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1 Introduction

Image denoising has been a subject of interest in the field of image processing for many years. Noise
is inherent during image acquisition. Reducing the amount of noise in an image makes the image more
pleasing to the eye and it is also an important pre-processing step since it improves the performance of high
level tasks such as edge detection and object tracking.

There are many different denoising algorithms, but most belong to one of the following three classes:

1. Filters that act on a local region within an image, like mean, median or Gaussian filters;

2. Filters that take the entire image into consideration, such as frequency domain filters which reduce
noise in the Fourier or wavelet domain; and

3. Neighborhood filters, which act on pixels with similar gray level values.

In this report, we study the non-local means algorithm of Buades, Morel and Coll [1, 2], which is a
variation of the third kind of algorithm, since the weighting is based on the similarity of the patches. In
section 2, we introduce the algorithm, optimize its performance with respect to its parameters, and compare
it with the NPLS algorithm. In section 3, we study a variation of non-local means aimed at reducing the
computational complexity [3]. In section 4, we explore several variations of the non-local means algorithm
[4, 5] which are intended to improve the quality of the denoised images.

2 The Non-local Means Algorithm

For a discrete 2-D image v[n,m] of size N x M, let NV, ,, denote the square neighborhood of fixed size and
centered at pixel [n,m]. We shall refer to such neighborhoods as “patches.” Then, the non-local means
algorithm is defined by the formula
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and where the Euclidean norm is weighted by a Gaussian kernel matrix with standard deviation a and
Z[n, m] is the normalizing constant
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The more similar the patch centered at [k, ] is to the patch centered at [n,m], the greater the weight it has
in the average used to estimate f[n,m].

Under certain stationarity assumptions, as the size of the image grows, the non-local means algorithm
converges to the conditional expectation of a pixel given the neighborhood around it. This conditional
expectation is the function of the surrounding neighborhood which gives the optimal mean squared error.
Thus, the non-local means can be viewed as asymptotically optimal.

There are several parameters present in the non-local means algorithm. One is the size of the patch.
We will assume that square patches of size P x P are used. The width P of the patch is a parameter. We
will often refer to the patch radius p which gives a (2p + 1) x (2p + 1) patch. Note that O(P?) operations
are necessary to compute the Lo norm of the difference of two patches. The Lo norm can be weighted by a
Gaussian kernel, which gives a greater significance to pixels in the center of the patch. None of the articles
mentioned how a is chosen, so in all of our tests, we used a = 0, which simply has the effect of normalizing
the Lo norm by dividing by the area of the patch.

As described above, to calculate the NL-means image at a single pixel, we must compute the weights of
all other pixels in the image. If the image is N x N, then this requires O(N?P?) operations for each pixel,
giving a total of O(N*P?) operations. For a large image, this is a huge number of computations. To reduce
the number of operations, the authors of [1, 2] introduce an S x S search window around a pixel, outside
of which all weights are assumed to be zero. Again we will often refer to the search window radius s which
gives a (25 + 1) x (25 4+ 1) search window. This amounts to using weights
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This is reasonable since we expect most of the similar patches to be spatially close to the given patch. Using
the search window reduces the number of computations to O(N?2S5%P?).

The filtering parameter h allows one to adjust the width of the averaging kernel. Considered as a
function of the Ly norm of the difference of patches, the averaging kernel is w(d) = exp(—d?/h?), that is an
unnormalized Gaussian with standard deviation h. If A = 0, then the kernel will be very narrow, and the
weights will be 1 when the two patches are exactly the same and approximately 0 when the patches have
any difference. If h &~ oo, then the kernel will be very wide, and all the weights will be approximately 1,
regardless of the similarity of the patches. We want to choose h large enough so that some averaging occurs
and noise is removed. However, if h is too large, too much averaging occurs and details will be lost. So we
must also choose h small enough that a pixel is only averaged with similar patches.

We expect that h should depend on o, the standard deviation of the additive noise. Suppose we have
an image f[n, m] and noise v[n, m| which are jointly WSS and uncorrelated with known auto-correlation
functions R¢[n,m] and R,[n, m] = 6%82[n, m]. If we apply NL-means to the noisy image g[n, m] = f[n,m] +



v[n, m], for the Ly norm of the difference of the patches at [n,m] and [k, ] we have
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Suppose the image were f[n, m] is a constant so that Ry[n,m] is also constant. Then, the expected Ly norm
of the difference is simply 202. Since the patches of the original image were exactly the same, we would want
to average such pixels in order to reduce the noise. If the image has a more complicated autocorrelation
function, or if the image is not WSS, then the expected value of the L norm is more difficult to analyze.
However, it is still sensible to assume that we should average together patches with Lo norms on the order
of 202 or less.

In [1, 2], the authors use the gaussian function for their averaging kernel. This is probably optimal in
the case of a constant image with gaussian noise, but it is not obvious that this would apply in more general
situations. One has the freedom to choose other decreasing functions. For instance, when we began our
project, the authors of [1, 2] had published on their IPOL website (http://www.ipol.im/pub/algo/
bemnon local means_denoising/) the following weights:

1, d < 202
w(d) = 1—‘12;—3‘2, 202 < d? <202 + 2y
0, otherwise,

where v is the expected value of the Ly norm of two patches. It would be difficult to estimate 7, from a
noisy image, so it would be good to avoid estimating it. We tried using the function w(d) = e—d'/h , which
is flatter than the gaussian for small d but has sharper decay for large d (see figure 1). We found this to
work quite well. (While writing the report, we checked the IPOL website again and noticed that they had
changed the weight to w(d) = exp(max(d? —202,0)/h?), which is flat near d = 0 and drops off exponentially
for d* > 202.)

In [1, 2], the authors use a patch size of 7 x 7 pixels, a search window size of 21 x 21 pixels, and a filtering
parameter of h = 10x 0. We wanted to test whether these parameters were optimal. It is difficult to quantify
when a denoised image is “optimal” in terms of visual quality, so we use the mean squared error (MSE) as
an objective measure of the quality of the denoised image. We use the 512 x 512 “peppers” test image and
add white Gaussian noise with standard deviation 30. Note that in our experiments we assume o is known,
but in practice, it would need to be estimated.



Two different weighting kernels
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Figure 1: The exp(—z?) is flatter than the exp(—z?) near z = 0 and has sharper decay.

First, we consider varying the patch radius. We vary the patch radii between p = 1 and p = 5, which
leads to patches of odd sizes from 3 x 3 to 11 x 11. The other parameters were held fixed at h = 20 and
s = 10, i.e. we used a 21 x 21 search window. We find that the optimal MSE is achieved when the patch
radius is 1, that is, for 3 x 3 patches (see figure 2). This does not necessarily give the most visually appealing
results, as can be seen in figure 3.

Next, we vary the search window radius s. We consider radii between 1 and 10, which give search windows
with odd sizes from 3 x 3 to 21 x 21. The other parameters were held fixed at h = 20 and p = 1, i.e. we
used 3 x 3 patches. We find that the optimal MSE is achieved when the search window radius is s = 4, that
is, for 9 x 9 windows (see figure 4). Our reasoning for this result is that if the search window is too small,
not enough pixels are averaged and noise is not removed. If the search window is too large, the algorithm
assigns weights to patches far away in the image which may only be similar because of the additive noise. As
a result too many pixels are averaged, and the image becomes blurred. This is evident in the representative
images for s = 1,4, and 10 (see figure 5).

Finally, we consider the filtering parameter h. Since we expect the optimal h to increase as ¢ increases,
we normalize h by dividing by 0. We vary h/c between 1 and 3, while fixing p = 1 and s = 4. We find
that the optimal parameter is h/o = 1.8 (see figure 6). This allows for a kernel that is wide enough that we
expect similar original patches to be averaged, even though they are made less similar because of noise. It
is also narrow enough to prevent dissimilar patches from having too large a weight. In figure 7, we see this
balance between under- and over-smoothing.

Although the graphs pictured are for the peppers image, we performed the same analysis for the bricks
image and found nearly identical optimal parameters.

Now that we have found parameters that allow for the non-local means algorithm to produce images with
an optimal MSE, we are ready to compare it with another denoising algorithm. We will not attempt to make
an exhaustive survey of denoising methods, since such a survey is already present in [2]. Instead, we compare
to the non-quadratically penalized least squares (NPLS) algorithm described in class, which is similar to the



MSE vs. patch radius for peppers image
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Figure 2: The optimal MSE occurs when the patch radius is 1.
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Figure 3: Although the optimal MSE occurs when the patch radius is 1, it does not necessarily produce the
most visually appealing result.



MSE vs. search window radius for peppers image
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Figure 4: The optimal MSE occurs when the search radius is 4.
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Figure 5: When the search radius is 4, the algorithm is able to remove noise without too much smoothing.



MSE vs. h /o for peppers image
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Figure 6: The optimal MSE occurs when the search radius is 4.
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Figure 7: When the search radius is 4, the algorithm is able to remove noise without too much smoothing.



Image number | NL-means MSE | NPLS MSE
1 111.42 288.39
2 44.07 64.21
3 187.32 224.59
4 87.59 81.25
5 131.89 156.76
6 111.01 133.70

Table 1: Comparison of NL-means and NPLS for patterned images.

total variation (TV) denoising method used for comparison in [2]. This algorithm seeks to minimize a cost
function with a maximum likelihood term as well as a non-quadratic penalty on the difference between the
intensities of neighboring pixels. Since only the differences between neighbors are penalized, this can be
viewed as a local filter. We can describe the algorithm mathematically as

R Nflel1 Nflelﬁ
f[nvm] = argfr[ﬂiﬁ] §|f[n7m] - g[nvaz + Z Z §w(f[n7m] - f[n - 17m])
n=0 m=0 N1 B n=1 m=0
+ §¢(f[nvm] - f[nvm - 1])

There are many choices of the potential function. ¥ (t) = |t| corresponds to a TV penalty. The potential
function we use is the Lange3 potential 1(t) = §2 (| %‘ —log (1 + ‘%‘)) This cost function is minimized using
a separable paraboloidal surrogates algorithm. There are several parameters to be chosen for this algorithm.
We adjust the parameters following the same procedure as was used for non-local means. We find that the
MSE does not appreciably improve after 300 iterations. We found the MSE to be lowest for § &~ 16 and
0 ~ 1. We use these parameters to compare the non-local means algorithm and the NPLS algorithm.

We compared the performance of the NL-means algorithm with that of the NPLS algorithm for a test set
of 20 images containing both natural images as well as images with repeating patterns. Tables 1 and 2 given
below give the MSEs of both the algorithms. We can see that in 5 out of 6 pattern images, the NL-means
algorithm’s performance is better than that of the NPLS. And for the 14 natural images, NL-means has
lower MSEs in all cases. Thus, based on the difference between the MSEs in Tables 1 and 2, we can say
that in most cases the NL-means algorithm performs slightly better than the NPLS algorithm for natural
images, whereas it outperforms the NPLS for most images with repeating patterns.

3 Efficient Variations of the NL-means Algorithm

Many extensions to the non-local means algorithm have been introduced in the literature. Some of these
focus on improving the computational efficiency of the algorithm. Others focus on producing higher quality
images than the standard non-local means algorithm.

The computational complexity of the basic non-local means algorithm increases as we process images
of larger sizes or if we increase the size of the search window within the image. This is because we must
compute the Lo norms for patches centered at each pixel against patches centered at all other pixels in the
image. For faster computation, we need to reduce the computation of L, norms, or in other words, we need



Image number | NL-means MSE | NPLS MSE
1 47.76 53.86
2 46.18 51.75
3 86.61 97.87
4 121.02 124.84
5 66.14 1.94
6 101.70 120.98
7 89.53 121.16
8 49.36 52.77
9 175.83 190.90
10 96.28 111.11
11 138.15 178.37
12 82.40 95.38
13 160.20 226.09
14 83.25 101.42

Table 2: Comparison of NL-means and NPLS for natural images.

to consider the patches which have the lowest Lo norms (and consequently higher weights). To eliminate
the subset of patches with the highest Lo norms, in [3], Orchard et. al. propose an SVD-based technique.
The reason for using SVD is that it compresses the energy into the first few coordinates and represents the
subspaces of a matrix in decreasing order of importance. Figure 8 shows the singular vectors for the bricks
image (shown in figure 13), for a patch size of 5 x 5.

The trick is to approximate the Lo norm of the patches by using the coordinates with respect to the
basis of singular vectors. We consider every pixel [i, j] of an image of size N x N and the patch centered at
that pixel [, j]. The patch is vectorized and stacked as a row of a matrix M. If the patch is of size P x P,
then the vector is of size P? x 1 and the matrix M is of size N2 x P2. We compute the SVD of the patch.
The collection of the right singular vectors V' is a suitable basis for the comparison of the coordinates. Since
M =USVT, multiplying M by V gives the coordinates. We proceed by computing the difference between
the first coordinate which corresponds to the pixel [, j] and the first coordinates of all the other pixels. We
eliminate the subset of the patches with the highest approximate Lo norms. We then add the contribution
from the second coordinate and select the patches with the lowest approximate Lo norms. In our project, we
used the contribution from the first three coordinates and we found the Lo norms computed using the first
three coordinates are a good approximation of the actual Ly norms between patches (see figure 9). Though
the MSE is slightly higher compared to the actual NL-means algorithm, the computation time reduces to a
great extent (see figures 10 and 11). As an example, the computation time for the SVD based NL-means
technique for the true image in figure 10 is around 3 seconds, whereas the computation time for the actual
NL-means algorithm is around 15 seconds.

4 Adaptive Variations of the NL-means Algorithm

While the SVD variations on the NL-means algorithms concentrated on improving the computational speed
of the NL-means algorithm, the adaptive algorithms focus on obtaining a better denoising performance from
the images. We report our study of two such adaptive variations on the NLM algorithm.
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Figure 8: The singular values obtained by taking the SVD of all patches of the “bricks” image.
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Figure 9: Comparison of the actual and approximated Lo norms for the “bricks” image.
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Figure 10: Top row: Original and noisy images. Bottom row: Outputs of the SVD-based non-local means
and the NPLS algorithms.
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algorithm.



4.1 Motivation for adaptive algorithms

The NL-means algorithm exploits the structure inherent in the image by using the similarity in patches
around pixels. In the basic version of the algorithm, the search window size, the patch size and the filtering
parameter h are kept constant. This will lead to the same measure of averaging irrespective of whether the
pixel is in a smooth region of the image or an edge pixel. Intuitively, we can guess that the performance
of NL-means can be improved if smooth regions of the image are averaged more, and the edge regions less.
This can be achieved by changing the parameters adaptively, according to the location of the pixel in the
image.

4.2 Adaptive NL-means Algorithm

This version of the adaptive NL-means algorithm was proposed by [4]. In this method, a patch may belong
to one of several different classes. Each class has associated with it a window size and a patch size, depending
on whether the class corresponds to an edge pixel or a smooth pixel. Given a pixel, the SVD of the patch
around the pixel is computed. The principal component of the SVD indicates the directionality of the
gradient of the patch, and the corresponding singular value gives the degree of directionality (see figure 12).
For a smooth image, there is no dominant direction and all the computed singular values are small. For an
edge, there will be a dominant singular value. Given a spatial patch of size N = n x n, we can group the
gradient values into an N x 2 matrix G, one column each for the horizontal and vertical gradients, so that

G=[ViW)'vi". . . vNT"

where

vs - [0 249)
is the gradient of the image f at point ¢ and G has the SVD G = USVT, . Here V is a 2 x 2 matrix that
gives the direction of the dominant field. Once the SVD has been computed, the dominant singular value
has to be classified into one of K classes (our implementation used three classes - one for smooth, edge and
one in between). This is done by using K-means clustering. The K-means algorithm classifies into one of K
classes C' = [¢1,¢2 ... ¢x| by minimizing the sum of squares within cluster as

K
argminz Z s (i) — >
C

k=1 s(i)ecy

where uy, is the mean of ¢ (see figure 13). According to the clustering, we used a patch size of 5 x 5 for
smooth regions, and of 3 x 3 for the medium and edge patches. The reference [4] also recommends using
rotated patches. The traditional NL-means can detect similar patches only if they have the same orientation.
Therefore, a distant edge with a similar patch but different orientation cannot be detected. In order to obtain
rotated matching between the patch, we consider the four dominant angles that the patch maybe oriented
at. If v = [1/1 VQ]T is the first column of the right singular matrix V', then the orientation of the gradient
field can be calculated as

8!

0 = arctan (—)
V2

Since this does not have information about orientation, we try to match the patch with the four possible
orientations at 6, 0+m, 6—7, and —6. Bicubic interpolation was used after block rotation. Upon implementing



First singular vector of the block
Gradient vectors of a block Singluar value =236.7384

Figure 12: A block of the noisy “bricks” image and its gradient vectors (left) and the singular vector of the
gradient block (right).

Figure 13: Left to right: The noisy “bricks” image, the singular values of the gradient vectors, and the
clustered output of K-means.

the rotation in MATLAB, we found that the computation time was too high and no change in the MSE was
observed from the adaptive NL-means we implemented without rotation. We believe this could be improved
upon tweaking the parameters appropriately, but unfortunately, we faced a paucity of time to investigate
this further. We present the results for the adaptive NL-means (implemented with SVD and K-means
clustering, but without patch rotation) and the original image. We observe that the adaptive NL-means has
a slightly higher MSE while visually indistinguishable from the traditional NL-means output. We believe
this could have been improved by appropriately tweaking the parameters of the window size and patch size
corresponding to the classes.

4.3 Anisotropic NL-means Algorithm

We also implemented another version of an adaptive NL-means algorithm proposed by [5]. So far, in the
adaptive techniques considered, the weighting function has been isotropic. The central idea proposed in
[5] is to adapt the weighting function in an anisotropic manner, based on characteristics of the underlying
image, to improve the perceptual output. Each point z = (z,y) in the image is associated with an objective
function that calculates its perceptual significance. This is defined based on the differential of the Gaussian



(also referred to as the Mexican Hat wavelet function)
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where I, (z) is the noisy image, Kmaq, is the maximum value of £ for the image, and
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and ¢, = ¢l and o is the spatial spread of the function. Based on this value, we adapt the weighting
parameters to achieve better perceptual quality. In smooth regions of the image, o must be high enough to
obtain high averaging and a smooth image, whereas in regions with high perceptual significance, o must be
low to preserve the details in the image. We can also determine the orientation of the corresponding image

feature as
(py (@) * In(z))
(¢a(z) * In(z))

Using the values of x(z) and §(z) obtained above, we can change the shape and orientation of the weighting
function to better fit the image characteristics. In [5], the authors propose the following weighting function

0(x) = arctan

1 @0)ln ()~ In (sm)l13)
w(l,m) = Z0° n2 (1)

Where ¢; and ¢, represent the local neighborhoods around [ and m respectively, and ¢ represents a neigh-
borhood of the same size as ¢ and ¢,,,, and Z(1) is a normalizing constant. ¥ (k, ) is the factor that changes
the weighting function anisotropically, and is given by

1
e B

) = e

(2)

where

T1 Y1
ﬂ - 201 (H)2 * 20’2(&)2' (3)
Here x; and y; are the x and y coordinates rotated counterclockwise by an angle 8 + 7. This aligns
the weighting function along the edge in the image. Now, we can spread the function along the edge, and
decrease the spread of the function across the edge, so as to preserve edge details. Since k gives us an idea
of the magnitude of the perceptual significance, we would like to vary the width of the weighting function
as a function of . This is done by making o1 () and o2(x) functions of k. They can be adjusted between a
minimum and maximum limit as follows

o1(k) = O1,min + aH(UI,mam - Ul,mm)

and

0'2(’{) = 02,min + K(UQ,max - UQ,min)

Here 0y maz and oy, min are the maximum and minimum values of o, respectively and o > 1 is a
shrinkage factor. The motivation for the expressions given for § in equation (3) was unclear, since it was
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Figure 14: The output of the anisotropic NL-means.

our understanding that the weighting kernel must decay as it goes away from the pixel under consideration,
whereas the equation given would decay as distance increases in one direction away from the edge and grow
exponentially in the other. Further, in order to guarantee decay, 8 must increase as one moves away from
the edge in both directions. Therefore, we modified the expressions given in the paper for implementation
purposes, while trying to maintain the spirit of the idea presented in the paper. Accordingly, the expressions

we used were
7 Y1

and ) )
(HIn(S'z)*In(S'm)Hg)

w(l,m) = — ¥ = hZ
(L, m) Z(1)

instead of equations (3) and (1) respectively. We implemented the algorithm in MATLAB, and the results are
shown in figure 14. We notice almost equivalent performance after implementing our version of the adaptive
algorithm and a slight increase in the MSE compared to the traditional NL-means algorithm. We do not
have a satisfactory explanation for this behavior, since it is possible that our understanding of the paper was
not complete, especially since the paper reported an improvement in performance.

5 Conclusion

We investigated the NL-means algorithm as proposed in [1, 2]. We implemented the basic algorithm in MAT-
LAB and tweaked the patch size, search window size, and the filtering parameter i to optimize performance
in terms of the MSE. We then compared this performance to a optimized version of NPLS and found that
the NL-means algorithm performs slightly better than the NPLS algorithm for a testbed of 20 images. The
improvement was more pronounced in patterned images.

Additionally, we implemented the SVD-based NL-means algorithm in order to reduce the computation
time. We were able to reduce the computation time compared with the basic NL-means algorithm, but
this compromised the image quality. We also implemented two adaptive variations of the non-local means



algorithm. The first used the SVD of the gradient blocks to classify the image based on roughness. This
information was used to adjust the patch radius and search window radius. The second used a filtered
gradient to measure the strengths and orientation of edges. The weighting function is rotated and shaped to
align with edges. We found that our implementations of the adaptive algorithms performed slightly worse
than the basic non-local means algorithm. Both adaptive algorithms involve more parameters than the basic
non-local means algorithm, so the poor performance may be due to non-optimal parameters.
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