
On the Evolution of PDF August 24, 2009 Copyright Adobe Systems 2009 -- 1

On the Evolution of PDF
James C. King (mailto: jking@adobe.com)

Adobe Systems Incorporated
August 19, 2009

1.0 Introduction

The Portable Document Format (PDF) was developed by Adobe Systems Incorporated
and the first PDF specification was published in June 1993 at the same time that Adobe
announced its Acrobat product line. PDF has flourished since then and Adobe updated the
PDF specification 7 times, moving it from PDF 1.0 to PDF 1.7. Each time more features
were added but seldom was a feature removed. The specification went from 230 pages for
PDF 1.0 to 1310 pages for PDF 1.7.

This document summarizes some of the objectives that Adobe had while updating the PDF
specification and also describes the various techniques that had been used to meet those
objectives.

During 2007-2008, Adobe handed the PDF 1.7 specification over to AIIM and ISO to
become an International standard and in July 2008 ISO published the ISO 32000-1 stan-
dard which corresponds to Adobe’s PDF 1.7. It is hoped that ISO will be as careful in the
evolution of PDF as Adobe had been.

This document attempts to spell out what that level of care actually involves.

2.0 Objectives for Evolving PDF

Under Adobe’s ownership, versions of the PDF specification and versions of Adobe’s
Acrobat software were synchronized such that Acrobat 1.0 followed the PDF 1.0 specifi-
cation, Acrobat 2 followed the PDF 1.1 specification, and so on until Acrobat 8 was cre-
ated to follow PDF 1.7 or what has become ISO 32000-1.

The challenge has been, with each new version, to add features to the PDF language while
at the same time preserving the ability of newer software to process old files and older
software to process new files to whatever extent possible. Of course, older and newer are
defined in terms of having PDF version numbers increasing over time.

We identify three kinds of compatibility between versions of PDF files and versions of
products that process PDF files.

1. Backward-compatibility is the ability of “newer” products to process “older” PDF
files.

2. Forward-compatibility is the ability of older products to adequately process newer
PDF files. We will qualify the word “adequately” in our subsequent discussion.

On the Evolution of PDF August 24, 2009 Copyright Adobe Systems 2009 -- 2

3. Feature-compatible is the ability of products that purposefully lack support for certain
features, to adequately process PDF files that contain those features

We use the word “adequately” to mean that either the file is processed completely as
intended, or it is processed in some acceptable but lesser way, or the user is provided with
an informative message and helped with corrective action (e.g., a URL for downloading a
new application). Of course, adequately is a spectrum and we always favored the most
adequate treatment: processing the complete file successfully. We settled only for “ade-
quate messages to the user” when we could devise no better solution.

We most often think of browsing software that renders the contents of PDF documents, but
there are many other reasons software may process PDF files. For example, software may
be written to extract the fill-in data that was collected into a PDF form. There may be no
requirement for this software to render any of the pages, or any other content from the
PDF file. So adequate processing also depends upon of the objective of processing soft-
ware.

We also note that, to some extent, what is adequate is ultimately defined by the author of
the document. One file may be quite adequately processed even though all its video clips
are only presented as fixed posters whereas for yet another file its whole meaning may
depend heavily upon the video clips it contains. Adobe architects have talked about having
a “document requirements” feature for authors or authoring software to include in PDF
files to address this, but it has not become part of PDF.

2.1 Backward-compatibility

Each new PDF-consuming product was required to adequately process all PDF files that
have ever been created. “Once a PDF always a PDF.” Except for bugs and a few depre-
cated features this form of compatibility was maintained. Due to this objective, PDF, as a
file format, has the advantage where any file ever created can be successfully processed by
today’s software, over 16 years after PDF was first introduced.

2.2 Forward-compatibility

A more difficult compatibility is “forward-compatibility.” PDF was enhanced with new
features with each release of the specification. What happens when older software
attempts to process newer files? The incompatibility of newer PDF’s with older software
has two channels for resolution:

• creating PDF’s today that we can be viewed by and interacted with using older viewers,
and

• creating viewers that will adequately allow viewing and interacting with PDFs made
meeting some future enhanced specification — i.e., documents from the future.

2.3 Feature-compatibility

Sometimes a consuming software application doesn’t care about some parts of a document
and won’t be affected if a new feature is used in those parts. For example, it is not

On the Evolution of PDF August 24, 2009 Copyright Adobe Systems 2009 -- 3

expected to be able to print a video. A simple viewer may not be expected to allow forms
data to be entered (although it might reasonably be expected to display already filled in
data). These are compromises that must be made to support wider processing choices for
PDFs.

2.4 Issues with Version Numbers in PDF Files

Software that processes PDF files is obliged to document which particular version of the
PDF specification is followed by that software. Likewise, PDF files contain a version
number indicating to which version of the PDF specification the file conforms.

However the use of versions numbers within PDF files has become confused. We have
seen the following problems:

1. Some applications that create or modify a document just label it with the latest PDF
version number, rather than with the version corresponding to the set of features actu-
ally used in the document. This causes gratuitous forward incompatibility problems.

2. Compounding this problem, some applications are needlessly restrictive about the
PDF versions that they will consume.

The objective should be for applications that write PDF files to use the lowest version
number that covers all the features used within that particular file and for consuming soft-
ware to attempt to process as much of the file as possible.

A further complication with respect to version numbers is that ISO 32000-2 will become
PDF 2.0 and it is anticipated that ISO 32000-3 will become PDF 3.0. See Section 4.0 on
page 6 for further explanation of the troubles that this may cause.

3.0 Standard Techniques

Over the years, Adobe PDF architects used quite a variety of mechanisms to support for-
ward and feature compatible behavior when new PDF features were introduced. These
mechanisms were developed piecemeal, without any unifying principles; it is useful to
have a catalog of them. Here are the ones gathered from a survey of the PDF Reference
manuals.

1. Ignorable dictionary entries

By far the most common approach is to introduce new entries into existing dictionar-
ies. Unknown dictionary entries are typically just not processed by software unaware
of those entries. The entries will be maintained, however; that is a PDF rule. When a
PDF file using such a new feature is encountered by consuming software unaware of
that feature, the effect is as if those features were not present. All other aspects of the
PDF file function normally. This works fine for self-contained features that don't alter
the behavior of existing features and if ignoring the feature can be considered “ade-
quate” processing.

On the Evolution of PDF August 24, 2009 Copyright Adobe Systems 2009 -- 4

On several occasions, this approach has been carried to excess. For instance, transpar-
ency was introduced as an extension to existing objects (principally the form XObject
and the graphics state parameter dictionary). A PDF consumer that does not support
the transparency extensions will process a transparency-containing PDF without an
error message. However, the resulting appearance will be incorrect – everything is
drawn opaquely and the transparency effects are lost. This is an example of an exten-
sion that alters the behavior of existing features. These compatibility consequences
may be troublesome, but given the strong desire to introduce transparency, this fall-
back behavior was considered “adequate,” although in most cases, at the low end of
the spectrum.

2. Ignorable content

Two mechanisms exist to provide forward and feature compatibility for extensions
appearing in PDF content streams:

• If a new content operator is introduced, it can be enclosed in a BX/EX bracket-
ing construct. If a PDF consumer encounters an operator that it does not recog-
nize, but the operator is bracketed with BX/EX, the operator is simply ignored,
by definition. (This mechanism is no longer of much use because new content
operators haven't been introduced for a long time.)

• Portions of content can be turned off using the optional content feature.
Optional content is normally used to implement “layers” that a user can turn on
and off. However, it can also be used to hide content that a user doesn't have
access to for various reasons (such as being encrypted with a key that the user
doesn't have). Optional content can be exploited in forward and feature compat-
ibility situations to provide alternate content that an older or limited consumer
will understand.

3. Alternate representations

In some cases, a PDF file can specify alternate representations of a feature, with the
consumer free to choose which one to use. This enables the PDF producer to provide
forward and feature compatible representations for older or limited consumers. Note
that, by itself, the alternate representation mechanism doesn't provide compatibility;
the PDF-producing application needs to use the mechanism in an intelligent way.

Features for which this has been done include:
• Annotation appearances. If a PDF consumer does not recognize an annotation

type, it simply displays the annotation's static appearance stream. The appear-
ance can contain, for instance, a poster image for a movie annotation.

• Alternate images.
• Alternate color spaces. If an ICCBased color space specifies an ICC profile in a

format that the PDF consumer doesn't understand, it can fall back to an alternate
color space that (hopefully) it does understand.

• Multimedia viability (see Section 5 on page 5).

4. Well-defined fall-back behavior

On the Evolution of PDF August 24, 2009 Copyright Adobe Systems 2009 -- 5

In certain cases, PDF prescribes the behavior that is to occur if a consumer encounters
a feature that it recognizes but is unable to satisfy. The most common situation is a
feature that is specified by an enumeration of alternatives. If the enumeration is subse-
quently extended with new alternatives that an old consumer doesn't recognize, PDF
prescribes a fall-back default value that is to be used, instead of giving an error.

5. Multimedia viability

The PDF multimedia framework provides the most comprehensive forward and fea-
ture compatibility mechanism, based on the concept of “viability.”

Each multimedia object has a collection of parameters, which the PDF consumer
evaluates to determine whether it can satisfy the object’s requirements. If it can, the
object is considered viable. If it can't, the consumer will not process the object but
will consider an alternate object (if one has been specified).

The parameters for an object are divided into two groups: the “must honor” (MH)
group and the “best efforts” (BE) group. The entries specified in the MH group must
be honored, or else the object is not viable. The entries specified in the BE group
should be honored if possible, but if they can't be, the object is still viable and the
PDF consumer will take some default action.

The set of conditions determining viability can be quite diverse, including such things
as:

• availability of a player for a specific media type,
• ability to display multimedia in a window of specified dimensions and position,

and
• ability to resolve a URL reference to an external file.

It is important to understand how introduction of new features affects viability. If a
new entry is placed in the MH group and is not understood by an old consumer, the
object is considered non-viable. But if a new entry is placed in the BE group and is
not understood by an old consumer, it is simply ignored and does not influence viabil-
ity. This gives the PDF producer some control over what happens if the PDF file is
encountered by an old or limited consumer.

6. Compatibility-checking scripts

PDF producers can include JavaScripts that execute when a document is opened and
those scripts can check the version of the reader or XFA engine. If the engine version
is too low to support a feature that the PDF file depends on, the script can take some
action. Usually, the action is to notify the user that certain features of the document
will not work and to recommend that the user upgrade to a newer software version.
Generally, there is little that the script can do to mitigate the forward incompatibili-
ties.

Today there are thousands of applications created by hundreds of organizations that pro-
cess PDF files in some way. This means that in order to preserve the utility PDF docu-
ments, as we update the ISO 32000 specification, we need to pay particular attention to the
three kinds of compatibility outlined above.

On the Evolution of PDF August 24, 2009 Copyright Adobe Systems 2009 -- 6

4.0 PDF Version and Extension Numbering

4.1 Version Numbering

As noted earlier Adobe defined PDF versions 1.0 through PDF 1.7 and ISO 32000-1 is the
same as PDF 1.7. The ISO PDF Committee has decided to use versions corresponding to
the ISO 32000 part number so that ISO 32000-2 will use the PDF 2.0 designation within
the PDF files. One reason to do this was to skip over the pending problem when PDF 1.10
could possibly be confused with PDF 1.1. It should also be convenient to associate part
numbers and version numbers.

The use of two integers separated by a period (e.g, 1.0, 1.7 or 2.0) was claimed in Adobe’s
documentation to be of the form of a “major version number” followed by a “minor ver-
sion number” with the major incompatible changes requiring an advance of the major ver-
sion number. Adobe never change the major number (from 1) even though, arguably some
of the changes should have prompted an increment. With the revised ISO numbering
scheme, to date, no definition of what the number to the right of the period should signify
and until that happens zero will be used.

This is now a complete change in the version numbering strategy which will have to be
recognized by PDF processing software.

4.2 Extension Numbering

ISO 32000-1 introduced an extension denotation mechanism that allows organizations to
define and publish extensions to PDF versions and to include information within the PDF
file to denote their usage in the file. A new key, Extensions, has been defined for the docu-
ment’s catalog which refers to one or more developer’s extensions denotations which
include the version of the PDF specification, BaseVersion, from which the developer’s
extension was developed and a developers version number, ExtensionLevel.

The Extension level is an integer defined by the developer to denote the extension being
used. If the developer introduces more than one extension to a given BaseVersion the
extension level numbers assigned by that developer shall increase over time. The devel-
oper is obliged to publish the specification of the extensions and register them with the
ISO PDF Registry as described in Annex E of the ISO 32000-1 standard. Here is an exam-
ple of what we might find in a PDF file that uses an Adobe extension 3 and a GLGR exten-
sion 1002 both defined against the PDF 1.7 (ISO 32000-1) specification.

%PDF–1.7

<</Type /Catalog/Extensions

 <</ADBE

 <</BaseVersion /1.7

 /ExtensionLevel 3

 >>

 /GLGR

 <</BaseVersion /1.7

 /ExtensionLevel 1002

On the Evolution of PDF August 24, 2009 Copyright Adobe Systems 2009 -- 7

 >>

 >>

>>

Example 1 -- The developer extension denotation mechanism

4.3 Scope of a PDF Version

The purpose of a PDF specification is to define what can be put into a PDF file and what is
the meaning of that material. The PDF specifications, both those from Adobe and now the
one from ISO make references to a large number of other technical specifications for
things, such as ICC Profiles, Open Type Fonts and JPEG images, which can be included
within a PDF file. So if one wishes to thoroughly understand everything that can be
included in a PDF file, one has to read and understand a large tree structure of technical
specification only the root of which is the ISO 32000-1 document. The tree is estimated to
contain over 50 different standards or documents.

In order to avoid confusion as to what may or may not be included within a PDF file con-
forming to a certain PDF version, we must fix the versions of the subordinate documents
associated with that fixed version of PDF. So the complete PDF specification not only
means the ISO 32000 part number but exact versions of all subordinate documents as well.
If the ISO committee decides that a revised version of a subordinate document should
become the official definition for that feature in PDF, then a new ISO 32000 part must be
created that references the new subordinate standard.

This is a rather strong position but it is necessary to allow, say, PDF 2.0, to have a well
defined meaning and to know exactly what documentation defines proper file contents.
Perhaps this is a use for the minor version number: to denote sets of changes to subordi-
nate documents.

5.0 Summary of Compatibility Recommendations

Here is a summary of techniques which can be used to mitigate compatibility issues.

• Consume any version level of PDF including past and future version levels.
• Plan a complete feature even though some of it may not be immediately implemented

in products. Introducing a feature piecemeal aggravates the version compatibility
issues.

• Make it as easy as possible for customers to upgrade to new software.
• Avoid tying clients and servers together around version levels of PDF. Both clients and

servers should strive to process all levels as adequately as possible.
• Use the existing extensibility features of our languages when designing new features.

6.0 PDF Profiles (i.e., subsets)

Many proper profiles of PDF have become ISO standards. They allow support for various
vertical markets more effectively than open-ended PDF might. These standards efforts

On the Evolution of PDF August 24, 2009 Copyright Adobe Systems 2009 -- 8

also bring together a group of knowledgeable and experienced people in those vertical
markets.

Here is the current list of ISO standards that are subsets of PDF:

6.1 PDF/X (ISO 15930) – targeted for prepress workflows.
• ISO 15930-1:2001: PDF/X-1a:2001, Blind exchange in CMYK + Spot Colors, based

on PDF 1.3
• ISO 15930-3:2002: PDF/X-3:2002, Allows CMYK, Spot, Calibrated (managed) RGB,

CIELAB, with ICC Profile, based on PDF 1.3.
• ISO 15930-4:2003: PDF/X-1a:2003, revision of PDF/X-1a:2001 based on PDF 1.4
• ISO 15930-5: PDF/X-2, An extension of PDF/X-3 which allows for OPI-like (external

linked) data to be included
• ISO 15930-6:2003: PDF/X-3:2003, revision of PDF/X-3:2002 based on PDF 1.4
• ISO 15930-7:2008: PDF/X-4, Colour-managed, CMYK, gray, RGB or spot colour data

are supported, as are PDF transparency and optional content. A second conformance
level named PDF/X-4p may be used when the ICC Profile in the output intent is exter-
nally supplied.

• ISO 15930-8:2008 PDF/X-5,a collection of three conformance levels:
• PDF/X-5g: An extension of PDF/X-4 that enables the use of OPI-like work-

flows.
• PDF/X-5pg: An extension of PDF/X-4p that enables the use of OPI-like work-

flows in conjunction with a reference to an external ICC Profile for the output
intent.

• PDF/X-5n: An extension of PDF/X-4p that allows the externally supplied ICC
Profile for the output intent to use a color space other than Grayscale, RGB and
CMYK.

6.2 PDF/A (ISO 19005) – targeted for document archiving
• PDF/A-1a - Level A compliance based on PDF 1.4
• PDF/A-1b - Level B compliance based on PDF 1.4
• PDF/A-2 (ISO 19005, Part-2) in progress based upon ISO 32000-1.

6.3 PDF/E (ISO 24517) – targeted for engineering especially engineering drawings
• PDF/E (ISO 24517-1:2008) based on PDF 1.6.

6.4 PDF/UA (ISO/AWI 14289) – for universal access.
• This one is not yet a standards but a committee has been formed to make it so.

6.5 Questions and concerns about the proliferation of profiles (subsets)

1. Is is possible to make a PDF file that obeys more than one profile specification?

2. Are they all true subsets?

3. Will ISO be able to stay abreast of these activities and guide them in a direction that
will not corrupt the PDF standard and compatibility?

On the Evolution of PDF August 24, 2009 Copyright Adobe Systems 2009 -- 9

If the proliferation of profiles is allowed to grow unbounded a rather chaotic and counter
productive environment will be created. As much as possible we should re-use those pro-
files that have already been defined.

Note of Credit: This document was derived from an earlier Adobe document that had
been produced by a study group consisting of Nabeel Al-Shamma, Jim Donahue, Macduff
Hughes, Mark Manca, Roberto Perelman, Ed Taft, Phil Ydens, Jeff Young and Jim King.
Thanks to them for their contributions.

§§§§§§§§§

8/19/2009 – Jim King <jking@adobe.com>

	1.0 Introduction
	2.0 Objectives for Evolving PDF
	2.1 Backward-compatibility
	2.2 Forward-compatibility
	2.3 Feature-compatibility
	2.4 Issues with Version Numbers in PDF Files

	3.0 Standard Techniques
	4.0 PDF Version and Extension Numbering
	4.1 Version Numbering
	4.2 Extension Numbering
	4.3 Scope of a PDF Version

	5.0 Summary of Compatibility Recommendations
	6.0 PDF Profiles (i.e., subsets)
	6.1 PDF/X (ISO 15930) – targeted for prepress workflows.
	6.2 PDF/A (ISO 19005) – targeted for document archiving
	6.3 PDF/E (ISO 24517) – targeted for engineering especially engineering drawings
	6.4 PDF/UA (ISO/AWI 14289) – for universal access.
	6.5 Questions and concerns about the proliferation of profiles (subsets)

