity
of checking the existence of stable partitions of anonymous games. We show
that both computing and verifying Pareto optimal outcomes is intractable for
anonymous games.

Theorem 23. For anonymous games, computing a Pareto optimal partition is
NP-hard.

Theorem 24. For anonymous games, verifying whether a given partition is
Pareto optimal is coNP-complete, even if the partition in question consists of
the grand coalition.

These results exploit discontinuities in the preferences. Bogomolnaia and
Jackson [9] proved that for anonymous games with single-peaked preferences,
an individually stable partition exists and can be computed efficiently. It will
be interesting to see if the structure of single-peakedness in anonymous games
can be exploited in order to obtain a positive algorithmic result.
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6. Conclusions

Pareto optimality and individual rationality are important requirements for
desirable partitions in coalition formation. In this paper, we examined compu-
tational, structural, and strategic issues related to Pareto optimality in various
classes of hedonic games (see Table 1 and Table 2). The relations between the
classes of hedonic games considered is depicted in Figure 1.

At the basis of most of our computational results lies an intimate conceptual
connection between Pareto optimality and the notion of perfection. Exploiting
this connection, we formulated the Preference Refinement Algorithm (PRA) for
computing Pareto optimal and individually rational outcomes. A quality of
PRA that distinguishes it from a well-known procedure like serial dictatorship,
is that it handles both weak preferences and unacceptability well. This feature
is especially relevant when dealing with classes of hedonic games in which the
players preferences over (possibly exponentially many) coalitions are concisely
represented by, e.g., preferences over (polynomially many) players—as in W-
and B-hedonic games—or over numbers—as in the case of anonymous games.
Even if the preferences in the concise representation are strict, the corresponding
preferences over coalitions are bound to contain indifferences.

We saw that unacceptability and ties are a major source of intractability
when computing Pareto optimal outcomes. In some cases, checking whether
a given partition is Pareto optimal can be significantly harder than finding
one. Furthermore, we observed that unacceptability (rather than ties) is the
main obstacle in devising strategyproof mechanisms to find Pareto optimal and
individually rational partitions.

It should be noted that most of our insights gained into Pareto optimality,
perfection, and the resulting algorithmic techniques—especially those presented
in Section 3 and Section 4—do not only apply to coalition formation but also to
many other settings, such as school choice, discrete allocation and exchange [see
e.g., 28], and network formation [see e.g., 19].

Acknowledgements

This material is based on work supported by the Deutsche Forschungsge-
meinschaft under grants BR-2312/6-1 (within the European Science Founda-
tion’s EUROCORES program LogICCC), BR 2312/7-1, and BR 2312/9-1.

References
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Appendices
Appendix A: Proofs

Proof of Theorem 6.

We can prove the statement by utilizing Lemma 1 and showing that
PerfectPartition is NP-hard by a reduction from X3C. Recall that an in-
stance of X3C is a pair (X,C) such that X = {1, . . . , 3m} is a set, m some
positive integer, and C is a collection of subsets of size 3. The question is
whether there is a sub-collection C ′ ⊆ C that partitions X. The problem re-
mains NP-hard even if |{c ∈ C : x ∈ c}| ≤ 3 for all x ∈ X.

For an instance (X,C) of X3C, define a general hedonic game (N,R) such
that N = X and each player i is indifferent among coalitions in {c ∈ C : i ∈ c},
strictly prefers them to {i}, and finds every other coalition unacceptable. Then,
a perfect partition exists if and only if (X,C) is a ‘yes’ instance.

Assume that there exists C ′ ⊆ C such that C ′ is a partition of X. Then there
exists a partition π′ = C ′ in which each player gets one of his most desirable
coalition. Therefore, (N,R) is a ‘yes’ instance of PerfectPartition.

Assume that there exists no C ′ ⊆ C such that C ′ is a partition of X. Then
there exists no partition π′ such that each player i ∈ N gets one of his most
desirable coalition. Therefore, (N,R) is a ‘no’ instance of PerfectPartition.

Proof of Theorem 7.

Verification is clearly in coNP. A partition π′ which (weakly) Pareto domi-
nates π is a polynomial time certificate that π is not (weakly) Pareto optimal.
Similarly, a partition π′ which weakly Pareto dominates π is a polynomial time
certificate that π is not weakly Pareto optimal.

We now prove that the problem is coNP-hard by a reduction from X3C. An
instance (X,C) of X3C can be reduced to an instance ((N,R), π) of Verifica-
tion, where π = {N} and (N,R) is a general hedonic game with N = X and
c1 Pi · · ·Pi ck PiN Pi {i} for each i ∈ N , where c1, . . . , ck is any linear ordering
of {c ∈ C : i ∈ c} (all other coalitions are unacceptable to i). Then, {N} is
Pareto dominated by another partition if and only if there is a partition C ′ ⊆ C
of X.

Assume that there exists C ′ ⊆ C such that C ′ is a partition of X. Then
there exists a partition π′ = C ′ which (weakly) Pareto dominates π. Therefore
π is not weakly Pareto optimal or Pareto optimal. Assume that there exists no
S′ ⊆ S such that S′ is a partition of R. Then there exists no partition π′ which
Pareto dominates and therefore weakly Pareto dominates π.

Proof of Theorem 8.

We utilize Lemma 2. It is sufficient to show that PerfectPartition can be
solved in time O(n3). We do so by a linear time reduction the polynomial-time
solvable problem of checking whether a graph admits a perfect matching [16].
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For notational convenience we write F (i) for maxRi(N). Construct an undi-
rected graph G = (V,E) where V = N ∪ (N × {0}), E = {{i, j} : i 6= j, i ∈
F (j) and j ∈ F (j)} ∪ {{i, (i, 0)} : i ∈ F (i)}.

We claim that there exists a perfect partition for (N,R) if and only if there
exists a matching of size n in graph G. It is clear that in a matching of size n,
each v ∈ N is matched. If there exists a perfect partition, then each player in N
is matched to a player j 6= i such that j ∈ F (i) or i is unmatched but i ∈ F (i).
In either case there exists a matching in which each i is matched. In the first
case, i is matched to j in G. In the second case, i is matched to (i, 0).

Now assume that there exists a matching of size n in G. Then, each i ∈ N
is matched to j 6= i or (i, 0). If i is matched to j, then we know {i, j} ∈ E and
therefore j ∈ F (i). If i is matched to (i, 0), then we know {i, (i, 0)} ∈ E and
therefore i ∈ F (i). Thus, there exists a perfect partition.

Proof of Theorem 9.

By observing the proof of Theorem 8 and utilizing the second part of Lemma 2,
it can be seen that there exists an algorithm to compute a Pareto optimal im-
provement of a given roommate matching which takes time O(n3)·O(n log(n)) =
O(n4 log(n)). As a corollary we get the theorem.

Proof of Theorem 10.

We reduce the problem to the polynomial-time solvable problem of computing
a maximum weight matching of a graph.

For a given roommate game (N,R), let π be the partition we want to check
for Pareto optimality. Since π contains coalitions of size one or two, we can
construct an undirected graph G = (V,E) where V = N ∪ (N × {0}), E =
V ×V \({{i, j}:π(i)Pi {i}}∪{{i, (i, 0)}:π(i)Pi {i}}). For graph (V,E), consider
the matching M = {S ∈ π : |S| = 2} ∪ {{i, (i, 0)} : {i} ∈ π}.

We now define a weight function such that for all i ∈ V , wi : E → R+

where wi is defined inductively in the following way: w(i,0)(e) = 0 for all e such
that (i, 0) ∈ e ∈ E and i ∈ N ; wi(π(i)) = n if π(i) 6= {i} and π(i) = {i, j};
wi({i, (i, 0)}) = n if π(i) = {i}; wi(S) = −n if i /∈ S; wi(T ) = wi(S) + 1/n
if there is a coalition T such that i ∈ T , T Pi S, and there exists no coalition
T ′ such that T Pi T

′ Pi S; and wi(T ) = wi(S) if S Ri π(i) and T is coalition
such that T Ii S. Define a weight function w′ : E → R+ such that for any
S = {i, j} ∈ E, w′(S) = wi(S) + wj(S). For E′′ ⊆ E, denote by w′(E′′),
the value

∑
e∈E′′ w′(e). We can then prove that π is Pareto optimal if and

only if π is the maximum weight matching of Gw′
, the graph G, weighted by

weight function w′. Since we have a linear-time reduction to maximum weight
matching [17], the complexity of the algorithm is O(n3).

We first prove that if π is a maximum weight matching, then π is Pareto
optimal. Assume π is the maximum matching. A partition which Pareto domi-
nates π has a bigger weight than π. Since π is the maximum weight matching,
there exists no matching which Pareto dominates π.

We now prove the converse. Assume π is Pareto optimal but π is not a
maximum weight matching. Then there exists another matching π′ such that
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w′(π′) > w′(π). Since π is Pareto optimal, it cannot be that π′ Pareto dominates
π. Therefore, there exists a player i ∈ N such that the utility of i in π is less
than in π′. But this is only possible if wi(π(i)) = n and wi(π

′(i)) = 0. Since
w′(π′) > w′(π), then

∑
j∈N\{i} wj(π

′(j)) −
∑

j∈N\{i} wj(π(j)) > n. But we,

know that for each player j ∈ N \{i}, the increase in wi can be at most (n−1)/n.
Therefore

∑
j∈N\{i} wj(π

′(j))−
∑

j∈N\{i} wj(π(j)) < n−1
n × n = n− 1. This is

a contradiction.
Therefore, checking whether π is Pareto optimal reduces to checking whether

π is a maximum weight matching of Gw′
. This can be done as follows. Compute

a maximum weight matching M of Gw in polynomial time and check whether
w′(M) = w′(π).

Proof of Theorem 11.

The statement follows from Lemma 2 and the fact that PerfectPartition can
be solved in polynomial time for W-hedonic games. The latter is proved by a
polynomial-time reduction of PerfectPartition to a polynomial-time solvable
problem called clique packing.

We first introduce the more general notion of graph packing. Let F be a set
of undirected graphs. An F -packing of a graph G is a subgraph H such that
each component of H is (isomorphic to) a member of F . The size of F -packing
H is |V (H)|. We will informally say that vertex i is matched by F -packing
H if i is in a connected component in H. Then, a maximum F -packing of
a graph G is one that matches the maximum number of vertices. It is easy
to see that computing a maximum {K2}-packing of a graph is equivalent to
maximum cardinality matching. Hell and Kirkpatrick [18] and Cornuéjols et al.
[14] independently proved that there is a polynomial-time algorithm to compute
a maximum {K2, . . . ,Kn}-packing of a graph. Cornuéjols et al. [14] note that
finding a {K2, . . . ,Kn}-packing can be reduced to finding a {K2,K3}-packing.

We are now in a position to reduce PerfectPartition for W-hedonic games
to computing a maximum {K2,K3}-packing. For a W-hedonic game (N,R),
construct a graph G = (N ∪ (N ×{0, 1}), E) such that {(i, 0), (i, 1)} ∈ E for all
i ∈ N ; {i, j} ∈ E if and only if i ∈ maxRj

(N) and j ∈ maxRi
(N) for i, j ∈ N

such that i 6= j; and {i, (i, 0)}, {i, (i, 1)} ∈ E if and only if i ∈ maxRi
(N) for all

i ∈ N . Let H be a maximum {K2,K3}-packing of G.
It can then be proved that there exists a perfect partition of N according to

R if and only if |V (H)| = 3|N |. This is equivalent to saying that there exists
no perfect partition of N according to R if and only if |V (H)| < 3|N |. We
first prove the left to right implication of the last statement. Assume that there
exists no perfect partition of N according to R. This implies that for every
partition π, there exists some player i which is not matched with a subset of his
favorite players and also does not consider himself a favorite player. Therefore,
i /∈ V (H). Thus, |V (H)| < 3|N |.

We now prove the implication from right to left. Consider the case that
|V (H)| < 3|N | in the the corresponding graph G of (N,R) for R. We will first
show that there exists an i ∈ N such that i /∈ V (H). Assume for contradiction
that N ⊆ V (H) and assume without loss of generality there is a vertex (i, 0)
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such that (i, 0) /∈ V (H). If (i, 1) is not matched with i, then (i, 0) can be
matched with (i, 1) because {(i, 0), (i, 1)} ∈ E(G) so that (i, 0) ∈ V (H). If (i, 1)
is matched with i, then this implies that {i, (i, 1)} ∈ E(G) and also {i, (i, 0)} ∈
E(G). Therefore i, (i, 0) and (i, 1) can be matched into a K3 by H so that
(i, 0) ∈ V (H). Since, N × {0, 1} ⊆ V (H), it be must that there exists an
i /∈ V (H). Therefore i is not in an acceptable (and favorite) coalition.

Since PerfectPartition for W-hedonic games reduces to checking whether
graph G can be packed perfectly by elements in F = {K2,K3}, we have a
polynomial-time algorithm to solve PerfectPartition for W-hedonic games.
Denote by CC(H) the set of connected components of graph H. If |V (H)| =
3|N | and a perfect partition does exist, then {V (S) ∩N : S ∈ CC(H)} \ ∅ is a
perfect partition.

Proof of Theorem 12.

The statement follows from second part of Lemma 2 and the proof of Theorem 11
in which it is shown that PerfectPartition is polynomial-time solvable for W-
hedonic games.

Proof of Theorem 13.

It can be checked in polynomial time whether a partition is perfect in a B-
hedonic game. Hence, by Lemma 1, it suffices to show that PerfectPartition
is NP-hard. We do so by a reduction from Sat. Let ϕ = X1∧· · ·∧Xk a Boolean
formula in conjunctive normal form in which the Boolean variables p1, . . . , pm
occur. Now define the B-hedonic game (N,R), where N = {X1, . . . , Xk} ∪
{p1,¬p1, . . . , pm,¬pm} ∪ {0, 1} and the preferences for each literal p or ¬p, and
each clause X = (x1∨· · ·∨x`) are as follows, where commas denote indifference,
vertical bars strict preference Pi, and double bars unacceptability:

p : (0, 1 | N \ {0, 1,¬p} ‖ ¬p)
¬p : (0, 1 | N \ {0, 1, p} ‖ p)
X : (x1, . . . , x` | N \ {0, x1, . . . , x`} ‖ 0)

0 : (N \ {0, 1} | 0 ‖ 1)

1 : (N \ {0, 1} | 1 ‖ 0)

We prove that ϕ is satisfiable if and only if a perfect (and individually ratio-
nal) partition for (N,R) exists. To this end, first assume that v is a valuation
that satisfies ϕ. Then, define the partition π such that

π = {{1, x′1, . . . , x′`′ , X1, . . . , Xk}, {0, x′′1 , . . . , x′′`′′}}.

where x′1, . . . , x
′
`′ are the literals rendered true by v and x′′1 , . . . , x

′′
`′′ those

that are rendered false. It can then be shown that π is a perfect partition.
Obviously, π is a perfect partition for both 0 and 1 as well as for every

“literal” player x. As v is a satisfying valuation, for every “clause” player X =
(x1, . . . , x`) at least one of the literals x1, . . . , x` is set to true by v, which will
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then be in the same coalition as X. It follows that π(X) is a favorite coalition
for X as well.

For the opposite direction, assume that π is a perfect partition. Now define
the valuation v such that every literal x is to true if and only if x ∈ π(1).

It remains to be shown that v is properly defined and that v satisfies ϕ.
Observe that π consists of exactly two coalitions. The players 0 and 1 have to
be in different coalitions, i.e., π(0) 6= π(1), because they are unacceptable to one
another. Moreover, any two “literal” players p and ¬p have to be in either π(0)
or π(1), otherwise they are not in a favorite coalition. Finally, every “clause”
player X = (x1, . . . , x`) has to be in a coalition to which π assigns at least of the
“literal players” x1, . . . , x`, for very much the same reason. Because, player 0 is
unacceptable to any “clause” player X, each of them has to be in π(1).

As for every Boolean variable p, precisely one of p and ¬p is assigned to π(1),
v is well-defined. Moreover, because every “clause” player X = (x1, . . . , x`) is
in π(1) together with at least one of x1, . . . , x`, v is readily seen to satisfy
formula ϕ.

Proof of Theorem 14.

The reduction is the same as in the proof of Theorem 13. The partition π to be
considered is one in which each player in N \{0, 1} is a singleton and 0 and 1 are
together. Then π is weakly Pareto optimal if and only if ϕ is not satisfiable.

Proof of Theorem 16.

We can prove the statement by utilizing Lemma 1 and showing that
PerfectPartition is NP-hard by a reduction from 3-DimensionalMatching
(3-DM). Let X, Y , and Z be finite, disjoint sets, and let T be a subset of
X × Y × Z. Now M ⊆ T is a three-dimensional matching if the following
holds: for any two distinct triples (x1, y1, z1) ∈ M and (x2, y2, z2) ∈ M , we
have x1 6= x2, y1 6= y2, and z1 6= z2. The decision question in problem 3-DM is
whether for given X, Y , Z and T ⊆ X × Y × Z, there exists an M ⊆ T such
that |M | = |X| = |Y | = |Z|.

Based on an instance of 3-DM, we form an exchange economy with two
kinds of goods as follows. Let N be equal to X, Y be the set of goods of type
one, and Z be the goods of type two. Then, for any triple (x, y, z) ∈ T , set the
preferences in N , in a way such that {y, z} is one of the favorite allocations of
agent x. Then, there exists a three-dimensional matching which matches each
element in X ∪Y ∪Z if and only if there exist a perfect allocation in which each
player gets one of his favorite allocations.

Proof of Theorem 17.

The proof is by a reduction from 3-DM. Based on an instance of 3-DM, form
an exchange economy with two kinds of goods in a similar way as in the proof of
Theorem 16. The main difference is that each player has strict preferences and
arbitrarily breaks ties among the allocations which were his favorite in the proof
of Theorem 16. Secondly, all other allocations are unacceptable. Consider the
partition π consisting of singletons, i.e, an allocation in which each agent has
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no initial endowment. Then, π is not weakly Pareto optimal if and only if there
exists a partition in which each player is in a coalition strictly more preferred
than the singleton coalition. The problem is equivalent to 3-DM.

Proof of Theorem 18.

We can prove the statement by utilizing Lemma 1 and showing that
PerfectPartition is NP-hard by a reduction from 3-DM.

Based on an instance of 3-DM, we form a 3-cyclic game as follows. Let
N = X ∪Y ∪Z where X,Y, Z are the set of men, women, and dogs respectively.
Then, for any triple (x, y, z) ∈ T , set the preferences in N , in a way such that y
is one the favorite women of man x, z is one the favorite dogs of woman y, and
x is one of the favorite men of dog z. Then, there exists a three-dimensional
matching which matches each element in X ∪ Y ∪ Z if and only if there exist a
perfect partition of the 3-cyclic game.

Proof of Theorem 19.

Based on an instance of 3-DM, form a 3-cyclic game in a similar way as in the
proof of Theorem 18. The main difference is that each player has strict pref-
erences among those players that were his favorite in the proof of Theorem 18.
Furthermore, all other players are considered unacceptable.

Consider the partition π consisting of singletons. Then, π is not weakly
Pareto optimal if and only if there exists a partition in which each player is in
a coalition strictly more preferred than the singleton coalition. The problem is
equivalent to 3-DM.

Proof of Theorem 20.

We can prove the statement by utilizing Lemma 1 and showing that
PerfectPartition is NP-hard by a reduction from 3-DM.

Based on instance of 3-DM, let N = X ∪ Y , R = Z, and the preferences
of players in N are as follows. For each x ∈ X, x most prefers coalitions
{x, y, z} if (x, y, z) ∈ T . Similarly, each y ∈ Y most prefers coalitions {x, y, z}
if (x, y, z) ∈ T . Then, the claim is that we have a ‘yes’ instance of 3-DM if and
only if we have a ‘yes’ instance of PerfectPartition.

If there exists a perfect three-dimensional matching, then the same matching
also gives us a perfect partition. Now assume that there exists a perfect parti-
tion. Then, it is easy to see that there also exists a perfect three-dimensional
matching.

Proof of Theorem 21.

The reduction is similar to the reduction in the proof of Theorem 20. The first
difference is that each player has strict preferences among those allocations that
were his favorite in the proof of Theorem 20. Secondly, all other allocations are
considered unacceptable.

The partition π in question consists of singletons. Then, π is not weakly
Pareto optimal if and only if there exists a partition in which each player is in a
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coalition strictly more preferred than the singleton coalition. The problem can
be shown to be equivalent to 3-DM.

Proof of Theorem 23.

We prove the statement by utilizing Lemma 1 and showing NP-hardness of
PerfectPartition for anonymous games by a reduction from X3C.

For an instance (X,C) of X3C, order the elements in C in any arbitrary
order c1, . . . , c|C|. Define function f such that f(ci) = 2 + i. The function f
is clearly a one-to-one function. We now present a reduction which reduces an
instance (X,C) to an anonymous game (N,R) in the following way.

• N = X ∪ {yi1, . . . , yii−1 : i ∈ {1, . . . , |C|}}

• For each x ∈ X, consider the set
⋃

c∈C{f(c):x ∈ c}. Then player x has the
elements in

⋃
c∈C{f(c) : x ∈ c} as his first choice coalition sizes, then size

1 as his second most preferred coalition size, and finds all other coalitions
sizes unacceptable.

• For each i ∈ {1, . . . , |C|}, the preferences of players yi1, . . . , y
i
i−1 are iden-

tical. They equally prefer coalitions of size 1 and size i + 2 and all other
coalitions sizes are unacceptable.

Observe that this is a polynomial-time reduction. The total number of play-
ers is |C|+ (|C− 1| × |C− 2|)/2 which is polynomial in the input size of (X,C).
Furthermore, each player has a preference list of length less than or equal to
four. Now the claim is that a favorite partition exists if and only if (X,C) is a
‘yes’ instance of X3C.

Assume that there exists a exists a perfect partition π for game (N,R).
Then, π is such that each player is in a coalition of one of his most preferred
sizes. This means that each player in X is in a coalition with a unique size (of
three or more). Then, C ′ = {N ∩ s : s ∈ π ∧ |S| ≥ 3} is a proper partition of
X such that C ′ ⊆ C. Therefore (X,C) is a ‘yes’ instance of X3C.

We now show that if (X,C) is a ‘yes’ instance of X3C, then there exists a
perfect partition. Let C ′ ⊆ C be a proper partition of X. Then, consider the
following partition π of N :

π = {ci ∪ {yi1, . . . , yii−1} : ci ∈ C ′} ∪ {{yi1}, . . . , {yii−1} : ci /∈ C ′}.

It is clear that π is a perfect partition for (N,R) in which each player in the set of
coalitions {{ci∪{yi1, . . . , yii−1}} :ci ∈ C ′} gets one of his favorite (non-singleton)
coalitions and the players {{yi1}, . . . , {yii−1} : ci /∈ C ′} are in a singleton but
nonetheless a favorite-sized coalition. This completes the proof.

Proof of Theorem 24.

The proof idea is similar to that of Theorem 23 but with subtle differences.
We take an instance of X3C and construct an anonymous hedonic game and
a partition π consisting of the grand coalition. The partition π is not Pareto
optimal if and only the X3C instance is a ‘yes’ instance.
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For an instance (X,C) of X3C, order the elements in C in any arbitrary
order c1, . . . , c|C|. Define function f such that f(ci) = 2 + i. The function
f is clearly a one-to-one function. We now present a reduction which reduces
instance (X,C) to an anonymous game (N,R) in the following way.

• N = X ∪ {yi1, . . . , yii−1 : i ∈ {1, . . . , |C|}}

• For each x ∈ X, consider the set
⋃

c∈C{f(c) : x ∈ c} Then player x has
the elements in

⋃
c∈C{f(c) : x ∈ c} as his first choice coalition sizes, then

considers |N | as the second choice, size 1 as the third choice, and finds all
other coalitions sizes unacceptable.

• For each i ∈ {1, . . . , |C|}, the preferences of players yi1, . . . , y
i
i−1 are iden-

tical. They equally prefer coalitions of size 1, size i+ 2 and size |N |, and
find all other coalition sizes unacceptable.

The claim is that {N} is not Pareto optimal if and only if (X,C) is a ‘yes’
instance of X3C.

Assume that {N} is not Pareto optimal. Then, there exists a partition π such
that each player is either in the grand coalition or a more preferred coalition.
Since one player is certainly in a more preferred coalition, then the other players
cannot remain in the grand coalition. This means that each player in X is in a
coalition of a unique size (of three or more). Then, C ′ = {N∩s:s ∈ π ∧ |S| ≥ 3}
is a proper partition of X such that C ′ ⊆ C. Therefore (X,C) is a ‘yes’ instance
of X3C.

We now show that if (X,C) is a ‘yes’ instance of X3C, then {N} is not
Pareto optimal. Let C ′ ⊆ C be a proper partition of X. Then, consider the
following partition π of N :

π = {ci ∪ {yi1, . . . , yii−1} : ci ∈ C ′} ∪ {{yi1}, . . . , {yii−1} : ci /∈ C ′}.

It is clear that π is a Pareto improvement over {N} in which each players in the
set of coalitions {{ci ∪ {yi1, . . . , yii−1}} : ci ∈ C ′} gets a more preferred coalition
size than |N | and the players {{yi1}, . . . , {yii−1} : ci /∈ C ′} are in a singleton
but nonetheless a favorite-sized coalition. Therefore, we know that {N} is not
Pareto optimal. This completes the proof.
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