
1. Introduction

Ramsey theory is concerned with a certain class of theorems, in which a sufficiently
large object is somehow colored into finitely many components (but with no control
as to exactly how the object is colored, other than specifying the number of colors
used), and it is then shown that one of these components must necessarily contain
a certain type of structure. The prototypical such result is the pigeonhole principle,
which asserts that if a set of km + 1 elements is colored into m different colors,
then regardless of how the coloring is chosen, there must be a subset of k + 1
elements which is monochromatic; indeed much of Ramsey theory can be viewed
as applications and generalizations of this pigeonhole principle. Ramsey theorems
can be very powerful, as they assume very little information on the coloring to
be studied; however, they do suffer an important limitation, which is that one
usually does not know which color will contain the resulting structure. Thus they
are primarily used in situations in which one would be content with locating the
desired structure in any color.

In Ramsey’s original work on the subject (and in many follow-up works), the object
to be colored was the edges of a graph; this theory has found many applications in
fields as diverse as Banach space theory, convex geometry, and complexity theory.
However, for our purposes we shall be more interested in the narrower topic of
additive Ramsey theory, which is concerned with colorings of subsets of an additive
group (and in particular colorings of finite sets of integers). As such we will not
attempt a broad survey of the field (avoiding for instance the deeper study of
Ramsey theory on infinite sets); for this we refer the reader to the excellent textbook
of [9].

Let us set out our notation for colorings.

Definition 1.1. Let A is an arbitrary set, and m ≥ 1 be an integer. A m-coloring
(or finite coloring, if m is unspecified) of A is just a function c : A → C to some
finite set of colors C of cardinality |C| = m. We say that a subset A′ of A is
monochromatic with color c if c(n) = c for all n ∈ A.

Remark 1.2. The exact choice of color set C is usually not relevant, in the sense
that given any bijection φ : C → C′, one could replace the coloring function c by
φ◦c while leaving the theory essentially unchanged. The situation here is analogous
to that of information theory of a random variable, in which only the level sets of
the random variable (or equivalently, the sigma algebra it generates) is relevant.

Most of the theorems of this chapter will be of the following general type: given an
integer m, and some collection of “structures” S1, . . . , Sn, then every sufficiently
large m-colored set A will contain a monochromatic object “isomorphic to” one of
the Si. Such types of results are sometimes called Ramsey theorems. These Ramsey
theorems will typically be proven by induction, either on the number of colors or the
number (or complexity) of the structures; we shall also use easier Ramsey theorems
to deduce more difficult ones. Because of the heavily inductive nature of many of
the proofs, the quantitative bounds we obtain (i.e. how large A has to be depending
on m and the structures S1, . . . , Sn) are often quite poor, for instance many of the
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bounds grow as fast as the Ackermann function or worse. It is of interest to find
better bounds for many of these problems; we shall describe some progress on this
for two special Ramsey theorems, the van der Waerden and Hales-Jewett theorems.

2. Ramsey’s theorem and Schur’s theorem

We begin with Ramsey’s original theorem. We say that an undirected graph G is
complete if every pair of distinct vertices v, w ∈ G is connected by exactly one edge.

Theorem 2.1 (Ramsey’s theorem for two colors). [15] Let n, m ≥ 1 be integers, and

let G = (V, E) be a complete graph with at least
(

n+m−2
n−1

)

:= (n+m−2)!
(n−1)!(m−1)! vertices.

Then for any two-coloring c : E → {blue, red} of the edge set E, with color set blue
and red (say), there either exists a blue-monochromatic complete subgraph Gblue

with n vertices, or a red-monochromatic complete subgraph Gred with m vertices.

Example 2.2. Any two-colouring of a complete graph with six or more vertices into
red and blue edges will contain either a blue triangle or a red triangle.

Proof We shall induct on the quantity n + m. When n + m = 2 (i.e. n = m = 1)
the claim is vacuously true. Now suppose that n+m > 2 and the claim has already
been proven for all smaller values of n + m. If n = 1 then the claim is again
vacuously (with R(1, m) = 1), and similarly when m = 1. Thus we shall assume
n, m ≥ 2.

Let G = (V, E) be a complete graph with at least
(

n+m−2
n−1

)

vertices, and let v ∈ V
be an arbitrary vertex. This vertex is adjacent to at least

(

n + m − 2

n − 1

)

− 1 =

(

n + m − 3

n − 2

)

+

(

n + m − 3

n − 1

)

− 1

many edges, each of which is either blue or red. Thus by the pigeonhole principle,
either v is adjacent to at least

(

n+m−3
n−2

)

blue edges, or is adjacent to at least
(

n+m−3
n−1

)

red edges. Suppose first that we are in the former case. Then we can find a
complete subgraph G′ of G with at least

(

n+m−3
n−2

)

edges such that every vertex

of G′ is connected to v by a blue edge. By the inductive hypothesis (with (n, m)
replaced by (n−1, m)), G′ either contains a blue-monochromatic complete subgraph
G′

blue with n− 1 vertices, or a red-monochromatic complete subgraph G′
red with m

vertices. In the latter case we are already done by taking Gred := Gred, and in the
latter case we can find a blue-monochromatic complete subgraph Gblue of G with n
vertices by adjoining v to G′

blue (and adding in all the edges connecting v and G′
blue,

which are all blue by construction. This disposes of the case when v is adjacent to
at least

(

n+m−3
n−2

)

blue edges; the case when v is connected to at least
(

n+m−3
n−1

)

red

edges is proven similarly (now using the inductive hypothesis at (n, m− 1) instead
of (n − 1, m)).

Remark 2.3. The bound
(

n+m−2
n−1

)

is sharp for very small values of n and m, but can
be improved for larger values of n and m, although computing the precise constants
is very difficult (for instance, when n = m = 5 the best constant is only known to
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be somewhere between 43 and 49 inclusive). On the other hand, lower bounds are
known (see exercises).

One can iterate this theorem to arbitrary number of colors:

Corollary 2.4 (Ramsey’s theorem for many colors). [15] Given any positive inte-
gers n1, . . . , nm, there exists a number R(n1, . . . , nm; m) such that given any com-
plete graph G = (V, E) with at least R(n1, . . . , nm; m) vertices, and any m-coloring
c : E → {c1, . . . , cm} of the edges, there exists a 1 ≤ j ≤ m and a cj-monochromatic
complete subgraph Gj of G with nj vertices.

Proof We induct on m. The case m = 1 is trivial, and the case m = 2 is just
Theorem 2.1. Now suppose inductively that m > 2 and the claim has already been
proven for all smaller values of m. We set

R(n1, . . . , nm; m) := R(R(n1, . . . , nm−1; m − 1), nm; 2).

Let c be a coloring of KR(n1,... ,nm;m) into m colors c1, . . . , cm. We define a coarsened
coloring c/ ∼ by identifying the first c1, . . . , cm−1 colors into a single equivalence
class {c1, . . . , cm−1}, while leaving the last color cm in a singleton equivalence class
{cm}. By the inductive hypothesis, we see that with respect to the coarsened
coloring c/ ∼, either G contains a {cm}-monochromatic complete subgraph Gm

with nm elements, or G contains {c1, . . . , cm−1}-monochromatic complete subgraph
G1,... ,m−1 with R(n1, . . . , nm−1; m − 1) elements. In the first case we are done; in
the second case we are done by applying the induction hypothesis once again, this
time to the complete grpaph G1,... ,m−1. This closes the induction and completes
the proof.

We now give an immediate application of Ramsey’s theorem to an arithmetic set-
ting.

Theorem 2.5 (Schur’s theorem). [17] If m, k are positive integers, there exists a
positive integer N = N(m, k) such that, given any m-coloring c : [1, N ] → C of
[1, N ], there exists a monochromatic subset of [1, N ] of the form {x1, . . . , xk, x1 +
. . .+xk}. In fact we can choose N := R(k+1, . . . , k+1; m)−1, using the notation
of Corollary 2.4.

Remarks 2.6. Define a sum-free set to be any set A such that (A + A) ∩ A = ∅.
Schur’s theorem (in the k = 2 case) is then equivalent to the assertion that the set
[1, N ] cannot be covered by m sum-free sets if N is sufficiently large depending on
m; in particular, the integers cannot be partitioned into any finite number of sum-
free sets. Even when k = 2, the value of N given by the above arguments grows
double-exponentially in m (see exercises); this is not best possible. For instance,
it is known that given any 2-coloring of [1, N ], there exist at least 1

22N2 − 7
22N

monochromatic triples of the form (x, y, x + y), and that this bound is sharp [16],
[18] (see also [8]).

Proof Let G be the complete graph on the N + 1 vertices [1, N + 1], and define
a colouring c̃ : E(G) → C by setting c̃({a, b}) := c(|a − b|) for any edge {a, b}. By
Corollary 2.4, the graph G must contain a complete subgraph G′ of k + 1 vertices
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which is monochromatic with respect to c̃. If we list the vertices of G′ in order as
v0 < v1 < . . . < vk, then the quantities c(vi − vj) for i > j are all equal to each
other. The claim then follows by setting xj := vj − vj−1.

• Using Schur’s theorem, show that if the positive integers Z+ are finitely
colored and k ≥ 1 is arbitrary, then there exist infinitely many monochro-
matic sets in Z+ of the form {x1, . . . , xk, x1 + . . . + xk}. (Hint: Schur’s
theorem can easily produce one such set; now color all the elements of that
set by new colors and repeat). Conversely, show that if the previous claim
is true, then it implies Schur’s theorem.

• Show that if the positive integers Z+ are finitely colored then there ex-
ist infinitely many distinct integers x and y such that {x, y, x + y} are
monochromatic. (Hint: refine the coloring so that x and 2x always have
different colors). A more challenging problem is to establish a similar re-
sult for general k, i.e. to find infinitely many distinct x1, . . . , xk such that
{x1, . . . , xk, x1 + . . . + xk} is monochromatic.

• Show that if the positive integers Z+ are finitely colored and k ≥ 1 are
arbitrary, then there exist infinitely many monochromatic sets of the form
{x1, . . . , xk, x1 . . . xk}. Thus Schur’s theorem can be adapted to products
instead of sums. However, nothing is known about the situation when
one has both sums and products; for instance, it is not even known that
if one finitely colors the positive integers that one can find even a single
monochromatic set of the form {x + y, xy} for some positive integers x, y
(not both equal to 1).

• Show that the quantity N(m, k) in Schur’s theorem can be taken to be Ckm

for some absolute constant C > 1.
• [4] Show that if n ≥ 3 and N ≤ 2n/2 then there exists a two-coloring of

the complete graph on N vertices which does not contain a monochromatic
complete subgraph of n vertices. (Hint: color the graph randomly, giving
each edge one of the two colors with equal and independent probability, and
then use linearity of expectation). Remark: This result, proven in 1947 by

Erd̈’os [4], marks the first significant application of the probabilistic method
to combinatorics.

3. Van der Waerden’s theorem

We now give van der Waerden’s theorem, which is a similar statement to Schur’s
theorem but asks for a monochromatic arithmetic progression {a, a+r, . . . , a+(k−
1)r} rather than a set of the form {x1, . . . , xk, x1 + . . . + xk}.
Theorem 3.1 (Van der Waerden’s theorem). [20] For any integers k, m ≥ 1 there
exists an integer N = N(k, m) ≥ 1 such that given any proper arithmetic progres-
sion P of length at least N (in an arbitrary additive group Z), and any m-coloring
c : P → C of P , there exists a monochromatic proper arithmetic subprogression P ′

of P of length |P ′| = k.

Remark 3.2. Note that one can take P = [1, N ], which gives this theorem the flavor
of Schur’s theorem. On the other hand, Schur’s theorem does not generalize to an
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arbitrary proper arithmetic progression P , simply because P may not contain any
sets of the form {x1, . . . , xk, x1 + . . . + xk} at all (i.e. kP may be disjoint from P ).

Proof We shall use a double induction. The outer induction is on the k variable.
The base case k = 1 is trivial, so suppose k ≥ 2 and the claim has already been
proven for k−1; thus for every m there exists a positive integer N(k−1, m) such that
any m-colouring of a proper arithmetic progression of length at least N(k − 1, m)
contains a monochromatic proper arithmetic progression of length k − 1.

To proceed further we need the “color focusing technique”. This technique rests on
the concept of a polychromatic fan, which we now define.

Definition 3.3. Let c : P → C be a m-colouring, let k ≥ 1, d ≥ 0, and a ∈ P . We
define a fan of radius k, degree d, and base point a to be a d-tuple F = (a + [0, k) ·
r1, . . . , a + [0, k) · rd) of proper arithmetic progressions in P of length k and base
point a, and refer to the arithmetic progressions a + [1, k) · r1, 1 ≤ i ≤ d as the
spokes of the fan. We say that a fan is weakly polychromatic if its d spokes are all
monochromatic with distinct colours, and strongly polychromatic if its d spokes and
its origin are all monochromatic with distinct colors. In other words, F is strongly
polychromatic there exist distinct colours c0, c1, . . . , cd ∈ C such that c(a) = c0,
and c(a + jri) = ci for all 1 ≤ i ≤ d and 1 ≤ j ≤ k, and similarly for weakly
polychromatic except that c0 is allowed to equal one of the other cj . We refer to
the d + 1-tuple c(F ) := (c0, . . . , cd) as the colors of the polychromatic fan. We also
define the notion of a translation x + F of a fan F by an element x of the ambient
group, formed by translating the origin and each of the spokes of F by x.

Let us now make two simple (and one somewhat less simple) observations about
polychromatic fans, which we leave to the reader to verify.

• (i) If F is a weakly polychromatic fan of radius k, then either F is strongly
polychromatic (if the origin has a distinct color from all of its spokes), or
F contains a monochromatic arithmetic progression of length k + 1 if the
origin is the same color as one of its spokes).

• (ii) A strongly polychromatic fan cannot have degree m (simply because
that would require m + 1 or more colors).

• (iii) If F = (a + [0, k) · r1, . . . , a + [0, k) · rd) is a fan of radius k and degree
d, and a0, r ∈ Z are such that the k − 1 fans a0 + jr + F , 1 ≤ j ≤ k − 1
and the origin {a0 + a} all lie in P and are disjoint from each other, and
furthermore the fans a0 + jr + F are all strongly polychromatic with the
same colors c(a0 + jr + F ) = c, then the fan F̃ := (a0 + a + [0, k) · r, a0 +
a+[0, k) · (r+ r1), . . . , a0 +a+[0, k) · (r+ rd)) also lies in P and is a weakly
polychromatic fan of radius k and degree d + 1. In other words, arithmetic
progressions of strongly polychromatic fans contain a weakly polychromatic
fan of one higher degree.

We now combine these three observations to close the outer inductive step. To do
this we need an inner inductive step, which is formalized in the following lemma.
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Lemma 3.4. For any d ≥ 0 there exists a positive integer Ñ(k− 1, m, d) such that

any m-colouring of a proper arithmetic progression P of length at least Ñ(k−1, m, d)
contains either a monochromatic progression of length k, or a strongly polychromatic
fan of radius k and degree d.

Proof We shall need another induction, this time on the d variable. The base
case d = 0 is trivial. Assume now that d > 1 and the claim has already been
proven for d−1. We define Ñ = Ñ(k−1, m, d) by the formula Ñ := 2N1N2, where

N1 := Ñ(k − 1, m, d − 1) and N2 := N(k − 1, mdNd
1 ), which are guaranteed to be

finite by the inner and outer inductive hypotheses respectively, and let c : P → C
be an m-colouring of some proper arithmetic progression P of length at least [1, Ñ ].

Without loss of generality we may take P to have length exactly [1, Ñ ], e.g. P =

a0 + [1, Ñ ] · v.

The key observation is that we can partition this arithmetic progression P =
a0 + [1, Ñ ] · v into 2N2 disjoint arithmetic progressions bN1v + P0 for b ∈ [0, 2N2),
where P0 := a0 + [1, N1] · v. Each subprogression bN1v + P0 is a proper arithmetic
progression of length N1, and so by the inductive hypothesis each bN1v+P0 contains
either a monochromatic arithmetic progression of length k, or a strongly polychro-
matic fan bN1v +F (b) in bN1v +P0 of radius k and degree d−1. If there is at least
one b in which the former case applies, we are done, so suppose that the latter case
applies for every b. This implies that for every b ∈ [1, 2N2) there exists a fan F (b) in
P0 of radius k and degree d−1 such that the translated fan bN1v +F (b) is strongly
polychromatic. Since P0 has length N1, a simple counting argument shows that the
number of fans of radius k and degree d − 1 in P0 is at most Nd

1 , and the possible
colors c(bN1v + F (b)) of a strongly polychromatic fan is at most md. Thus the
map b 7→ (F (b), c(bN1v + F (b))) can be viewed as a mdNd

1 -coloring of the interval
[1, 2N2). If we restrict this coloring to the upper half [N2, 2N2) of this interval and
apply the outer inductive hypothesis, we thus see that [N2, 2N2) contains a proper
arithmetic progression of length k− 1 which is monochromatic with respect to this
coloring. In other words, there exist integers b0 + s, . . . , b0 + (k − 1)s ∈ [N2, 2N2)
with s0 6= 0, a fan F = (a + [0, k) · r1, . . . , a + [0, k) · rd) in P0, and a d-tuple
c = (c0, . . . , cd−1) of colors such that the shifted fans (b0 + js)v + F are strongly
polychromatic for all 1 ≤ j ≤ k − 1 with colors c. Note that by reversing the
progression (b0 + s, . . . , b0 + (k − 1)s0) if necessary we may assume that s is pos-
itive. In particular this means that s ∈ [0, N2) and b0 ∈ [0, 2N2). In particular
a0 + b0v ∈ b0v + P0 ⊂ P . By observation (iii), the new fan

F̃ := (a + b0v + [0, k) · sv, a + b0v + [0, k) · (sv + r1), . . . , a0 + b0v + [0, k) · (sv + rd))

is thus a weakly polychromatic fan in P . By observation (i), this means that F̃ is
either strongly polychromatic, or contains a monochromatic arithmetic progression
of length k, and in either case we are done.

If we apply this Lemma with d = m and N(k, m) := Ñ(k − 1, m, m), and then use
observation (ii), Theorem 3.1 follows.

Remark 3.5. The bounds on N(k, m) obtained by this method are extremely large
(of Ackermann type). A better bound (of primitive recursive type) was obtained
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by Shelah [19] as a corollary of his proof of the Hales-Jewett theorem, see Section
5. An even better bound is

N(k, m) ≤ 2 ↑ 2 ↑ m ↑ 2 ↑ 2 ↑ k + 9,

where x ↑ y = xy denotes exponentiation; this bound was obtained by Gowers [6]
as a corollary of his proof of Szemerédi’s theorem.

• Show that in order to prove van der Waerden’s theorem, it suffices to do so
in the two-color case m = 2. (Hint: use an argument similar to that used
to deduce Corollary 2.4 from Theorem 2.1).

• Using van der Waerden’s theorem, show that if the positive integers Z+

are finitely colored, then there exists a color c such that the set {n ∈
Z+ : c(n) = c} contains arbitrarily long proper arithmetic progressions.
Conversely, show that if the previous claim is true, then it implies Van der
Waerden’s theorem.

• Using van der Waerden’s theorem, show that if N is sufficiently large de-
pending on k and m, and c : [1, N ] → C is any m-coloring of [1, N ], then
[1, N ] will contain at least c(k, m)N2 monochromatic progressions of length
k. (Hint: apply van der Waerden’s theorem to each of the the progressions
of length N(k, m) in [1, N ] and then average. This argument is essentially
due to Varnavides [21]).

• Let p be a prime number, and let F2p be the finite field with 2p elements;
one can think of this finite field as a p-dimensional vector space over the
finite field F2.

(a) Let x be an element of F2p not equal to 0 or 1. Show that the
elements 1, x, x2, . . . , xp−1 are linearly independent over F2. (Hint: Let d
be the least integer such that 1, x, x2, . . . , xd are linearly dependent. Show
that these vectors in F2p generate a subfield G of F2p of cardinality 2d.
Now view F2p as a vector space over G and exploit the hypothesis that p
is prime).

(b) Let x be a primitive element of the multiplicative group F2p\{0},
thus xa 6= 1 for all 1 ≤ a < 2p − 1. Let V be any hyperplane in F2p

(which may or may not pass through the origin 0). Show that for any
proper arithmetic progression {a, a + r, . . . , a + (p − 1)r} in [1, 2p], the set
xa, xa+r, . . . , xa+(p−1)r cannot all be contained in V . (Hint: if V contains
the origin, use (a). If V does not contain the origin, consider the minimal
polynomial P of xr , i.e. the irreducible polynomial over F2 of minimal
degree such that P (xr) = 0. By using a homomorphism from F2p to F2

that maps V to 1, show that P (1) = 0, so that P has a factor of x − 1,
contradicting irreducibility).

(c) Conclude that there exists a 2-colouring of [1, 2p] which contains
no progressions of length p. (This construction can be refined slightly, to
replace 2p with p2p; see [3].
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4. Rado’s theorem

The theorems of Schur and van der Waerden are in fact special cases of a more
general theorem, called Rado’s theorem, to which we now turn.

Definition 4.1. Let I be a finite index set, and let ZI := {(n(i))i∈I : ni ∈
Z for all i ∈ I} be the additive group of I-tuples of integers; we identify Z{1,... ,k}

with Zk in the usual manner. If n = (n(i))i∈I ∈ ZI is such a I-tuple, and
c : [1, N ] → C is an m-coloring of [1, N ], we say that n is monochromatic with
respect to c if the set {n(i) : i ∈ I} is a monochromatic subset of [1, N ]. (For
instance, a diagonal element (n)i∈I is automatically monochromatic). If Γ is a
sublattice of ZI , we say that Γ has the partition-regular property for every integer
m ≥ 1 there exists an N such that for every m-coloring c : [1, N ] → C of [1, N ]
there exists at least one vector n ∈ Γ of Γ which is monochromatic with respect to
c.

Examples 4.2. Schur’s theorem can be rephrased as the statement that the rank k
lattice {(x1, . . . , xk, x1+. . .+xk) : x1, . . . , xk ∈ Z} ⊂ Zk+1 has the partition-regular
property for any k. Van der Waerden’s theorem would imply the statement that the
rank 2 lattice {(a, a+ r, . . . , a+(k−1)r) : a, k ∈ Z} ⊂ Zk has the partition-regular
property for any k, but this statement is in fact trivial since (a, a+r, . . . , a+(k−1)r)
is automatically monochromatic when r = 0. On the other hand, we shall shortly
show that the lattice {(a, a + r, . . . , a + (k − 1)r, r) : a, k ∈ Z} ⊂ Zk+1 has the
partition-regular property, which implies van der Waerden’s theorem (since r is
now constrained to lie in [1, N ] and thus will not be zero).

The problem of determining when a lattice Γ enjoys the partition-regular property
is answered by Rado’s theorem. To state this theorem requires some notation. If
I be a finite index set and J is a subset of I, we define the vector eJ ∈ ZI by

eJ := (1i∈J)i∈I , or in other words e
(i)
J = 1 when i ∈ J and e

(i)
J = 0 when i 6= J . In

particular we can define the basis vectors ej for any j ∈ I by setting ej := e{j}. We
recall that 〈X〉 denotes the additive group generated by the elements of X , thus
for instance ZI = 〈{ei : i ∈ I}〉.
Theorem 4.3 (Rado’s theorem). [14] Let Γ be a lattice in ZI . Then the following
are equivalent:

• (i) Γ has the partition-regular property.
• (ii) There exists a partition I = I1 ∪ . . . ∪ Is of I into disjoint non-empty

sets, and vectors v1, . . . , vs ∈ Γ such that

vq ∈ bqeIq
+ 〈{ei : i ∈ I1 ∪ . . . ∪ Iq−1}〉

for all 1 ≤ q ≤ s and some non-zero integer bq (thus for instance v1 is an
non-zero integer multiple of eI1 , while v2 is a non-zero integer multiple of
eI2 plus an arbitrary integer combination of basis elements in {ei : i ∈ I1},
v3 is a non-zero integer multiple of eI3 plus an arbitrary integer combination
of basis elements in {ei : i ∈ I1 ∪ I2}, and so forth).

Examples 4.4. For the lattice {(x1, . . . , xk, x1 + . . . + xk) : x1, . . . , xk ∈ Z} corre-
sponding to Schur’s theorem, we can take I1 := {1, k+1}, I2 := {2}, . . . , Ik := {k}
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and vq := eq+ek+1 for 1 ≤ r ≤ k. For the lattice {(a, a+r, . . . , a+(k−1)r, r) : a, k ∈
Z} discussed earlier in relation to van der Waerden’s theorem, take I1 := {1, . . . , k},
I2 := {k+1}, v1 := e1 + . . .+ek, v2 = e2 +2e3+ . . .+(k−1)ek +ek+1. On the other
hand, we can use Rado’s theorem to show that the lattice {(3x, 3y, x+y) : x, y ∈ Z}
does not have the partition regular property.

Proof We begin by proving that (i) implies (ii). We first perform a simple trick to
eliminate all the “torsion” from the problem. Let V be the Q-subspace of QI which
is generated by the lattice Γ, then Γ is a lattice of full rank in V . In particular,
ZI∩V ⊃ Γ is also a lattice of full rank in V , and hence the quotient group (ZI∩V )/Γ
is finite. In particular, (ZI ∩V )/Γ is a t-torsion group for some t > 0, which implies
that t · (ZI ∩V ) ⊂ Γ. To prove that Γ obeys (ii) it thus suffices to show that ZI ∩V
obeys (ii), since the claim then follows by multiplying all the vq by the integer t.
On the other hand, since Γ obeys the partition-regular property, the larger lattice
ZI ∩ V also clearly obeys this property. Thus without loss of generality we may in
fact reduce to the case when Γ = ZI ∩ V .

Let p be a large prime number (depending on V ) to be chosen later. We p−1-color
the positive integers c : Z+ → (Z/p ·Z)\{0} by the invertible elements in Z/p ·Z, by
defining c(pmn) := n mod p for all integers m ≥ 0 and all integers n ≥ 1 coprime
to p. Since Γ has the partition-regular property, we see that there must exist a
vector (v(i))i∈I ∈ Γ which is monochromatic for some color c ∈ (Z/p ·Z)\{0}, thus

for each i ∈ I we may write v(i) = pm(i)

n(i) for some n(i) = c mod p and m(i) ≥ 0.
Let 0 ≤ M1 < M2 < . . . < Ms denote all the elements of {m(i) : i ∈ I} arranged in
increasing order, and for each 1 ≤ q ≤ s let Iq := {i ∈ I : m(i) = Mq}. Then the Iq

clearly partition I.

To conclude (ii), we need to show that for each 1 ≤ q ≤ s, the vector eIq
lies in the

span of V and {ei : i ∈ I1 ∪ . . . ∪ Iq−1}, since one can then use linear algebra (over
the rationals Q) and clear denominators to find vq. Fix 1 ≤ q ≤ s, and suppose
for contradiction that eIq

was not in this span. Then by duality, there exists a

vector wq ∈ QI which was orthogonal to V and all of the {ei : i ∈ I1 ∪ . . . ∪ Iq−1},
but which was not orthogonal to eIq

. By multiplying wq by an integer we may

take wq ∈ ZI . Note that wq depends only on I1, . . . , Iq−1, which are subsets of I,
and so wq can be bounded by a quantity depending only on V and I (and hence
independent of p).

Since wq is orthogonal to V , it is in particular orthogonal to v. Thus

∑

i∈I

pm(i)

n(i)w(i)
q = 0.

Since wq is orthogonal to {ei : i ∈ I1 ∪ . . . ∪ Iq−1}, the contribution of the i ∈
I1 ∪ . . .∪ Iq to the above sum vanishes. If we then work modulo pMq+1 and use the

fact that all the n(i) are equal to c mod p, we obtain

∑

i∈Iq

pMq cw(i)
q = 0 mod pMq+1
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Since c is invertible mod p, we thus have
∑

i∈Iq

w(i)
q = 0 mod p

Since the wq are bounded independently of p, if we take p large enough we thus
conclude that

∑

i∈Iq

w(i)
q = 0

which contradicts the hypothesis that wq is orthogonal to eIq
. This concludes the

proof of (ii).

Finally, we prove that (ii) implies (i). Let B be the product of all the bj . Let A be
an integer so large that all the co-ordinates of v1, . . . , vs have magnitude less than
A. Let m ≥ 1 be an arbitrary integer. We shall need a sequence

1 � Nms � . . . � N1 � N0

of extremely large numbers to be chosen later; Nms will be assumed sufficiently large
depending on A, B, s, m, while Nms−1 will be assumed sufficiently large depending
on A, B, s, m, Nms, and so forth, with N0 being extremely large, depending on
all other variables. (The precise dependence can be quantified by using van der
Waerden’s theorem, but we will not do so here for brevity).

Let c : [1, N0] → C be an m-coloring of c. Our task is to locate a monochromatic
vector of Γ. We first need an auxiliary sequence of progressions.

Lemma 4.5. There exists a monochromatic proper arithmetic progression Pj =
aj+[−Nj, Nj ]·rj in [1, Nms+1] for each 1 ≤ j ≤ ms, such that for every 1 ≤ j ≤ ms,
the numbers rj , aj are multiples of Brj−1 and obey the bounds

|rj |, |aj | ≤ C(Nj , m)B|rj−1| (1)

for some constant C(Nj , m) depending only on Nj and m. Here we adopt the
convention that r0 := 1.

Proof Let 1 ≤ j ≤ ms, and assume inductively that the progressions P1, . . . , Pj−1

have already been chosen obeying the desired properties (this hypothesis is vacuous
for j = 1). We apply van der Waerden’s theorem to the progression [1, C(Nj , m)] ·
Brj−1, which will be contained in [1, N0] if N0 is large enough depending on
N1, . . . , Nj , B and m (here we use (1) recursively to control rj−1). If C(Nj , m)
is large enough, van der Waerden’s theorem allows us to locate a monochromatic
proper arithmetic progression Pj = aj + [−Nj , Nj] · rj in [1, C(Nj, Brj−1)]. By
construction we see that aj , rj are multiples of Brj−1 and obey the bounds (1),
and the claim follows.

Each of the ms progressions Pj = aj+[−Nj, Nj ]·rj constructed by the above lemma
is monochromatic with some color cj . Since there are at most m colors, we thus
see from the pigeonhole principle that we can find integers 1 ≤ j1 ≤ . . . ≤ js ≤ ms
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such that the progressions Pj1 , . . . , Pjs
all have the same color, say c. Now consider

the vector v ∈ Γ defined by

v =
s

∑

q=1

ajq

bq
vq.

Note that bq divides B, which in turn divides ajq
, so v is indeed an integer combi-

nation of the vr and thus lives in Γ.

Consider the ith component v(i) of v for some index i ∈ I. Since I is partitioned
into I1, . . . , Is, we have i ∈ Iq0 for some 1 ≤ q0 ≤ s. By the properties of vq, we
thus see that

v(i) = ajq0
+

s
∑

q=q0+1

ajq

bq
v(i)

q .

By construction of the vq, every term in the sum is a multiple of rjq0
. By (1)

(bounding ajq
by O(A)) we then have

v(i) = ajq0
+ O(C(Njq0+1, . . . , Nms, B, A, m, s))rjq0

.

If we choose Njq0
sufficiently large depending on the parameters Njq0+1, . . . , Nms, B, A, m, s,

we thus have v(i) ∈ ajq0
+[−Njq0

, Njq0
] ·rjq0

= Pjq0
, and in particular v(i) has color

c. Since i was arbitrary, we see that v is monochromatic as desired.

For further discussion of issues related to partition regularity and Rado’s theorem,
see [12].

• (Rado’s theorem, original formulation) Let A be an n × m matrix whose
entries are all rational, and let C1, . . . , Cm be the m columns of A (thought
of as elements of Qn). We say that A obeys the columns property if the
set [1, m] can be partitioned as I1 ∪ . . . ∪ Is, where for each Ij , the column
vector

∑

i∈Ij
Ci is a linear combination of the columns {Cm : m ∈ I1 ∪

. . . ∪ Ij−1} (so in particular
∑

i∈I1
Ci = 0). Show that the lattice Γ :=

{x ∈ Zn : Ax = 0} has the partition-regular property if and only if A
has the columns property. (Remark: if the columns property fails, then
this formulation of Rado’s theorem implies that there is some coloring of
the integers for which Γ has no monochromatic vector; however, Rado’s
Boundedness Conjecture [14] asserts that one choose this coloring so that
the number of colors depends only on n and m, and not on the specific
entries of the matrix A. This conjecture remains open.)

• Let a1, . . . , an be non-zero integers. Show that a necessary and sufficient
condition in order that every coloring of the positive integers admits a
monochromatic set {x1, . . . , xn} such that a1x1 + . . . + anxn = 0 is that
there exists some non-empty set I ⊂ [1, N ] such that

∑

i∈I ai = 0.
• (Consistency Theorem) Show if two lattices Γ and Γ′ have the partition-

regular property, then their direct sum Γ ⊕ Γ′ also has the partition reg-
ularity property. (This is easy to prove using Rado’s theorem, but quite
difficult without it!).
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• Suppose one colors the positive integers Z+ into finitely many colors. Show
that there exists a color c such that for every lattice Γ with the partition-
regular property, there exists a vector v ∈ Γ which is monochromatic with
the specified color c. The point here is that the color c is independent of
Γ, otherwise the claim is a tautology. (Hint: Assume for contradiction that
for each color c there was a lattice which had no monochromatic vector of
that color. Then obtain a contradiction from the Consistency theorem).

• (Folkman’s theorem) [5] Show that if one colors the positive integers Z+

into finitely many colors, then for any m ≥ 1 there exists infinitely many
vectors v = (v1, . . . , vm) ∈ Zm

+ such that the set [0, 1]m · v\0 = {∑i∈I vi :
I ⊂ [1, m], I 6= ∅} is monochromatic. (In fact one can take m to be infinite;
this is Hindman’s theorem [11] and is somewhat more difficult to prove; see
[9] for further discussion).

5. The Hales-Jewett theorem

The van der Waerden theorem can be generalized to many dimensions, as follows:

Theorem 5.1 (Gallai’s theorem). Let k ≥ 1, d ≥ 1, m ≥ 1, and let v1, . . . , vk

be elements of Zd. Then there exists an N = N(k, d, m, v1, . . . , vk) such that for
every m-coloring of the cube [1, N ]d ⊂ Zd, there exists a monochromatic set of the
form {x + rv1, . . . , x + rvk} for some x ∈ Zd and some non-zero integer r.

Note that van der Waerden’s theorem is a special case of this theorem where d =
1 and vj = j. This theorem can be proven by modifying the proof of van der
Waerden’s theorem (see e.g. [9]), but we shall prove it as a special case of an even
more general theorem, the Hales-Jewett theorem [10]. This theorem can be stated
in a purely combinatorial form (indeed, can be viewed as the combinatorial essence
of the van der Waerden and Gallai theorems, in which the arithmetic structure is
completely removed). However, it will be convenient to write it in the language of
additive groups.

Definition 5.2. Let Z be an additive group, and let I be an index set. We let
ZI be the additive group ZI = {(x(i))i∈I : x(i) ∈ Z for all i ∈ I}. If x ∈ ZI and
J ⊂ I, we say that x vanishes on I if x(i) = 0 for all i ∈ J . Given any n ∈ ZI and
x ∈ Z, we define the product n · x ∈ ZI by the formula (n · x)(i) := n · x(i). Given
any non-empty J ⊂ I and A ⊂ Z, we define the sets

A · eJ := {a · eJ : a ∈ A},
where eJ = (1i∈J)i∈I ∈ ZI is as in the previous section. If J1, . . . , Jd are disjoint
subsets of I and x0 ∈ ZI which vanishes on J1∪. . .∪Jd, we define the d-dimensional
combinatorial affine space over A with active co-ordinates J1, . . . , Jd and origin x0

to be the set

x0 +

d
∑

j=1

A · eJj
= {x0 +

d
∑

j=1

aj · eJj
: a1, . . . , ad ∈ A}.

In other words, x ∈ x0 +
∑d

j=1 A ·eJj
if and only if the function i 7→ x(i) is constant

on each Jj , and agrees with the function i 7→ x
(i)
0 outside of J1 ∪ . . . ∪ Jd. In the
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d = 1 case we refer to a combinatorial affine space x0 + A · eJ as a combinatorial
line.

Remark 5.3. It is convenient to think of A as an alphabet, and AI as words of
length |I| whose letters lie in the alphabet A. (Elements of ZI are then more exotic
words, whose letters can be additional symbols such as 0). Combinatorial lines and
affine spaces then correspond to words with certain “wildcards”. For instance, if
A = {a, b, c} and |I| = 7, then a typical element of AI might be baacbab. A typical
combinatorial line would be the collection of all words of the form baxcbxb, where
x ranges in A, or in other words ba0cb0b + A · 0010010. A typical combinatorial
affine space would be the collection of all words of the form baxcyxy, where x, y
range independently in A.

Theorem 5.4 (Hales-Jewett theorem). [10] Let r ≥ 1, and m ≥ 1, and let A be a
finite subset of an additive group Z. Then there exists an integer n = n(|A|, m, r) ≥
1 such that given any set I of cardinality n, and any m-coloring of the set AI ⊂ ZI ,
the set AI contains a monochromatic r-dimensional combinatorial affine subspace
over A.

Remark 5.5. The additive structure of Z is in fact irrelevant. If one takes an
arbitrary bijection φ : A → A′ mapping A to another finite subset A′ of another
additive group Z ′, and maps AI to (A′)I correspondingly, one can easily verify that
combinatorial affine spaces map to combinatorial affine spaces and so the substance
of the Hales-Jewett theorem is unchanged (see exercises).

This theorem implies both the van der Waerden theorem and Gallai’s theorem (see
exercises). We shall give two proofs: the original proof, which adapts the color
focusing method used in previous sections, and a proof of Shelah, which gives a
superior bound on N than the color focusing proof for the Hales-Jewett theorem
(and hence for the van der Waerden and Gallai theorems).

5.6. The color focusing proof. We begin with the color focusing proof, which
will be very similar to the proof of van der Waerden’s theorem. The first step is to
reduce to the case r = 1, i.e. to reduce to proving

Theorem 5.7 (One-dimensional Hales-Jewett theorem). Let m ≥ 1, and let A be a
finite subset of an additive group Z. Then there exists an integer n = n(|A|, m) ≥ 1
such that given any set I with n elements, and any m-coloring of the set AI ⊂ ZI ,
the set AI contains a monochromatic combinatorial line x0 + A · eJ .

To see how the one-dimensional Hales-Jewett theorem implies the general case, we
take n = rn′ for some large integer M , and observe that AI is isomorphic to (Ar)I′

for some I ′ with n′ elements. We now apply the one-dimensional Hales-Jewett
theorem with Z replaced by Zr, A replaced by Ad, and I replaced by I ′, to conclude
that (if n and hence n′ is sufficiently large) that (Ar)I′

contains a monochromatic

combinatorial affine line x0+Ar ·eJ′ over Ad for some J ′ ⊂ I ′, and some x0 ∈ (Zr)I′

which vanishes on J ′. But if one then uses the isomorphism between (Ar)I′

and AI ,
we can view this combinatorial affine line over Ar as a d-dimensional combinatorial
affine space over A, and the general Hales-Jewett theorem follows.
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It remains to prove Theorem 5.7. As in the proof of van der Waerden’s theorem,
there will be two induction loops. The outer induction will be on the size of A
(which is analogous to the k parameter in van der Waerden’s theorem). The base
case |A| = 1 is trivial. The case |A| = 2 is also very easy, since in this case onen can
check that any two points in AI form a combinatorial line, and so the claim follows
immediately from the pigeonhole principle once one takes N to be large enough.
So now let us assume1. |A| ≥ 3 and the claim has already been proven for smaller
values of A. Since we may apply arbitrary bijections to A, let us assume that A
contains 0, and write A∗ := A−{0}, thus we assume Theorem 5.7 is already proven
for A∗ (we refer to this as the outer induction hypothesis).

Once again, we need the notion of a polychromatic fan.

Definition 5.8. Given any combinatorial line l = xl + A · eJl
in AI , we refer to xl

as the origin of the line and Jl as the active co-ordinates, and l∗ := l\{xl} as the
spoke of the line (note that this is a combinatorial line over A∗). Given any d ≥ 1,
we define a fan of degree d to be an d-tuple F = (xF + A · eJ1 , . . . , xF + A · eJd

)
of combinatorial lines with common origin xF (which must then vanish on J1 ∪
. . .∪Jd); we assume the sets J1, . . . , Jd of active co-ordinates to be distinct but not
necessarily disjoint. We say that the fan is weakly polychromatic if all the spokes
xF + A∗ · eJj

, 1 ≤ j ≤ d are monochromatic with distinct colors cj , and strongly
polychromatic if in addition the origin has a color c0 distinct from c1, . . . , cd. In
these cases we refer to the d + 1-tuple c(F ) := (c0, c1, . . . , cd) as the colors of the
fan.

Once again, we make two simple, and one slightly less simple, observations about
polychromatic fans:

• (i) A weakly polychromatic fan is either strongly polychromatic, or contains
a monochromatic combinatorial line.

• (ii) A strongly polychromatic fan cannot have degree m.
• (iii) Let I ′ ⊂ I, and let F = (xF + A · eJ1 , . . . , xF + A · eJd

) be a fan of

degree d in AI′

. We write ZI as the direct sum ZI = ZI′ ⊕ ZI\I′

, and
similarly AI = AI′ ⊕AI\I′

. Suppose that there is a line x0 +A · eJ0 ∈ AI\I′

such that the fans x0 + a · eJ0 ⊕ F are all strongly polychromatic with the
same colors c(x0 + a · eJ0 ⊕ F ) = c for all a ∈ A∗. Then the fan

F̃ := (x0 ⊕ xF + A · eJ0 , x0 ⊕ xF + A · eJ0∪J1 , . . . , x0 ⊕ xF + A · eJ0∪Jd
)

is a weakly polychromatic fan of degree d + 1 in AI .

We can now give the analogue of Lemma 3.4:

Lemma 5.9. For any d ≥ 0 there exists a positive integer ñ(|A∗|, m, d) such that
given any set I of cardinality ñ(|A∗|, m, d) and any m-colouring of AI , the set AI

contains either a monochromatic combinatorial line, or a strongly polychromatic
fan of degree d.

1Actually, the following argument also works in the |A| = 2 case, but collapses to a very
tortuous rephrasing of the above pigeonhole argument.
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Proof As before, we shall induct on the d variable. The base case d = 0 is trivial.
Assume now that d > 1 and the claim has already been proven for d − 1 (this
is the inner induction hypothesis). We define ñ = ñ(|A∗|, m, d) by the formula
ñ := n1 + n2, where n1 := ñ(|A∗|, m, d− 1) and n2 := n(|A∗|, md|A|dn1), which are
guaranteed to be finite by the inner and outer inductive hypotheses respectively,
and let c : AI → C be an m-colouring of AI , where I is an index set of cardinality
ñ.

We partition I = I2 ∪ I1 where I1 has n1 elements and I2 has n2 elements; this
induces a decomposition ZI ≡ ZI2 ⊕ ZI1 . For each b ∈ AI2 , the set b ⊕ AI1 is
clearly isomorphic to AI1 , and so by the inner induction hypothesis we see that
each such set b ⊕ AI1 either contains a monochromatic combinatorial line, or a
strongly polychromatic fan b⊕F (b) of degree d− 1 and colors c(b⊕F (b)). If there
is at least one b ∈ AI2 for which the former case applies then we are done, so suppose
that the latter case applies for every b ∈ AI2 . The number of possible fans F (b)
is at most |A|dn1 , and the number of possible colors c(b) is at most md, hence the
map b 7→ (F (b), c(b ⊕ F (b))) is a md|A|dn1 -coloring of AI2 . By the outer induction
hypothesis, we can thus find a combinatorial line l in AI2 which is monochromatic
with respect to this coloring, hence there is a fan F of degree d−1 in AI1 and colors
c ∈ Cd such that for every b ∈ l the fans b ⊕ F are strongly polychromatic with
colors c. By observation (iii) this implies that AI contains a weakly polychromatic
fan of order d, and then by observation (i) the lemma follows.

If we apply this Lemma with d = m and n(|F |, m) := ñ(|F∗|, m, m), and then use
observation (ii), Theorem 5.7 follows. This concludes the color focusing proof of
the Hales-Jewett theorem.

5.10. Shelah’s proof. Now we present Shelah’s proof [19] of the Hales-Jewett the-
orem, which proceeds along somewhat different lines and will give a better bound.
There are a number of differences between this proof and the previous one. Firstly,
one does not reduce to the one-dimensional case r = 1, but rather retains r as a free
parameter to aid in closing the induction step. Secondly, instead of using a double
inductive argument (which ultimately leads to bounds of Ackermann type), one uses
only a single induction, inducting on the cardinality of the set A. Finally, whereas
the Hales-Jewett proof requires one to continually expand the color set (which is
one reason for the Ackermann-type bounds), Shelah’s argument never changes the
color set C, except in one part of the argument in which all the constants are well
under control. These differences will give a final bound for n(|A|, m) which is prim-
itive recursive rather than Ackermann type, although it is still somewhat large (see
exercises).

We turn now to the details. As discussed above we shall induct on A. The case
|A| = 1 is trivial, so let us assume inductively that |A| ≥ 2 (note now that r is
not necessarily 1, the case |A| = 2 is not particularly easy!), and that the claim
has already been proven for smaller A. In particular we can choose two distinct
elements y and z of A, we can assume that the Hales-Jewett theorem has already
been proven for the set A∗ := A\{z}.
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The color focusing proof relied crucially on the concept of a polychromatic fan,
which was basically a tool to convert results on monochromatic lines over A∗ to
results on monochromatic lines over A. The analogous concept here shall be that of
yz-insensitive affine spaces, which we shall use to convert results on monochromatic
lines over A\{z} to results on monochromatic lines over A.

Definition 5.11. Let c : AI → C be a m-coloring, and let V = x0 +A · eJ1 + . . .+
A · eJr

be an r-dimensional combinatorial affine space over A. If Ji, 1 ≤ i ≤ r is
one of the sets of active co-ordinates, we say that Ji is yz-insensitive if we have

c(x + y · eJi
) = c(x + z · eJi

) for all x ∈ x0 +
∑

1≤i′≤r:i′ 6=i

A · eJi
.

We say that V is yz-insensitive of order d for some 0 ≤ d ≤ r if there are at least
d sets Ji1 , . . . , Jid

of yz-insensitive sets of active co-ordinates. If d = r we say that
V is fully yz-insensitive.

The analogue of Lemma 5.9 is

Lemma 5.12. Let n0, n1, n2 ≥ 0. Then if n is a sufficiently large integer (depend-
ing on n0, n1, n2, m, |A|), every n0 + n-dimensional combinatorial affine space V
in AI which is yz-insensitive of order n0, contains an n0 + n1 + n2-dimensional
combinatorial affine space V ′ which is yz-insensitive of order n0 + n1.

Let us assume this Lemma for the moment and conclude the proof of the Hales-
Jewett theorem.

The space AI is a |I|-dimensional combinatorial affine space which is yz-insensitive
of order 0. Thus if we apply the above lemma with (n0, n1, n2) = (0, ñ, 0), where
ñ = n(|A∗|, m) is known to be finite by the induction hypothesis, we can find a
ñ-dimensional combinatorial affine space V ′ = x0 + A · eJ1 + . . . + A · eJñ

⊂ AI

which is fully yz-insensitive. We can define a bijection π : Añ → V ′ by the formula

π(a1, . . . , añ)) := x0 + a1 · eJ1 + . . . + añ · eJñ
.

The composition c ◦ π is thus a coloring of Añ, which in turn induces a coloring of
(A∗)ñ. By the induction hypothesis, (A∗)ñ, then contains a monochromatic (with
respect to c ◦ π) combinatorial subspace y0 + A∗ · eK1 + . . . + A∗ · eKr

for some
disjoint non-empty subsets K1, . . . , Kr of [1, ñ]. This implies that the set

π(y0 + A∗ · eK1 + . . . + A∗ · eKr
) ⊆ V ′

is monochromatic with respect to c. But since V is fully yz-insensitive, we thus see
that

π(y0 + A · eK1 + . . . + A · eKr
)

is also monochromatic with respect to c. But this is a r-dimensional combinatorial
affine space over A in AI , and we are done.

It remains to prove Lemma 5.12. The key idea is already contained in the case
(n0, n1, n2) = (0, 1, 0), which we isolate as follows:

Lemma 5.13. Let n ≥ m. Then every n-dimensional combinatorial affine space
V in AI will contain a combinatorial line which is fully yz-insensitive.
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Proof We expand

V = x0 + A · eJ1 + . . . + A · eJn

and then isolate the elements v0, . . . , vn ∈ V by defining

vj := x0 +
∑

1≤i≤j

y · eJi
+

∑

j<i≤n

z · eJn
.

(For instance, if V = A5, then v0, v1, v2, v3, v4, v5 would be the words zzzzz, yzzzz, yyzzz, yyyzz, yyyyz, yyyyy).
Since n ≥ m, we see from the pigeonhole principle that there must exist 1 ≤ j <
j′ ≤ n such that vj and vj′ have the same color. But this is the same as saying
that the combinatorial line

x0 +
∑

1≤i≤j

y · eJi
+ A · eJj+1∪...∪Jj′

+
∑

j′<i≤n

z · eJn

is fully yz-insensitive.

Now we can prove the general case of Lemma 5.12. We induct on n1. The case n1 =
0 is trivial (by taking V ′ := V ). Now suppose that n1 > 0 and the claim has already
been proven for n1−1. Thus, in particular, we can find an integer n∗ (depending on
n0, n1, n2, m, |A|) such that every n0+1+n∗-dimensional combinatorial affine space
V ′′ which is yz-insensitive of order n0 + 1, contains an n0 + n1 + n2-dimensional
combinatorial affine space V ′ which is yz-insensitive of order n0+n1. Thus in order
to conclude the Lemma, it suffices to show that if n is large enough (depending on
n0, n∗, m, |A|), that every n0 + n-dimensional combinatorial affine space V which
is yz-insensitive of order n0 will contain an n0 + 1 + n∗-dimensional combinatorial
affine space V ′′ which is yz-insensitive of order n0 + 1.

We may of course take n > n∗. Let us expand

V = x0 +
∑

1≤i≤n0

A · eJi
+

∑

1≤j≤n∗

A · eKj
+

∑

1≤k≤n−n∗

A · eLk

with J1, . . . , Jn0 as the yz-insensitive co-ordinates. We rewrite this as

V = V0 + W0 + π(An)

where V0 is the n0-dimensional combinatorial affine space V0 := x0+
∑

1≤i≤n0
A·eJi

,

W0 is the n∗-dimensional combinatorial affine space W0 :=
∑

1≤j≤n∗

A · eKj
, and

π : An−n∗ → ∑

1≤j≤n A · eKj
is the bijection

π(a1, . . . , an−n∗
) :=

∑

1≤k≤n−n∗

aj · eLk
.

We now introduce a m|A|n0+n∗

-coloring of An, defining a coloring c̃ : An → CV0×W

by the formula

c̃(a) := (c(b + c + π(a)))b∈V0 ;c∈W .

If n−n∗ is greater than or equal to m|A|n0+n∗

, then we can apply Lemma 5.13 and
locate a fully yz-insensitive combinatorial line w0 + A · eM ⊆ An−n∗ , thus

c(b + c + π(w0 + y · eM )) = c(b + c + π(w0 + z · eM )) for all b ∈ V0, c ∈ W0.
(2)
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Now we introduce the n0 + 1 + n∗-dimensional combinatorial affine space

V ′′ := V0 + W0 + π(w0 + A · eM ) ⊆ V,

which has as sets of active co-ordinates J1, . . . , Jn0 , K1, . . . , Kn∗
, and

⋃

k∈M Lk.
The sets J1, . . . , Jn0 are already known to be yz-insensitive, and (2) shows that
the set

⋃

k∈M Lk is also yz-insensitive. Thus V ′′ is yz-insensitive of order n0 + 1 as
desired. This closes the inductive step for Lemma 5.12, which concludes Shelah’s
proof of the Hales-Jewett theorem.

Remark 5.14. Shelah’s bounds for the Hales-Jewett theorem have recently been
improved in the context of the van der Waerden theorem (see [6]) and Gallai’s
theorem (see [7], [13]). In the k = 3 cases of these theorems, even better bounds
are known.

• Verify the claims in Remark 5.5.
• Let F be a finite field, and let d, m ≥ 1. Using the Hales-Jewett theorem,

show that there exists an integer N = N(d, m, |F |) ≥ 1 such that given any
m-coloring of FN , the space FN contains a monochromatic d-dimensional
affine subspace over the field F (i.e. a translate of a space linearly isomor-
phic to F d). (The point here is that one can convert combinatorial affine
subspaces into ordinary affine subspaces in the sense of linear algebra).

• Show that in order to prove Gallai’s theorem, it suffices to do so in the case
when k = d and v1, . . . , vd is the standard basis of Zd.

• Use the Hales-Jewett theorem to prove the van der Waerden and Gallai
theorems. (Hint: if one has a coloring c : a + [0, N) · v → C of some proper
progression, then one can also define a coloring c̃ : [0, k)n → C whenever
kn ≤ N by the formula

c̃(j1, . . . , jn) := c(a + (

n−1
∑

i=0

jik
i) · v).

Apply the one-dimensional Hales-Jewett theorem to c̃ to conclude the van
der Waerden theorem for c. A similar argument yields the Gallai theorem
from the multi-dimensional Hales-Jewett theorem).

• Show that in order to prove the Hales-Jewett theorem, it suffices to do so
in the two-color, one-dimensional case m = 2, r = 1.

• [19] Let ↑ denote exponentiation x ↑ y := xy , let ↑↑ denote tower exponen-
tiation

x ↑↑ y = x ↑ x ↑ . . . ↑ x

with x appearing y times on the right-hand side, and let ↑↑↑ denote iterated
tower exponentiation

x ↑↑↑ y = x ↑↑ x ↑↑ . . . ↑↑ x.

Show that Shelah’s argument gives a bound of the form

n(|A|, 2, 1) ≤ 2 ↑↑↑ (C|F |)
for some absolute constant C. Note that while this bound is rather large,
it is still substantially smaller than the bounds one would obtain from the
color-focusing argument, which are not primitive recursive.
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6. Polynomial analogues

The above additive Ramsey theorems were of “linear” type, in the sense that the
monochromatic arithmetic structures one wished to find depended linearly (or in
the case of the Hales-Jewett theorem, “combinatorially linearly”) on certain para-
meters. Recently there has been some interest in extending such results to “poly-
nomial” type arithmetic structures. A typical result in this area is the following.

Theorem 6.1 (Polynomial van der Waerden theorem). [1] Let P1, . . . , Pk : Z → Z

be polynomials of one variable which are integer-valued on the integers, and which
vanish at the origin (i.e. Pj(0) = 0 for all 1 ≤ j ≤ k). Then for any m ≥ 1 there
exists a positive integer N = N(P1, . . . , Pk; m) such that given any m-coloring of
[1, N ], there exists a monochromatic subset of [1, N ] of the form {a+P1(r), . . . , a+
Pk(r)} for some integers a, r ∈ Z with r non-zero.

Observe that by specializing to the linear case Pj(n) := jn one recovers the ordinary
van der Waerden theorem.

The original proof of this theorem by Bergelson and Leibman [1] was topological.
Recently Walters [22] has given a combinatorial proof of this theorem. As one might
imagine, the proof proceeds by nested induction and color focusing techniques,
and uses the ordinary van der Waerden theorem as a base case. The induction is
in fact rather exotic, relying on a certain partial ordering on the space of tuples
(P1, . . . , Pk) of polynomials (this type of induction is known as polynomial ergodic
theory induction, or PET induction). We will not detail the full argument here,
but (following [22]) just give the first non-trivial case of the polynomial van der
Waerden theorem beyond the linear case, and leave the construction of the general
case to the exercises. More specifically, we shall show2

Theorem 6.2. For any m ≥ 1 there exists a positive integer N = N(m) such that
given any m-coloring c : [1, N ] → C of [1, N ], there exists a monochromatic subset
of [1, N ] of the form {a, a + r2} for some integers a, r ∈ Z with r non-zero.

Proof We use the color focusing technique. For any integer a and any d ≥ 1,
define a fan of degree d and origin a to be a d + 1-tuple of numbers of the form
F = (a, a+ r2

1 , . . . , a+ r2
d) where r1, . . . , rd are non-zero integers. If F is contained

in [1, N ], we define the colors c(F ) ∈ Cd+1 of this fan to be the d +1-tuple c(F ) :=
(c(a), c(a + r2

1), . . . , c(a + r2
d)). We say that this fan is weakly polychromatic if the

colors c(a + r2
1), . . . , c(a + r2

d) are all distinct, and strongly polychromatic if in fact
all the d + 1 colors in c(F ) are distinct.

Once again, we make two simple, and one somewhat less simple, observations about
polychromatic fans.

2This particular result can also be proven by Fourier-analytic methods, and such methods give

far superior quantitative bounds. However, it is not yet known how to extend such methods to more
general situations; even the task of locating monochromatic subsets of the form {a, a+r2, a+2r2}
for non-zero r seems beyond the reach of current Fourier methods, although one can still modify
the color focusing argument below to obtain such sets.
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• (i) A weakly polychromatic fan is either strongly polychromatic, or contains
a monochromatic set of the form {a, a + r2} for some non-zero r.

• (ii) A strongly polychromatic fan cannot have degree m.
• (iii) Let F = (a, a + r2

1 , . . . , a + r2
d) be a fan of degree d contained in

an interval [1, N1] for some N1 ≥ 3, and suppose that there is a proper
arithmetic progression P = b+[−L, L] ·v ⊂ Z for some integers b, L, v with
L, v ≥ N1 such that the point b + a − v2 and the translated fans x + F for
x ∈ P are all contained in [1, N ] and are disjoint from each other. Assume
furthermore that the translated fans x + F are all strongly polychromatic
with the same colors, thus c(x + F ) = c for all x ∈ P . Then

(b + a − v2, (b + a− v2) + v2, (b + a − v2) + (v + r1)
2, . . . , (b + a− v2) + (v + rd)2)

is a fan of degree d + 1 contained in [1, N ] and is weakly polychromatic.
(The point is that the integer b + a − v2 + (v + rj)

2 lies in the fan x + F
for x := b + 2rjv, and |rj | is bounded by

√
N1 and hence by L/2. The

condition v ≥ N1 ensures that none of v, v + r1, . . . , v + rd can vanish).

The analogue of Lemma 3.4 is

Lemma 6.3. For any d ≥ 0 there exists a positive integer Ñ(m, d) such that any m-

colouring of [1, Ñ(m, d)] contains either a monochromatic set of the form {a, a+r2}
for some non-zero r, or a strongly polychromatic fan of degree d.

Proof Once again, we induct on d. When d = 0 the claim is trivial, so sup-
pose d > 0 and the claim has already been proven for d − 1. We now set N1 :=
max(Ñ(m, d − 1), 3), and Ñ(m, d) := N1N2 where N1 is a very large integer (de-

pending on N1, m, d) to be chosen later. Then we can split the interval [1, Ñ(m, d)]
into N2 translates N1b + [1, N1], where b ∈ [0, N2). For each such translate
N1b+[1, N1], we can apply the induction hypothesis (translated by N1b) to conclude
that N1b + [1, N1] contains either a monochromatic set of the form {a, a + r2} for
some non-zero r, or a strongly polychromatic fan bN1 +F (b) in bN1 +[1, N1] degree
d−1 with some colors c(b). If there is at least one b in which the former case applies,
we are done, so suppose that the latter case applies for every b. The number of fans
F (b) can be crudely bounded by Nd

1 , and the number of colors by md, and so the
map b 7→ (F (b), c(bN1 + F (b))) is a mdNd

1 -coloring of the interval [1, N2), and in
particular of the smaller interval (N2 −

√
N2, N2). If N2 is large enough depending

on m, d, N1, we may apply the ordinary van der Waerden theorem (Theorem 3.1)
to conclude the existence of a proper arithmetic progression b + [−2N1, 2N1] · v in
(N2 −

√
N2, N2) with respect to this coloring. This implies that there exists a fan

F = (a, a + r2
1 , . . . , a + r2

d) of degree d − 1 in [1, N1] and colors c ∈ Cd such that
for every x ∈ bN1 + [−2N1, 2N1] · vN1, the translated fan x + F is strongly poly-
chromatic with colors c. Also observe from construction that |v| <

√
N2 and so the

point bN1 +a− (vN1)
2 is positive and hence lies in [1, Ñ(m, d)]. Furthermore, since

vN1 ≥ N1 it is clear that the translated fans x+F, x ∈ bN1 +[−2N1, 2N1] ·vN1 are
disjoint from each other and from bN1 + a − (vN1)

2. By observation (iii) we thus

can locate a new fan F̃ in [1, Ñ(m, d)] which is weakly polychromatic of degree d,
and hence by observation (i) we are done.
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We can now conclude Theorem 6.2 by setting d := m and appealing to observation
(ii), as in the proof of van der Waerden’s theorem (or the color focusing proof of
the Hales-Jewett theorem).

Just as Van der Waerden’s theorem can be extended to higher dimensions as Gallai’s
theorem, so too can the polynomial van der Waerden theorem:

Theorem 6.4 (Polynomial Gallai theorem). [1] Let k ≥ 1, d ≥ 1, m ≥ 1, and
let P1, . . . , Pk : Z → Zd be Rd-valued polynomials (i.e. d-tuples of ordinary
polynomials) which take values in Zd on the integers, and which vanish at the
origin. Then there exists an N = N(k, d, m, P1, . . . , Pk) such that for every m-
coloring of the cube [1, N ]d ⊂ Zd, there exists a monochromatic set of the form
{x + P1(r), . . . , x + Pk(r)} for some x ∈ Zd and some non-zero integer r.

We will not prove this theorem here. However, as in the linear case, these theorems
are in turn consequences of a polynomial Hales-Jewett theorem. This theorem
however takes a certain amount of work just to state it properly. As before, we shall
phrase this theorem in the language of additive groups Z, but now in addition to the
usual operations of addition and multiplication by integers on such a group Z, we
now also need the notion of a tensor product and tensor extensions of polynomials.

Definition 6.5. If Z and Z ′ are additive groups, we define the tensor product
Z ⊗Z ′ to be the additive group formed by arbitrary integer-linear combinations of
tensor products x ⊗ y with x ∈ Z, y ∈ Z ′, quotiented by the constraints

x ⊗ (y + y′) = x ⊗ y + x ⊗ y′

(x + x′) ⊗ y = x ⊗ y + x′ ⊗ y

x ⊗ 0 = 0 ⊗ y = 0

for all x, x′ ∈ Z and y, y′ ∈ Z ′. As (Z ⊗Z ′)⊗Z ′′ and Z ⊗ (Z ′⊗Z ′′) are canonically
isomorphic, we shall treat the tensor product as an associative relation, thus we
equate (x⊗ y)⊗ z and x⊗ (y ⊗ z) for all x ∈ Z, y ∈ Z ′, z ∈ Z ′′. We define the nth

tensor power Z⊗n of an additive group for n ≥ 0 recursively by setting Z⊗0 := Z,
Z⊗1 := Z, and Z⊗n := Z ⊗Z⊗n−1 for n > 1. Similarly, given any x ∈ Z, we define
x⊗n ∈ Z⊗n recursively by x⊗0 := 1, x⊗1 = x, and x⊗n := x⊗x⊗n−1. for all x ∈ Z.

We observe that for any index set I, the additive group (ZI)⊗n is canonically
isomorphic to ZIn

, and we shall identify the two.

Theorem 6.6 (Polynomial Hales-Jewett theorem). [2] Let d, m ≥ 1, and let
A1, . . . , Ad be finite nonempty subsets of additive groups Z1, . . . , Zd. Then there
exists an integer n = n(|A1|, . . . , |Ad|, m, d) ≥ 1 such that given any set I with n
elements, and any m-coloring of the set

X := AI
1 ⊕ . . . ⊕ AId

d ⊂ ZI
1 ⊕ . . . ⊕ ZId

d ,

the set X contains a monochromatic set of the form

(x1 ⊕ . . . ⊕ xd) + A1 · eJ + A2 · e⊗2
J + . . . + Ad · e⊗d

J

for some non-empty J ⊂ I and some xj ∈ ZIj

j for each 1 ≤ j ≤ d, such that xj

vanishes on Jj for each 1 ≤ j ≤ d.
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Remark 6.7. This theorem is a “one-dimensional” theorem in the sense that it
corresponds to the d = 1 case of Theorem 5.4 (i.e. to Theorem 5.7), although this
terminology is dangerous since there are multiple concepts of dimension here. A
“higher-dimensional” analogue of this theorem is certainly available, but we leave
its formulation to the reader. This theorem implies the polynomial Gallai and van
der Waerden theorems, as well as the Hales-Jewett theorem (see exercises) and thus
can be viewed as a “grand unification” of all of these theorems.

This theorem was originally proven by topological means in [2], but a combinatorial
proof was given in [22]. We will not prove it here, but only prove a special case
which corresponds to Theorem 6.2:

Theorem 6.8. Let m ≥ 1, and let A = {0, 1} be a two-element subset of Z.
Then there exists an integer n = n(m) ≥ 1 such that given any set I with n

elements,and any m-coloring of AI2

, the set AI2

contains a monochromatic set of

the form x2 +A · e⊗2
J for some non-empty J ⊂ I and some x2 ∈ ZI2

which vanishes
on J2.

Proof This proof will be very similar to that of Theorem 6.2, indeed one can use
this theorem to imply Theorem 6.2 directly (Exercise (6)).

Once again we use the color focusing technique. For any x ∈ ZI2

and any d ≥ 1,

define a fan of degree d and origin x in ZI2

to be a d + 1-tuple of elements in

ZI2

of the form F = (x, x + eJ1 ⊗ eJ1 , . . . , x + eJd
⊗ eJd

) where J1, . . . , Jd are non-

empty subsets of I (not necessarily disjoint). If F is contained in {0, 1}I2

, we define
the colors c(F ) ∈ Cd+1 of this fan to be the d + 1-tuple c(F ) := (c(x), c(x + eJ1 ⊗
eJ1), . . . , c(x+eJd

⊗eJd
)). We say that this fan is weakly polychromatic if the colors

c(x + eJ1 ⊗ eJ1), . . . , c(x + eJd
⊗ eJd

) are all distinct, and strongly polychromatic if
in fact all the d + 1 colors in c(F ) are distinct.

Once again, we need three obervations about polychromatic fans:

• (i) A weakly polychromatic fan is either strongly polychromatic, or contains
a monochromatic set of the form {a, a + eJ ⊗ eJ} for some non-empty J .

• (ii) A strongly polychromatic fan cannot have degree m.
• (iii) Let I ′ ⊂ I, and let F = (x, x + eJ1 ⊗ eJ1 , . . . , x + eJd

⊗ eJd
) be a fan

of degree d contained in {0, 1}(I′)2 . Suppose there is a set

l ⊂ {0, 1}I2\(I′)2 ≡ {0, 1}I′×(I\I′) ⊕ {0, 1}(I\I′)×I′ ⊕ {0, 1}(I\I′)×(I\I′)

of the form

l = {(x0 + a ⊗ eJ0) ⊕ (x∗
0 + eJ0 ⊗ a) ⊕ eI\I′ ⊗ eI\I′ : a ∈ {0, 1}I′}

where J0 is a non-empty subset of I\I ′, and x0 is an element of {0, 1}I′×(I\I′)

which vanishes on I ′ × J0, and x∗
0 ∈ {0, 1}I\I′×I′

is the transpose respec-
tively. Suppose further that the fans F ⊕ b for b ∈ l (which we think

of as subsets of {0, 1}I2

) are strongly polychromatic with the same colors
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c(F ⊕ b) = c for all b ∈ l. Then the fan

F̃ := (x1, x1 + eJ0 ⊗ eJ0 , x1 + eJ0∪J1 ⊗ eJ0∪J1 , . . . , x + eJ0∪Jd
⊗ eJ0∪Jd

)

is a weakly polychromatic fan of degree d + 1 in {0, 1}I2

, where

x1 := x ⊕ x0 ⊕ x∗
0 ⊕ (eI\I′ ⊗ eI\I′ − eJ0 ⊗ eJ0).

The analogue of Lemma 3.4 is

Lemma 6.9. For any d ≥ 0 there exists a positive integer ñ(m, d) such that given

any set I of cardinality ñ(m, d) and any m-colouring of {0, 1}I2

, the set {0, 1}I2

contains either a monochromatic set of the form {a, a+eJ⊗eJ} for some non-empty
J ⊂ I, or a strongly polychromatic fan of degree d.

Proof As before, we shall induct on the d variable. The base case d = 0 is trivial.
Assume now that d > 1 and the claim has already been proven for d − 1. We
define ñ = ñ(m, d) by the formula ñ := n1 + n2, where n1 := ñ(m, d − 1) and n2 is
an extremely large number (depending on n1, m, d) to be chosen later (using the
ordinary Hales-Jewett theorem). We partition I = I2∪I1 where I1 has n1 elements
and I2 has n2 elements; this induces a decomposition

{0, 1}I2 ≡ {0, 1}I2
1 ⊗ {0, 1}I1×I2 ⊕ {0, 1}I2×I1 ⊕ {0, 1}I2

2 .

For each b ∈ {0, 1}I1×I2 , the set

{0, 1}I2
1 ⊕ b ⊕ b∗ ⊕ eI2 ⊗ eI2

is isomorphic to {0, 1}I2
1 , and so by the inner induction hypothesis we see that

each such set either contains a monochromatic combinatorial line, or a strongly
polychromatic fan F (b)⊕ b⊕ b∗ ⊕ eI2 ⊗ eI2 of degree d− 1 and colors c(F (b)⊕ b ⊕
b∗⊕eI2⊗eI2). If there is at least one b ∈ {0, 1}I1×I2 for which the former case applies
then we are done, so suppose that the latter case applies for every b ∈ {0, 1}I1×I2 .
The number of possible fans F (b) is at most 2dn1 , and the number of possible colors
c(b) is at most md, hence the map b 7→ (F (b), c(F (b)⊕b⊕b∗⊕eI2⊗eI2)) is a md2dn1-
coloring of {0, 1}I1×I2 . We view {0, 1}I1×I2 as AI2 , where I := {0, 1}I1. Applying
the ordinary one-dimensional Hales-Jewett theorem (Theorem 5.7), we can thus
find a combinatorial line l ⊂ AI2 over A with active co-ordinates J0 ⊂ I2, which is
monochromatic with respect to this coloring, hence there is a fan F of degree d− 1
in {0, 1}I2 and colors c ∈ Cd such that for every b ∈ l the fans F ⊕ b⊕ b∗⊕ eI2 ⊗ eI2

are strongly polychromatic with colors c. By observation (iii) this implies that AI

contains a weakly polychromatic fan of order d, and then by observation (i) the
lemma follows.

As in all the other color focusing proofs we now conclude Theorem 6.8 by setting
d := m and appealing to observation (ii).

• Show that the substance of the polynomial Hales-Jewett theorem is un-
changed if we apply an arbitrary bijection Aj → A′

j from the sets Aj ∈ Zj

to any other sets A′
j ∈ Z ′

j in another abelian group Z ′
j for each 1 ≤ j ≤ d;

thus the additive structure of the Zj is irrelevant for this theorem.
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• Show that the polynomial van der Waerden theorem implies a slight strength-
ening of that theorem in which r is necessarily positive.

• Show that Theorem 6.8 implies Theorem 6.2.
• Show that the polynomial Hales-Jewett theorem implies the ordinary Hales-

Jewett theorem, the polynomial van der Waerden theorem, and the poly-
nomial Gallai theorem.

• For each integer k ≥ 1, let Pk be the binomial coefficient polynomials

Pk(n) :=
n(n − 1) . . . (n − k + 1)

k!
.

Show that each of the Pk maps the integers to the integers, and vanish at
the origin. Conversely, show that if P is any polynomial which maps the
integers to the integers and vanishes at the origin, then P can be written
uniquely as a finite linear combination of the Pk for k ≥ 1. (Hint: induct
on the degree of P , and consider the partial difference polynomial P (n +
1) − P (n)).

• [22] Given any collection P = (Pj)j∈J of polynomials of one variable of
degree at most D indexed by a finite set J which all vanish at the ori-
gin, define an equivalence relation Pi ∼ Pj if Pi and Pj have the same
degree and Pi − Pj has lower degree, and define the weight vector N(P ) =
(N1, . . . , ND) ∈ ZD by defining Nd to be the number of equivalence classes
in P corresponding to polynomials of degree d (thus for instance the zero
polynomial has no impact on this weight vector). We well-order these
weight vectors lexicographically, declaring (N1, . . . , ND) < (M1, . . . , MD)
if there is some 1 ≤ d0 ≤ D such that Md0 > Nd0 and Md = Nd for all
d0 < d ≤ D. For any integer h and j ∈ J , let Qj,h denote the polynomial
Qj,h(n) := Pj(n + h) − Pj(h) − Pi(n). Show that for any finite set H of
integers, the collection (Qj,h)j∈J,h∈H has a weight vector less than that of
P . Using this fact, modify the proof of Theorem 6.2 (setting up an outer
induction loop, inducting on the weight vector; this is known as polyno-
mial ergodic theorem induction, or PET induction for short) to prove the
polynomial van der Waerden theorem.
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