

HERRENKNECHT
 NEWS

November 2005

marketing@herrenknecht.com
www.herrenknecht.com

Halfway at the Gotthard Range.
Herrenknecht in Switzerland.
Small, fine and very successful
1,000 Utility Tunnelling Systems sold.
Traffic tunnelling excellence in Spain.
Mega machine starts work in Madrid.
Quick and clever conveying.
Teamwork partner H+E Logistik GmbH.

Inspecting the cutter head of the Herennenecht 5 -229 Girper rer BM

Dear readers

In our globalized society we need bold visions and people with the courage to break new ground. Today, many things are changing more quickly and more profoundly. We must embrace this change and make use of
We cannot further improve conditions for humans and the environment without tech nological progress. Our hope rests with highly qualified engineers. We are facing huge challenges caused by shrinking energy and water resources, rapidly progressing urbanization and demands for limitless mobility
Mechanical tunnelling technology is an excellent example of the way technical progress an open up new options so that construction and modernization of infrastructures under ground can keep pace with complex demands. This edition of Herrenknecht News gives you an impression of where and how efficient tunnels and pipelines are being built all over the globe. Each breakthrough is a pioneering feat in the service of people, industry and the envionment.
Bridging the gap between innovation and tradition is no easy task. Providers of machine technology must prepare their production and procurement for the future so that they can provide the highest level of quality, reliability and professional service at a reasonable price on any market. We must adapt our location policies to the demands of the market, for example Herrenknecht demonstrates this with its commitment in Asia.
Higher performance with lower budgets is not always the answer. When constructing tunnels and large-scale sewage systems, "as cheaply as possible" is never a good philosophy. Quality, safety, reliability and individual solutions come at a price. In the final reckoning, if we have remained within our budget and our schedule and if no harm has come to humans buildings or the environment, then it will have been worth the price.

Di.- Ing. E. M. Matrin Hererenkech. Chaiman of the Boart of | Chirman of the Board of |
| :--- |
| Managemento of terenennecht A |

Contents.

Publisher: Herrenknecht AG
Herrenknecht AG Schlehenweg 2 D-77963 Schwana
Germany
Responsible: Achim Kïhn
Editors:
Martin Heitz, Cornelia Lietza
Christoph von Büdingen Alexander Hundertffund
Authors: Ullich Hnida, Peter IIg
Concept:
Herrenknecht AG Marketing +
Marketing + Corporate Communication
Desig
W.A.F. Werbegesellschaft, Berli
Photographs: Thomas Emsting
homas Efssting, Jo Fichtner Erwin Fleischmand
Print: Dinner Druck, D-77963 Schwanau D-77963 Germany

UROPE

4. Traffic Tunnelling - excellence in Spain TBM giants burrow through the Iberian peninsulaMega Machine for Madrid.No contest in the Sierra de Guadarrama.
5. No contest in the Sierra de Guadarra Guadarrama project wins all the way.On the right track in Barcelona.
2 storeys for the metro line 9 .
12 Halfway at the Gotthard range. More than 150 km of tunnels, shafts and adits.Perfect teamwork at Islisberg.
$4,680 \mathrm{~m}$ of tunnel in one year.Austria discovers mechanical tunnelling.Katzenberg Tunnel.
Germany's longest underground construction project with mechanical tunnelling.

Better through Germany.
Herrenknecht Microtunnelling on home ground.
23 Faster through Bella Italia
Tutto bene in tunnelling.

EASTERN EUROP

24) Going East

Pel
Poland, Hungary and Azerbaijan

Ni håo in China.
All runs well in China.
New Herrenknecht assembly facility in GuangzhouMicros are great.
Crossing the Yangtze River.Herrenknecht Asia Headquarters.
Herrenknecht Asia Headquarters.
New headquarters for the Asia-Pacific market in Singapore.
(34) Dual use for Kuala Lumpur.

The SMART Tunnel makes good progress.In the shadow of the Himalayas.
Great demand for Herrenknecht HDD Equipment in India.Utility Tunnelling down under.
Herrenknecht Micromachines on the other side of the globe.
Faultless tunnelling with trenchless technology.
}

MIDDLE EAS A.670 million liters storage tunne.
Hard Rock Tunnelling in Atlanta.
(46) Portland.

Great and small doing a good job.
(47) Table Rock.

Sea outfall the clever way.South americarecision work in Venezuela
Caracas metro extension at top speed.

Meet our team:
10 Keeping the pressure on A portrait of the Herrenknecht engineer Rico Wurth.

14 Swiss subsidiary:
A portrait of the Swiss subsidiary. In 28 years Switzerland has become something of a second home for Herrenknecht.

18 Sports sponsoring: Aiming high, going far World silver medalist Christina Obergföll and her connection to Herrenknecht.bauma 2004: Herrenknecht talk in Munich. Top experts discuss current trends.Research + development: Integrated, flexible navigation technology Navigation system made by Herrenknecht.Research + development:
Three pioneer projects in mechanical shaft sinking Herrenknecht Vertical Shaft Sinking Machines.
(42) Utility Tunnelling:

Small, fine and very successful.
n just under 20 years Herrenknecht has supplied more than 1000 Utility Tunnelling Machines and the corresponding equipment.Clever conveying
Quick and clever Quick and clever logistics.
A portrait of the Herrenkne A portrait of the Herrenknecht subsidiary $\mathrm{H}+\mathrm{E}$.
 What's to come in summer 2006.

TRAFFIC TUNNELLING EXCELLENCE IN SPAIN.

©pain is one of the world's busiest arenas for powerful TBM giants. November 2005 saw the launch of what is currently the world's largest tunnelling shield (15.20 m) in Madrid (see page $6 / 7$). 3.7 km underground freeway tunnel in the mide of the cait Smart Spanirds know that investment in modern infrastructures is the way ahead to a flourishing future That's why they are taking the bull by the horns in tunnelling
In 2004 alone, Spanish construction companies ordered 16 large tunnelling machines from Herrenknecht-10 Earth Pressure Balanc Shields and 6 Hard Rock Machines. They will be used mainly for the construction of inner city metro and road tunnels as well as efficient
tunnels for trans-regional railway projects. At one time, 10 large tun nelling machines for Spain were being assembled simultaneously Schwanau in order to meet the delivery deadlines. Traffic Tunnelling hels through he hignest ang level in Spain. He two Madrid were sucessuly cor within three veas (see page 8 . This is a perfect example of excellence in tunnelling the phat rock Two Herrenknecht mackines beginning wok on the coll truction of the 25 km Paiares rilway tunel in section II of this project, the S -281 Double Shield will have to make a downhill jour ney with a gradient of 69 percent

current projects in spain			
	tunnel project	machine data	contractors
(1) (8)	Gijon: metro "Metrotren" Tunnel length: $3,440 \mathrm{~m}$ Geology: ca limestone	S-255, EPB Shield Diameter: $10,550 \mathrm{~mm}$ Cutterhead power: $3,600 \mathrm{~kW}$	Necso Entrecanales Cubiertas S.A.
2 \because	Pajares: railwa Tunnel lengths: S-287: 7,650 $+2,750 \mathrm{~m}$ Geology: sandstone, schis	S -281, Double Shield TBM Cutterhead power: $5,600 \mathrm{~kW}$ S -287, Single Shield TBM Diameter: $9,900 \mathrm{~mm}$ Cutternead power: $4,900 \mathrm{~kW}$	S-281: Dragados, ACS S-287: : FC Entrecanales Cubiertas S.A.
(3) \div	Le Perthus: railway Tunnel lengths: $2 \times 8,230 \mathrm{~m}$ Tunnel lengths: $2 \times 8,230$ Geology: granite, gneiss, granodiorite, schist	$\mathrm{s}-286, \mathrm{~S}-296$ 2 x Double Shield TBM Cutterhead power: $4,900 \mathrm{~kW}$ each	Dragados,
	Barcelona: metro Tunnel length: 8,200 m Geology: clay, sand, loam	S-279, EPB Shield Diameter: 9,370 mm Cutterhead power: $3,600 \mathrm{~kW}$	U.T.E. Túnel Aeroport FCC Construcción S.A. Ferrovial-Agroman S.A. Obrascon Huarte Lain Scrinser, Copisa
	San Pedro: railway Tunnel lengths: $2 \times 8,917 \mathrm{~m}$ Geology: granite, gneiss	$\underset{\substack{5-270,5-275, 2 \times \text { Griper TBM }}}{ }$ Diameter: $9,450 \mathrm{~mm}$ each each each	S-270: Obrascon Huarte Lain S.A. S-275: Marti AG
8 (?)			S-272: errovial-Agroman S.A S-274: Sacyr Entrecanales Cubiertas S.A. S.A.
(9) (9)	Madrid metro "Metronorte Tramo 2B" Tunnel length: $5,015 \mathrm{~m}$ Geology: compacted sand sand	S-280, EPB Shield Diameter: 9,330 mm Cutterhead power: $3,200 \mathrm{~kW}$	Obrascon Huarte Lain S.A.
(10)	Madrid: metro "Metronorte Tramo 1C and $2 \mathrm{~A}^{\prime \prime}$ Tunnel length: $5,491 \mathrm{~m}$ loamy sand, alluvium	S-295, EPB Shield Diameter: 9,330 mm Cutterhead power: 3,200 kW	Necso Entrecanales Cubiertas S.A.
(11)	"Nuevos Ministerios-Chamartin Tunnel length: $2,600 \mathrm{~m}$ Geology: loamy, compacted sand	S-299, EPB Shield Diameter: 9,370 mm Cutterhead power: $3,600 \mathrm{~kW}$	Ferrovil-Agroman S.A.
12 (?)	Madrid: metro Tunnel length: 6,000 m Geology: clay, sand, loam	S-302, EPB Shield Diameter: 9,370 mm Cutterhead power: $3,600 \mathrm{~kW}$	FcC Construcioin,

	MADRID SPAIN		
	tunnel project	machine data	contractors
	Matrid: road	$5-300$, EPB Shield	Necso Entreanales
	"Freway M M-30" ${ }^{\text {cosem }}$	(iameter 15.200 mm	
13	Geology: periucles and		

MEGA MACHINE FOR MADRID.

ever before has a larger tuneling machine been buit: with an excavation diameter of 15.20 m , the Herrenknecht $\mathrm{S}-30$ Earth Pressure Balance Shield for Madrid breaks all size records for mechanical tunnelling. The Spanish construction companies Necs Entrecanales Cubiertas S.A. and Ferrovial-Agroman S.A. ordered this machine in June 2004 to drive the $3,650 \mathrm{~m}$ north tunnel for the $\mathrm{M}-30$ inner city freeway. After a construction time of only twelve months, our customers were able to give final approval for the ultimate XXL-TBM at Herrenknecht in June 2005. ith a torque of $125,268 \mathrm{kNm}$, this machine really is a TBM
Titan. This force would theoretically be enough to lift a fully loaded 410t Boeing 747 with a 30 m long lever. That means this loaded 410 t Boeing 747 with a 30 m long lever. That means this
mega machine has the greatest torque ever installed in a TBM. In

order to maintain control of the largest driling diameter in the world in high friction ground conditions Herrenknecht engineers have come up with a specially developed and unique cutting wheel concept for this projec. Ltonsists of an inner cutting wheel with a diameter of 7 m and an outer cutting wheel working on the same ,

(I)hree screw conveyors are integrated into the shield to guar-
antee controlled excavation and secure support at the tunnel face - another world first. From August to October 2005, this drilling giant was assembled in the launch shaft in downtown Madrid. The mega machine began tunnelling in November of this year. The total 30 months.

NO CONTEST IN THE SIERRA DE GUADARRAMA.

he Guadarrama tunnel project (railway tunnel), successfully completed in June 2005 north of Madrid, theoretically had tBM potential to be a genure race. A competion between 2 German BM manuacturs. Win rom schwanau. provide a Double Shield machine with a diameter of 9.51 m to build twin-tunnel construction with a total length of 58 km beneath the Guadarrama mountain range. A total of four Double Shield TBM from Germany were used.

The Spanish customer organized the race course in such a way that, at the beginning of the tunnelling process in fall 2002, a Double Shield TBM from Schwanau and another from Erkelenz began constructing the tunnel at both the north and south ends. The wo machines at each end were separated by a center distance of 30 m . In September 2002, the Herrenknecht machines were the first to advance into the mountain. They met with granite with a compressive strength of up to 160 MPa . The two Wirth Double Shield TBM began their tunnelling mission in October and November 2002 respectively. For approximately one year the Herrenknecht machine unneled their way ahead of the competition. As pioneers in un known territory they were the first to strike fault zones. The con struction site teams were able to deal with these zones with the competing machine. In the second half of 2003, the Wirth machine at the southern end caught up. Finally, the tunnelling process at both ends turned into an exciting neck-and-neck race.
he first machine to cross the line was the north-end Herrenknecht Double Shield, which completed its $14,328 \mathrm{~m}$ on December 23, 2004 had taken 28 months to construct the entire tunnel. The Wirth machine made breakthrough on January 11, 2005 at the norther end, having taken 27 months to complete the northern section, measuring $14,085 \mathrm{~m}$.

On the southern side, the construction team working with the Wirth machine was ahead by a nose when it crossed the line. It and $14,091 \mathrm{~m}$. The Herrenknecht machine on the south side reached the finish on June 1,2005 after constructing $14,323 \mathrm{~m}$ of tunnelhe TBM race in Spain did not turn out to be a duel between two German TBM manufacturers in the end. It resulted in the achievement of a remarkable record by the Spanish client and its contractors. In only three years they managed to build almost 58 km Guadarrama mountain chain. This set a new benchmark for mechancal tunnelling through hard rock.

等

ON THE RIGHT TRACK IN BARCELONA.

The Earth Pressure Balance Shield for Barcelona's metro line 9 making good progress. With top weekly performances of up 00.2 m , this colossus with a huge diameter of 12.06 m reached first stage goal in June 2004 - the "Ielescopi Besos" metro station Following a short overhaul of the cutting wheel, the EPB Shield is now back at work under this densely populated Spanish metropolis. By mid-October 2005, the Earth Pressure Balance Shield had installed 1,558 lining segments and driven 2,805 meters of tunnel. By the end of 2006, a total of 10 kilometers of metro tunnel for line 9 between the airport and the neighboring towns of Badalona and Santa Coloma will have been completed
barcelona spain
(2)

221. EPB Shield

Necse
Enteranales cubiertas
SA. ACS. Comssa

ico received a good grounding in his skilled vocational training and so he is able to tighten a screw correctly with a
torque wrench. "But the boss is not allowed torque wrench. "But the boss is not allowed
to see an engineer working with a wrench, because that's much to min admits, defining his own job. But he adds that the job has to be done, deadlines have to be mot That's why he could be seen a few days ago climbing down from a piece of equipment, covered in oil from head to "But the problem was solved" he says in his defense Somehow the end always justifies the means, even if that means risking pres the means, even if that means risking pres sure from above.

R ico is responsible for Traffic Tunnelling Machines with a diameter of 4.20 m TBM with a diameter 15.20 m . He says he always finds the massive size and power of these machines phenomenal and he admits they make him feel like a little boy. That's why he returned to Herrenknecht after finishing university in 1999, this time as a mechanical engineer. He often speaks like a miner, using words like "methane bubbles" and "main aeration zone", miners' terminology for the ventilation system in a tunne. In closed systems, he warns, probably also as a reminder to himself. "The machine must prove itself inside the mountain, that's all that counts," he explains clearly. In his university lectures he was taught nothing about mining. He acquired his knowledge about this subject in conversations with customers and by going down into tunnels himself. But man cannot live by technology alone, no matter how in love with technology he is.
"I like the fact that this is a down-to-earth company," Rico says about Herrenknecht. And he says that about a company whose equipment tunnels through the earth all over the world. Even as an engineer Rico did not want a 100 percent office job and a smart suit, unlike many of his classmates at high school or university, who chose jobs in which they were certain they would not have to get their hands dirty. Between 6 and 7 a.m., Rico puts on his overalls, safety boots and hard hat for a tenhour working day. But before that he has a
daily briefing over a cup of coffee with his team, consisting of 2 master mechanics, an engineering techn 2 master mechanics, an neer. After their meeting they go out into the huge assembly halls and climb outo the giant machines to test their various func tions. Customers are invited to Herrenknech when machines are handed over and the complete system with all its functions is demonstrated. This is the best way to show ocustorers that they have inested ther money wisely. money wisely
"Since the most important function cannot be tested, we try to simulate the mountain with measuring procedures as close on nature as possible" the engineer says, describing the method. He and his team are responsible for hydraulic systems, a fellow engineer tests the electrical systems to make engineer tests the electrical systems to make
sure they are functioning perfectly. Large diameter machines include up to 5 kilometers of flexible pressure tubing for the hydraulic systems.

S everal dozen pumps must be adjusted everal dozen pumps must be adjusted
to the nominal operating pressure and their synchronicity and correct arrangement checked. On average the team has three weeks for the final inspection of a machine. With pressures in the tubes of 250 to 500 bar absolute precision and reliability are indispensable in their work. If even one screw connection is loose, serious consequences could follow. "My aim is to build up a department that functions faultlessly and where everyone knows their job perfectly, says the engineer. Rico Wurth feels responsible for his people and those working on completing the assembly of the machine while it goes through the testing phase. Time is money, even in the seemingly tranquil llage of Schwanau in the Black Forest. Rico's highest priority is perfection. "II dere in the customer's shoes, I can image , be demanding," he describes himself tans to avoid as far as possible having travel around the world to correct misakes on machines. Rico wants to put the ompany ahead with a technically perfect product. He has committed himself to this aim, even if it means tightening every nut mith a large wrench and even if tha has to be behind the Boss's back.

halfway at the gotthard range.

(1)
unnelling work is forging ahead on the longest traffic tunnel in the world, with $2 \times 57 \mathrm{~km}$. By mid-October 2005, the fou 75 km of tunnel to be driven by Herrenknecht TBM. More than 2 percent of the 153.5 km of tunnels, shafts and adits for the base tunnel project commissioned by AlpTransit AG are now ready The Herrenknecht tunnelling giants in the noth have now shed considerably more than half their route deep below the moun ain. Best tunnelling performances of up to 401 m per day are clear demonstration of this progress. The two "moles" on the south side are now approaching their goal, the Faido intermediate attack point. Here, too, far more than 65 percent of the 28.8 km to be driven have also been completed. Despite this excellent progress the project as a whole will remain a pioneering job until the very end. It is always possible that the mountain has more hidden secrets waiting for us.

(2) For further information on the Gotthard Base Tunnel Project, www.herrenknecht.com or order our Gripper animation on www.herrenknecht.com or order
CD-ROM and our "Gotthard" DVD.

PERFECT TEAMWORK AT ISLISBERG.

After only 54 weeks of single shift work, breakthrough for the 4880 m west tube of the Islisberg Tunnel was achieved on April 21, 2005. From mid-June 2004, average weekly performances of 103 n were attained. The best performance in one week was 110 m . Thes figures can be credited to both the sophisticated technology of the Single Shield TBM and the highly coordinated and experienced tunnelling team.

A fter repositioning and conversion of the 160 m long, $2,000 \mathrm{t}$ ast turnelling machine, the team began tackling the $4,645 \mathrm{~km}$解 drive at the beginning of July. The Herrenknecht S-256 TBM had eady exansed more than $1,200 \mathrm{~m}$ of the east tube by mid ctober 2005. After completion, the Islisberg Tunnel will be the ongest underground portion of the western Zurich bypass which, from 2009, will reduce the city's burden of through traffic to and from central Switzerland

The $1,200 \mathrm{~m}^{2}$
Herenenkecht ass.

From the Rütli Oath and William Tell
to the Base Tunnel. The Swiss have many mountains and they love them all. But one of them has a special place in their hearts: the St. Gotthard mountain in the Canton of affection is probably due to the feact the the earth out of which the mountain range in central Switzerland rises is full of history was not far from here a Lake Lucerne, that the three emissaries of the original cantons Uri Schwyz and Unterwalden swore their legendary Rütli Oath on August 1, 1291 This eternal alliance in the battle against the Habsburgs was the cradle of the Swiss Con federation. But as if that weren't enough not far from the lake in the hamlet of Alt dorf the apple took its second starring role, after the Garden of Eden. 11 years after the swearing of the oath, according to legend William Tell made his golden shot here. He hit the apple and saved his son. Some 800 years later, the Herrenknecht company came to the area and bought some land -a wise move since history always repeats itself. Today, the eyes of the world have again turned to the area around the St. Gotthard mountain. This time the location of the story is Amsteg.
A. msteg is a small village with a few hundred inhabitants. For the past few at the edge of the village. This is home
some of the people working on the construction of the longest railway tunnel the wo will (seep. 12). Fom 2015, ing speed
 at the foot of the mountain rane is the sie of one of the two intermediate attack point using Herrenknecht tunnelling machines, for the most important turnel proiect in the world, the new Gotthard Base Tunnel.he Swiss subsidiary of the Herren knecht company is located close to the entry portal. Some 10 employees can be found here in this facility. "Most of the peoConi Scheifele, manager of the Amsteg subsidiary. After all that's what they are here for, he adds, prepared to be wherever they for, heeded. That is precisely their job.
"One of the two machines in Amsteg g stuck," says Roman Eggel, describing a critical case. Parts of the face in front of the Cutterhead collapsed and trapped it. Such things can happen in difficult geological Eggel, however, does not look for solution to geological problems but rather considers how to look after the machine so that it will advance again after the clearance and se curing work has been completed, thus keep ing damage to a minimum. That is his job When other problems arise, the tunnelling machine operators phone him and ask, for example, what the maximum limit for pres sure increases is to pass through fault zones with as few problems as possible. The 33 year angineer has worked in tunnel contrucion for more than 10 years. He be gan his career working for a constructio cmpany, but joined Herrenknecht in 2000 and project successfully," he explains. Everyon

HELLO, AUSTRIA.

or many decades, tunnelling in Austria was dominated by the "New Austrian Tunnelling Method" (NATM). Now, however, tunnelling machines are also being used in Austria. onstruction companies are attempting to establish mechanical tunnelling with five infrastructure projects.
In fall 2005, the first of two Single Shield BM began work. From the west, they are driving two single-track, approx. 11 km-long sections of the Wienerwaldtunnel (Vienna Noods Tunnel). This construction project with a total length of 13.35 km is part of the new Vienna-St Pölten route and is the first unnel project in the country outside of major
TBM.
Herrenknecht TBM technology is also involved in the continuation of the 42.3 km improvement project. A Single Shield TBM ade in Schwarau is driving three adjacent unel sections - the Reiserberg Tunnel, the Stierschweiffeld Tunnel and the Raingrube as part of the so-called Perschling Tunne Chain.
Construction of the Wiental collector began in August 2004. This 2.7 km sewage
duct, which follows the route of the Vienna River, is being constructed by an Earth Pressure Balance Shield. This machine has silty-clay soil formations with disc cutters and soft-ground cutting tools. Breakthrough fthis up to 36 m -deep route beneath the Vienna River was achieved in April 2005. A Mixshield made in Schwanau, which had already driven the underground portion of metro line 1, is now being used in the extension of metro line $2 / 5$. Work on December 2004. In August 2005, the Mixshield reached the target shaft. This route went through silt, sand and gravel at depth of to 20 m below the groundwater leve. The construction team from Porr Tunnel tion work for the Graz cable tunnel as early as December 2004. This 877 m cable tunne ans beneath the Graz main railway station, proviang it with an electricity supply. This artil finvolved the use of a machine with $3,680 \mathrm{~mm}$.

C.
ristina Obergföll is a young, 23-yearold athlete from Mahlberg, 10 min-
utes' drive from the Herrenknecht TBM man-
ufacturing plant. She set her sights high
from an early age in her discipline, the
javelin. Just like Dr. Martin Herrenknecht,
which is why he has supported this athlete
since 2000
n the final day of the World Athletics Championships in Helsinki, on the evening August 14, 2005, she surprised the athletics world. Christina Obergföll threw the javelin farther than she ever had before in her young sporting career. She sent it flying with so much force that it soared no less than 70.03 m across the green Championships sports field. Christina, her traine erner Daniels, Martin Herrenknecht and he athlete's parents could hardly believe eyes in Helsinki: it was a European ecord. At the end of the competition this age throw brought Christina a silver medal ner-up.

- elsinki changed the life of this young - athlete to some extent, but down-toearth Christina Obergföll herself has not changed. She has learned from her sponsor Martin Herrenknecht that you only remain at the top in a global competition when you never stop striving to improve

OBEREFOLL C
EER RR P:2
$311: 70.03$

KATZENBERG TUNNEL. GERMANY'S LONGEST UNDERGROU ND CONSTRUCTION PROJECT WITH MECHANICAL TUNNELLING.

When, in 2012, the first trains run on this new and improved route,
the journey from Karlsruhe to Basel will be reduced from the current 100 minutes to just 70 . These trains will sprint through southern Germany at top speeds of up to $250 \mathrm{~km} / \mathrm{h}$. The Katzenberg Tunnel will provide the residents of nearby towns with optimum noise protection.
$2 \times 8,984$ meters. The Katzenberg tunnel has been designed as a twin tube tunnel. Two parallel, single-track tunnels are being driven ust a few meters apart. Every 500 m a cross-cut connects the two tunnels. The geological conditions, with multiple layers of claystone lay marl, marlstone with embedded limestone and sandstone demand flexible machine technology.

Noise protection even during construction. The project is break ing new ground with regard to concern for the local environment. The 2.6 million cubic meters of excavated material are transported directly from the tunnel, via covered conveyor belts, to a quarry nea the southern portal. This protects the surrounding towns and villages from the nuisance of construction vehicles by minimizing the num ber of truck movements to and from the site.

In 2003, Deutsche Bahn AG awarded this contract to the Katzenberg Tunnel Consortium following an EU-wide call for tenders. Shortly afterward, the contract was concluded with Herrenknecht AG Germany The two identical TBM for this trailblazing project in since fall 2005. At the beginning of November 2005 the Herrenknecht S-264 TBM had already produced 776 m of tunnel, installing 388 ring segments.
The Katzenberg Tunnel is the largest single construction project in Deutsche Bahn AG's scheme for the construction and improvement of the Karlsruhe - Basel route. With a length of $2 \times 8,984 \mathrm{~m}$, the roject is Germany's longest underground construction project with mechanical tunnelling. The Earth Pressure Balance Shields from Schwanau being employed in the construction of the railway tunne between Bad Bellingen and Efringen-Kirchen are among the technially most sophisticated of their kind.
\qquad

BETTER THROUGH GERMANY.

Staying right on course. During the work to upgrade the city of Würzburg's sewage system, a gyroscopic navigation system once again proved its reliability. The "Universal Navigation System U.N.S.S." guidance system, developed by Herrenknecht engineers, p. 38). With a difference in depth of 10.4 m , three horizontal and two vertical curves had to be tackled. At one point, changes in both vertical and horizontal direction had to be navigated simultaneously. In mid-June 2005, the machine, equipped with its gyrocompass and hydrostatic level, reached the target shaft precisely.

Speed beneath Brandenburg. In a construction time of only 16 days, a 444 m tunnel was produced between the Brandenburg vil lages of Kienbaum and Börnicke in January 2004 with a Herren knecht AVN1600TB. The stretch, which passes under a protected wetland area, is part of a 40 km high-pressure gas pipeline of Ruhrgas AG and Verbundnetz Gas AG. Despite extensive surveying work necessary because of considerable differences in levels and
despite the installation of four intermediate jacking stations and outside temperatures of up to minus 15 degrees Celsius, the tunnel was driven in record time.

All-round nozzle system. An AVN1600TB with cutter discs specially developed by Herrenknecht engineers, was used for the 200 m tunnel under the River Ruhr near Essen-Kettwig. The machine, with an operating power of 160 kW , successfully worked its way through grey sandstone with a maximum compressive strength of 400 MPa , as well as through marl and gravel layers. The all-round provision of the machine with jet nozzles allowed good tunnelling results even in cohesive soils. In addition to the Cutterhead and ring chamber nozzles this machine was also equipped with high-pressure, lowpressure and invert nozzles.

HDD in the Wattenmeer. Mid-May 2005 saw the successful completion of horizontal drilling work to improve connections between the Mittelplate oil field and the Schleswig-Holstein mainland. Two Herrenknecht HDD Rigs were used in the mudflats of the Watten meer. Smooth operation of the machines meant that the work was completed well within the scheduled construction time of thre months. $7,500 \mathrm{~m}$ of pipeline were laid in only two months - despite transport difficulties caused by the tides and wind speeds of up to 5 km per hour. Following completion of this project, an oil pipeline and a water supply pipeline now connect the Dieksand mainland station with Germany's largest oilfield.

FASTER THROUGH BELLA ITALIA.

Ring construction under pressure. The city of Naples has chosen tunnelling technology made in Schwanau for the improvement of its metro system. The Metropolitana Napoli has commissioned an extension of its line 1. By 2010, this circle line will connect the city's airport with the metro network. Two EPB Shields (S-238/S-239) from to 35 m below the groundwater level. Pressures of up to 4.5 bar are expected.

Reducing the pressure on Trento. A Herrenknecht S-251 Single Shield TBM has been working its way through the foothills of the Dolomites since mid-February 2004 in order to reduce the pressure of through-traffic on the city of Trento. This bypass scheme centers on two tunnels, each $2,760 \mathrm{~m}$ in length. The first of these tunnels was completed at the end of February 2005. The machine was then urned round and since the beginning of June 2005 it has been constructing the second tunnel, travelling in the opposite direction and by the end of September 2005 it had advanced $1,210 \mathrm{~m}$.

Fully automatic metrobus. In the northern Italian city of Brescia, fully automatic public transport system with a length of approx. 13 km is being created with the "metrobus". Some 6 km of tunnels
run beneath the historic town center, which includes some fragile run beneath the historic town center, which includes some fragile buildings. In November 2005, a Herrenknecht S-260 EPB Shield is due to begin drilling and installing lining segments for this two-lane tunnel (5.4 km) through water bearing, loose ground.

High Speed in Genoa. Like many other countries, Italy is also upgrading parts of its railway network into high speed routes. The
别 to Turin and from Milan to Naples). Herrenknecht won the order from the construction company Ferrovial-Agroman S.A. to build the S-315 Single Shield TBM to drive four tunnels near Genoa with a total length of 12 km .

GOING EAST.

A Herrenknecht Mixshield is once again on a of the North", in order to protect the Neva breakthrough mission; after it was used in the construction of the 4th Elbe River Tun nel, it went to work constructing the Leforovo road tunnel in central Moscow. In May 2004, after being modified and overhauled the S-250 machine began driving two tunnels beneath the "Serebryanyi Bor" (Silver orest) nature reserve northwest of Moscow Under the direction of the Russian construc hrough for the first tunnel was achieved on March 17, 2004 after a consistent run of excellent tunnelling performances.
fter repositioning, "Elizaveta" is du to set off on another underground ney in autumn 2005. The two $1,505 \mathrm{~m}$.ls along the banks of the Moskva River planned as two-storey tunnels. The for three-lane road traffic. The lower storeys are reserved for the "Strogino" metro route one for each direction. A further Herrenknecht Mixshield (S-290) is constructing a service tunnel between the two main tunnels to serve as a supply, ventilation and escape route. This project should be completed by 2007.

Tunnelling champion. St. Petersburg's sewage system is constantly being modernized and extended. A Herrenknech AVN2000D Utility Tunnelling Machine has already driven more than 6 km of sewage $\begin{array}{ll} \\ \text { unnel as part of two projects in the "Venice } & \\ 2005 .\end{array}$
of the North", in order to protect the Neva system. The construction company STIS GmbH chose tunnelling technology made in Schwanau because of the complex, waterbearing ground such as silt, sand and loam containing many boulders of all sizes.

(T)his Mixshield, which was specially adapted for this project, has been working its way through these complex geological conditions since autumn 2003, sometimes with performances worthy of a world cord. Thus, a 909 m distance was driven in wintry conditions with temperatures down to minus 20 degrees Celsius, in only 5.5 weeks. In this project, the AVN2000D drove a rage of 39 m of pipeline per day.
A Herrenknecht shaft sinking unit wil Also be employed as part of this large-scale

Energy for the Silver Forest Tunne Herrenknecht HDD Rigs reliably lay oil or ga pipelines and other supply lines under ground using the trenchless method. Two , siach 650 m in length, serve to supply he Siver Forest freeway and metro tunne with energy. They were driven by an KK250TS through plastic loam and sand, approx. 8 m beneath the River Moskva Subsequently, polyethylene pipes were pulled into the pre-reamed hole tube to is a duct and protection for cables. The

nbeatable EPB Technology in Poland. A Herrenknecht EPB1600 with muck skip drove four tunnels with a total length of 1.1 km as part of the construction of a new sewer for the Polish capita Warsaw. This reinforced concrete tunnel, constructed beneath one of Warsaw's main traffic arteries, serves as a sleeve pipe for the smaller sewage pipe. Beneath the groundwater level in geological condition such as loam, silt, sand and rock, this EPB technology made in schwanau obviously felt at home. With a Cutterhead optimized for improved machine performance, the tunnelling team achieved top daily results of up to 27.5 m .

Hungary: tried and tested teamwork. A Herrenknecht EPB2000 equipped with U.N.S. is constructing a sewage tunnel with a total length 3.45 km in Szeged, the fourth largest city in Hungary with around 165,000 inhabitants. This tunnel will connect a new sewage treatment plant with the existing sewage system. This mainly innercity tunnel is being driven in seven drives, each with a length of approx. 500 m , through loam, sand and silt. The first two section were completed in mid-July 2005. The newly formed construction site team achieved impressive tunnelling performances with maximum daily results of 37 m . The project is due to be completed by summer 2006.

Confident logistics for Azerbaijan. A Herrenknecht AVND1600 crossed the Kura River, the largest river in the Caucasus region, in extremely complex geological conditions and far from any infrastructure. With Pipe Jacking Technology, the tunnel crew laid two parallel reinforced concrete pipelines through constantly changing conditions, including sand, loam and gravel as well as many hidden boulders, to accommodate one oil and one gas pipeline. Despite the high logistical demands, the construction site team was able to complete these two sections, each with a length of 400 m , in record time by May 3, 2005, with its "round-the-clock" dedication and with top daily performances of almost 43 m .
tunnel project machine data
contractor
\qquad $\stackrel{M-933 M}{\text { EPPB } 600}$
kura river lazerbaijan

Herrenknecht-Talk in Munich.

Top experts and insiders from the sector spent two days at the bauma 2004 in Munich discussing current trends in mechanical tunnelling on the German and European markets. The key topics of this sector forum were "More service with lower budgets. Must safety suffer?" and "Traffic infrastructures of the future. Does Europe need new tender and partnership models?" Klaus-Peter Siegloch (German Broadcasting Corporation) moderated the talk sessions at the bauma booth of Herrenknecht AG. A number of their com-
ments are timeless and relevant to the present.
"More service with lower budgets. Must safety suffer?"

Martin Bosshard (Basler \&t Hofmann): Investments should be made continuously, so that know-how does not stagnate. uture tunnel and infrastructure projects are becoming increasingly complex. That is why it is so important not to lose know-how."
Prof. Dr. Martin Ziegler (STUVA, RWTH Aachen): "Far too often, decisions on infrastructure projects are political decisions. They are often far too heavily influenced by ideology rather than by facts."
Peter Teuscher (BLS AlpTransit AG): Peter Teuscher (BLS AlpTransit AG):
"One should not always ask about the economic profitability of such projects. One must also consider the positive influence
of traffic and transport systems on the development of the national economy."

(2) Traffic infrastructures of the tender and poes Europe need new partnership models?"

Prof. Dr. Lothar Späth (Chairman of

 the supervisory Board of Herrenknecht AG): "We must allow the markets to decide which financing model is most appropriate. That will mean that some projects will fail, hat is simply part of what the free market conomy is about. It is a mistake to think that when things go wrong, the state will always pay. When things succeed, the private sector earns. Failure is a natural way of regulating the market."Peter Zbinden (AlpTransit Gotthard AG): "We use our tax revenues for consumption today, for short-term training, short-term social contributions. But that means we are faling to invest in the future, for example in upgrading traffic and transport infrastructures, in road building and communication."

Albert Scheller (DB Projektbau): "The room to maneuver for new projects is ver small or even non-existent. That is why politicians must make sure that we do not lag behind in the face of Europe's enlarge ment to the east."
Rolf Berger (4th Elbe River Tunnel Consortium): "The functional tender pro cedure for the construction of the Elbe River Tunnel was a success. Before a tender procure begins, there must be an intensiv identification process for what should b built and under what conditions."

NI HÅO IN CHINA.

Broad commitments in Guangzhou. New traffic and transport China. Even at the official inauguration at the end of April 2005, infrastructures in China's conurbations must almost necessarily go the plant was already working to full capacity. The 104 m -long and underground. This is because these large metropolitan areas are 22 m -wide building, equipped with state-of-the-art assembly tech densely built up, space is at an ever higher premium and transport nology, can accommodate three large tunnel boring machines dur and traffic needs are increasing all the time. In Guangzhou alone 18 EPB Shields from Schwanau have been or are still involved in the extension of the metro network, producing more than 30 km of tun nels in total nels in total.

Assembly in China. Herrenknecht has now begun assembling large tunnel boring machines outside Europe for the first time, in order to serve better the rapidly growing Asian market and to provide optimum support for our Asian customers. In a construction period f only five months a new assembly facility and an administration building were completed at the Guangzhou location in southern

22 m -wide building, equipped with state-of-the-art assechines during assembly at the same time.

A second manufacturing site is currently under construction in the "Nansha Development Zone" near Guangzhou. There, together with its Chinese joint venture partner, "GZZG", Herrenknecht will with its Chinese joint venture partner, "GZEG", Herrenknecht will
further increase its manufacturing capacity for the Asian market. further increase its manufacturing capacity for the Asian market. Knowledge transfer abroad concentrates on the areas of steel fabrimechanical and production engineering. Electronics, control engineering, mechatronics and hydraulics are produced and further developed exclusively in Germany.

	tunnel project	machine data	contractors
(i)	Beijing: Metro "Line 5", second stretch Geology: silty: $2,833 \mathrm{~m}$ layer with fine sand gravelly sand, stone It, clay	S-169, EPB Shield Diameter: $6,190 \mathrm{~mm}$ Cutterhead power: 630 kW	Beijing Urban Construction Group Co. Ltd.
(昆)		945 kW each	Guangzhou Municipa Dunjian, Underground Itd.
(9)	Guangzhou: Metro "Line 3", TianHe to HuaShi Station Tunnel lengths: $2 \times 3,084 \mathrm{~m}$ Geology: sandstone, siltstone, clay, silt	$\begin{aligned} & \text { S-244, S-245, } \\ & 2 \times \text { EPB Shield } \\ & \text { Diameter: } 6,250 \mathrm{~mm} \text { each } \\ & \text { Cutterhead power: } \end{aligned}$ $945 \mathrm{~kW} \text { each }$	Guangzhou Municipal Dunjian, Underground Construction, Engineering Co Ltd.
오앙	Beijing: Metro "Line 5" Tunnel lengths: $2 \times 750 \mathrm{~m}, 2 \times 650 \mathrm{~m}$有ogy. sitity sand, loamy sand	S-254, EPB Shield Diameter: $6,250 \mathrm{~mm}$ Cutterhead power: 630 kW	Beijing Chang Cheng Bilfinger Berger Constr. Eng Corp. Ltd.
(9)	Guangzhou: Metro "Line 4" Tunnel length: $1,467 \mathrm{~m}$ Geology: weathered, migmatitic rock sand, clay	S-261, EPB Shield Diameter: $6,250 \mathrm{~mm}$ Cutterhead power: 945 kW	China Railway Junnel Group Co. Ltd
	Guangzhou: Metro "Line 4" Luntou to University Station Tunnel lengths: $2 \times 3,950 \mathrm{~m}$ Geology: slightly to moderately weathered granite	S-266, S-267, $2 \times$ EPB Shield Diameter: $6,250 \mathrm{~mm}$ each Cutterhead power: Cutterhead power: 945 kW each 95 kW	China Railway 13th Bureau Co. Ltd.
(e,	Tianjin: Metro Tunnel lengths: S-283 + S-284: 2,290 m each S-282: 2,100 m Geology: sand, loamy sand, sandy clay, clay silt	$\mathrm{S}-282, \mathrm{~s}-283, \mathrm{~s}-284$, $3 \times$ EPB Shield iameter: $6,390 \mathrm{~mm}$ each 630 kW each	S-282: China Railway 18th Bureau Co. ttod S-283/284: China Railway 3rd Bel S-283/284: Chi Bureau Co. Ltd.
(!)	Beijing: Metro S-291: $2 \times 2,100 \mathrm{~m}+2 \times 680 \mathrm{~m}$ S-291: $2 \times 2,100 \mathrm{~m}+2 \times 680 \mathrm{~m}$ Geology: S-285: sand, loamy sand, sandstone S-291/294: soft soil, clay		S-285: China Railway 1st S-291: Beijing Uni-construction Group Municipal Eng. Co. (UCC) S-294: China Railway 16th Bureau Group, 2nd Enginering Co. Ltd.
¢	Shanghai: road Tunnel lengths: ${ }^{\text {Chang }}$. Geology: sand, clay, rubble	S-317, S-318, $2 \times$ Mixshield Diameter: $15,430 \mathrm{~mm}$ Cutterhead power: $3,500 \mathrm{~kW}$ each	Shanghai Changjiang Tunne Ct Bridge Construction Development Co., Ltd. Development Co., Lta.
(Guangzhou: Metro "Line 5" Tunnel lengths: $2 \times 1,682 \mathrm{~m}+2 \times 586 \mathrm{~m}$ Geology: granite	$\begin{aligned} & \text { S-329, EPB Shield } \\ & \text { Diameter: } 6,250 \mathrm{~mm} \\ & \text { Cutterhead power: } 1,200 \mathrm{~kW} \end{aligned}$	China Railway 1st Group Co. Ltd.
$\stackrel{\circ}{\circ}$			

The Asian market. Asia is one of the most important sales markets for Herrenknecht. Asia already accounts for one third of the compa This means that the Asian region is the most important market in the world together with Europe for tunnelling technologe In order to consistently expand Herrenknecht's leading market positio in Singapore, China India Malaysia, Thailand and Australia, th company founded headquarters in Singapore in October 2004 "Herrenknecht Asia Headquarters Pte. Ltd.".

The new headquarters will coordinate the activities of other Asian subsidiaries and set up and develop a sales network for the growth markets in India, Vietnam, Korea, Laos and Indonesia. However, the Herrenknecht Asia Headquarters Pte. Ltd." is not only a hub for sales and marketing of tunnelling technology. It will also be a researc hess to customers and projects to produce market-oriented technical solutions.

Twice under the Yangtze. The East-West Pipeline project is China's second largest infrastructure project, after the Three Gorges Dam. This $4,200 \mathrm{~km}$ connection crosses beneath the Yangtze River twice Two slurry TBM of the type AVN2440D drove the tunnels to carry the gas pipeline under Asia's longest river. The crossing near the city of Honghuatao in particular proved to be a great challenge. In extremely variable geological conditions, with groundwater pressure of up to 4 bar, the Mixshield with compressed air and bentonite tunnel face support was in its element and reached the target shaft pre cisely after driving $1,500 \mathrm{~m}$ of tunnel.

Tough stuff in Hong Kong. An AVN1800TB had to crack hard rock with strengths of up to 380 MPa . This Utility Tunnelling Machine drove a new, $1,606 \mathrm{~m}$ sewage tunnel through extremely hard underground beneath the tower blocks of Hong Kong. Small overburden and curved routes made the undertaking even more complex. A tota of 7 drives had to be completed. The toughest challenge was the last, and with a length of 404 m , longest individual section to be driven On June 14, 2005 the machine reached the target shaft precisely, with slight settlement of only $5-10 \mathrm{~mm}$, despite the difficult geolog-

Tough guy: hard rock cuterenead of the

ical conditions. 3 Herrenknecht machines laid a total of 2.5 km of tunnel with diameters of $600 \mathrm{~mm}, 1,200 \mathrm{~mm}$ and $1,800 \mathrm{~mm}$ for the Wan Chai East and North Point Sewage Trunk Sewers Project.

HDD in the fast lane. China's huge and rapidly growing consump tion of energy means ever more efficient distribution systems are necessary to transport oil and gas from their distant sources to power plants and industrial centers in the country's energy-hungry conurbations. Seven Herrenknecht Horizontal Drilling Rigs are curently being employed, in particular for the trenchless laying of oil and gas pipelines. Since 2003, a total of 31 km of pipeline have been aid under rivers, roads and other obstacles, in 35 projects. This included maximum individual drilling routes of $1,700 \mathrm{~m}$ through extremely varied geologies.

Projects in china

Amard ceremony at the
pening of the Asia
Asia

 Devecopment Board).

 Scep tem in sinewas
lanuary 2005.

\section*{(*)
 | | tunnel project | machine data | contractors |
| :---: | :---: | :---: | :---: |
| | Kuala Lumpur: road and water
 "SMART Tunnel"
 Tunnel lengths:
 $5,400 m+4,050 m$
 Geology: limestone, marble, sand | | S-252: Wayss \&t Freytag AG S-253: MMCEG-Gamuda Joint Venture |

DUAL USE FOR KUALA LUMPUR.

- unnels are serving ever more complex needs. Two Herrenknecht Mixshields are currently working on one of the world's populated Malaysian capital, a 9.5 km tunnel system is being built, which will provide relief for the city in two ways. For most of the year the tunnel will reduce the traffic burden. During the monsoon, however, it will channel the huge amounts of water which repeatedly overwhelm the city, and protect Kuala Lumpur from flooding.

Intermediate targets safely met. Since July and September 2004 respectively, the two Herrenknecht Mixshields have been tunnelling in opposite directions, one northward and one southward, having set off in one launch shaft. The SMART Project (Stormwater Management and Road Tunnel) is due to be completed by the end of 2006. On their journey underground, the Mixshields are confronted with variable geological conditions. The first intermediate targets have oreakthrough of the TBM 52 . Its identical twin reached the first target shaft at the beginning of June 2005 .

A trailblazing construction. The SMART Tunnel is built on three stories. Traffic flows along the top two decks, separated according to direction, with two lanes each. The cavity beneath these two decks inside this tunnel, which slopes from north to south, is always available as a water overflow channel. A 3 km -long portion in the middle third of the tunnel route is used as an additional bypass whenever water levels become critical. When flood waters reach a critical height, initially the lower road level is closed to traffic in this section of the tunnel, and if necessary the upper level is also closed to traffic.

(2)) For furher information this topic, visit
www.smarttunnel.com.my

IN THE SHADOW OF THE HIMALAYAS.
 the fastest growing regions in Australia. In order to guarantee that not put it off course - thanks to the U.N.S. guidance system (see also the development of the sewage system can keep pace with this overleaf). This pipe jacking project is one of three support distances struction. Since May 2004, a Herrenknecht EPB1500 Micromachine traffic artery in Brisbane, trenchless construction was a must. struction. Since May 2004, a Herrenknecht EPB has driven 8 km of a pipeline with a total length of 10 km , at a depth of 6 to 12 m through sand and clay. By mid-July 2005 , some 5.4 km of this sewage pipe had been completed. The project is due to be finished by June 2006.

Retractable trailblazer. HDD Rigs require "stable" geological conditions in order to do their work For the construction of a ges ditions in order to do their work. For the construction of a gas
pipeline whose route passed first through sand and gravel and later pipeline whose route passed first through sand and gravel and later be the right trailblazer. This pipe jacking machine first drove a 230 m protecting pipe in unstable geological conditions until it reached the hard rock, when it was recovered through the jacket pipe. Subsequently the HDD Rig was able to begin tunnelling "in peace".

Reaching the target precisely to the millimeter. On the morning of February 14, 2005 an AVN1200TB arrived at the target shaft in Brisbane precisely to the millimeter. In only four weeks, the machine had burrowed 320 m beneath a busy road through extreme-

UTILITY TUNNELLING DOWN UNDER.

Expansion in India. Herrenknecht Horizontal Drilling Rigs are used all over the world - in particular for the trenchless laying of oil an gas and more construction companies are turning to HDD equip ment made in Schwanau. With pulback forces of 60 to 400 t , the maxi and mega rigs can lay pre-fabricated pipelines with diameters of up to 1.60 m for a distance of approx. $3,000 \mathrm{~m}$ through various ground. Trailer Rigs are particularly popular as they can be easily and cheaply transported over large distances.
India is now developing into an expanding HDD market. Two HDD Rigs made in Schwanau are currently being employed on the
subcontinent. A trailer-based, 250 t rig successfully completed two river crossings at the end of March 2005. As part of a second to begin, also with a Trailer Ri

Whether in Melbourne, Sydney or Brisbane

Integrated, flexible Navigation Technology.

Herrenknecht development engineers have developed a system platform - the Universal Navigation System "U.N.S." - which can be adapted to the demands of each pipe jack-
ing job. Independently of the tunnel length, IThe "GNS-P" module (Gyro Navigation diameter or route, this modular system can be easily adjusted to fit the conditions on site.
U.N.S. is offered in three modules:

I For straight-line tunnelling and tunnel lengths of up to 200 m the "ELS" modul lengths of up to 200 m the "ELS module
(Electronic Laser System) guarantees on-target breakthrough.
on-target breakthrough.
The "ELS-HWL" module (Hydrostatic Water Levelling) with an electronic hydrostatic Levelling) with an electronic hydrostatic wertical position of the TBM and guarantees straight-line tunnelling up to 400 m .

The "GNS-P" module (Gyro Navigation System for Pipe Jacking) was developed seeking gyrocompass reliably indicates the precise tunnelling direction. Together with the vertical data from the "HWL" module, the exact 3 D position of the machine the exact 3D po be calculated.
Adaptations and extensions are possible at with U.N.S. The system always remains userfriendly since the user interface does not change.
U.N.s.
 EIS-HWL - EIS with Hydrostatic Water Levelling
(straight-Iine tunnelling, lengt $<400 \mathrm{~m})$ GNS-P- Grro Navigation System for Pipe Jacking
(curved routes, tunnels with diameter 1,200 mak

Three pioneer projects in mechanical shaft sinking.

The efrman Federal Minister
of fesearnh , Edelgard

\oplus
errenknecht AG has extended its range of Utility Tunnelling products with innovative shaft sinking equipment. The devellaunch and target shafts for Microtunnelling, shaft construction for inner-city metro stations and in the construction of the founda tions for off-shore or high rise structurs is purued intensively Schwanau.

Java. As part of a research project of the Federal Ministry of Education and Research (BMBF), a 100 m -deep shaft with a diameter of 2.5 m was bored down to a subterranean cave on the Indonesian island of Java with a specially developed vertical drilling machine. The Herrenknecht VSM2500 Shaft Sinking Unit drilled through faulted karst limestone to create a vertical access shaft to
subterranean river system. This shaft construction was the important first step towards the creation of an underground barrage which will be able to store some $400,000 \mathrm{~m}^{3}$ of water, providing enough water for 75,000 people.

Kuwait. A second Shaft Sinking Unit was put to use successfully in Kuwait. It was developed in collaboration with the customer, KBC Greenline. The VSM8000 Shaft Sinking Unit produced five launch and target shafts for Microtunnelling projects as part of one of the world's largest sewage schemes. This region, where proximity to the Persian Gulf means the groundwater level is only 3 m below the surface, presents a particular challenge for Shaft Sinking Technology.

St. Petersburg. The third reference project is due to start in February 2006 in the Russian city of St. Petersburg. Here, a spe cially designed VSM7700/5500 Shaft Sinking Unit will start constructing eight shafts as part of a large-scale project. These shafts, with diameters of 5.5 to 7.7 m , will serve as connections for the existing sewage system. In this extremely technologically demanding project shafts must be sunk to a depth of 85 m below the groundwater level with outside temperatures down to minus 20 degrees. In addition, the geological conditions, with hard loa layers and rock boulders of more than a meter in diameter, wil pose great challenges for this innovative machine technology.

For further information on this topic, order our
Shaft Sinking Equipment animation.

NO SAND IN THE WORKS.

A forward-looking project for Saudi Arabia. Saudi Arabia Beneath the "8th wonder of the world". Two artificial palm is investing in the future. That is why the country's longest pipe tree-shaped islands off the coast of Dubai made of rocks and sea acking project, with a length of 7 km , is currently being realized in -sand: these constructions are already being described as the "8th Jedda. A sewage tunnel is being produced with an AVN2500D wonder of the world". They are made up of a 5 km -long "trunk" and beneath the suburbs of this large city. This is a demanding project in 17 "palm fronds", protected by a crescent-shaped breakwater. Work view of the heavily water-permeable geology consisting of sand and began in 2001. Now the infrastructure is being installed. A Herrenoam, and a groundwater pressure of up to 2 bar. Further sewage projects are in the planning phase necht AVN2500D is part of the team. It is driving an approximateelephone and water, for the island Jumeirah 2. They lead in a gentle curve from one of the palm branches to the protective ring through sand, coral and limestone.

SAUDI ARABIA				DUBAI			
	tunnel project	machine data	contractor		tunnel project	machine data	contractor
	Jedda: sewage Geology: sand, total 7,000 m 2 bar groundw, loam, high waundwater pressure, is approx. 20 m deep throughout	M-569M AVN2500D Diameter: $3,115 \mathrm{~mm}$ Max. torque: 780 kNm	Abul Jadayel 5 St.		Dubai: protection tunnel "The Palm Islands Jumeirah" $2 \times$ approx. 600 m Geology: sand, coral, limestone	M-950M AVN2500D Diameter: $3,025 \mathrm{~mm}$ Max. torque: 780 kNm	Al Naboodah Engineering Services (L.L.C.), Dubai

technigal milestones
(138) Development of trenchless slurry mechanical tunnelling which is used in groundwater in all European geologies.First use of the AVN N2 Micromachine in Berlin.
(388) Successful application of Microtunnelling technology in a pipe-arch project in the USA. Through an arch of interlocked small-diameter casings, short, large-diameter tunnel passages were built under railway embankments and roads.
(392) 2.5 km of pipeline were laid in only 100 days beneath Germany's Wattenmeer, in an environmentally friendly way, without intermediate shafts.Herrenknecht Microtunnelling Technology entered the Russian market
(1905) Much business for Microtunnelling equipment: Up to 70 Herrenknecht Micromachines are employed at times in Germany alone.Debut of Hard Rock Tunnelling in Singapore. Here in this Asian Tiger state, a Utility Tunnelling System was used, which, for the first time, allowed excavation tools to be replaced from inside the machine.The open-center drive units of the AVN1200T series allow access to the Cutterhead to exchange tools during long tunnel drives in rock.
200.) Entry into the market for heavy horizontal Entry into the market for heavy horizontal
drilling rigs with pull forces up to $400 t$ for the directionally controlled laying of oil and gas pipelines.
2008) Development and introduction of Shaft Sinking equipment to bore vertical shafts mechanically with diameters of up to 12 m in groundwater.

2005 Development of vertical drilling rigs for use in geothermal projects at depths up to 5000 m .

Water protection in Portland. The US city of Portland is improving its preparedness for future floods caused by rain. Two Herrenknecht Mixshields have therefore been working their way through the underground of the city since February 2004. There they have driven two "combined sewer overflow (CSO)" tunnels with a total length 5.7 km . The route runs below the River Willamette, with an overburden of only 8 m , through heterogeneous geological condioverburden of only 8 m , through heterogeneous geological condi-
tions. It also runs below the foundations of three bridges. In these critical sections, subsidences cannot exceed 13 mm .
The Herrenknecht S-232 Mixshield was already able to complete successfully its 1,350 -long underground mission in November 2004. The second S-231 Mixshield completed its mission on July 29 2005. At the moment, the combined sewage systems of the city stil flood when it rains. Wastewater then enters the River Willamette untreated. In the future this water will be fed into the new West Side Tunnel, which will lead it to the Swan Island Pump Station. From there it will continue on to the treatment plant. The construction is due to go into operation in fall 2006

	tunnel project	machine data	contractors
ลab	ortland: sewag West Side CSO Tunnel" Tunnel lengths: $\mathrm{S}-231 \cdot 4.350 \mathrm{~m}$ S-232: $1,350 \mathrm{~m}$ Geology: sand, gravel alluvium alluvium	S-231, S-232 $2 \times$ Mixshie S-231: $5,050 \mathrm{~mm}$ S-232: 5,140 mm Cutterhead power $\mathrm{S}-231: 500 \mathrm{~kW}$ S-232: 330 kW	$\underset{\text { Impregio S.,.A. SA. }}{ }$ Healy
2	Portland: sewage "West Side CSO Tunnel" Tunnel lengths: total $3,238 \mathrm{~m}$ Geology: sand, silt, gravel	M-876M AVND1800AB Diameter: 2,260 mm Max. torque: 520 kNm	Impregilo Healy Jv

For further information on the Portland project, visit For further information on th
www.portlandonline.com/cso

Well-connected in Portland. A Utility Tunnelling Machine of the type AVND1800AB was also used in Portland. As part of the Combined Sewer Overflow (CSO)" project, it constructed a sewe unnel which feeds into the West Side Tunnel. The best daily per formance of this now-completed project was 58 m in 24 hours, not only good for pid tunnelling it was also particula driven with varying diameters, the machine could be extended quickly and easily.

Outfall in hard rock. A 150 m -long pipeline had to be driven deep below Table Rock Lake in Table Rock Lake National Park in South Carolina. The pipeline was driven from the shore into the lake at slope of 50 mm per meter. The goal was the target shaft built 30 m below the water level in the lake. The construction of shafts under these conditions in open water is extremely difficult and expensive. For this reason, the shaft diameter had to be kept as small as possible. To achieve this aim, Herrenknecht development engineers designed an AVN1200TC as a multi-divisible articulation shield and machine can. This made it possible to reduce the longest machine component from 3.22 m to only 1.394 m . This meant that a shaft with an interior diameter of only 2.36 m was necessary to recover the machine components.

Abrasive rocks with strengths of up to 150 MPa meant this was a reat test of strength for the machine and the cutting tools. The face access facility on the AVN1200TC which allows the cutter discs to be changed from within the machine was ideal for this project and the cutter discs had to be replaced several times during the tunnel drive. This Microtunnelling machine mastered the tough challenges excellently.

PRECISION WORK IN VENEZUELA.

C. onstant gridlock plagues the urban highways of the Vene- tunnelling its way northward along line 3. By the beginning of zuelan capital Caracas. Drivers can proceed only slowly along October 2005 this S-247 Single Shield TBM, which can be converted he avenidas and side streets of this metropolis. Although Caracas to EPB mode, had completed $2,535 \mathrm{~m}$ of this new tunnel, which will has a modern metro system, its trains are also always over full. Another problem is that the three existing lines serve only down town, but not the suburbs in the surrounding mountains. For this reason, the existing metro network is being considerably extended. Three Herrenknecht machines for two metro lines. The first two construction phases serve to extend metro line 3. In addition line 4 of the metro is being built beneath downtown Caracas. Th Brazilian company Odebrecht S.A. chose to use three Herrenknecht tunnel boring machines. Since summer 2004, one machine has bee
ctober 2005 this $5-247$ Single Shield $T B M$, which can be converted
to EPB mode, had completed $2,535 \mathrm{~m}$ of this new tunnel, which will have a total length of approx. 5 km .

T he two S-186 and S-187 Earth Pressure Balance Shields have now completed the two tunnels for the new metro line $4-$ with a combined total length of $7,716 \mathrm{~m}$. Breakthrough was achieved in March and April 2005, respectively. The geological conditions beneath downtown Caracas turned out to be unpredictable. The greatest problem was the boulders of more than a meter in diameaterial loose soil. Areas of old construction debris and waste aterial also had to be passed through.

In addition, the tunnel ran extremely close to the foundations of the city's highest skyscrapers.

Service made to measure. In order to quickly bring worn cutting tools back to good order in such wear-intensive tunnelling condi tions, Herrenknecht installed an extra cutter shop right next to the construction site. This special workshop is equipped with all the tools and spare parts a specialist needs on site to rework worn cutter discs quickly and skillfully. Cutter shops can be set up on any construction site around the world.

The Herenknechth $5-247$
arth Peresure Balance

A strong partnerstip for perfect construction site

Quick and clever logistics.

irk Huesmann (age 43) and Gregor Enneking (age 49) are two pragmatic and rather uncomplicated guys. Their professional passion is dedicated to a subject which most people would not veying systems for mechanical and mining tunnelling. Huesmann and Enneking have developed their field into a small, fine niche company, $\mathrm{H}+\mathrm{E}$ Logistik GmbH in Bochum.Together with 36 employees, they have been developing, con structing and installing clever conveying systems for tunnel and mining construction since 1999. These transport the material exca-
everal kilometers in the most direct, rapid and efficient way to an initial intermediate storage facility or to its final destination above round
H+E conveying systems now make sure that the transportation of xcavated soil or cut rock can keep pace with the excavation speed f the TBM or excavator in many projects in Europe, Asia and Africa. Good coordination is what really brings tunnel production up to speed. $H+E$ conveying systems allow the necessary space for other ing stock transport systems, avoiding unnecessary truck movements on construction sites or to waste storage sites.

5
ix years after its foundation, this Bochum-based company has many and varied, highly specialized reference projects to its name. Tricky jobs lead to innovative solutions. For example, belt storage towers which can provide for up to 400 m of conveyor belt. The company developed a conveying system with a length of 5.1 km for a tunnelling project with a Herrenknecht Earth Pressure Balance Machine ($\varnothing 7.75 \mathrm{~m}$) in Toulouse (metro line B/lot 2). A cleverly devised conveyor system ensured that 600 t of earth per hour could be transported safely even along curve radii of less than 200 m .

In the next edition of Herrenknecht News:

Hasta luego amigos! No European country has as many high-per- Going down deep! For almost 30 years, Herrenknecht tunne formance TBM boring and burrowing through its underground as boring machines have been successfully burrowing horizontally Spain. In order to offer the optimum support for customers and through the earth on all the continents of the globe. Now, Herrenprojects, Herrenknecht maintains a small but fine subsidiary in knecht is going down deep vertically. Vertical drilling units made by Madrid. We spend a day close on the heels of Francisco Avila and uan Arroyo who run the Spanish subsidiary

112 trainees with a passion for tunnels. Even at Herrenknecht Under extreme pressure. The Hallandsas Tunnel in Sweden is see everybody has to start at the bottom of the ladder. But in Schwanau as the construction project with the highest level of complexity the next generation is already on its way up. Ten percent of our staff Various different attempts to drive this railway tunnel have failed in are trainees. The "Herrenknecht Workshop for the Future" offers young people a promising - as well as varied and exciting - start to heir professional career. For those who complete their training suc cessfully, the world is their oyster.
itans in Shanghai. Shanghai and its inhabitants are constantly on he move. This mega-city is growing like no other. Two Herrenknech TBM titans are due to start work in Shanghai in fall/winter 2006. Th Mixshields with a diameter of 15.43 m will build two road tunnels, with a length of almost 8 km , under the Yangtze River. These giant are definitively the biggest borers in the world.

Herrenknecht Vertical GmbH " will penetrate to depths of up to $5,000 \mathrm{~m}$ to allow access to geothermal energy. the construction project with the highest level of complexity the past. The Skanska - Vinci Joint Venture began this challenging mission on October 7, 2005 with a convertible Mixshield made by Herrenknecht. In some parts, mountain pressure levels of up to 3 bar have to be mastered.
eamwork partner MSD. In 1992, shortly after the fall of the Berlin Wall, Martin Herrenknecht bought the East German steel con struction company MSD (Maschinen- und Stahlbau Dresden), which merged with Herrenknecht AG in 1997. After initial difficulties, the Herrenknecht subsidiary MSD is now an important teamwork partner. Both as an extension of the workshop of Herrenknecht AG in Schwanau and as a supplier of special steel constructions and innovative conveying systems for tunnelling.

200

44 students of the Max Planck k High School in
 Herenenkect, himself aformer pupil of the

 estudents w

