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18 SYMMETRY OF POLYTOPES AND POLYHEDRA

Egon Schulte

INTRODUCTION

Symmetry of geometric figures is among the most frequently recurring themes in
science. The present chapter discusses symmetry of discrete geometric structures,
namely of polytopes, polyhedra, and related polytope-like figures. These structures
have an outstanding history of study unmatched by almost any other geometric
object. The most prominent symmetric figures, the regular solids, occur from very
early times and are attributed to Plato (427-347 b.c.e.). Since then, many changes
in point of view have occurred about these figures and their symmetry. With the
arrival of group theory in the 19th century, many of the early approaches were
consolidated and the foundations were laid for a more rigorous development of the
theory. In this vein, Schläfli (1814-1895) extended the concept of regular polytopes
and tessellations to higher dimensional spaces and explored their symmetry groups
as reflection groups.

Today we owe much of our present understanding of symmetry in geometric
figures (in a broad sense) to the influential work of Coxeter, which provided a
unified approach to regularity of figures based on a powerful interplay of geometry
and algebra [Cox73]. Coxeter’s work also greatly influenced modern developments
in this area, which received a further impetus from work by Grünbaum and Danzer
[Grü77a, DS82]. In the past 20 years, the study of regular figures has been extended
in several directions that are all centered around an abstract combinatorial polytope
theory and a combinatorial notion of regularity [McS02].

History teaches us that the subject has shown an enormous potential for revival.
One explanation for this is the appearance of polyhedral structures in many contexts
that have little apparent relation to regularity, such as the occurrence of many of
them in nature as crystals [Fej64, Se95, We77].

18.1 REGULAR CONVEX POLYTOPES AND REGULAR

TESSELLATIONS IN Ed

Perhaps the most important (but certainly the most investigated) symmetric poly-
topes are the regular convex polytopes in Euclidean spaces. See [Grü67] and [Zi95]
for general properties of convex polytopes, or Chapter 15 in this Handbook. The
most comprehensive text on regular convex polytopes and regular tessellations is
[Cox73]; many combinatorial aspects are also discussed in [McS02].

GLOSSARY

Convex d-polytope: The intersection P of finitely many closed halfspaces in a
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Euclidean space, which is bounded and d-dimensional.
Face: The empty set and P itself are improper faces of dimension −1 and d,

respectively. A proper face F of P is the (nonempty) intersection of P with a
supporting hyperplane of P . (Recall that a hyperplane H supports P at F if
P ∩H = F and P lies in one of the closed halfspaces bounded by H.)

Vertex, edge, i-face, facet: Face of P of dimension 0, 1, i, or d−1, respectively.
Vertex figure: A vertex figure of P at a vertex x is the intersection of P with

a hyperplane H that strictly separates x from the other vertices of P . (If P is
regular, one can take H to be the hyperplane passing through the midpoints of
the edges that contain x.)

Face lattice of a polytope: The set F(P ) of all faces of P , ordered by inclusion.
As a partially ordered set, this is a ranked lattice. Also, F(P )\{P} is called the
boundary complex of P .

Flag: A maximal totally ordered subset of F(P ).
Isomorphism of polytopes: A bijection ϕ : F(P ) 7→ F(Q) between the face

lattices of two polytopes P and Q such that ϕ preserves incidence in both di-
rections; that is, F ⊆ G in F(P ) if and only if Fϕ ⊆ Gϕ in F(Q). If such an
isomorphism exists, P and Q are isomorphic.

Dual of a polytope: A convex d-polytope Q is the dual of P if there is a duality
ϕ : F(P ) 7→ F(Q); that is, a bijection reversing incidences in both directions,
meaning that F ⊆ G in F(P ) if and only if Fϕ ⊇ Gϕ in F(Q). A polytope has
many duals but any two are isomorphic, justifying speaking of “the dual”. (If P
is regular, one can take Q to be the convex hull of the facet centers of P , or a
rescaled copy of this.)

Self-dual polytope: A polytope that is isomorphic to its dual.
Symmetry: A Euclidean isometry of the ambient space (affine hull of P ) that

maps P to itself.
Symmetry group of a polytope: The group G(P ) of all symmetries of P .
Regular polytope: A polytope whose symmetry group G(P ) is transitive on the

flags.
Schläfli symbol: A symbol {p1, . . . , pd−1} that encodes the local structure of a

regular polytope. For each i = 1, . . . , d− 1, if F is any (i+1)-face of P , then pi

is the number of i-faces of F that contain a given (i−2)-face of F .
Tessellation: A family T of convex d-polytopes in Euclidean d-space Ed, called

the tiles of T , such that the union of all tiles of T is Ed, and any two distinct
tiles do not have interior points in common. All tessellations are assumed to be
locally finite, meaning that each point of Ed has a neighborhood meeting only
finitely many tiles, and face-to-face, meaning that the intersection of any two
tiles is a face of each (possibly the empty face); see Chapter 4. The concept of
a tessellation extends to other spaces including spherical space (Euclidean unit
sphere) and hyperbolic space.

Face lattice of a tessellation: A proper face of T is a nonempty face of a tile
of T . Improper faces of T are the empty set and the whole space Ed. The set
F(T ) of all (proper and improper) faces is a ranked lattice called the face lattice
of T . Concepts like isomorphism and duality carry over from polytopes.
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Symmetry group of a tessellation: The group G(T ) of all symmetries of T ;
that is, of all isometries of the ambient (spherical, Euclidean, or hyperbolic)
space that preserve T . Concepts like regularity and Schläfli symbol carry over
from polytopes.

Apeirogon: A tessellation of the real line with closed intervals of the same length.
This can also be regarded as an infinite polygon whose edges are given by the
intervals.

ENUMERATION AND CONSTRUCTION

The convex regular polytopes P in Ed are known for each d. If d = 1, P is
a line segment and |G(P )| = 2. In all other cases, up to similarity, P can be
uniquely described by its Schläfli symbol {p1, . . . , pd−1}. For convenience one writes
P = {p1, . . . , pd−1}. If d = 2, P is a convex regular p-gon for some p ≥ 3, and
P = {p}; also, G(P ) = Dp, the dihedral group of order 2p.

The regular polytopes P with d ≥ 3 are summarized in Table 18.1.1, which also
includes the numbers f0 and fd−1 of vertices and facets, the order of G(P ), and the
diagram notation (Section 18.6) for the group (following [Hum90]). Here and below,
pn will be used to denote a string of n consecutive p’s. For d = 3 the list consists
of the five Platonic solids (Figure 18.1.1). The regular d-simplex, d-cube, and d-
cross-polytope occur in each dimension d. (These are line segments if d = 1, and
triangles or squares if d = 2.) The dimensions 3 and 4 are exceptional in that there
are 2 respectively 3 more regular polytopes. If d ≥ 3, the facets and vertex figures
of {p1, . . . , pd−1} are the regular (d−1)-polytopes {p1, . . . , pd−2} and {p2, . . . , pd−1},
respectively, whose Schläfli symbols, when superposed, give the original. The dual
of {p1, . . . , pd−1} is {pd−1, . . . , p1}. Self-duality occurs only for {3d−1}, {p}, and
{3, 4, 3}. Except for {3d−1} and {p} with p odd, all regular polytopes are centrally
symmetric.

TABLE 18.1.1 The convex regular polytopes in Ed (d ≥ 3).

DIMENSION NAME SCHLÄFLI SYMBOL f0 fd−1 |G(P )| DIAGRAM

d ≥ 3 d-simplex {3d−1} d+1 d+1 (d+1)! Ad

d-cross-polytope {3d−2, 4} 2d 2d 2dd! Bd (or Cd)

d-cube {4, 3d−2} 2d 2d 2dd! Bd (or Cd)

d = 3 icosahedron {3, 5} 12 20 120 H3

dodecahedron {5, 3} 20 12 120 H3

d = 4 24-cell {3, 4, 3} 24 24 1152 F4

600-cell {3, 3, 5} 120 600 14400 H4

120-cell {5, 3, 3} 600 120 14400 H4

The regular tessellations T in Ed are also known. If d = 1, T is an apeirogon
and G(T ) is the infinite dihedral group. For d ≥ 2 see the list in Table 18.1.2. The
first d − 1 entries in {p1, . . . , pd} give the Schläfli symbol for the (regular) tiles of
T , the last d− 1 that for the (regular) vertex figures. (A vertex figure at a vertex
x is the convex hull of the midpoints of the edges emanating from x.) The cubical
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FIGURE 18.1.1
The five Platonic solids.

tessellation occurs for each d, while for d = 2 and d = 4 there is a dual pair of
exceptional tessellations.

TABLE 18.1.2 The regular tessellations in Ed (d ≥ 2).

DIMENSION SCHLÄFLI SYMBOL TILES VERTEX-FIGURES

d ≥ 2 {4, 3d−2, 4} d-cubes d-cross-polytopes

d = 2 {3, 6} triangles hexagons

{6, 3} hexagons triangles

d = 4 {3, 3, 4, 3} 4-cross-polytopes 24-cells

{3, 4, 3, 3} 24-cells 4-cross-polytopes

As vertices of the plane polygon {p} we can take the points corresponding to
the p-th roots of unity. The d-simplex can be defined as the convex hull of the d+1
points in Ed+1 corresponding to the permutations of (1, 0, . . . , 0). As vertices of
the d-cross-polytope in Ed choose the 2d permutations of (±1, 0, . . . , 0), and for the
d-cube take the 2d points (±1, . . . ,±1). The midpoints of the edges of a 4-cross-
polytope are the 24 vertices of a regular 24-cell. The coordinates for the remaining
regular polytopes are more complicated [Cox73, pp. 52,157].

For the cubical tessellation {4, 3d−2, 4} take the vertex set to be Zd (giving the
square tessellation if d = 2). For the triangle tessellation {3, 6} choose as vertices
the integral linear combinations of two unit vectors inclined at π/3. Locating the
face centers gives the vertices of the hexagonal tessellation {6, 3}. For {3, 3, 4, 3}
in E4 take the alternating vertices of the cubical tessellation; that is, the integral
points with an even coordinate sum. Its dual {3, 4, 3, 3} (with 24-cells as tiles) has
the vertices at the centers of the tiles of {3, 3, 4, 3}.

The regular polytopes and tessellations have been with us since before recorded
history, and a strong strain of mathematics since classical times has centered on
them. The classical theory intersects with diverse mathematical areas such as Lie
algebras and Lie groups, Tits buildings [Ti74], finite and combinatorial group theory
[Bu95, Mag74], geometric and algebraic combinatorics, graphs and combinatorial
designs [BCN89], singularity theory, and Riemann surfaces.

SYMMETRY GROUPS

For a convex regular d-polytope P in Ed, pick a fixed (base) flag Φ, and con-
sider the maximal simplex C (chamber) in the barycentric subdivision (chamber
complex ) of P whose vertices are the centers of the nonempty faces in Φ. Then
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C is a fundamental region for G(P ) in P and G(P ) is generated by the reflections
R0, . . . , Rd−1 in the walls of C that contain the center of P , where Ri is the re-
flection in the wall opposite to the vertex of C corresponding to the i-face in Φ. If
P = {p1, . . . , pd−1}, then{

R2
i = (RjRk)2 = 1 (0 ≤ i, j, k ≤ d− 1, |j − k| ≥ 2)

(Ri−1Ri)
pi = 1 (1 ≤ i ≤ d− 1)

is a presentation for G(P ) in terms of these generators. In particular, G(P ) is a
finite (spherical) Coxeter group with string diagram

•
p1

•
p2

• · · · · · · •
pd−2

•
pd−1

•

(see Section 18.6).
If T is a regular tessellation of Ed, pick Φ and C as before. Now G(T ) is

generated by the d + 1 reflections in all walls of C giving R0, . . . , Rd (as above).
The presentation for G(T ) carries over, but now G(T ) is an infinite (Euclidean)
Coxeter group.

18.2 REGULAR STAR-POLYTOPES

The regular star-polyhedra and star-polytopes are obtained by allowing the faces
or vertex figures to be starry (star-like). This leads to very beautiful figures that
are closely related to the regular convex polytopes. See Coxeter [Cox73] for a
comprehensive account; see also McMullen and Schulte [McS02]. In defining star-
polytopes, we shall combine the approach of [Cox73] and McMullen [McM68] and
introduce them via the associated starry polytope-configuration.

GLOSSARY

d-polytope-configuration: A finite family Π of affine subspaces, called ele-
ments, of Euclidean d-space Ed, ordered by inclusion, such that the follow-
ing conditions are satisfied. Π contains the empty set ∅ and Ed as (improper)
elements. The dimensions of the other (proper) elements can take the values
0, 1, . . . , d−1, and the affine hull of their union is Ed. As a partially ordered set, Π
is a ranked lattice. For F,G ∈ Π with F ⊆ G call G/F := {H ∈ Π|F ⊆ H ⊆ G}
the subconfiguration of Π defined by F and G; this has itself the structure of a
(dim(G)−dim(F )−1)-polytope-configuration. As further conditions, each G/F
contains at least 2 proper elements if dim(G) − dim(F ) = 2, and as a partially
ordered set, each G/F (including Π itself) is connected if dim(G)−dim(F ) ≥ 3.
(See the definition of an abstract polytope in Section 18.8.) It can be proved that
in Ed every Π satisfies the stronger condition that each G/F contains exactly 2
proper elements if dim(G)− dim(F ) = 2.

Regular polytope-configuration: A polytope-configuration Π whose symmetry
group G(Π) is flag-transitive. (A flag is a maximal totally ordered subset of Π.)

Regular star-polygon: For positive integers n and k with (n, k) = 1 and 1 <
k < n

2 , up to similarity the regular star-polygon {n
k } is the connected plane
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polygon whose consecutive vertices are (cos(2πkj
n ), sin( 2πkj

n )) for j = 0, 1, . . . , n−
1. If k = 1, the same plane polygon bounds a (nonstarry) convex n-gon with
Schläfli symbol {n} (= {n

1 }). With each regular (convex or star-) polygon {n
k }

is associated a regular 2-polytope-configuration obtained by replacing each edge
by its affine hull.

Star-polytope-configuration: A d-polytope-configuration Π is nonstarry if it
is the family of affine hulls of the faces of a convex d-polytope. It is starry, or
a star-polytope-configuration, if it is not nonstarry. For instance, among the
2-polytope-configurations that are associated with a regular (convex or star-)
polygon {n

k } for a given n, the one with k = 1 is nonstarry and those for k > 1
are starry. In the first case the corresponding n-gon is convex, and in the second
case it is genuinely star-like. In general, the starry polytope configurations are
those that belong to genuinely star-like polytopes (that is, star-polytopes).

Regular star-polytope: If d = 2, a regular star-polytope is a regular star-
polygon. Defined inductively, if d ≥ 3, a regular d-star-polytope P is a finite
family of regular convex (d−1)-polytopes or regular (d−1)-star-polytopes such
that the family consisting of their affine hulls as well as the affine hulls of their
“faces” is a regular d-star-polytope-configuration Π = Π(P ). Here, the faces of
the polytopes can be defined in such a way that they correspond to the elements
in the associated polytope-configuration. The symmetry groups of P and Π are
the same.

ENUMERATION AND CONSTRUCTION

Regular star-polytopes P can only exist for d = 2, 3, or 4. As regular convex
polytopes, they are also uniquely determined by the Schläfli symbol {p1, . . . , pd−1},
but now at least one entry is not integral. Again the symbols for the facets and
vertex figures, when superposed, give the original. If d = 2, P = {n

k } for some k
with (n, k) = 1 and 1 < k < n

2 , and G(P ) = Dn. For d = 3 and 4 the star-polytopes
are listed in Table 18.2.1 together with the numbers f0 and fd−1 of vertices and
facets, respectively.

FIGURE 18.2.1
The four
Kepler-Poinsot
polyhedra.

Every regular d-star-polytope has the same vertices and symmetry group as
a regular convex d-polytope. The four regular star-polyhedra (3-star-polytopes)
are also known as the Kepler-Poinsot polyhedra (Figure 18.2.1). They can be
constructed from the icosahedron {3, 5} or dodecahedon {5, 3} by two kinds of
operations, stellation or faceting [Cox73]. Loosely speaking, in the former op-
eration one extends the faces of a polyhedron symmetrically until they again form
a polyhedron, while in the latter operation the vertices of a polyhedron are redis-
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TABLE 18.2.1 The regular star-polytopes in Ed (d ≥ 3).

DIMENSION SCHLÄFLI SYMBOL f0 fd−1

d = 3 {3, 5
2
} 12 20

{ 5
2
, 3} 20 12

{5, 5
2
} 12 12

{ 5
2
, 5} 12 12

d = 4 {3, 3, 5
2
} 120 600

{ 5
2
, 3, 3} 600 120

{3, 5, 5
2
} 120 120

{ 5
2
, 5, 3} 120 120

{3, 5
2
, 5} 120 120

{5, 5
2
, 3} 120 120

{5, 3, 5
2
} 120 120

{ 5
2
, 3, 5} 120 120

{5, 5
2
, 5} 120 120

{ 5
2
, 5, 5

2
} 120 120

tributed in classes that are then the vertex sets for the faces of a new polyhedron.
Regarded as regular maps on surfaces (Section 18.3), the polyhedra {3, 5

2} (great
icosahedron) and { 5

2 , 3} (great stellated dodecahedron) are of genus 0, while
{5, 5

2} (great dodecahedron) and { 5
2 , 5} (small stellated dodecahedron) are of

genus 4.
The ten regular star-polytopes in E4 all have the same vertices and symmetry

groups as the 600-cell {3, 3, 5} or 120-cell {5, 3, 3} and can be derived from these by
4-dimensional stellation or faceting operations [Cox73, McM68]. See also [Cox93]
for their names, which describe the various relationships among the polytopes.
For presentations of their symmetry groups which reflect the finer combinatorial
structure of the star-polytopes, see also [McS02].

The dual of {p1, . . . , pd−1} (which is obtained by dualizing the associated star-
polytope-configuration using reciprocation with respect to a sphere) is {pd−1, . . . , p1}.
Regarded as abstract polytopes (Section 18.8), the star-polytopes {p1, . . . , pd−1}
and {q1, . . . , qd−1} are isomorphic if and only if the symbol {q1, . . . , qd−1} is ob-
tained from {p1, . . . , pd−1} by replacing each entry 5 by 5

2 and each 5
2 by 5.

18.3 REGULAR SKEW POLYHEDRA

Regular skew polyhedra are finite or infinite polyhedra whose vertex figures are skew
(antiprismatic) polygons. The standard reference is Coxeter [Cox68]. Topologically,
these polyhedra are regular maps on surfaces. For general properties of regular maps
see Coxeter and Moser [CM80], McMullen and Schulte [McS02], or Chapter 20 of
this Handbook.

GLOSSARY

(Right) prism, antiprism (with regular bases): A convex 3-polytope whose
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vertices are contained in two parallel planes and whose set of 2-faces consists of
the two bases (contained in the parallel planes) and the 2-faces in the mantle
that connects the bases. The bases are congruent regular polygons. For a (right)
prism, each base is a translate of the other by a vector perpendicular to its
affine hull, and the mantle 2-faces are rectangles. For a (right) antiprism, each
base is a translate of a reciprocal (dual) of the other by a vector perpendicular
to its affine hull, and the mantle 2-faces are isosceles triangles. (The prism
or antiprism is semi-regular if its mantle 2-faces are squares or equilateral
triangles, respectively; see Section 18.5.)

Map on a surface: A decomposition (tessellation) P of a closed surface S into
nonoverlapping simply connected regions, the 2-faces of P , by arcs, the edges
of P , joining pairs of points, the vertices of P , such that two conditions are
satisfied. First, each edge belongs to exactly two 2-faces. Second, if two distinct
edges intersect, they meet in one vertex or in two vertices.

Regular map: A map P on S whose combinatorial automorphism group Γ(P )
is transitive on the flags (incident triples consisting of a vertex, an edge, and a
2-face).

Polyhedron: A map P on a closed surface S embedded (without self-intersections)
into a Euclidean space, such that two conditions are satisfied. Each 2-face of P
is a convex plane polygon, and any two adjacent 2-faces do not lie in the same
plane. See also the more general definition in the next section.

Skew polyhedron: A polyhedron P such that for at least one vertex x, the
vertex figure of P at x is not a plane polygon; the vertex figure at x is the
polygon whose vertices are the vertices of P adjacent to x and whose edges join
consecutive vertices as one goes around x.

Regular polyhedron: A polyhedron P whose symmetry group G(P ) is flag-
transitive. (For a regular skew polyhedron P in E3 or E4, each vertex figure
must be a 3-dimensional antiprismatic polygon, meaning that it contains all
edges of an antiprism that are not edges of a base. See also Section 18.4.)

ENUMERATION

In E3 all, and in E4 all finite, regular skew polyhedra are known [Cox68]. In
these cases the (orientable) polyhedron P is completely determined by the extended
Schläfli symbol {p, q|r}, where the 2-faces of P are convex p-gons such that q meet
at each vertex, and r is the number of edges in each edge path of P that leaves, at
each vertex, exactly two 2-faces of P on the right. The group G(P ) is isomorphic
to Γ(P ) and has the presentation

ρ0
2 = ρ1

2 = ρ2
2 = (ρ0ρ1)

p = (ρ1ρ2)
q = (ρ0ρ2)

2 = (ρ0ρ1ρ2ρ1)
r = 1

(but the generators ρi are not all hyperplane reflections). The polyhedra {p, q|r}
and {q, p|r} are duals, and the vertices of one can be obtained as the centers of the
2-faces of the other.

In E3 there are just three regular skew polyhedra: {4, 6|4}, {6, 4|4}, and {6, 6|3}.
These are the (infinite) Petrie-Coxeter polyhedra. For example, {4, 6|4} consists of
half the square faces of the cubical tessellation {4, 3, 4} in E3.
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TABLE 18.3.1 The finite regular skew polyhedra in E4.

SCHLÄFLI SYMBOL f0 f2 GROUP ORDER GENUS

{4, 4|r} r2 r2 8r2 1

{4, 6|3} 20 30 240 6

{6, 4|3} 30 20 240 6

{4, 8|3} 144 288 2304 73

{8, 4|3} 288 144 2304 73

The finite regular skew polyhedra in E4 (or equivalently, in spherical 3-space)
are listed in Table 18.3.1. There is an infinite sequence of toroidal polyhedra as well
as two pairs of duals related to the (self-dual) 4-simplex {3, 3, 3} and 24-cell {3, 4, 3}.
For drawings of projections of these polyhedra into 3-space see [BoW88, SWi91];
Figure 18.3.1 represents {4, 8|3}.

FIGURE 18.3.1
A projection of {4, 8|3} into R3.

These projections are examples of combinatorially regular polyhedra in ordinary
3-space; see [BrW93] and Chapter 20 in this Handbook. For regular polyhedra in
E4 with planar, but not necessarily convex, 2-faces, see also [ABM00, Bra00]. For
regular skew polyhedra in hyperbolic 3-space, see [Gar67].

18.4 THE GRÜNBAUM-DRESS POLYHEDRA

A new impetus to the study of regular figures came from Grünbaum [Grü77b], who
generalized the regular skew polyhedra by allowing skew polygons as faces as well
as vertex figures. This restored the symmetry in the definition of polyhedra. For
the classification of these “new” regular polyhedra in E3, see [Grü77b], [Dre85], and
[McS02]. The proper setting for this subject is, strictly speaking, in the context of
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realizations of abstract regular polytopes (see Section 18.8).

GLOSSARY

Polygon: A figure P in Euclidean space Ed consisting of a (finite or infinite)
sequence of distinct points, called the vertices of P , joined in successive pairs,
and closed cyclicly if finite, by line segments, called the edges of P , such that
each compact set in Ed meets only finitely many edges.

Zigzag polygon: A (zigzag-shaped) infinite plane polygon P whose vertices al-
ternately lie on two parallel lines and whose edges are all of the same length.

Antiprismatic polygon: A closed polygon P in 3-space whose vertices are al-
ternately vertices of each of the two (regular convex) bases of a (right) antiprism
Q (Section 18.3), such that the orthogonal projection of P onto the plane of a
base gives a regular star-polygon (Section 18.2). This star-polygon (and thus P )
has twice as many vertices as each base, and is a convex polygon if and only if
the edges of P are just those edges of Q that are not edges of a base.

Prismatic polygon: A closed polygon P in 3-space whose vertices are alter-
nately vertices of each of the two (regular convex) bases of a (right) prism Q
(Section 18.3), such that the orthogonal projection of P onto the plane of a base
traverses twice a regular star-polygon in that plane (Section 18.2). Each base
of Q (and thus the star-polygon) is assumed to have an odd number of vertices.
The star-polygon is a convex polygon if and only if each edge of P is a diagonal
in a rectangular 2-face in the mantle of Q.

Helical polygon: An infinite polygon in 3-space whose vertices lie on a helix
given parametrically by (a cosβt, a sinβt, bt), where a, b 6= 0 and 0 < β < π,
and are obtained as t ranges over the integers. Successive integers correspond to
successive vertices.

Polyhedron: A (finite or infinite) family P of polygons in Ed, called the 2-faces
of P , such that three conditions are satisfied. First, each edge of one of the
2-faces is an edge of exactly one other 2-face. Second, for any two edges F and
F ′ of (2-faces of) P there exist chains F = G0, G1, . . . , Gn = F ′ of edges and
H1, . . . ,Hn of 2-faces such that each Hi is incident with Gi−1 and Gi. Third,
each compact set in Ed meets only finitely many 2-faces.

Regular: A polygon or polyhedron P is regular if its symmetry group G(P ) is
transitive on the flags.

Petrie polygon of a polyhedron: A polygonal path along the edges of a regular
polyhedron P such that any two successive edges, but no three, are edges of a
2-face of P .

Petrie dual: The family of all Petrie polygons of a regular polyhedron P . This
is itself a regular polyhedron, and its Petrie dual is P itself.

ENUMERATION

For a systematic discussion of regular polygons in arbitrary Euclidean spaces see
[Cox93]. In light of the geometric classification scheme for the new regular polyhe-
dra in E3 proposed in [Grü77b], it is useful to classify the regular polygons in E3
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into seven groups: convex polygons, plane star-polygons (Section 18.2), apeirogons
(Section 18.1), zigzag polygons, antiprismatic polygons, prismatic polygons, and
helical polygons. These correspond to the four kinds of isometries in E3: rotation,
rotatory reflection (a reflection followed by a rotation in the reflection plane), glide
reflection, and twist.

The 2-faces and vertex figures of a regular polyhedron P in E3 are regular
polygons of the above kind. (The vertex figure at a vertex x is the polygon whose
vertices are the vertices of P adjacent to x and whose edges join two such ver-
tices y and z if and only if {y, x} and {x, z} are edges of a 2-face in P . For a
regular P , this is a single polygon.) It is convenient to group the regular polyhe-
dra in E3 into 8 classes. The first four are the traditional regular polyhedra: the
five Platonic solids; the three planar tessellations; the four regular star-polyhedra
(Kepler-Poinsot polyhedra); and the three infinite regular skew polyhedra (Petrie-
Coxeter polyhedra). The four other classes and their polyhedra can be described as
follows: the class of nine finite polyhedra with finite skew (antiprismatic) polygons
as faces; the class of infinite polyhedra with finite skew (prismatic or antiprismatic)
polygons as faces, which includes three infinite families as well as three individual
polyhedra; the class of polyhedra with zigzag polygons as faces, which contains six
infinite families; and the class of polyhedra with helical polygons as faces, which
has three infinite families and six individual polyhedra.

Alternatively, these forty-eight polyhedra can be described as follows [McS02].
There are eighteen finite regular polyhedra, namely the nine classical finite regular
polyhedra (Platonic solids and Kepler-Poinsot polyhedra), and their Petrie-duals.
The regular tessellations of the plane, and their Petrie duals (with zigzag 2-faces),
are the six planar polyhedra in the list. From those, twelve further polyhedra
are obtained as blends (in the sense of Section 18.8) with a line segment or an
apeirogon (Section 18.1). The six blends with a line segment have finite skew, or
(infinite planar) zigzag, 2-faces with alternate vertices on a pair of parallel planes;
the six blends with an apeirogon have helical polygons or zigzag polygons as 2-faces.
Finally, there are twelve further polyhedra which are not blends; they fall into a
single family and are related to the cubical tessellation of E3. Each polyhedron can
be described by a generalized Schläfli symbol, which encodes the geometric structure
of the polygonal faces and vertex figures, tells whether or not the polyhedron is a
blend, and indicates a presentation of the symmetry group. For more details see
[McS02] (or [Grü77b, Dre85, Joh]).

18.5 SEMI-REGULAR AND UNIFORM CONVEX POLYTOPES

The very stringent requirements in the definition of regularity of polytopes can be
relaxed in many different ways, yielding a great variety of weaker regularity notions.
We shall only consider polytopes and polyhedra that are convex. See Johnson [Joh]
for a detailed discussion, or Martini [Mar93] for a survey.

GLOSSARY

Semi-regular: A convex d-polytope P is semi-regular if its facets are regular and
its symmetry group G(P ) is transitive on the vertices of P .
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Uniform: A convex polygon is uniform if it is regular. Recursively, if d ≥ 3, a
convex d-polytope P is uniform if its facets are uniform and its symmetry group
G(P ) is transitive on the vertices of P .

Regular-faced: P is regular-faced if all its facets (and lower-dimensional faces)
are regular.

ENUMERATION

Each regular polytope is semi-regular, and each semi-regular polytope is uniform.
Also, by definition each uniform 3-polytope is semi-regular. For d = 3 the family
of semi-regular (uniform) convex polyhedra consists of the Platonic solids, two
infinite classes of prisms and antiprisms, as well as the thirteen polyhedra known
as Archimedean solids [Fej64]. The seven semi-regular polyhedra whose symmetry
group is edge-transitive are also called the quasi-regular polyhedra.

Besides the regular polytopes, there are only seven semi-regular polytopes in
higher dimensions: three for d = 4, and one for each of d = 5, 6, 7, 8 (for a short
proof, see [BB91]). However, there are many more uniform polytopes but a complete
list is known only for d = 4 [Joh]. Except for the regular 4-polytopes and the prisms
over uniform 3-polytopes, there are exactly 40 uniform 4-polytopes.

For d = 3 all, for d = 4 all save one, and for d ≥ 5 many, uniform polytopes can
be obtained by a method called Wythoff’s construction. This method proceeds
from a finite Euclidean reflection group W in Ed, or the even (rotation) subgroup
W+ of W , and constructs the polytopes as the convex hull of the orbit under W or
W+ of a point, the initial vertex, in the fundamental region of the group, which is a
d-simplex (chamber) or the union of two adjacent d-simplices in the corresponding
chamber complex of W , respectively; see Sections 18.1 and 18.6.

The regular-faced polytopes have also been described for each dimension. In
general, such a polytope can have different kinds of facets (and vertex figures). For
d = 3 the complete list contains exactly 92 regular-faced convex polyhedra and
includes all semi-regular polyhedra. For each d ≥ 5, there are only two regular-
faced d-polytopes that are not semi-regular. Except for d = 4, each regular-faced
d-polytope has a nontrivial symmetry group.

There are many further generalizations of the notion of regularity [Mar93].
However, in most cases complete lists of the corresponding polytopes are either not
known or available only for d = 3. The variants that have been considered include:
isogonal polytopes (requiring vertex-transitivity of G(P )), or isohedral poly-
topes, the reciprocals of the isogonal polytopes, with a facet-transitive group G(P );
more generally, k-face-transitive polytopes (requiring transitivity of G(P ) on the
k-faces), for a single value or several values of k; congruent-faceted, or mono-
hedral, polytopes (requiring congruence of the facets); and equifaceted polytopes
(requiring combinatorial isomorphism of the facets). Similar problems have also
been considered for nonconvex polytopes or polyhedra, and for tilings [GS87].

18.6 REFLECTION GROUPS

Symmetry properties of geometric figures are closely tied to the algebraic structure
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of their symmetry groups, which are often subgroups of finite or infinite reflection
groups. A classical reference for reflection groups is Coxeter [Cox73]. A more recent
text is Humphreys [Hum90].

GLOSSARY

Reflection group: A group generated by (hyperplane) reflections in a finite-
dimensional space V . The space can be a real or complex vector space (or affine
space). A reflection is a linear (or affine) transformation whose eigenvalues,
save one, are all equal to 1, while the remaining eigenvalue is a primitive k-th
root of unity for some k ≥ 2; in the real case, it is −1. If the space is equipped
with further structure, the reflections are assumed to preserve it. For example,
if V is real Euclidean, the reflections are Euclidean reflections.

Coxeter group: A group W , finite or infinite, that is generated by finitely many
generators σ1, . . . , σn and has a presentation of the form (σiσj)

mij = 1 (i, j =
1, . . . , n), where the mij are positive integers or ∞ such that mii = 1 and mij =
mji ≥ 2 (i 6= j). The matrix (mij)ij is the Coxeter matrix of W .

Coxeter diagram: A labeled graph D that represents a Coxeter group W as
follows. The nodes of D represent the generators σi of W . The i-th and j-th
node are joined by a (single) branch if and only if mij > 2. In this case, the
branch is labeled mij if mij 6= 3 (and remains unlabeled if mij = 3).

Irreducible Coxeter group: A Coxeter group W whose Coxeter diagram is
connected. (Each Coxeter group W is the direct product of irreducible Coxeter
groups, with each factor corresponding to a connected component of the diagram
of W .)

Root system: A finite set R of non-zero vectors, the roots, in Ed satisfying the
following conditions. R spans Ed, and R ∩ Re = {±e} for each e ∈ R. For
each e ∈ R, the Euclidean reflection Se in the linear hyperplane orthogonal to
e maps R onto itself. Moreover, the numbers 2(e, e′)/(e′, e′), with e, e′ ∈ R,
are integers (Cartan integers); here ( , ) denotes the standard inner product on
Ed. (These conditions define crystallographic root systems. Sometimes the
integrality condition is omitted to give a more general notion of root system.)
The group W generated by the reflections Se (e ∈ R) is a finite Coxeter group,
called the Weyl group of R.

GENERAL PROPERTIES

Every Coxeter group W = 〈σ1, . . . , σn〉 admits a faithful representation as a re-
flection group in the real vector space Rn. This is obtained as follows. If W has
Coxeter matrix M = (mij)ij and e1, . . . , en is the standard basis of Rn, define the
symmetric bilinear form 〈 , 〉M by

〈ei, ej〉M := − cos (π/mij) (i, j = 1, . . . , n),

with appropriate interpretation if mij = ∞. For i = 1, . . . , n the linear transforma-
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tion Si : Rn 7→ Rn given by

xSi := x− 2〈ei, x〉M ei (x ∈ Rn)

is the orthogonal reflection in the hyperplane orthogonal to ei. Let O(M) denote
the orthogonal group corresponding to 〈 , 〉M . Then σi 7→ Si (i = 1, . . . , n) defines
a faithful representation ρ : W 7→ GL(Rn), called the canonical representation,
such that Wρ ⊆ O(M).

The group W is finite if and only if the associated form 〈 , 〉M is positive
definite; in this case, 〈 , 〉M determines a Euclidean geometry on Rn. In other
words, each finite Coxeter group is a finite Euclidean reflection group. Conversely,
every finite Euclidean reflection group is a Coxeter group. The finite Coxeter groups
have been completely classified by Coxeter and are usually listed in terms of their
Coxeter diagrams.

The finite irreducible Coxeter groups with string diagrams are precisely the
symmetry groups of the convex regular polytopes, with a pair of dual polytopes
corresponding to a pair of groups that are related by reversing the order of the
generators. See Section 18.1 for an explanation about how the generators act on
the polytopes. Table 18.1.1 also lists the names for the corresponding Coxeter
diagrams.

For p1, . . . , pn−1 ≥ 2 write [p1, . . . , pn−1] for the Coxeter group with string di-
agram • p1

• p2
• · · · · · · • pn−2

• pn−1
•. Then [p1, . . . , pn−1] is the au-

tomorphism group of the universal abstract regular n-polytope {p1, . . . , pn−1}; see
Section 18.8. The regular honeycombs {p1, . . . , pn−1} on the sphere (convex regular
polytopes) or in Euclidean or hyperbolic space are examples of such universal poly-
topes. The spherical honeycombs are exactly the finite universal regular polytopes
(with pi > 2 for all i). The Euclidean honeycombs arise exactly when pi > 2 for all
i and the bilinear form 〈 , 〉M for [p1, . . . , pn−1] is positive semi-definite (but not
positive definite). Similarly, the hyperbolic honeycombs correspond exactly to the
groups [p1, . . . , pn−1] that are Coxeter groups of “hyperbolic type” [McS02].

There are exactly two sources of finite Coxeter groups, to some extent over-
lapping: the symmetry groups of convex regular polytopes, and the Weyl groups
of (crystallographic) root systems, which are important in Lie Theory. Every root
system R has a set of simple roots; this is a subset S of R, which is a basis of Ed

such that every e ∈ R is a linear combination of vectors in S with integer coefficients
which are all non-negative or all non-positive. The distinguished generators of the
Weyl group W are given by the reflections Se in the linear hyperplane orthogonal
to e (e ∈ S), for some set S of simple roots of R. The irreducible Weyl groups in
E2 are the symmetry groups of the triangle, square or hexagon. The diagrams Ad,
Bd, Cd and F4 of Table 18.1.1 all correspond to irreducible Weyl groups and root
systems (with Bd and Cd corresponding to a pair of dual root systems), but H3

and H4 do not (they correspond to a non-crystallographic root system [CMP98]).
There is one additional series of irreducible Weyl groups in Ed with d ≥ 4 (a cer-
tain subgoup of index 2 in Bd), whose diagram is denoted by Dd. The remaining
irreducible Weyl groups occur in dimensions 6, 7 and 8, with diagrams E6, E7 and
E8, respectively.

Each Weyl group W stabilizes the lattice spanned by a set S of simple roots,
the root lattice of R. These lattices have many interesting geometric properties
and occur also in the context of sphere packings (see Conway and Sloane [CS88] and
Chapter 60). The irreducible Coxeter groups W of euclidean type, or, equivalently,
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the infinite discrete irreducible euclidean reflection groups, are intimately related
to Weyl groups; they are also called affine Weyl groups.

The complexifications of the reflection hyperplanes for a finite Coxeter group
give an example of a complex hyperplane arrangement (see [Bj93], [OT92] and
Chapter 7). The topology of the set-theoretic complement of these Coxeter ar-
rangements in complex space has been extensively studied.

For hyperbolic reflection groups, see Vinberg [Vi85]. In hyperbolic space, a
discrete irreducible reflection group need not have a fundamental region which is a
simplex.

18.7 COMPLEX REGULAR POLYTOPES

Complex regular polytopes are subspace configurations in unitary complex space
that share many properties with regular polytopes in real spaces. For a detailed
account see Coxeter [Cox93]. The subject originated from Shephard [Sh52].

GLOSSARY

Complex d-polytope: A d-polytope-configuration as defined in Section 18.2, but
now the elements, or faces, are subspaces in unitary complex d-space Cd. How-
ever, unlike in real space, the subconfigurations G/F with dim(G)−dim(F ) = 2
can contain more than 2 proper elements. A complex polygon is a complex
2-polytope.

Regular complex polytope: A complex polytope P whose (unitary) symmetry
group G(P ) is transitive on the flags (the maximal sets of mutually incident
faces).

ENUMERATION AND GROUPS

The regular complex d-polytopes P are completely known for each d. Every d-
polytope can be uniquely described by a generalized Schläfli symbol

p0{q1}p1{q2}p2 . . . pd−2{qd−1}pd−1,

which we explain below. For d = 1, the regular polytopes are precisely the point
sets on the complex line, which in corresponding real 2-space are the vertex sets
of regular convex polygons; the Schläfli symbol is simply p if the real polygon is a
p-gon. In general, the entry pi is the Schläfli symbol for the complex 1-polytope
that occurs as the 1-dimensional subconfiguration G/F of P , where F is an (i−1)-
face and G an (i+1)-face of P such that F ⊆ G. As is further explained below, the
pi i-faces in this subconfiguration are cyclicly permuted by a hyperplane reflection
that leaves the whole polytope invariant. Note that, unlike in real Euclidean space,
a hyperplane reflection in unitary complex space need not have period 2 but can
have any finite period greater than 1. The meaning of the entries qi is also given
below.
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The regular complex polytopes P with d ≥ 2 are summarized in Table 18.7.1,
which includes the numbers f0 and fd−1 of vertices and facets ((d−1)-faces) and the
group order. Listed are only the nonreal polytopes as well as only one polytope from
each pair of duals. A complex polytope is real if, up to an affine transformation
of Cd, all its faces are subspaces that can be described by linear equations over the
reals. In particular, p0{q1}p1 . . . pd−2{qd−1}pd−1 is real if and only if pi = 2 for each
i; in this case, {q1, . . . , qd−1} is the Schläfli symbol for the related regular polytope
in real space. As in real space, each polytope p0{q1}p1 . . . pd−2{qd−1}pd−1 has a dual
(reciprocal) and its Schläfli symbol is pd−1{qd−1}pd−2 . . . p1{q1}p0; the symmetry
groups are the same and the numbers of vertices and facets are interchanged. The
polytope p{4}2{3}2 . . . 2{3}2 is the generalized complex d-cube, and its dual
2{3}2 . . . 2{3}2{4}p the generalized complex d-cross-polytope ; if p = 2, these
are the real d-cubes and d-cross-polytopes, respectively.

TABLE 18.7.1 The nonreal complex regular polytopes (up to duality).

DIMENSION POLYTOPE f0 fd−1 |G(P )|

d ≥ 1 p{4}2{3}2 . . . 2{3}2 pd pd pdd!

d = 2 3{3}3 8 8 24

3{6}2 24 16 48

3{4}3 24 24 72

4{3}4 24 24 96

3{8}2 72 48 144

4{6}2 96 48 192

4{4}3 96 72 288

3{5}3 120 120 360

5{3}5 120 120 600

3{10}2 360 240 720

5{6}2 600 240 1200

5{4}3 600 360 1800

d = 3 3{3}3{3}3 27 27 648

3{3}3{4}2 72 54 1296

d = 4 3{3}3{3}3{3}3 240 240 155 520

The symmetry group G(P ) of a complex regular d-polytope P is a finite unitary
reflection group in Cd; if P = p0{q1}p1 . . . pd−2{qd−1}pd−1, then the notation for the
group G(P ) is p0[q1]p1 . . . pd−2[qd−1]pd−1. If Φ = {∅ = F−1, F0, . . . , Fd−1, Fd = Cd}
is a flag of P , then for each i = 0, 1, . . . , d − 1 there is a unitary reflection Ri

that fixes Fj for j 6= i and cyclicly permutes the pi i-faces in the subconfiguration
Fi+1/Fi−1 of P . These generators Ri can be chosen in such a way that in terms of
R0, . . . , Rd−1, the group G(P ) has a presentation of the form

Rpi

i = 1 (0 ≤ i ≤ d− 1),

RiRj = RjRi (0 ≤ i < j − 1 ≤ d− 2),

RiRi+1RiRi+1Ri . . . = Ri+1RiRi+1RiRi+1 . . .
with qi+1 generators on each side (0 ≤ i ≤ d− 2).
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This explains the entries qi in the Schläfli symbol. Conversely, any d unitary
reflections that satisfy the first two sets of relations, and generate a finite group,
can be used to determine a regular complex polytope by a complex analogue of
Wythoff’s construction (see Section 18.5). If P is real, then G(P ) is conjugate, in
the general linear group of Cd, to a finite (real) Coxeter group (see Section 18.6).
Complex regular polytopes are only one source for finite unitary reflection groups;
there are also others [Cox93, ShT54].

See Cuypers [Cuy95] for the classification of quaternionic regular polytopes
(polytope-configurations in quaternionic space).

18.8 ABSTRACT REGULAR POLYTOPES

Abstract regular polytopes are combinatorial structures that generalize the familiar
regular polytopes. The terminology adopted is patterned after the classical theory.
Many symmetric figures discussed in earlier sections could be treated (and their
structure clarified) in this more general framework. Much of the research in this area
is quite recent. For a comprehensive account see McMullen and Schulte [McS02].

GLOSSARY

Abstract d-polytope: A partially ordered set P , with elements called faces,
that satisfies the following conditions. P is equipped with a rank function
with range {−1, 0, . . . , d}, which associates with a face F its rank rank F ; if
rank F = j, F is a j-face, or a vertex, an edge, or a facet if j = 0, 1, or
d − 1, respectively. P has a unique minimal element F−1 of rank −1 and a
unique maximal element Fd of rank d. These two elements are the improper
faces; the others are proper. The flags (maximal totally ordered subsets) of
P all contain exactly d + 2 faces (including F−1 and Fd). If F < G in P , then
G/F := {H ∈ P |F ≤ H ≤ G} is said to be a section of P . All sections of P
(including P itself) are connected, meaning that, given two proper faces H,H ′

of a section G/F , there is a sequence H = H0,H1, . . . ,Hk = H ′ of proper faces
of G/F (for some k) such that Hi−1 and Hi are incident for each i = 1, . . . , k.
(That is, P is strongly connected.) Finally, if F < G with 0 ≤ rank F + 1 =
j = rank G − 1 ≤ d− 1, there are exactly two j-faces H such that F < H < G.
(Note that this last condition basically says that P is topologically real. The
condition is violated for nonreal complex polytopes.)

Faces and co-faces: We can safely identify a face F of P with the section
F/F−1 = {H ∈ P |H ≤ F}. The section Fd/F = {H ∈ P |F ≤ H} is the co-face
of P , or the vertex figure if F is a vertex.

Regular polytope: An abstract polytope P whose automorphism group Γ(P )
(the group of order-preserving permutations of P) is transitive on the flags.
(Then Γ(P ) must be simply flag-transitive.)

C-group: A group Γ generated by involutions σ1, . . . , σm (that is, a quotient of
a Coxeter group) such that the intersection property holds:

〈σi|i ∈ I〉 ∩ 〈σi|i ∈ J〉 = 〈σi|i ∈ I ∩ J〉 for all I, J ⊂ {1, . . . ,m}.
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The letter “C” stands for “Coxeter”. (Coxeter groups are C-groups, but not vice
versa.)

String C-group: A C-group Γ = 〈σ1, . . . , σm〉 such that (σiσj)
2 = 1 if 1 ≤ i <

j − 1 ≤ m− 1. (Then Γ is a quotient of a Coxeter group with a string Coxeter
diagram.)

Realization: For a regular (abstract) d-polytope P with vertex-set F0, a sur-
jection β : F0 7→ V onto a set V of points in a Euclidean space, such that
each automorphism of P induces an isometric permutation of V . Then V is the
vertex set of the realization β.

Chiral polytope: An abstract polytope P whose automorphism group Γ(P ) has
exactly two orbits on the flags, with adjacent flags in different orbits. (Two flags
are adjacent if they differ in exactly one face.) Chiral polytopes are an important
class of nearly regular polytopes.

GENERAL PROPERTIES

Abstract 2-polytopes are isomorphic to ordinary n-gons or apeirogons (Section 18.2).
Except for some degenerate cases, the abstract 3-polytopes with finite faces and
vertex figures are in one-to-one correspondence with the maps on surfaces (Sec-
tion 18.3). Accordingly, a finite (abstract) 4-polytope P has facets and vertex
figures that are isomorphic to maps on surfaces.

The group Γ(P ) of every regular d-polytope P is a string C-group. Fix a
flag Φ := {F−1, F0, . . . , Fd}, the base flag of P . Then Γ(P ) is generated by
distinguished generators ρ0, . . . , ρd−1 (with respect to Φ), where ρi is the unique
automorphism that keeps all but the i-face of Φ fixed. These generators satisfy
relations

(ρiρj)
pij = 1 (i, j = 0, . . . , d− 1),

with pii = 1, pij = pji ≥ 2 (i 6= j), and pij = 2 if |i − j| ≥ 2; in particular,
Γ(P ) is a string C-group with generators ρ0, . . . , ρd−1. The numbers pi := pi−1,i

determine the (Schläfli) type {p1, . . . , pd−1} of P . The group Γ(P ) is a quotient
of the Coxeter group [p1, . . . , pd−1] (Section 18.6), but in general the quotient is
proper.

Conversely, if Γ is a string C-group with generators ρ0, . . . , ρd−1, then it is the
group of a regular d-polytope P , and ρ0, . . . , ρd−1 are the distinguished generators
with respect to some base flag of P . The i-faces of P are the right cosets of the
subgroup Γi := 〈ρk|k 6= i〉 of Γ, and in P , Γiϕ ≤ Γjψ if and only if i ≤ j and
Γiϕ ∩ Γjψ 6= ∅. For any p1, . . . , pd−1 ≥ 2, [p1, . . . , pd−1] is a string C-group and
the corresponding d-polytope is the universal regular d-polytope {p1, . . . , pd−1};
every other regular d-polytope of the same type {p1, . . . , pd−1} is derived from
it by making identifications. Examples are the regular spherical, Euclidean, and
hyperbolic honeycombs. The one-to-one correspondence between string C-groups
and the groups of regular polytopes sets up a powerful dialogue between groups on
one hand and polytopes on the other.

There is also a similar such dialogue for chiral polytopes (see Schulte and
Weiss [SWe94]). If P is chiral and Φ := {F−1, F0, . . . , Fd} is its base flag, then
Γ(P ) is generated by automorphisms σ1, . . . , σd−1, where σi fixes all the faces in
Φ \ {Fi−1, Fi} and cyclically permutes consecutive i-faces of P in the (polygonal)
section Fi+1/Fi−2 of rank 2. The orientation of each σi can be chosen in such
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a way that the resulting distinguished generators σ1, . . . , σd−1 of Γ(P ) satisfy
relations

σpi

i = (σjσj+1 . . . σk)2 = 1 (i, j, k = 1, . . . , d− 1 and j < k),

with pi determined by the type {p1, . . . , pd−1} of P . Moreover, a certain intersection
property (resembling that for C-groups) holds for Γ(P ). Conversely, if Γ is a group
generated by σ1, . . . , σd−1, and if these generators satisfy the above relations and
the intersection property, then Γ is the group of a chiral polytope, or the rotation
subgroup of index 2 in the group of a regular polytope. Each isomorphism type
of chiral polytope occurs combinatorially in two enantiomorphic (mirror image)
forms; these correspond to two sets of generators σi of the group determined by a
pair of adjacent base flags.

Abstract polytopes are closely related to buildings and diagram geometries
[Bu95, Ti74]. They are essentially the “thin diagram geometries with a string dia-
gram”. The universal regular polytopes {p1, . . . , pd−1} correspond to “thin build-
ings”.

CLASSIFICATION BY TOPOLOGICAL TYPE

Abstract polytopes are not a priori embedded into an ambient space. Therefore
for abstract polytopes, the traditional enumeration of regular polytopes is replaced
by the classification by global or local topological type. On the group level, this
translates into the enumeration of finite string C-groups with certain kinds of pre-
sentations.

Every locally spherical abstract regular polytope P of rank d+1 is a quotient
of a regular tessellation {p1, . . . , pd} in spherical, Euclidean or hyperbolic d-space;
in other words, P is a regular tessellation on the corresponding spherical, Euclidean
or hyperbolic space-form. In this context, the classical regular convex polytopes
are precisely the abstract regular polytopes that are locally spherical and globally
spherical. The projective regular polytopes are the regular tessellations in real
projective d-space, and are obtained as quotients of the centrally symmetric regular
convex polytopes under the central inversion.

Much work has also been done in the toroidal and locally toroidal case [McS02].
A regular toroid of rank d+1 is the quotient of a regular tessellation {p1, . . . , pd}
in Euclidean d-space by a lattice that is invariant under all symmetries of the vertex
figure of {p1, . . . , pd}; in other words, a regular toroid is a regular tessellation on
the d-torus. If d = 2, these are the reflexible regular torus maps of [CM80]. For
d ≥ 3 there are three infinite sequences of cubical toroids of type {4, 3d−2, 4},
and for d = 4 there are two infinite sequences of exceptional toroids for each of
the types {3, 3, 4, 3} and {3, 4, 3, 3}. Their groups are known in terms of generators
and relations.

For d ≥ 2, the d-torus is the only d-dimensional compact Euclidean space-form
which can admit a regular or chiral tessellation. Further, chirality can only occur
if d = 2 (yielding the irreflexible torus maps of [CM80]). Little is known about
regular tessellations on hyperbolic space forms (again, see [CM80] and [McS02]).

For regular d-polytopes P1 and P2, let 〈P1, P2〉 denote the class of all regular
(d+1)-polytopes with facets isomorphic to P1 and vertex figures isomorphic to P2.
Each nonempty class 〈P1, P2〉 contains a universal polytope denoted by {P1, P2},
which “covers” all other polytopes in its class. Classification by local topological
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type means enumeration of all finite universal polytopes {P1, P2} where P1 and P2

are of the prescribed (global) topological type. There are variants of this definition.
A polytope Q in 〈P1, P2〉 is locally toroidal if P1 and P2 are regular convex
polytopes (spheres) or regular toroids, with at least one of the latter kind.

Locally toroidal regular polytopes can only exist in ranks 4, 5, and 6 [McS02].
The enumeration is complete for rank 5, and nearly complete for rank 4. In rank
6, a list of finite polytopes is known that is conjectured to be complete. The
enumeration in rank 4 involves analysis of the Schläfli types {4, 4, r} with r = 3, 4,
{6, 3, r} with r = 3, 4, 5, 6, and {3, 6, 3}, and their duals. Here, complete lists
of finite universal regular polytopes are known for each type except {4, 4, 4} and
{3, 6, 3}; the type {4, 4, 4} is almost settled, and for {3, 6, 3} partial results were
known. In rank 5, only the types {3, 4, 3, 4} and its dual occur. Finally, in rank
6, there are {3, 3, 3, 4, 3}, {3, 3, 4, 3, 3} and {3, 4, 3, 3, 4}, and their duals. On the
group level, the classification of toroidal and locally toroidal polytopes amounts to
the classification of certain C-groups which are defined in terms of generators and
relations. These groups are quotients of Euclidean or hyperbolic Coxeter groups
and are obtained from those by either one or two extra defining relations. Very
little is known about the corresponding classification for chiral polytopes.

REALIZATIONS

A good number of the geometric figures discussed in the earlier sections could be
described in the general context of realizations of abstract regular polytopes. For
an account of realizations see [McS02] or McMullen [McM94].

Let β : F0 7→ V be a realization of a regular d-polytope P , and let Fj denote the
set of j-faces of P (j = −1, 0, . . . , d). With β0 := β, V0 := V , then for j = 1, . . . , d,
β recursively induces a surjection βj : Fj 7→ Vj , with Vj ⊂ 2Vj−1 , given by

Fβj := {Gβj−1|G ∈ Fj−1, G ≤ F}

for each F ∈ Fj . It is convenient to identify β and
{
βj

}d

j=0
and also call the

latter a realization of P. The realization is faithful if each βj is a bijection;
otherwise, it is degenerate. Its dimension is the dimension of the affine hull of
V . Each realization corresponds to a (not necessarily faithful) representation of the
automorphism group Γ(P ) as a group of Euclidean isometries.

The traditional approach in the study of regular figures starts from a Euclidean
(or other) space and describes all figures of a specified kind that are regular accord-
ing to some geometric definition of regularity. For example, the Grünbaum-Dress
polyhedra of Section 18.4 are the realizations in E3 of abstract regular 3-polytopes
P , which are both discrete and faithful; their symmetry group is flag-transitive and
is isomorphic to the automorphism group Γ(P ).

A rather new approach proceeds from a given abstract regular polytope P and
describes all the realizations of P . For a finite P , each realization β is uniquely
determined by its diagonal vector ∆, whose components are the squared lengths
of the diagonals (pairs of vertices) in the diagonal classes of P modulo Γ(P ). Each
orthogonal representation of Γ(P ) yields one or more (possibly degenerate) real-
izations of P . Then taking the sum of two representations of Γ(P ) is equivalent
to an operation for the related realizations called a blend, which in turn amounts
to adding the corresponding diagonal vectors. If we identify the realizations with
their diagonal vectors, then the space of all realizations of P becomes a closed con-



Symmetry of polytopes and polyhedra 21

vex cone C(P ), the realization cone of P , whose finer structure is given by the
irreducible representations of Γ(P ). The extreme rays of C(P ) correspond to the
pure (unblended) realizations, which are given by the irreducible representations
of Γ(P ). Each realization of P is a blend of pure realizations.

For instance, a regular n-gon P has b 1
2nc diagonal classes, and for each k =

1, . . . , b 1
2nc, there is a planar regular star-polygon {n

k } if (n, k) = 1 (Section 18.2),
or a “degenerate star-polygon {n

k } ” if (n, k) > 1; the latter is a degenerate real-
ization of P , which reduces to a line segment if n = 2k. For the regular icosa-
hedron P there are 3 pure realizations. Apart from the usual icosahedron {3, 5}
itself, there is another 3-dimensional pure realization, namely the great icosahe-
dron {3, 5

2} (Section 18.2). The final pure realization is induced by its covering of
{3, 5}/2, the hemi-icosahedron (obtained from P by identifying antipodal ver-
tices), all of whose diagonals are edges; thus its vertices must be those of a 5-simplex.
The regular d-simplex has (up to similarity) a unique realization. The regular d-
cross-polytope and d-cube have 2 and d pure realizations, respectively. For other
polytopes see [BS00, McS02, MW99, MW00].

18.9 SOURCES AND RELATED MATERIAL

SURVEYS

[Ba95]: A popular book on the geometry and visualization of polyhedral and non-
polyhedral figures with symmetries in higher dimensions.

[Bj93]: A monograph on oriented matroids and their applications.

[BrW93]: A survey on polyhedral manifolds and their embeddings in real space.

[BCN89]: A monograph on distance-regular graphs and their symmetry properties.

[Bu95]: A Handbook of Incidence Geometry, with articles on buildings and diagram
geometries.

[CS88]: A monograph on sphere packings and related topics.

[Cox70]: A short text on certain chiral tessellations of 3-dimensional manifolds.

[Cox73]: A monograph on the traditional regular polytopes, regular tessellations,
and reflection groups.

[Cox93]: A monograph on complex regular polytopes and complex reflection groups.

[CM80]: A monograph on discrete groups and their presentations.

[DGS81]: A collection of papers on various aspects of symmetry, contributed in
honor of H.S.M. Coxeter’s 80-th birthday.

[DuV64]: A monograph on geometric aspects of the quaternions with applications
to symmetry.

[Fej64]: A monograph on regular figures, mainly in 3 dimensions.

[Grü67]: A monograph on convex polytopes.

[GS87]: A monograph on plane tilings and patterns.

[Hum90]: A monograph on Coxeter groups and reflection groups.
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[Joh]: A monograph on uniform polytopes and semi-regular figures.

[Mag74]: A book on discrete groups of Möbius transformations and non-euclidean
tessellations.

[Mar93]: A survey on symmetric convex polytopes and a hierarchical classification
by symmetry.

[Mo87]: A book on the topology of the three-manifolds of classical plane tessella-
tions.

[McM94]: A survey on abstract regular polytopes with emphasis on geometric
realizations.

[McS02]: A monograph on abstract regular polytopes and their groups.

[OT92]: A monograph on hyperplane arrangements.

[Ro84]: A text about symmetry classes of convex polytopes.

[Se95]: An introduction to the geometry of mathematical quasicrystals and related
tilings.

[SF88]: A text on interdisciplinary aspects of polyhedra and their symmetries.

[ShM95]: A collection of twenty-six papers by H.S.M. Coxeter.

[Ti74]: A text on buildings and their classification.

[We77]: A monograph on three-dimensional polyhedral geometry and its applica-
tions in crystallography.

[Zi95]: A graduate textbook on convex polytopes.
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Chapter 20: Polyhedral maps
Chapter 60: Sphere packing and coding theory
Chapter 61: Crystals and quasicrystals
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[DGS81] C. Davis, B. Grünbaum and F.A. Sherk. The Geometric Vein (The Coxeter Festschrift).
Springer-Verlag, New York, 1981.

[Dre85] A.W.M. Dress. A combinatorial theory of Grünbaum’s new regular polyhedra. Part II:
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