#### Brian Taylor, Dean, School of Ocean & Earth Science & Technology



enabling a healthy public, economy, and planet through an integrated, comprehensive, & sustained system of Earth observation, research & education



# **Innovative Satellite Launch Program**

#### From National Reconnaissance Office Study:



UNCLASSIFIED

### State of U. S. Space Industry

#### + U.S. does not drive the satellite market

> 40 Countries w/ Space Programs



+ Commercial only statistics are worse

U.S. SHARE OF THE WORLD SATELLITE MARKET WENT FROM 68% IN 1998 TO 29% IN 2008 WHILE OVERALL SATELLITE DEMAND REMAINED STEADY

UNCLASSIFIED

Due to High Mission-Related Costs, US Technology Lead in Space Dwindles.



### **Growing Interest in "Rapid, Low-Cost" Space**

- Change the economics: Smaller, Cheaper
  - Current satellite & launch cost for "big" satellite ~\$1B (\$500M-\$1500M)
  - Current small satellite & launch cost ~ \$140M
  - Develop low-cost small satellites & satellite rideshare launches
- Develop New Space Technology
  - NRO, Boeing & Air Force investing in CubeSats
  - Operationally Responsive Space Office (DoD)
     & NASA (Ames & Office of Chief Technologist)
     promoting small satellite development.
    - Advance Tech Readiness Levels for critical technologies
    - Accept experimental missions for iterative R&D.
    - Return to 60's mentality: failure is part of learning process
- Rapid Response Launch Plan
  - For Disaster Management & On-orbit Asset Replacement
  - Pre-stage, Modular, "Ship & Shoot"
  - Build redundancy with Constellations of small sats.



UH Kumu A'o CubeSat



NASA's PharmaSat

# The University of Hawai'i at Mānoa Centennial Spotlight





#### The mission of HSFL is to:

- promote innovative engineering & science research for terrestrial and planetary space missions
- develop, launch, and operate small spacecraft from the Hawaiian Islands to accelerate the validation of new space technologies
- provide workforce training in all aspects of unmanned space missions
- promote synergistic collaborations between educational, governmental, & corporate institutions interested in space exploration









Spacecraft
Instrument
Integrate & Test
Launch Vehicle
Launch Support
Ground Station
Operations
Data











## First HSFL Program: LEONIDAS

#### Objectives:

- Conduct two demonstration space launches from the Navy's Pacific Missile Range Facility in Hawaii using a low cost launch system.
- Create workforce training opportunities.
- Increase access to space for DoD, NASA, and University payloads including short-duration technology demonstration missions.
- Hawaii Congressionally directed program supported in the FY07-present Defense Appropriations Bills
  - ▶ LEONIDAS = Low Earth Orbiting Nanosatellite Integrated Defense Autonomous System
  - Funded through the Operationally Responsive Space Office
  - ➤ UH's Hawaii Space Flight Laboratory (HSFL) is the prime contractor
  - > SPARK Launch Vehicle (Space-borne Payload Assist Rocket Kauai) based on redesigned Sandia National Lab's Strypi ballistic rocket.
  - Scout rail launcher from VAFB rebuilt & extended



### **LEONIDAS** Leverages Exceptional Expertise

DoD Office of Operationally Responsive Space (ORS)

**Government Contracting Agency** 

Director - Dr. Peter Wegner

LEONIDAS PMs – Dr. Mark Franz, Mr. Steven Buckley



Program Manager - Dr. Luke Flynn



Sandia National Laboratories (SNL)
HSFL's Launch Systems Contractor
Project Lead– Mr. Todd Criel

Aerojet, a GenCorp Inc. company

SPARK Solid Rocket Motor Provider

Managers- Mr. Mark Kaufman, Mr. John Napior



*AEROJET* 

USN Pacific Missile Range Facility (PMRF)

Launch Site & Range Safety

Commander - Capt. Nicholas Mongillo

White Sands Missile Range (WSMR)

**Scout/SPARK Erector Modifications** 

Project Lead – Mr. Sal Rodriguez

NASA Ames Research Center (ARC)

Launch Vehicle Payload Adapter

Program Manager – Mr. John Hines



#### **SPARK Launch Vehicle**







- Three-stage solid propellant motor stack.
- ➤ Leverage heritage devices that have flown on other rockets.
- Fin & spin stabilized vehicle, with attitude control system.
- Payload objective: 250kg to 400km Sun-synchronous Orbit from Kauai. Higher payload mass can be achieved to lower inclination orbits.

Aerojet Corp. – Strategic Alliance Agreement signed with UH in October, 2010 to provide all 3 motor stages

- > Optimized motor design: exceeds payload objectives.
- Maximize performance & minimize cost by simplifying design & manufacturing process.
- Meet quick response launch requirement

Designed to Reduce Cost, Simplify Launch & Increase Reliability



# Launch Site: Pacific Missile Range Facility



- Pacific Missile Range Facility
  - Existing launch range on Kauai.
  - Partnering with UH and ORS
    - Provide Range Safety support
    - Professional execution & supervision of LEONIDAS launches
- SPARK Rail Launch System
  - Rail imparts stability & directional control for rocket launch.
  - Adjusting launcher trajectory allows multiple orbit tracks.
  - Launcher design enables economical deployment at complimentary sites.
- Polar & Sun-synchronous launch options from PMRF (Kauai)









### **Economic Growth & Workforce Development**

- UH, Hawaii Space Flight Lab, has developed a complete small satellite workforce development program that provides the State a new pathway for economic growth.
- Niche companies will be spun-off in Hawaii.
  - UH & Aerojet will form a launch vehicle integration and launch services partnership.
  - UH & a future partner could spin-off a small satellite development company.
- Mission Support Tools will be maintained at UH to provide necessary infrastructure for UH and Hawaii commercial space research.
  - Clean room facilities for satellite integration.
  - Large thermal-vacuum chamber & vibration table for satellite testing.
  - Spin-balance table for payload integration and processing
- Unprecedented educational training opportunities in all aspects of space mission operations; engineering, science & technology development.
  - Kauai CC: program management & telemetry
  - Windward CC: education & outreach through aerospace center
  - UH Hilo: (future) software & automation
  - System-wide u/grad & high school Space Grant program

CC's: technical Associate Degrees 4-yr: Bachelor's & Graduate Degrees



### **Enablers: Mission Support Tools**

#### Payload Integration, Test, Launch Prep

- Clean rooms to assemble satellites.
  - –Systems integration
  - -Thermal/ vacuum test
  - –Vibration/
    shock testing
- Payload Spin Balancer for integrating multiple rideshare small sats in a single mission





#### **Ground Stations**

- UH/HSFL maintains UHF/VHF receiving stations with Kauai CC
- Ground station provides command & control broadcast & data downlink capabilities.
- HSFL partnering with Alaska & European receiving stations for greater data downlink capability.





#### **Mission Operations from UH Campus**

- can track multiple small satellites.
- working on a NASA Ames project to develop a Mission Operations System to:
- command & control multiple spacecraft.
- run autonomously
- be a standard adopted by NASA Ames and other Universities





#### **UH-Aerojet Partnership: Launch Services Provider**

- > 501(c)3 LLC being planned to benefit:
  - Aerojet: Increase solid rocket motor production, Hawaii "skunkworks" for new R&D
  - UH: Workforce training,
     Self-funded Science & Engineering Missions
  - Joint: Lower Overhead & Costs
     Handle Risk Management
     Hold Intellectual Property

Mark & Amber Kaufman
Aerojet Exec Dir Strategic Programs

Luke Flynn
HSFL Director

BORP





# **UH Technology on LEONIDAS Missions**

- Kumu A'o CubeSat
- Purpose: Technology readiness level advancement of new flight components
- ➤ To be Launched on 1<sup>st</sup> mission
- Built by CoE undergraduate students – mostly Hawaiian



- HawaiiSat-1
- Purpose: Thermal and visible imaging payloads to study Earth
- ➤ To be launched on 2<sup>nd</sup> mission
- Built by CoE and SOEST faculty, and CoE Grad Students
- Partnership with NASA Ames





### Thermal Hyperspectral Imager (THI)



- Measures the thermal energy emitted by Earth's surface in 30 wavebands 7.5-13.5 microns
  Applications include:
  - monitoring active volcanoes, wildfires & urban heat islands
    - monitoring atmospheric trace gases (e.g. methane)
    - detecting groundwater discharges into coastal waters



# **Rideshare Payload Configurations**



1 small satellite, 2 PADs

2 small satellites, 1 PAD

- Large fairing capacity for multiple small satellites
- NASA Ames Payload Adapter and Deployer (PAD)
  - PAD can carry 24 1-u Cubesats or a combination of 1-u, 3-u, 6-u, & 12-u Cubesats



### **Small Sat Performance and Cost Models**

#### 44 States currently build small satellites at over 80 Universities!

| Spacecraft<br>Size | Mass<br>(kg) | S/C Volume<br>(cm3) | Power<br>(W) | Bus Cost<br>(\$K) | Launch Cost (\$K) |
|--------------------|--------------|---------------------|--------------|-------------------|-------------------|
| 1-u                | 1-2          | 10 x 10 x 10        | 2            | 20-30             | 40-60             |
| 3-u                | 5-6          | 10 x 10 x 30        | 4-5          | 100-200           | 250-300           |
| 6-u*               | 12-15        | 10 x 20 x 30        | 12-15        | 400-500           | 750               |
| 12-u*              | 30-40        | 20 x 20 x 30        | 40           | 1000              | 1500              |
| HawaiiSat          | 60-80        | 60 x 60 x 70        | 100          | 2000              | 4500              |
| Other              | >80          | larger              | ??           | ??                | Up to 12000       |

<sup>➤</sup> Goal: Future 3-u CubeSat could be built and launched within the budget of a NASA EPSCoR Research Award (\$750K over 3 years).

<sup>\* 6-</sup>u and 12-u CubeSats have not flown in orbit.

#### Constellations of small satellites





Monitoring Methane





Space Weather

Water Vapor from GPS



# **Innovative Satellite Launch Program**

- HSFL PMRF Sandia NL Aerojet NASA-AMES working together are developing a game-changing satellite launch & deployment system:
  - High heritage, low risk
  - Capable of rapid response (< week)</p>
  - Low-cost for small spacecraft
- Recurring launch costs at \$10-12M (inclusive of range costs) are a fraction of current alternatives.
- ➤ This enables new paradigms of satellite development, cal/val, & deployment
  - > (e.g., constellations of small satellites)
- "the sky is NOT the limit" this promises a new economic driver & high-tech workforce for Hawaii
  - ➤ Watch for 1<sup>st</sup> launch in 2012