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I t  might be said that there are five basic lrec search algorithmr for the constraint satisfaclion 
problem (crpl. namely. naive backtracking IBTI. backjumping IBJI. conflict-directed backjumping 
(CBJI. backmarking (BMI. and forward checking (FCI. In broad lerms. BT. BJ. and CBJ describe 
different rlyler of backward move (backtracking), whereas BT. BM, and FC describe different styles 
of forward move (labeling of vaii8blesl. This paper prerear an approach thal allows bare algorilhmr 
lo be comhined. giving us new hybrids. The base algorilhms are described explicitly. in terms of a 
forward move and a backward move. I t  is then shown that the fonvard move of one algorithm may be 
combined with the backward move of anothcr, givinga new hybrid. In lolal, four hybrids are presented: 
backmarking with hackjumping (BMJ). backmarking wilh conflict-directed backjumping (BM-CBJI, 
fonvard chedring wilh hackjumping (FC-BJI. and forward checking with conflict-directed backjumping 
(FC-CBJI. The performances of the nine algorithm IBT. BJ, CBJ, BM, BMJ, BM-CBJ. FC. FC-BJ, 
FC-CBJI are compared empirically. using 450 instances of the ZEBRA problem. and it  is shown that 
FC-CBJ is by far the best ofthe algorithmr examined. 

Key ).w.ordc: constisin1 %stisfaction problem. tree search algorithms, backtracking. backjumping. 
backmarking. fowrrd checking. 

I .  INTRODUCTION 

The work reported in this paper was motivated by the following questions posed by 
Nadel (1989): 

Something lo think about would be a synthesis of RM and BJ, into an algorithm called. 
say. BMJ (BackMarkJurnpl. . . . 1s i t  possible to combine both approaches while retaining 
all, or most, of the power of each'? 

and further: 

Combining j-consislency with Backjump or Backrnvrk should be possible, as suggested by 
Caschnip. And Backmark and Rackiump may themselves perhaps be comhined. . . . Such 
algorithms deserve attention. 

This paper presents four "hybrid" tree search algorithms (algorithms created by combining 
the forward move of one elgorithm with the backward move of another) for the constraint 
satisfaction prohlem (csp). one of these being BMJ. In addition, an algorithm which 
combines 2-consistency with backjumping is also presented. The technique of combining 
algorithms is presented, along with an empirical analysis of nine tree search algorithms. 

There avpear to  be five basic tree search algorithms for the constraint satisfaction 
problem, namely naive backtracking (BT) (Golomh and Baumert 1963, backjumping (BJ) 
(Gaschnir 1979). conflict-directed hackiumvinr (CBJ. a new algorithm described later on). 
backmarking (BM) (Gaschnig 1977. 1979). &:forward checking (FC) (Haralick and Elliott 
1980). In broad terms these algorithms might be classifred as  follows: BT, BM, and FC 
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FIOURE I .  The five base algorithms. 

chronologically backtrack, whereas BJ and CBJ are informed backtrackers. BT, BM, BJ, 
and CBJ check backwards, from the current variable against the past variable, whereas 
FC checks forward, from the current variable against the future variables. 

The algorithms may he viewed from a different perspective. When we move from 
BT + BJ + CBJ we move progressively toward more informed styles of backtracking. 
However, BT, BJ, and CBJ all use the same style of forward move (labeling of variables). 
When we move from BT - BM -+ FC we traverse across different styles of forward 
move, but again each of these algorithms use the same style of backward move fchrono- 
logical backtracking). Therefore BT, BM and FC essentially describe a style of forward 
move, and BT, BJ, and CBJ describe a style of backward move.' 

In Fig. 1 we  have these five base algorithms. Tokop row represents moves, and the 
first column represents forward moves. It appears that four algorithms are missing. We 
should expect that we can take the forward move of one algorithm (for example FC) and 
combine it with the backward move of another (for example BJ) to  give a new "hybrid" 
algorithm (for example FC-BJ, an algorithm that checks forward and jumps back). There- 
fore, we should expect the nine algorithms of Fig. 2. 

In Fig. 2, algorithms in a given row exploit the same style of forward move, and 
algorithms in a given column exploit the same style of backward move. When we  move 
across the row (left to  right) we move toward more informed styles of backtracking, and 
when we move down a column we move across different styles of foward move. 

Historically, tree search algorithms for the csp have been described in a recursive 
style, such that a recursive call corresponds to a foward move, and a return from a call 

'We should consider BT as deqciibing thc mosl primitive forward move (checking against past variables1 
and the morr primirive backward move lchronolggical backtracking). 
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FIGURE 2. The five base and four hybrid algorithms. 

corresponds to a backward move. Therefore, the forward and backward moves are de- 
scribed implicitly, and search knowledge may be hidden within the procedure stack. This 
paper adopts a different approach. A tree search algorithm Xis described by two functions, 
x-lobe1 and x-!inlabel. and a calling procedure. Function x-label corresponds to the foward 
move of X, and r-~mlohel corresponds to the backward move of X. The functions are then 
called iteratively by a procedure (in this case bcssp, described in the following section). 
Therefore the forward and backward moves are made explicit, as is the search knowledge.' 
The act of combining algorithms is therefore simplified. To synthesize the hybrid X-Y we 
take the forward move of X, x-lobel, and modify it such that it maintains the information 
required by the backward move of Y, giving us the function x-y-lahel. In addition we take 
the backward move of Y. .v-mhbd, and modify i t  such that it maintains the information 
required by the forward move of X, giving us the function x-y-rmlnbel. The two functions, 
x-v-lobel and x-v-~~nlohel. then describe the hybrid X-Y. 

The remainder of this paper is organizedas follows. The next section introduces the 
constraint satisfaction ~roblem and the terminoloev aoolied to that uroblem. The coding -. . . 
conventions are introduced. along with the global variables that will be used by th; 
following algorithms. Section 3 describes nine tree search algorithms for the csp. Section 
4 describes the experiments that were performed, and Section 5 analyses these results. 
Section 6 concludes this paper. looking backward over what has been presented, and 
forward toward what might still be done. 

This  appro;>ch is not new. or  i l  wac used by Dechter when dcrcrihing chronological backtracking (Dechtei 
and Pearl 1YX81 and graph-h;md heckjwwing llkchtcr IYYIII. However. i t  war not exploited as a lechniquc for 
conihining idgwithmr, such as I1M wich IiJ. 
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2. DEFINITIONS AND PROGRAMMING CONVENTIONS 

Definition 1. The binary constraint safisfacfion problem (bcsp) involves a set of variables 
{V,.  V2, . . . , VJ. Each variable V, has a finite (and discrete) domain of values Di = {v,t, 
vn, . . . , v i ~ j  and may be assigned any one of the values v, E D,. In addition, we have a 
set of binary constraints (CI,,, CI.Z, . . . CI,., . . . , C2.,. C1.2 . . . , C Z ~ .  . . . , Cn.l. Cn.z 
. . . , C.."}, where the constraint C , ,  is a relation between V, and V,, and if C,,, is null then 
there is no constraint acting from V; to Vj. A binary constraint satisfaction problem can 
be associated with a constraint graph G (Mackworth 1977). V(G), the set of vertices in G ,  
corresponds to the set of variables, and A(@, the set of directed arcs in G, corresponds 
to the set of binary constraints. The problem is then to find an assignment of values to 
variables, from their respective domains, which satisfy the constraints. There are a number 
of variants of this problem (Nude1 1983). The one addressed in this paper is the binary 
constraint satisfaction "search" problem (hcssp). That is, we attempt to find the first 
solution. For the sake of brevity, the bcsp and its variant the bcssp will from now on be 
referred to as the c ~ p . ~  

Definition 2. The order of insrantiorion is the order in which variables are assigned values. 
The order of instantiation may be static or dynamic. In a static instantiation order the 
search pracess always instantiates some variable Vj before some other variable VI. In a 
dynamic instantiation order the search process decides which variable to instantiate next 
based on the state of the search process. In this study we assume a static order of 
instantiation. 

Dejnirion 3. The current variable is the variable chosen for instantiation. Generally V, 
will be considered as the current variable. 

Definition 4. The past variables are the variables that have already been instantiated. If 
variable Vh was instantiated before variable Vi it may be said that V, is in Vis  past. 7his 
may be represented via the ordering relation h < i. Therefore, we assume that the search 
tree grows downward and that V, is the root. Variables near the root of the search tree 
are then at a "shallow" depth and have low-valued subscripts, and variables far from the 
root are "deep" and have high-valued subscripts. 

Defintion 5. Thefurure variables are the variables t h 3  have not yet been;jnstantiated. If 
variable V, was instantiated before variable V, it may be said that Vj is in V,'s future. This 
may be represented by the ordering relation j > i. 

The algorithms that follow are described in a pseudocode modeled on Pascal and 
Common Lisp and that is an eqhancement of that given in Nadel(1989). A fuller description 
of this language is given in ,<adel (1989) and Appendix A of this paper. The following 
assumptions are made. 

The language supports list processing. It is assumed that the list processing functions 
list, push, pop, prrshtmv. remove, set-difference, union, and mox-list are primitives of 
the language. 

'For a broader infroduciion to the satisfaction problem one might work through Meresuer's 
overview IMercguer 1YR9), Kurnai+ survey (Kurnar 19921, and the encyclopedia entrier of Dtchtei (Dechter 
19921 and Mackwoilh IMackwuith 1992). 
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- Variables local to a procedure are implicitly declared. The first occurrence of a variable 
within a procedure corresponds to an implicit declaration of that variable. 

The following variables are assumed to have been globally declared and thus accessible 
to all procedures. 

v:  v is an array of values, such that vlil is the value assigned to the variable Vi. From 
now on we will use vli] in place of V j  when referring to the ith variable. 

n: n is the number of variables actually in the problem. We assume that the Rrst 
variable is v l f l  and the last variable is +I. We also assume the existence of the 
pseudovariable vlOl. This is used as a convenience, i.e., an attempt to backtrack to 
vlO1 will result in termination of the search process. 

domain: domain is an array of sequences, such that domainlil (for 0 s i 2 n) is the 
domain of the variable vli]. domain111 is synonymous with D,, where domain[i] is a 
finite sequence of discrete values. Note the pseudovariable v[01 has domain[O] = 
nil. 

current-domain: current-domain is an array of sequences. current-domain[il (for 0 c 
i n) is the sequence of values in domain[rl that have not yet been shown to be 
inconsistent with respect to the ongoing search process. current-domain[r~ is initial-' 
ized to be equal to domainlil (consequently current-domain[O] = niO. When the 
search process attempts to instantiate vlrl with a value, it selects that value from 
current-domoin[i]. If that value is found to be incompatible with the current search 
state, it is then removed from current-domain[il. If current-domain[~l is empty (nil), 
then the search process has examined all ~ossible instantiations for vrzl without . . 
success, and backtracking takes place. ~ h ; n  backtracking takes place (generally) 
current-domainlil is reinstated (i.e.. it becomes domainlil aeain). -. . . .. - . 

C: C i s  an n x n array, where C[i,j1 is the name of a binary predicate (such as <, =, 
>, etc.) that holds between vlil and vlj1. If Cli.jl = nil then there is no constraint 
acting between v11l and vljl, and all values in domainlil are compatible with all 
values in domain[jl. Therefore, we have an intensional representation of a con- 
straint, rather than an extensional representation of a constraint (as a set of com- 
patible pairs). We might think of C as being a richer representation of the adjacency 
matrix of a directed graph, Rather than being a count of the number of directed arcs 
from vertex i to vertex j. C[i,jJ is the name of a binary predicate (or nil). 

check(i,h): The function rheck(i,j.) delivers a result of rrue if there is no constraint 
between v[i] and v[jl (that is C[i,jJ = nin: otherwise it delivers the result of applying 
the binary predicate C[i,ji between the instantiations of v[tl and v[jl (and is counted 
as a consistency check). 

The procedure below, hcssp, shows the environment within which the tree search functions 
will be called. 

I PROCEDURE bcssp (nstatus) 
2 BEGIN 
3 consistent - true: 
4 status -"unknown": 
5 i - I :  
6 WHlLE status = "unknown" 
7 DO BEGIN 
8 IF consistent 
9 THEN i - lahel(i.consistent) 

10 ELSE i t i~nlabel(i.consistent): 

. . ':,T%q?gw: 
i ..-,:*.,e 
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12 . THEN status t "solution" 
13 ELSE IF i = 0 
14 THEN status c "impossible" 
15 END 
16 END: 

Procedure bcssp addresses the binary constraint satisfaction search problem: 

Given a set of variables (where each variable has a discrete domain) and a set of binary 
relations that act between pairs of variables, find the first consistent instantiation of these 
variables which satisfies all the relations. 

The function label attempts to find a consistent instantiation for vlil. The function 
takes as arguments the boolean (reference) variable consisrenr and the current variable i. 
label is called when consistent = true and 1 r i s  n. The function delivers as a result the 
new current variable. When label terminates with consistent = true, the variable v[il will 
have been instantiated with a value that is consistent with the past variables, and i+l is 
delivered as a result (thus maintaining the static order of instantiation). When label ter- 
minates with consistent =false then no consistent instantiation could be found for via, 
current-domainlil = nil, and i is delivered as a result. Therefore, label can terminate in 
the following states: (a) consistent = true and 1 5 i c n, (b) consistent = true and i -n+l,  
or (c) consistent = false and 1 c i 5 n. When terminating in state (a) procedure bcssp 
will again call label with the new current variable. Terminating in state (b) will cause 
procedure bcssp to terminate with status set to solution, and terminating in state (c) wit1 
cause bcssp to call unlabel. 

Function unlabel performs backtracking from v[iJ to v[hl. The function is called when 
consistenr = false, I r i r n, and current-domain[iJ = nil (all values have been tried for 
v[il without success). The function selects a past variable v[h] as the backtracking point 
and resets the variable v [ J~ ,  for all j, where h < j r I. The value in vlh] is then removed 

-from current-domoin[h], consistent is set to true if there are values remaining in current- 
domain[h], and h i s  delivered as a result. Therefore unlabel can terminate in the following 
states: (a) consistent = true and 1 r h c i, (b) consistent =false and 1 r h < i, or (c) 
consisrenr =false and h = 0. When terminating in state (a) procedure bcssp will then call 
label. Terminating in state (b) will cause procedure bcssp to call unlabel again, and 
terminating in state fc) will cause bcssp to terminate @h status = impossible. 

in the functions that follow, a forward move by algorithm X will be h n i e d  x-label, 
and a backward move will be named x-unlabel. For example BT (chronological backtrack- 
ing) is defined by functions bf-label and bt-unlabel. These functions are thensubstituted 
into lines 9 and tO respectively, of procedure bcssp. In the experiments that follow, the 
number of calls made to x-label is taken to be the number of nodes visited within the 
search  tree.^ 

3. TREE SEARCH ALGORITHMS 

This section describes nine tree search algorithms for the constraint satisfaction search 
problem. and these are presented in the following order: BT, BJ, CBJ, BM, BMJ, BM- 
CBJ. FC, FC-BJ, FC-CBJ. Generally, an algorithm is presented as a modification to an 
existing algorithm. and line numbering is adopted so that we can see just what changes 
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.are required to take us from one algorithm to another. In essence, all the algorithms are 
arrived at by performing minor modifications to BT. and this algorithm might be considered 
as a reference point. 

3.1. Chronological Backtracking 

In the backtracking algorithm (Bitner and Reingold 1975; Golomb and Baumen 1965: 
Walker 1960) variables are incrementally instantiated with values from their respective 
domains. When the current variable v[il is assigned a value, consistency checking is 
performed backward against the past variables. If a consistency check fails then another 
value is selected from the domain of v[ij and consistency checking is performed again. If 
no value can be found in the domain of vfrl that is consistent with the past variables, then 
the variable v[h], which was instantiated immediately before v[il, is uninstantiated and a 
new value is sought for v[hl. The backtracking algorithm BT is described below by the 
functions bt-label and bt-uniobel. 

I FUNCTION bt-label(i,consistent): INTEGER 
2 BEGIN 
3 consistent +- false; 
4 FOR v[il +- EACH ELEMENT OF current-domainlil WHILE not consistent 
5 DO BEGIN 
6 consistent +- true; 
7 FOR h +- 1 TO i-l WHILE consistent 
8 DO consistent t check(i,h); 
9 IF not consistent 

10 THEN current-domain(i1 +- remove(v[il,cumnt-domainm) 
I1 END; 
12 IF consistent THEN return(i+ I )  ELSE return(i1 
13 END; 

bt-label attempts to find the first instantiation in current-domain[d that is consistent 
with all of the past variables (the FOR loop, lines 4-1 1). When br-lobel encounters some 
value in current-domnin[i] that is inconsistent with the past variables. that value is removed 
from current-domoin[i] (lines 9 and 10). The outer FOR loop terminates either (a) by 
making a consistent instantiation of v[i] or (b) by exhausting all values in current-domain[i]. 
When terminating in state (a) consistent will be true, current-domain[il i domain[iT, and 
i+l  is delivered as the new current variable. When terminating in state (b), current- 
domain[zl will be nil, consistent will be false, and i is delivered as the current variable. 

I FUNCTION bt-unlabel(i.consistent): INTEGER 
2 BEGIN 
3 h c i - I ;  
4 current-domain[i] + domainli]; 
5 current-domain[h] c remove(v[h].current-domain[hl): 
6 consistent t current-domainlhl f nil; 
7 return(h) 
8 END: 

bt-im/obe/ chronol~giceii~ backtracks from s[i] to v[h], where h c i-l (line 3). As 
will be seen, line 3 is common to all of the chronological backtracking functions (bf- 
unlabel, bm-anlnhel. and fi-snlribel), current-domoin[il is reset to d~~moin[i] (line 4) and 

HYBRID ALWRlTHMS FOR THE CONSTRAINT SATISFACTION PROBLEM 
I 

. ... ..* ...yWLy 
the value v[h] is removed from current-domain[h] (line 5). When v[h] becomes the current ;?sf. 
variable (line 7) all future variables, vbl, will have currenf-domainm = domainm, and all ?& 
past variables (and the current variable) will have current-domain&] C domainfgl, where ?$ 
I r g 5 h < j r n. This property holds for all of the backward-checking algorithms (BT, 
BJ, CBJ, BM, BMJ, and BM-CBJ). The reference variable consistent is set to true if there , 
are values remaining in current-domain[hl (i.e., BT can now attempt a new instantiation 
for v[hl; otherwise consistent is set to false (i.e., BT will then backtrack from v[hf to 
v[h-I]). The function returns h as the new current variable. The actions of lines 5, 6 ,  and 
7 are common to all of the backtracking functions presented here. The action of line 5 in 
bf-unlabel might be interpreteu as follows. 

Function hr-lobel was unable to find an instantiation for v[il  which was consistent. It is 
assumed that the instantiation of vlh] is the cause of this inconsistency. Therefan, by 
finding a new instantiation for u[h], consistent instantiations might be found for the future 
variables. 

This is a naive assumption. It may be the &e that v[h] plays no role whatsoever in the 
conflict involving v[rl. When this happens the entire search subtree rooted on v[il will be 
reexplored, and the functions bt-label and bt-unlabel will slavishly repeat the same set of 
actions with the same set of outcomes. This pathological behavior has been referred to as 
thrashing (Mackworth 1977). 

3.2. Backjumping (BJ) 

The backjumping (BJ) procedure of Gaschnig (1979) attempts to minimize the number 
of nodes visited within the search tree and consequently reduce the number of consistency 
checks performed by the search process. BJ does this by jumping back directly to the 
cause of a conflict. When the current variable v[fJ is to be instantiated with a value, a 
record is kept in the array element max-check[il of the deepest variable with which v[il 
performed a consistency check. If no value can be found in current-domain[il that is 
consistent with the past variables, BJ jumps back to vth], where h = max-checkt0. That 
is. vlhl is the deeoest variable that orecludes a candidate value for the current variable, . . 
and i f  t , [h ]  is rein;tantiated a consis& value may bc found for v[tl. If on jumping back 
to ~ , l h l  there are no remaininr: values to be tried in  current-domain[h], BI then chronolog- 
ical& backtracks. Since v[h] must have passed consistincy checks with all past variables, 
max-check[h] will be equal to h- I, and when BJ jumps back from v[h] it will actually step 
back to v[h- I]. Therefore, we might say that BJ is an algorithm that jumps and steps 
back. The function below, hj-lobel, corresponds to the labeling function for BJ. bj-label 
requires the global integer array mar-check. max-check[il is initialized to zero for all i. 

1 FUNCTION bj-label (i,consistent): INTEGER 
2 BEGIN 
3 consistent t false; 
4 FOR vIil c EACH ELEMENT OF current-domainIi] WHILE not consistent 
5 DO BEGIN 
6 consistent c true; 
7 FOR h +- 1 TO i-l WHILE consistent 
8 DO BEGIN 
9 consistent t check(i,h); 

10 max-check[il 6 max(max-cbeck(i1.h) 
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I I END; 
12 I F  not consistent 
13 THEN current-domainlil - remove(vli1.current-domainlil) . . . . 
14 END; 
15 I F  consistent THEN return(ii1) ELSE returdi) 
16 END; 

Function bj-labet can be viewed as a modified version of bt-label. Whenever checking 
takes place between v[il and v[h] the array element niax-check[il is updated (line 10). br- 
label and bj-label differ only in this respect. The function below, bj-unlabel, performs the 
'jumpingistepping" back from the current variable v[il to the past variable v[hj. 

1 FUNCTION bj-unlabel (i.consistent): INTEGER 
2 BEGIN 
3 h c max-check[il; 
4 F O R j t h i l T O i  
5 DO BEGIN 
6 max-cbeckl~il t 0; 
7 current-domainLi1 t- domainhl 
8 END; 
9 current-domain[hl - remove(v[h],current-domain[hl); 

10 consistent 6 current-domain[hl i nil; 
II return(h) 
12 END; 

Inline 3, h is selected as the backtracking point. In the FOR loop (lines 4-8) the variables 
~ [ J I  are reset (for h < j s i). By "reset" we mean that current-domoin[jl is reset to 
domain[jj and max-check[jl is reset to zero. Therefore, we are again assured that the 
currenr-domain of the future variables are equal to their respective domain. Lines 9-1 I 
correspond to lines 5-7 in function bt-rmlabel. 

Figure 3 demonstrates the behavior of BJ. The current variable 451 has failed consis- 
tency checks with v[3J and 411, and it is assumed that there are no values remaining in 
currenr-domoin[5]. BJ then jumps back to "131. v[3] has passed all consistency checks with 
the variables in its past, namely "[I] and r3[2], and max-check[3] = 2. If v[3] has no 
remaining values in rurrenl-domainl31, BJ "steps" back to 421. BJ then proceeds to 
reenumerate the search tree rooted on v[31. 

In some respects it is important to note what BJ does not do, and we can d o  this by 
being clear about the semantics of ma*-check[il. max-check[il is not the deepest variable 
that some trial instantiation of v[i] was in conflict with, but is the deepest variable that v[i] 
checked against. It is only when BJ moves forward from v[h] to v[i] and fails to find an 
instantiation for v[i] that mox-check[i] is surely the deepest variable that v[il failed against. 
If max-check(i] was always the deepest variable that precluded some candidate value from 
current-domain[i] (and we could do this by updating max-ehecklil only when a consistency 
check fails) we would have an incomplete algorithm. Assume we change the semantics of 
max-check accordingly, and change its name to ma.7-fail, such that max-faillrl is the deepest 
variable thal was in conflict with v[i]. Assume that v[il was in conflict with v[,q] and v[hl, 
where ,q < h. ma.r~fi~il[i] will then be h. Assume that we then jump back to v[hl, and v[hl 
has experienced conflicts with v[,f], where f < R. If there are no values in crirrenr-domain[hl 
our "buggy" version of BJ would jump back to v[ f f .  The algorithm has jumped back too 
far; it should have jumped back to i.],q]. Therefore BJ is conservative but safe, in that it 

i 
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FIGURE 3.  A backward-checking scenario. 
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jumps and then steps hack? We might then say that when jumping hack BJ i s  directed by 
consistency checks that have been performed rather than consistency checks which failed. 
If BJ was able to remember the set of variables that were in conflict with v[rI it should 
then be able to make a series of jumps back. 

3.3. Conflict-Directed Backjumping (CBJ) 

Where BJ steps back from v[h] after jumping back from v[g,  the conflict-directed 
backjumper (CBJ) continues to jump across conflicts which involve both v[h] and v[il. CBJ 
achieves this by recording the set of past variables that failed consistency checks with the 

'It may be of inlerest to note that in Garchnig'r thesis (1979) BJ war presented "without formal proof" (p. 
1701 and funhei thai supgcsled f u t ~ m  work was lo that baekmark and backjump are vabd algorithms" 
ID. 23Y1. 
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? current variable (and we refer to this as a "conflict set" as in Dechter 1990). If no consistent .* >.. ...> .p 
instantiation can be found for vlil, we then jump back to the deepest variable, v[h], that 

..? conflicted with vlil. If on jumping back to v[hl we discover that there are no more values 
to be tried in current-domain(h1 we then jump back to vlgl, where v[g] is the deepest 
variable that was in conflict with either v[i] or "[A]. 

CBJ maintains a confljct set conf-sel[il for each variable, where the array con$-set is 
declared globally. Initially each element of conf-serli] is set to be {O). When a consistency 
check fails between v[O and v[hl, h is added to the set conf-set[i]. Therefore, conf-set[i] is 
the subset of the past variables in conflict with vlil. If there are no remaining values to be 
tried in current-domain[il, CBJ jumps back to the deepest variable vlh], where h E con6 
set[[l (that is h + mar-lisf(conf-sef[il), where the function max-list delivers the largest 
integer in a set of integers). When jumping back from v[il to v[h] the information in con$ 
ser[il is carried upward to vlhl. The array element conf-ser[hl becomes confiser[hl u con$- 
set[il - If, the set of variables in conflict with vllzl and vli]. Therefore when further 
backtracking takes place from v[hl, CBJ jumps back to v[g], where v[gl is the deepest 
variable in conflict with either r[hl or v[i]. It might be said that CBJ performs a primitive 
style of "learning while searching" (Dechter 1990). and that the current search knowledge 
exists within conf-ser[il and current-domain[~l. con/-set[il can be considered as a naive 
explanation of why values have been removed from current-domain[il, and is similar to 
the causelist of Rosiers and Bruynooghe (1987). 

1 FUNCTION cbj-label (i,consistent): INTEGER 
2 BEGIN 
3 consistent c false; 
4 FOR v[il c EACH ELEMENT OF current-domain[il WHILE not consistent 
5 DO BEGIN 
6 consistent c true; 
7 FOR h t I TO i-l WHILE consistent 
8 DO consistent + check(i,h); 
9 IF not consistent 

10 THEN BEGIN 
I I pushnew(h- l.conf-set[il); 
12 current-domain[il +- remove(v[il,current-domain[i]) 
13 END 
14 END; 
15 IF consistent THEN return(i+l) ELSE return(i1 
16 END: 

Function cbj-label is very similar to bj-label. In hj-label the array element mar-check[i] 
is maintained unconditionally (line 10 of hj-label), whereas in chj-lnhel the array element 
conf-setti] is maintained conditionally. Only when a conflict has been detected between 
vlil and v[hl is / I  added to the set confserli] (in line I I  the call pushne&v(h-I,confset[i]) 
adds h- I to the set ro,?f-.wf[il if 17-  1 is not already a member of conf-~er[i]).~ 

I FUNCTION cbj-unlabel (i.consistent): INTEGER 
2 BEGIN 
3 h t max-list(conf-setli]): 
4 conf-settlhl c- remove(h.union(conf-set[hl.conf-set[il)); 

'Note: we have 10 decrement h in line 1 1 .  Thir is so because on lerminalion of  the FOR loop of line 7. h 
will have a value one pre;itri than riering the I;ISI erecuiion of  the rialemenl of line 8. Thir is explained more 
fully in Appendix A. 
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F O R j t h + l T O i  
DO BEGIN 

conf-setti] +- (0); 
current-domainti] + domainti1 
END; 

. . ~  current-domainfh] c remove(v[h],current-domain[hl); .. .& . .e: 
consistent c- current-domainlhl Z nil; . .<: ?; . .- @!: 

12 return(h1 
13 END: 

. $  ;/: 

Again, function cbj-unlabel is similar to bj-unlabel. The backtracking point h Oine 3) ': 

is the largest value in the set conf- set[^& whereas in bj-unlabel is ma-check[$. However; 
there is no analogue to line 4 within bj-unlabel. bj-unlabel makes no attempt to pass search 
knowledge upward through the search tree. If cbj-label is modified such that h is added 
to conf-set[$ unconditionally (move line It to position 8.1) CBJ will behave as BJ. Ao 
informal nroof of the comoleteness of CBJ, using induction, has been given by .Tsadg . 
(1992). + .  :~.>. , i% 

In Fig. 3 a call to cbj-unlabel(5,consirtenO would he made, with canf-s.&bi~=?{0,1,3h 
Variables v[4] and v[3] would be uninstantiated, confiref[3] would become (0,1), cOItsisIenl 
would be false, and cbj-unlabel would deliver as a result the value 3. P r o c e d m b c y p  
would then make a call to cbj-unlabel(3,consisrenf), and $21 and v[ll would be uninstan- 
tiated. The function d l  would terminate with consisrent set to true, co~+set[ll = (01, and 
would deliver a result of 1. !< ...i, :.; ;I ~;:$ a, , .*  :,: 

CBJ has many features in common with Dechter's graph-based baclCjumping algorithm 
GBJ (Drchter 1990). GBJ exdoits the topology of the constraint graph when backtracking. . -~ 

when GBJ reaches a dead-on v[rl it jumps back to the deepest variable amoniithose 
connected to v[f l  in the constraint graph, namely vfhl, and if there are no values ren&iil@ 
to be tried for v[h] GBJ jumps hack to &] where v[g] is the deepest variable coll&3Cted 
to either v[fl or v[h]. GBJ computes for each variable the set parenIs[il, where parentsfil 
is the set of variables in v[d's past that are connected to v[if. When no instantiation can 
be found for v[il GBJ updates the global variable P (called the parent set), such thai P:+ 
P U oarentsfil - i. and iumos back to v[h], where h t mox-lisf(P). The contents of'P . . - .  
thencarried fonvard by GBJ. P has an alternative interpretation, namely P is the super3et 
of variables that have been involved in conflicts experienced by the search process. If the 
search process reaches a dead-end a safe action is then to jump back to the deepest 
variable in P. Clearly, from our discussion on BJ, i tsan be seen that if P was dispensed 
with, or was reset whenever a successful forward move was made, we would agajn have 
an incomplete algorithm. 

3.4. Backmarking (BM) 

The backmarking algorithm (BM) of Gaschnig (1977) attempts to minimize the execu- 
tion of redundant consistency checks within a chronological backtracking algorithm. BM 
recognizes two situations where redundant checks can be avoided. The fint situation is 
when the current variable Vli] is about to be reinstantiated with a value k ,  this instantiation 
previously failed consistency checking with some past variable v[h], and it is known that 
v[hl still holds that conflicting value. Therefore the consistency check will fail again, and 
BM need not consider that instantiation of v[i]. The second situation is when BM rein- 
stantiates v[i] with the value k, and it is known that earlier on in the search process 
consistency checking succeeded between that instantiation of v [$  and v[h]. It is known 
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g+; 
$ that v[hl has not changed value; therefore that check will again succeed. Therefore BM 

does not perform the check between v[hl and v[il. and neither does it perform consistency 
checks between v[il and any variable in the past of v[h]. 

BM employs two arrays in order to achieve these savings, namely rncl (the maximuni 
checking level) and mbl (the minimum backup level). mcl is an n x m integer array, where 
m is the size of the largest domain of then variables, and mbl is a one dimensional integer 
array of n elements. Initially all elements of rncl and mbl are set to 0. The array element 
mcl[i,kl is very similar to the array element max-check[i] in BJ. That is, max-check[rl is 
the deepest variable that v[13 checked against. whereas mcl[i,k] is the deepest variable that 
the instantiation v[il t k checked against. Therefore, mcl[i,kl is a finer grained version of 
max-che?k[il. The array element mbl[il records the shallowest past variable that has 
changed value since v[il was the current variable. Therefore, let h be mbl[l). BM is aware 
that all variables in the past of v[hl have not changed value since BM last visited v[i]. 

The arrays rncl and mbl are exploited as follows. Assume BM attempts the instantiation 
v[il + k. If mcl[i,kl < mbl[i] consistency checking must have failed between v[4 t k and 
the variable v[hl, where h = mcl[i.kl. The variable v[hl has not reinstantiated with a value, 
and consistency checking will again fail. Therefore the instantiation v[4 + k need not be 
considered. This is referred to as "type (a) saving" in Nadel (1989). When mcl[i,k] r 
mbl[i], the instantiation v[z7 t k must have passed consistency checking with the variables 
v[hl, for all h, where h < mbl[il. Since these variables have not been re-instantiated these 
checks will continue to succeed. Therefore consistency checking need only be performed 
against variables v[h], for all h.  where mbl[~l 5 h < i. This is referred to as a "type (b) 
saving" in Nadel(1989). The functions below, bm-labeland bm-unlabel, describe an explicit 
form of backmarking. 

1 FUNCTION bm-label (i.consistent): INTEGER 
2 BEGIN 
3 consistent t false; 
4 FOR k c EACH ELEMENT OF current-domainlil WHILE not consistent 
5 DO BEGIN 
6 consistent - mcl[i.k] z mbl[il; 
7 FOR h - mbllil TO i-l WHILE consistent 
8 DO BEGIN 
9 v[il - k; 

I0 consistent - checkkh); 
11 mcl[i.k] - h 
12 END: 
13 IF not consistent 
14 THEN current-domain[i] - remove(v[iJ,current-domain[i]) 
I S  END; 
16 IF consistent THEN return(iC1) ELSE return(i) 
17 END; 

The type (a) savings are achieved via line 6 above. That is, if mclji,k] < mbl[il the FOR 
loop (lines 7 to 12) is not executed. Type (b) savings are achieved via the lower bound 
mbl[i] of the FOR loop in line 7. Again, bm-label may be compared with bj-label. In bj- 
label the array element ma*-check[i] is maintained unconditionally (line 10 of bj-label), 
and in bm-label the array element mcl[i,k] is maintained conditionally (line I I  above). bj- 
label records only the deepest variable that v[i] checked against. whereas bm-label records, 
for each instantiation ~ [ i ]  c k. the deepest variable that that instantiation checked against. 

. >~ .-,- ~. . , .- . 
\ - 

HYBRID ALGORITHMS FOR THE CONSTRAINT SATISPACnON PROBLEM 

Therefore it appears that the information in rncl can be exploited to allow BJ witbib 
(and this will be shown in the next section). 

1 FUNCTION bm-unlabel (i,consistent): INTEGER 
2 BEGIN 
3 h t i - 1 ;  
4 current-domainfi] t domain[il; . . 
5 mhlfi] t h; 
6 FOR j - h+ 1 TO n DO mblfj] - min(mbItj1,h); 
7 current-domain[hl t remove (v[hl,current-domain[hl); 
8 consistent t current-domain[hJ f nil: 
9 retum(h); 

10 END; , , 
i < ,  - , ,. , .: a 

Lines 5 and 6 maintain the backtracking information within mbl, and if We =Move lines 5 
and 6, bm-unlabel becomes bt-unlabel. It is worth noting that BM is dependentupon a :: 
static order of instantiation. If the order of instantiat 
search process this would result in a corruption of the se 
rncl and mbl. Therefore BM, and any hybrids of BM, cannot exploit 
future variables during the search process. 

3.5. Backmarking and Backjumping (BM) 

From the discussion on BM it appears that BJ can be 
in the hybrid BMJ. It is anticipated that BMJ will enj 
namely, avoiding redundant consistency checks while 
within the search tree. That is, BMJ should make th 
earlier, while being able to jump hack to the source of 
bm-label such that it maintains the information required 
check[g), and by modifying bj-unlabel such that it maintain 
bm-label (namely mbl[r'). BMJ is thendefined by the 

1 FUNCTION hmj-label (i,consistent): INTEGER 
2 BEGIN . . .:,< 

1C: 3 consistent t false; 
4 FOR k c EACH ELEMENT OF current-domain[i] WHILE n i t  cbnsistent 
5 DO BEGIN 
6 consistent + mcl[i,k] z mbl[il; 
7 FOR h - mbi[i] TO i-1 WHILE consistent . ,~ . 
8 DO BEGIN ... : , ~ .  . 
9 . v[il + k; 

10 consistent - check(i,h): 
11 mcl[i,kl + h 
12 END; 
12.1 max-check[i] - max(max-check[iI,mcl[i,kl): 
13 IF not consistent 
14 THEN current-domain[i] t remove(v[i],current-domain[il) 
I5 END: 
I6 IF consistent THEN return(i+ I )  ELSE return(i1 
17 END; 
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By adding line 12.1 to bm-label we get bmj-label. This addition maintains the information 
required for backjumping. and corresponds to line 10 in bj-label (replacing h with mcl[i, 
k]). On reaching line 12.1 one of three states will hold, namely (i) mcl[i,k] < mbl[g and 
consistent =false, (ii) mcl[i,kl r mbl[rl and consistent = true, o r  (iii) mcl[i.k] 2 mbl[rl 
and consistent = false. In state (if a type (a) saving has been made by bmj-label and 
mcl[i,kl is the variable with which the instantiation v[i] t k failed consistency checking 
in some previous call to bmj-label. In state (ii) a type (b) saving has been made by bmj- 
label, and mcl[i,kl = i- I .  In state (iii) a type (b) saving has been made by bmj-label, and 
mcl[i,kl is the variable with which the instantiation v[i] t k failed consistency checking 
in this call to bmj-label. Therefore in states (i) and (iii) consistency checking failed, but in 
state (i) this failure was detected in a previous call to bmj-label. 

1 FUNCTION bmj-unlabel (i,consistent): INTEGER 
2 BEGIN 
3 h t max-check[il; 
3.1 mbl[i] +- h; 
3.2 FOR j + h+l  TO n DO mbltil - min(mblti1,h): 
4 F O R j t h + l T O i  
5 DO BEGIN 
6 max-check61 t 0; 
7 current-domainti] - domainfjl 
8 END; 
9 current-domain[h] - remove(v[hl,current-domainlhl); 

10 consistent t current-domain(h1 # nil; 
I I returnch) 
12 END; 

By adding lines 3.1 and 3.2 to bj-rmlabel we get bmj-unlabel. This addition maintains the 
information required by backmarking, and corresponds to lines 5 and 6 in bm-unlabel. As 
previously noted we might anticipate that BMJ will enjoy the advantages of both BM and 
BJ. Caveat actor: a careful study of bmj-unlabel reveals a scenario where BMJ might 
perform worse than BM. Assume BMJ jumps from v[i], over v[hl, to "[g], and does so 
when mbl[h] < g. When v[h] again becomes the current variable consistency checks will 
be repeated between v[h] and the variable v [  f],  for all f ,  where mbllh] r f < g. Therefore 
we can only be sure that BMJ enjoys some of the advantages of BM 

3.6. Backmarking and Conflict-Directed Backjumping (BM-CBJ) 

The hybrid of BM and CBJ (BM-CBJ) can be realized by again modifying bm-label 
such that it maintains the information required by cbj-unlahel (namely con$-set[il), and by 
modifying cbj-unlahel such that it maintains the information required by bm-label (namely 
mbl[i]). We should expect that BM-CBJ will be able to make the type (a) and (b) savings 
of BM, while being able to make the multiple jumps of CBJ. BM-CBJ is then defined by 
the following functions, hm-cbj-label and bm-cbj-imlabel. 

1 FIJNCTION bm-cbj-label (i.consistent): INTEGER 
2 BEGIN 
3 consistent c false; 
4 FOR k - EACH ELEMENT O F  current-domainli] WHILE not consistent 
5 DO BEGIN 

I 
HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM 

consistent c mcl[i,k] 2 mbl[i] 
FOR h +- mbl[i] TO i-l WHILE consistent 
DO BEGIN 

v[il t k; 
consistent c check(i,h,; 
mcl[i,kl t h 
END; 

I F  not consistent 
THEN BEGlN 

pushnew(mcl[i,kl,conf-set[il); 
current-domainlil c remove(v[il,current-dornainlil) 

14.3 END 
15 END: 
16 I F  consistent THEN retum(i+l) ELSE retum(i) 
17 END; 

Line 14 of bm-&be1 has been modified (lines 14.1 to 14.3 above) to  give bni-cbj-libel. 
Lines 14.1 and 14.2 correspond to lines I1 and 12 in cbj-label (replacing h-1 with mcti,, 
kl) and maintains the information required by conflict-directed backjumping. On reaching 
line 14.1 it has been discovered that the instantiation v[fi c k was inconsistent. This may 
have been discovered due to mcai,k] being less than mbl[iJ (line 6), o r  due to  the failure 
of a consistency check at line 10. In both cases mcl[i,k] will be the variable with which 
consistency checking has failed, either in this call to bm-cbj-label (line 10) or in some 
previous call to bm-cbj-label (line 6). Therefore mcqi, kl is added to the set corlf-setM. 

1 FUNCTION hm-chj-unlahel.(i,consistent): INTEGER 
2 BEGIN 
3 h t max-list(conf-set[il); 
4 conf-setlhl c remove(h,union(conf-set[hl,conf-setlil)); . . 
4.1 mbl[il c h;  
4.2 F O R j  t h + l  TO n DO mblu] t min(mbl~1,h); 
5 F O R . i c h + l T O i  

8 current-domainti] t domaintil; 
9 END: * 

10 current-domain[h] t remove(v[h],cnrrent-domain[hl); 
I 1  consistent - current-domain[hl # nil; 
12 return(h) 
13 END; 

By adding lines 4.1 and 4.2 to cbj-unlabel we get bm-cbj-unlabel. These additions corre- 
spond to lines 5 and 6 in bm-unlabel. BM-CBJ will be prone to the same weaknesses a s  
BMJ. That is, when BM-CBJ jumps from v[rl, over v[hl, to v[gl, when mbEh1 < g,  
redundant consistency checking may take place between v[hl and v[fl (for all f, where 
mbl[h] r f < g). Indeed, we might expect BM-CBJ to perfom worse than BMJ when 
BMJ performs worse than BM. This is so because BJ yumps" then "steps" hack, whereas 
CBJ can '$mp" and continue jumping. When jumping back the BM hybrids will be prone 
to the above weakness. and BM-CBJ will tend to jump more frequently than BMJ. 
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; ' 3.7. Explicit Forward Checking (FC) 

The forward-checking algorithm (FC) of Haralick and Elliott (1980) is a "looking ahead  
scheme. When the search process makes a trial instantiation of a variable it looks ahead 

*% >. toward the future variables, and removes from the current-domain of those variables all ". values that are incompatible with the trial instantiation. Therefore, when FC again moves 
forward, and considers some new variahle, we can be sure that all values in its current- 
domain are consistant with the past variables. if this "looking ahead results in the 
annihilation of the current-domain of some future variable (and Nadel (1989) refers to this 
a s  a "domain wipe out") a new value is tried for the current variahle, and if no values 
remain to be tried FC backtracks chronologically. The goal of forward checking is to "fail 
early" by detecting inconsistencies within the search tree as early as possible, thus saving 
the exploration of fruitless alternatives. Forward checking ~erforms more work oer node - .  
than the algorithms presented so far, but attempts to visit as few nodes as possible. It is 
hope that this results in a net saving in consistency checks performed during the search 
process. 

Forward checking may be made explicit as follows. When the instantiation $11 c k is 
attempted current-domoin[jl is filtered, for all j ,  where i < j c n. The effects of filtering, 
from v[i] to v[j', are recorded explicitly within the (global) array elements reductionsbl, 
future-fc[il, and post-fc[jl. The array element reductions[j~ is a sequence of sequences, 
and is initialized to nil. Let reduction E reductionsbl. reduction is a sequence of values 
that are disallowed in current-domain[jl due to the instantiation of one of the past variables. 
The array element frrture-fc[il is a set (and is treated as a stack, initialized to ni0 repre- 
senting the suhset of the fillurs va,iablrs that i,lil checks against. Let j FJidr,,re-fc[il. This 
is interpreted 3s fo l lo~s :  the current in5tantiation of 411 forward checks aedinst the future - 
variahle v[jl and disallows a sequence of values in current-domain[jI. The array element 
past-fcbl is a set (and is treated as a stack, initialized to {Of) representing the subset of 
the past variabfes that check against vlj7. Let i E past-fcfj7. This is interpreted as follows: 
the current instantiation of v[il forward checks against 14.11 disallowing a sequence of 
values from current-domain[j~.' 

The function below, check-forward. is called when the variable vlil is instantiated with 
a value. It removes all values from current-domoin[jl which are inconsistent with the 
current instantiation of v[il, where i < j. It returns a result of true if there are values 
remaining in czrrr~nt-d<>moin[jj, otherwise it delivers false. 

1 FUNCTION check-forward(ij): BOOLEAN 
2 BEGIN 
3 reduction t nil: 
4 FOR vlil c EACH ELEMENT OF current-domainlil 
5 DO i ~ k t  check(ij1 

- 

6 THEN push(vLi1,reduction); 
7 IF reduction # nil 
8 THEN BEGIN 
9 current-domainlil c set-difference(current-domainli1,reduction); 

SThe array etemcnt past-fc[i] will he exploited when combining forward checking with 81 and CBI. past. 
fcEl is used in conflict detection and subsequent backtracking. However. part-fc[il i s  not used by the chronological 
backlrackei FC. and is introduced :,i ch i  point only for convenience. 

. . ." . __., T. , 
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13 END; 
14 retum(current-domainb] # nil) 
15 E ~ D ;  

On termination of the FOR loop the local variahle reduction will contain the seque 
values in current-domaink7 that are inconsistent with respect to v[g. In lines 9 to :I2 a 
record is maintained of the effects of forward checking. The procedure,below, undo- 
reductions, is called whenever the variable vfil is uninstantiated. The procedure undoes 
all effects of forward checki g from v[i l .  

1 PROCEDURE undo-reductions(i) . .:.. . . . 

7 popfpast-fcbl) .. 
8 END: . . ,.  . ; :  . . .  

,f ,., . .:*j;. :2*r+.';:,&*$..'~~ &!7& 
The statement in line 5, pop(reducfionfjJ), removes the most +i .?ede+on :dm 
reducrions~, and line 7 removes ttie backward reference fmm v I j l  tp ~ [ i l & k e  9 future-, 
fc[il is set to nil because v[rl no longer forward checks against any .. ,; . .; 

The procedure below, update-current-domain, recomputes current-domafh[il ki bC 
domainln less ail values disallowed y forward checking (namely reducfions[il).,This . . 
procedure is called whenever v[rl is the current variable and there are no values remaining 
in current-domain[il.? . , : . . . : . . . . ~ . . ,  . ' .  

1 PROCEDURE updated-current-domain(i) 
2 BEGIN .. 
3 current-domain[i] t domain[i]; 
4 FOR reduction +EACH ELEMENT OF reductions[il 
5 DO current-domain[i] c set-difference(current-domain[il,reduction) 
6 END; .. . 

The main body explicit forward checking can now &.presented. The function bel0W.f~- 
label, attempts to instantiate the current variahle v[il?When an instantiation is attempted, 
the currenr-domain of the future variables are filtered. Whenever a currentdomuinIjl 
becomes empty, the instantiation of v[i] is retracted and the effects of domain filtering 

. . from v[il are undone. 
, , :!..',>\' .., ' 

1 FUNCTION fc-label(i,consistent): INTEGER . . :  :>. j 

2 BEGIN .*.. , ~ ,.:: 

3 consistent - false; 
4 FOR v[i] c EACH ELEMENT OF current-domain[i] WHILE not consistent 
5 DO BEGIN 
6 consistent +true; 
7 FOR i + ,+ I  TO n WHILE consistent 
8 DO consistent t check-forwardti j); 

'A call to update-current domain(3 is the "PC equivalent" of the statement eurrentdornainM + domainM 
encountered in the ~revious  "backwaid.checkiog algaiirhms. 
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9 IF not consistent 
10 THEN BEGIN 
1 1  current-domain[il - remove(v[i],current-domain[i]): 
12 undo-reductions(i) 
13 END 
14 END: 
15 IF consistent THEN retum(i+l) ELSE return(i) 
16 END; 

fc-label should be compared with bt-label. These two functions differ in the FOR loop of 
line 7. br-label varies h. from 1 to i-I, checking backward against past variables, and fc- 
label varies j, from i+ 1 to n, checking against the future variables. In line 8 of bt-label a 
call is made to check(i, h), and in line 8 of fc-label a call is made to check-fonvord(i,]). The 
only real addition is line 12 in fc-label, where the effects of forward checking are undone 
via the call to undo-redrrcfions(i). 

1 FUNCTION fc-unlabel(i.consistent): INTEGER 
2 BEGIN 

7 consistent t current-domainlh] i nil 
8 return(h1; 
9 END; 

In line 4 the effects of forward check from v[h] are undone, and in line 5 current-domain[ll 
is recomputed. fc-rmlabel should be compared to br-unlabel. If we remove line 4 above, 
and replace line 5 with the statement current-domain[il +- dornain[iJ, the function fc- 
unlabel becomes bt-unlahel. 

3.8. Explicit Forward Checking and Backjumping (FC-BJ) 

FC is prone to the same vagaries as BT, namely thrashing. There is nothing to prevent 
FC from chronologically backtracking to a variable that plays no role in the current conflict. 
Figure 4 demonstrates such a scenario within FC. 

in Figure 4. v[51 is the current variable, the past variables are above the bold line, "[I] 
forward checks against 1451, and v[31 forward checks against v[61. In the call to function 
fc-label(5,consistent). no value can be found in crirrent-domoin[51 that is consistent with 
some value in current-domain[61. The function call fc-label(5,consistenr) terminates with 
consistent set to false, and delivers the integer result 5. bcssp then backtracks to v[4] via - - 
the function call fc-rinlahel(5,consisrent). This does not relax current-domoin[6] or currenr- 
domoin[S]. The search subtree routed on v[Sl will then be reexplored with identical results. 
This process will be repeated until current-domain[4] is exhausted. FC could have avoided 
this scenario if it had jumped back to ~131, relaxing currenr-domoinl6l as a result of the 
call to undo-redricrions(3). 

This weakness can be addressed by giving FC the '>urnping" capability of BJ. The 
explicit representation of forward checking allows this to be done with relative ease. When 
check-jimvnrd(i,j~ delivers a result of ffll.cr, the information in post-fcli] and pflsf-fd~l can 
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FIounE 4. A forward-checking scenalio. 

Js 

be analyzed to deliver a backtracking point. FC-BJ is realized by modifying fc-label and 
bj-~nlabel .~ 

1 FUNCTION fc-bj-iabei(i.consistent): INTEGER 
2 BEGIN 
3 consistent c false; 
4 FOR vlil +- EACH ELEMENT OF current-domain[il WHILE not consistent 
s DO BEGIN 
6 consistent -true; 
7 FOR j t i+ I TO n WHILE consistent 

'As far ar I am aware. FC-BJ war first described by Ottestad (1991). Unforlunately that definition is flawed. 
Ottestad's algorithm is overly "optimirlic" when it jumps back, and may prune out solutions. Therefore, it was 
not complete. 
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8 DO consistent c check-forward(i j); 
3% 
%, >.. 9 IF not consistent 
..$ 10 THEN BEGIN 

I1 current-domain[i] + remove(v[i],current-domain[i]); 
12 undo-reductions(i); 
12.1 max-check[il - max(max-check[i],max-list(past-fcu- I])) 
13 END -~ - 

13.1 ELSE max-checklil + i-I: . . 
14 END; 
15 IF  consistent THEN return(i+ I )  ELSE return(i1 
16 END; 

Lines 12.1 and 13.1 maintain the information required for hackjumping, namely max- 
~heck[fl .~ On reaching line 12.1 vlil forward checked against v l i -  I1 and annihilated current- 
domain [j-I]. The reason why this happened was due to the variables forward checking 
against v[j-I], namely past-fc[j-11, and the attempted instantiation of v[fl. On reaching 
line 12.1, i no longer forward checks against v[j-I]. This is due to the call to undo- 
reductions(11 in line 12, and i is no longer a member of past-fc[j-I]. Therefore, in line 
12.1 mar-check[il becomes either the deepest variable that forward checks against v [ j -  I ]  
or the previous value of rnax-check[;]. 

To prevent the conflict between v[il and vlrl from recurrina we have the followine ~. ~ 

oplions: t i )  relax wrrunt-domurnljl by tln~nrta~~t~aling rhr deepert vanahle forward check- 
ing against v[11  (namely max-rhcrklil~. or ( i i l  relax i~urrmf~domalnlil bv uninsrantiatinn . . . --- 
the deepest G iah le  fokard  checking against v[il (namely max-list(pasr-fc[il)). Option (i) 
may allow us to instantiate v[il with the value that was last used, and this may he consistent 
with some value in the relaxed current-domain[~l. Option (ii) may allow us to find a new 
instantiation for v[il from the relaxed current-dornainlil that is consistent with some value 
in current-domain[jl. Line 13.1 is in some respects artificial. This forces FC-BJ to behave 
in a manner similar to BJ, that is, jumping back followed by stepping hack. If we jump 
hack to v[i], and there are no values remaining in current-domain[tl, we then chronologi- 
cally backtrack to h t i- I. 

1 FUNCTION fc-bj-unlahel(i.consistent): INTEGER 
2 BEGIN 
3 h +- max(max-check[i].max-list(past-fc[i])); 
4 FORj+ iDOWNTOh+l  
5 DO BEGIN 
6 max-checku] - 0; 
6.1 undo-reductionslj); 
7 update-current-domainti) 
8 END 
8.1 undo-reductions(h); 
9 current-domain[hl c remove(vlh1,current-domainlhl); 

10 consistent - current-domain[h] f nil: 
11 return(h1 
12 END; 

*Again. we have to decremenr j in line 12.1 hecatme on terminarion of the FOR loop of line 7 j will have a 
value that is one greater than during the last execution of the statement of line 8. Therefore. if consistent is false 
at line 9. j- I is the vahze that c;n,rcd chcck.forward to deliver a rcruil of false. 

~. . .. . .. 
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fc-bjuhlabel is realized by modifying bj-unlabel. In line 3 we select the bac 
point h. When h takes the value max-check[& this corresponds to backtracking option (i) 
described above, and if h takes the value mar-lisl(pas1-fc[il) this corresponds to option 
(ii). The FOR loop of line 4 counts downward, from i down to h+l,  so that the effects of 
forward checking are prope4y undone. Line 6.1 is an addition, undoing the effects of . ' 

forward checking, and line 7 now calls update-current-domain(9 rather than resetting 
current-domain. 

It is expected that FC-BJ will enjoy the advantages of FC and BJ, resulting in a further 
reduction in nodes visited, leading to a further reduction in consistency checks performed 
during the search process. However, PC-BJ will still exhibit the BJ characteristic of 
jumping then stepping hack. In Fig. 4 FC-BJ would jump from v[S] to v[31 and would then 
proceed to step back to ~121. 

3.9. Explicit Forward Checking and Conflict-Directed Backjumping (FC-CBJ) 

Incorporating conflict-directed hackjumping into forward checking is now trivial.1o 

1 FUNCTION fc-cbj-lahel(i,consistent): INTEGER : ~ , :  .~ . . 
2 BEGIN 
3 consistent t false: 
4 FOR vlil t EACH ELEMENT OF current-domain[i] WHILE not consistent 
5 DOBEGIN 
6 consistent t true; 
7 FOR j t i+l  TO n WHILE consistent 
8 DO consistent +- check-torward(ij); 
9 IF not consistent 

10 THEN BEGIN 
11 current-domainlit t ntmove(v[i],current-domain[il): - - . . 
12 undo-reductions(i); 
12.1 conf-set[i] c union(conf-set[il,past-fcti- 11) 
13 END 

. *  , t i .  

, .  , 

14 END; 
15 IF consistent THEN return(i+l) ELSE return(i1 
16 END; 

By the addition of the line 12.1 to fc-label we get&-cbj-label, where line 12.1 maintains 
the information required for conflict-directed backjumping, namely cotlf-sef[17." On reach- 
ing line 12.1 a conflict has been detected between the instantiation of V[I and current- 
domain[j- I ]  Due to the variables forward checking against current-dome$-13 (nmely 
past-fc[j-I]) the instantiation of v[fl annihilated current-domaink-I]. Tberefore pasl- 
fc[j-I] is added to confset[g. Again, due to the call to undo-reductions(11 i,n lime 12, vffl 
no longerforward checks against currenr-domain[j-11. 

I FUNCTION fc-cbj-unlahel(i,consistent): INTEGER 
2 BEGIN 
3 h t max(max-list(conf-set[i],max-list(past-f[il)); 

'-In fact it is a more ..natural" algorithm than FC-81. Function fc-bj-lobel had to be engincercd to prevent 
canRict-directed backjumping and force ~ i m p l e  hackjumping. It should came as no surpnse therefore that FC- 
CBI was developed before FC-BJ. 

"Again we assume the loop variable 1 is available to line 12.1 and that the value j-l caused check-fonvatd 
to deiiver false. 
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4 conf-setthl c remove(h.union(conf-setIh11union(conf-set[i1,past-Fc[i]))): 
5 FORj+iDOWNTOh+l  
6 DO BEGIN 
7 conf-setGI 6 (0): 
7.1 undo-reductions(j); 
8 update-current-domainti) 
9 END; 
9.1 undo-reductions(h); 

10 current-domain[hl c- remove(v[h].current-domain[h]): 
I I consistent t current-domainlh] # nil 
12 return(h1 
13 END; 

fc-cbj-label is realized by modifying cbj-~mlabel (lines 3,4,5,  and 8 have been changed, 
and lines 7.1 and 9.1 have been added). Line 3 compares closely with line 3 of fc-bj- 
unlabel. In order to resolve the conflict involving v[ i l  we jump back to v[h] where (i) h is 
the closest past variable that forward checks against some variable in the future of v[i] 
(namely max-list(conf-setti])), or (ii) h is the closest past variable that forward checks 
against v[!l (namely max-list(post-fc[il)). In line 4 the conflict set involving v[h] is updated 
such that it includes (a) the variables in conflict with v[hj, and (b) the variables in conflict 
with v [ i l ,  and (c) the variables forward checking against v[i1. In Fig. 4 FC-CBJ would 
backtrack from PIS] to v[31, and then from "131 to v[ll. 

4. THE EXPERIMENTS 

The experiments were performed over a sinale problem, namelv the ZEBRA. described - .  
below. This problem was chosen for a number of reasons. First, ;he problem is represen- 
tative of real world design problems (such as in Voss et al. 1990). and oroblems that exist 
within the scheduling domiin (such as in Burke and Prosser 1991; ~'rosser 1989, 1990). 
Second, the problem is nontrivial, involving 25 variables and 122 constraints. Third, by 
permuting the order of instantiation we get significantly different search problems (Freuder 
1982). Therefore the ZEBRA problem allows us to choose from potentially 25!  different 
problems. As will be seen. this has allowed us to generate a range of problems, from easy 
(taking hundreds of consistency checks) through to difficult (taking in excess of I00 million 
consistency checks)." 

Finally, the order of instantiation has a number of measurable properties, namely 
bandwidth (Zabih 1990: Monien and Sudborough 1980). width, and induced width (Dechter 
1992). Given the constraint matrix C, and an order of instantiation d, then the bandwidth 
of a variable v[il is the maximum value of /i-j/, for all j ,  where 1 r j r n and C[i,jl # nil. 
That is, the bandwidth of olil is the maximum distance between vlil and its adiacent 
predecessors. The bandwidth of the constraint graph G under the ordering d is thin the 
maximum of the bandwidths of the variables. and will be written as B(d). The induced . . 
width of G under the ordering d. WYrl ) ,  is a measure taken from the induced graph. That 
is, by recursively connecting any two parents sharing a common successor we induce a 
new constraint. The width of a variable is the number of adjacent predecessors of that 
variable. and the width of an ordering is the maximum width of ail variables. W*(dj is 
then the width of the induced graph under that ordering (Dechter and Meiri 1989). There- 

. . ..., . .. -,- 
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fore, we investigate (empirically) the effects of these topological parameters on the nine 
algorithms. 

The ZEBRA problem (also described in Dechter 1988, 1990; Smith 1992) is composed 
of 25 variables. These variables correspond to five houses (v[l] to v[5]: Red, Blue, Yellow, 
Green, Ivory), five brands of cigarettes (461 to v[IOl: Old-Gold, Parliament, Kools, Lucky, 
Chesterfield), five nationalities (v[lt] to v[W: Norwegian, Ukranian, Englishman, Span- 
iard. Japanese), five pets (v[16] to v[23: Zebra, Dog, Horse, Fox, Snails), and five drinks 
(v[211 to v[25]: Coffee, Tea, Water, Milk, Orange Juice). Each ofthe variables has a domain 
of (i,2,1,4,5), with the excel tion of the Norwegian v[ll and Milk $241, as described below. 
The ZEBRA constraints are described by the following statements: 

- Each of the houses is a different color (C[i,jl c f ,  where I r i r 5, 1 c j 5 5, i f 
jl, inhabited by a single person, (C[i,jl ~1 f, where 11 r i 5 15, 11 5 j r 15, i Z 13, 
who smokes a unique brand of cigarette (C[i,jl e f, where 6 c i r 10, 6 5 j 5 10, 
i f j?, has a preferred drink (C[i,jl + f ,  where 21 C i r 25, 21 5 j r 25, i # 57, and 
owns a pet (C[if - #, where 16 C i r 20, 16 5 j r 20, i # jl. 
The Englishman lives in the Red house. (Cfl3,IJ - = and C[t,l3l t =). 
The Spaniard owns a Dog. (C[14,171 t = and C[17,141 +- =1. 
Coffee is drunk in the Green house. (C[21,41 c = and C[4,21] t =). 
The Ukranian drinks Tea. (C[12,221 t = and C[22,12] t =). 
The Green house is to the right of the Ivory house." (C[4,5] c- > and C[5,4] - <). 
The Old-Gold smoker owns Snails. (C[6,201 t = and Cl20.61 c- =). 
Kook are smoked in the Yellow house. (C[8,3J f- = and C[3.8] +- =). 
Milk is drunk in the middle house (domain1241 4 3 ) ) .  
The Norwegian lives in the first house on the left (domain[l] = (I)). 
The Chesterfield smoker fives next to the Fox owner. (C[10,191 ~1 nert-to and 
C119,101 + next-to)." 
Kook are smoked in the house next to the house where the Horse is kept. (CI8,iSI +- 
next-to and C[18,8] t next-to). 
The Lucky smoker drinks Orange Juice. (49,251 c- = and C[25,91 + =). 
The Japanese smokes Parliament. (C[15,71 c = and C[7,151 ~1 =). 
The Norwegian lives next to the Blue house. (C[11,21 t next-to and C[2,111 -next- 
to). 

The query is: "Who drinks water, and who owns the Zebra?"" 
A program was written that randomly searched fgr 50 instances of the ZEBRA problem 

at a given bandwidth B(d), such that no two instantes represented the same instantiation 
order. This program was run with B(d) in the range 16 r B (d) r 24. In total, 450 problem 
instances were generated and saved to disk. A program was then developed such that an 
instantiation order could be read from disk, and the corresponding ZEBRA created. This 
involved renumbering the above variables and translating the constraint matrix C. In turn, 
each of the tree search algorithms was applied to each of the problems, and a6-tuple was 
captured (1 A B W X Y ) ,  where I is a unique identifier for that problem instance (1 5 I S  
450). A was the name of the algorithm (A E {BT, BJ, CBJ, BM, BMJ, BM-CBJ, FC, FC- 

"Consequently the constraints C [4,51 and C 15.41 are ovenvritlen. 
'The relation "X next-to Y is implemented as X-Y r l .  
"The above problem definition differs from #hat in Dechter (1988. 1990) in that 'The Green house is to the 

right of the Ivory house:' rather than .%mediately to the right of:' This relaxer the problem, resulting m I f  
possible solutioni rather than I .  Thir katuie was exploited when developing the algorithms. in that if two 
alearithms were eiven the name instantiation order they should find the same solution. If they did not, then one 

"This is not a new idcx Thir Iechniyw him hem exphiled by Gnrchnig (19771 and DechteiilMO) " 
of the algorilhmr was clearly rncomplele 



CBJ 63.212 193,846 339 3,297,304 
BM 396.945 1.276.415 40 l 1% AM < , A  ."," -,-.. 
BMJ 125.474 361,595 3 W  5,214,608 
BM-CBJ 25,470 72034 297 1237.283 
FC 35,582 71,012 262 802,069 
FC-BJ 16.839 29.977 262 280.302 
FC-CBJ 10.361 16.383 262 119.767 

BJ, FC-CBJ)), B the bandwidth of that problem instance, W the induced width of that 
ordering, X the number of consistency checks performed by A, and Y the number of nodes 
visited by A. In total, 4050 6-tuples were captured. The experiments and analysis were 
executed on a SUN SPARCstation IPC, and the software was compiled SUN CLOS 4.0, 
developed under SPE. 

5. ANALYSIS OF RESULTS 

In analyzing the experimental data we first attemvt to rank the nine aleorithms with 
~~~~ 

respect to consistency checks performed, and then with respect to the number of nodes 
visited. We then investigate the relationshiv between consistencv checks and the tooolne- . ~..- 
ical parameters W*(d) aid B(d) .  Finally, we look at the run timk of the algorithms. 

Table 1 shows the performance of the algorithms with respect to the number of 
consistency checks performed. The column ir. is the average number of consistency checks 
performed over the 450 instances of the ZEBRA problem. u is the standard deviation, Min 
is the minimum number of consistency checks performed (the best case over the 450 
instances), Max is the maximum number of consistency checks performed (the worst case 
over the 450 instances). 

Therefore. we may rank the algorithms as follows: FC-CBJ < FC-BJ < BM-CBJ < 
FC < CBJ < BMJ < BM < BJ < BT, where "<" is interpreted as "on average performs 
less consistency checks than." The algorithms were compared, one against the other. on 
each problem instance. An entry in Table 2 shows the number of times algorithm X (row 
X) performed less consistency checks than algorithm Y (column YJ, over the 450 problem 
instances. A table entry was computed as x?:? if X (PO < Y fPj) then 1 else 0 (where P. is 
the ith problem, and X (PO and Y (Pi) are the number of consistency checks performed by 
algorithms X and Y respectively when applied to that problem). 

Looking at row BM we see that there were 31  instances where BM performed fewer 
checks than BMJ. Over these 31 instances BMJ performed on average 28% more checks 
than BM (and a worst case of 90% more checks). The only distinguishing feature of these 
problem instances was that BJ also performed worse than BM. These were eight instances 
where BM performed fewer checks than BM-CBJ. Over these eight instances BM-CBJ 
performed on average 16% more checks than BM (and a worst case of 40% more). Again, 
the distinguishing feature of these eight problem instances was that CBJ also performed 
worse than BM. In addition. (row BMJ) there were 17 instances where BMJ performed 
fewer checks than BM-CHJ (on average 13% more. worst case 45% more). All of these 17 

~. .  . . .. - ..- 
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:3 ;::s&, 
TABLE 2. How Often One A1go"thm mow) Bettered Another (Column). , .>,:..-:i ,, .:. ...<.* 

.*s:..; 
BT BJ CBJ BM BMJ BM-CBJ FC FC-BJ FC-CBI:::'? 

RT - 0 0 ll 0 0 0 0 0 .. , -. 
BJ 450 - 0 132 0 0 0 0 0 
CBJ 450 450 - 370 280 0 130 35 5 
BM 450 318 80 - 31 . 8 13 5 2 
BMJ 450 450 170 419 - 17 29 7 3 
BM-CBJ 450 450 450 442 433 - 286 117 35 
FC 450 450 320 437 421 163 - 0 0 
FC-BJ 450 450 415 445 443 333 438 - 0 
FC-CBI 450 450 445 448 447 415 440 388 - 

instances were relatively easy problems (a maximum of 8,170 checks for BM-CBO, and 
the two algorithms never differed by more than 20%. Therefore it appears from the above 
analysis that whenever BJ performs worse than BM (318 instances) there is a risk that 
BMJ will also perform worse than BM (31 instances), Similarly, when CBJ petforms wore 
than BM (80 instances), there is a risk that BM-CBJ will @om worse than BM (8 
instances). Although BJ always performed better than BT, and CBJ always performed 
better than BJ, this is no guarantee that FC-CBJ will always be better than FC-BJ (or thait 
they will he better than FC). For example, there were 12 instances where FC perfoimed 
the same numher of checks as FC-BJ. 10 instances where FC was as good as FC-CBJ, 
and 62 instances where FC-BJ was as good as FC-CBJ. . . 

Table 3 shows the performance of the algorithms with respect to the number of ndks 
visited. BT and BM visit the same number of nodes in the search tree. This is exbcted, 
since BM is essentially BT modified such that it attempts to avoid redundant consistency 
checks. Similarly BMJ and BJ visit the same numher of nodes, and BM-CBJ and CBJ visit 
the same number of nodes. Again, these are expected results, since BMJ is derived fmm 
BJ and BM-CBJ is derived from CBJ. Again we see evidence of the effects of forward 
checking. The FC hybrids consistently show a low mean number of nodes visited (and a 
consequent reduction in the standard deviation), consistently lower than any of the "back- 
ward-checking'' algorithms. We may rank the algorithms as FC-CBJ < FC-BJ < FC < 
BM-CBJ = CBJ < BMJ = BJ c BM = BT, where :'<" is read as "on average visits less 
nodes than." 

B 

TABLE 3. Nodes Visited. 
- - 

Algorithm IJ. D Min Max 

BT 746.728 1,742.012 321 15362,302 
BJ 92,842 270,606 68 3,200,564 
CBJ 11,106 31,409 64 521,643 
BM 746.728 1,742,012 321 15,862,302 
BMJ 92.842 270,606 68 3,200,564 
BM-CBJ 11.106 31.409 64 521,643 
FC 4.092 8,643 29 123.403 
FC-BJ 1.877 3.338 29 30,348 
FC-CRJ 1.128 1,733 29 12,247 
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TABLE 4. Coefficients of Correlation 

BT 0.200 (0.322) 0.186 (0.220) 
BJ 0.124 (0.263) 0.316 (0.246) 
CBJ 0.094 (0.162) 0.052 (0.076) 
BM 0.165 (0.342) 0.101 (0.2M)) 
BMJ 0.131 (0.275) 0.122 (0.224) 
BM-CBJ 0.105 (0.181) 0.054 (0.079) 
FC 0.107 (0.156) 0.100 (0.136) 
FC-BJ 0.082 (0.084) 0.045 (0.051) 
FC-CBJ 0.094 (0.081) 0.036 (0.030) 

The data was analyzed to determine the effects of bandwidth and induced width on 
the algorithms.'" Table 4 shows the coefficients of correlation r,, = /S,I(S,S,)/. For a 
sample of size 450 the P = I% value of r,, is 0.122. Therefore if r , ,  2 0.122 we can say 
with 99% confidence that there is a linear association between x and v. Table 4 shows r.. -., 
where y is conslstenc) chcckc und in parentheses ?. is the logarithm of consirtency check,). 
In the second column r is bandwidth B ( d l ,  and in the third column I is induced width 
l P , , i ,  .. , - I .  

In Table 4 there is a statistically significant coefficient of correlation between checks 
and bandwidth for BT, BJ. BM, and BMJ, and between checks and induced width for BT. 
BJ, and BMJ. These are algorithms that check backward and either chronologically hack- 
track or  iumo and step hack. However. when we take the loearithm of consistencv checks - 
we find a significant coefficient of correlation with bandwidth for almost all the algorithms 
(the exceptions being FC-BJ and FC-CBJ). Therefore, it appears that for the majority of 
the algorithms the search effort (measured as consistency checks) is exponential in some 
function of B (dl. With respect to the logarithm of induced width, CBJ, BM-CBJ, FC-BJ, 
and FC-CBJ show no significant values of r,,. Therefore, it appears that B (d) is not a 
good predictor of search iffort for FC-BJ and FC-CBJ, and neithir is W*(d) for CBJ, BM- 
CBJ, FC-BJ. and FC-CBJ. In fact B (dl and W*(d) were not reliable predictors of search 
effort for any algorithm; for example, easy problems were found at high values of B (dl, 
and difficult problems were found at low values of B (d). 

We conclude this analysis with an investigation of the run times of the algorithms. It 
is uncommon for run times to be reported and there are a number of reasons why this is 
so. First, by measuring run time we may only be measuring the ability of the programmer 
that implemented the given algorithms or the peculiarities of the laboratory platform. 
Second, it may be argued that as we move to problems where the cost of evaluating 
constraints is high. our measure should only be the number of consistency checks per- 
formed during the ccar;h proces, Houever. by  mrawring run time u e  get an indication 
of the ovcrhradi asso.wr.d n ~ t h  ~ m v x 1 3 r  algurithnla mer  the ZIiBRA problem, and that 
is the purpose of this investigation. The algorithms were applied to the 50 problems of 
bandwidth, 16 and the total run time was measured (in CPU seconds) for each algorithm, 
along with the total number of consistency checks performed over the 50 problems. The 
"checking rate" for each algorithm was then estimated. Table 5 shows, for each algorithm. 
the average number of consistency checks performed per CPU second (the checking rate). 

"Width was not considered. the icason hcing ?hat the width of ihe ZEBRA is ei!her 5 or 6. This is too $mall 
a range of r valucs. 
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TmLe 5. Run Time (CPU seconds). 

Algorithm CheckslSec P 

BT 11,973 322 

CBJ 8.6 488 . ,.si:we .. . . 
. . 

BM 1,151 344 15,990 ,. , .,- ,. , . .. - 
: ,.>.,#%a, 

BMJ 3.806 32.9 1.370 . . ,, .~. 
269 

I 
BM-CBJ 4.5% 5.5 . . . . , :  
FC 7;569 4.7 105 

.. , .  

39 
: .. .,.. . , . ~  

FC-BJ 7,102 2.4 . . ,. , ,.. : 
FC-CBJ 6.503 1.6 ,.! : ,. :~ 

. .... : : . $2: , <iil! 
an estimate of the average CPU run time p (computed as p &m ~a6ie 1 times the dmcking 
rate), and the worst-case CPU run time Max (cornouted as  Max b m  Table 1 times the . . 
checking rate). ,:. .;. .:::* $b. :;$. :<% 

The table envies accurately reflect the observed pe&onnanee,of the afgo 
the ZEBRA problem. BM was the most expensive algorithm to r+.Jhe.rrason 
is due to the relative simplicity in evaluating constraints within the ZEBRA 
the costs of accessiup the array element mclli.kl in bm-label and uDdafinn rnb 

' ~.' call to b - a  fact th; most costly &&t of B M Y  d& b h C k & 2 ~ m $ $  ,. 

call is made to bm-unlabel(i,consistent) the loop of line 6 is calledc updaW:*@@, i 
element m b & j  for j in the range i 5 j s n. BM trades consistency,checks a&&$.%$ .: 
accesses, and in the ZEBRA this is not an advantage. The "checking rates" of B%$& ~. 
BM-CBJ are significantly better than BM. The reason for this is due to the ; tduc~p& 
nodes visited by these two algorithms, with a subsequent reduction in updates 
That is, BMJ and BM-CBJ make substantially fewer calls to bmi-unlabel and bm-cbj- 
unlabel respectively. ~, . > .  .. z ., is %$$ L& 

It has been armed by Ginsbera (1990) and others that ;i&n it cbmes to.- 
algorithms more should be made ofknings and less should be made of consistency c&& 
or nodes visited. The rankina with resmct to Nn times is FCCBJ < FC-BJ < FC . BM- 
CBJ < CBJ < BMJ <BJ < BT < BM (reading "<" as  "on average solves ihe ZEBRA 
less time ttpn"). This ranking is in broad agreement with the previous two (checks ad 
nodes visited). We see FC overtaking BM-CBJ (FC performs more checks, but does them 
nearly twice as fast as BM-CBJ), and BJ and BT 84ertaking BM (for W ' s a m e  m o i l ) .  
Looking at run times we might group the algorithms into three lanes: in the fast h e  W e  
would have those that (on average) gave a response in less than 10 sec (FC-CBJ, FC-BJ. 
FC, BM-CBJ, CBJ), in the middle lane we have those that gave a response in about a 
minute (BMJ and BJ), and in the crawler lane we have those that take 5 minor more (BT 
and BM). Therefore, to stay in the fast lane we need to use FC or CBJ, and to get the 
greatest speed we can combine them. 

6. CONCLUSION 

The process of combining tree search algorithms has been described for four trew 
algorithms: BMJ, BM-CBJ, FC-BJ, and FC-CBJ. It seems likely that this approach may 
be applied to other algorithms. Immediate candidates for this process might he the nine 
full arc consistency hybrids in Nadel (1990) and GBJ (Dechter 1990). Therefore we have 
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(at least) 4 choices of backward move (bt-unlabel. bj-unlabel, cbj-unlabel, and gbj-unlabel) 
h4 
h 

and 12 choices of forward move (bt-label, bm-label, fc-label, and 9 others due to Nadel). 
i Therefore, we should be able to synthesize (at least) 48 algorithms. 

It was predicted that the BM hybrids, BMJ and BM-CBJ, could perform worse than 
BM because the advantages of backmarking may be lost when jumping back. Experimental 
evidence supported this. Therefore, a challenge remains. How can the backmarking be- 
havior he protected? lt  was also noted that backmarking requires a static order of instan- 
tiation in order to maintain the integrity of its search knowledge (arrays mcl and mbl). 
This suggests that BM, and the BM hybrids, cannot exploit heuristic knowledge during 
the search process. This may be considered as a severe limitation on the worth of these 
algorithms. However, this is, not the case with the FC hybrids. FC-BJ and FC-CBJ can 
exploit heuristic knowledge. The functions fc-label, fc-bj-label and fc-cbj-label can be 
modified such that they select the current variable with the assistance of some heuristic. 
This suggests further experiments, similar to those in Dechter and Meiri (1989). 

There is room for improvement within FC, BJ, and CBJ. These algorithms can be 
modified such that they detect infeasible values during the search process, and remove 
them once and for all. For example, in FC if the instantiation v[i] c k forward checks 
against v[j'J, and this annihilates current-domain[jl, and no other variable forward checks 
against vM, we can remove k from domain[rl. This corresponds to detecting 2-inconsis- 
tencies. A similar approach can be taken when checking backward in BJ. In CBJ, when 
we jump back from v[ i l  to vlhj, and v[il is in conflict only with v[h], we have again 
discovered a 2-inconsistency (and in Prosser 1992 it is shown that we may discover k- 
inconsistencies). There are further enhancements possible with CBJ. When jumping back 
from v[i],  over v[jT, to v[h] we d o  not need to reset current-domain[j7 if conf-sef/fjI is a 
subset of the past variables. When this approach is taken we realize a type (a) saving as 
in BM. This suggests that it is possible to incorporate a partial backmarking capability into 
FC-CBJ. Therefore, whenever fc-cbj-unlabel jumps back from v[il to v[h] it might return 
values to current-domainljl only when h r max-list(conf-set[jI), for all j ,  where h < j r 
n. This gives us algorithm FC-PBM-CBJ, where PBM is "partial" backmarking, and a 
distributed version of that algorithm has been reported by Luo, Hendry, and Buchanan 
(1992). 

It was observed, over the 450 test cases, that the "champion" was FC-CBJ, on average 
performing fewer consistency checks than any other algorithm and visiting fewer nodes in 
the search tree. In the laboratory (SUN SPARCstation IPC. SUN CLOS 4.0, ZEBRA) 
this resulted in the best run times. Caveat emplor. It is naive to say that one of the 
algorithms is the "champion." The algorithms have been tested on one problem, the 
ZEBRA. It might be the case that the relative performance of these algorithms will change 
when applied to a different problem. For example, it is easy to imagine a case where BT 
will outperform any algorithm based on forward checking (FC, FC-BJ, and FC-CBJ). 
Imagine we have a problem with n variables, where each variable has a domain of size m. 
Assume that the first value in the domain of each of the variables is consistent with the 
past variables. This would result in BT performing Z'3 consistency checks, whereas FC 
would perform X-;'mxi consistency checks. Although such a problem appears overly 
artificial, we must taken into consideration other features. If the domains of variables are 
large (possibly continuous) any style of forward checking may be hopeless, and back- 
marking would require inordinate amounts of storage for the array mci. Even if the nature 
of the variables' domains is not an issue, we might deny ourselves the opportunity to 
exploit heuristic knowledge, as noted above. Therefore, when selecting one of these 
algorithms for a particular application the designer should take an exploratory approach. 
If it is an application where FC is known to perform well, we should expect the FC-CBJ 
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will be even better. If it is an application where backward checking is required. 
BM), again we should incorporate CBJ. ,; ~& & t . P  .. . -'.**.sz. *:& . ~. . ".; .,:.:+: * x:.. 
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APPENDIX A. PROGRAMMING CONVENTIONS 

The algorithms are written in a pseudocode modeled on a combination of Pascal and 
Common Lisp Object System (CLOS) and are essentially an ehanced version of the 
language described in Appendix I1 of Nadel (1989). 

The assignment operator c has been used in place of the more conventional := 
(becomes equal to). - All resewed words are written in uppercase (such as BEGIN, END, FOR) with the 
exceptions of nil, true, and false. . The FOR-WHILE loop is used extensively. The form of this construct is as follows: 

FOR I, t lower TO upper WHILE condition DO hody 

The loop initializes the variable v to be the integer value lower. If v C upper and 
condition is true then hody is executed. On each subsequent iteration of the loop the 
variable is is incremented, and if ( i )  v a upper, and (ii) condition = true, then body is 
executed again. The loop terminates when either v > upper or condition is false. On 
termination of the loop, is is available and retains its most recent value. Thus, the loop 
terminates with v having a value one greater than after the last execution of hody. 
It has been assumed that iteralion is allowed over a list. Assume S is a finite list of 
discrete values: 

FOR v - EACH ELEMENT OF S WHILE condition DO hody 
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subsequent iteration of the loop the condition is tested, and if(i) condition is true, and 
(ii) the list has not been exhausted, then v is assigned the next element from the list S 
and body is executed again. The loop terminates when either condition is false or the 
list S has been exhausted. On termination of the loop, v is available, and v retains its 
most recent value. 

* It is assumed that all parameters to a function or procedure are treated as reference 
variables. 

* The statement return(x) terminates a function and delivers as a result the value of I. 
Semicolons are used to terminate successive statements. A statement is not terminated 
by a semicolon if it is terminated by an END. 
For the sake of brevity, type declarations of variables are assumed to be implicit. 
Therefore the first occurrence of a variable is taken as an imolicit declaration. 
It is assumed that the language has a list processing capahiii;y, and that the language 
performs garbage collection. The list processing functions are described below. 

list: list constructs and returns a list of its arguments. For example: x c list(1,2,3,4) 
assigns to the variable x the list (1 2 3 4). In the functions that follow it will be 
assumed that the list x = (1 2 3 4). 

push: push(e,i) pushes the element e onto the list I and delivers as a result the modified 
list 1. For example: let y c Iist(1,2,3). A call to push(3,y) delivers as a result the list 
(3 1 2 3) and y = (3 1 2 3). 

pushnew: pushnew(e.0 pushes the element e onto the list I if e is not already a member 
of I. Therefore pushnew(e,O is equivalent to 

IF not xembet(e,0 THEN push(e.0 

For examole: let Y t list(1.2.3.). A call to oushnew(3.v) delivers as a result the list . . .. . . 
(1 2 3) and y = (1 2 3). 

DOD: ooo(n delivers as a result the first element of the list 1 and destructivelv removes . . . .  
that element from the list I. For example: let y +- list(1,2,3,4). A call to pop@) will 
deliver the result 1, and y is now (2 3 4). 

remove: remove(e.0 delivers as a result the list I with the first occurrence of lhe 
element e removed. For example: let y t list(1,2,3,2). A call to remove(2,y) delivers 
the list (1 3 2), and y = (1 2 3 2) (that is, y is not modified). 

set difference: set-difference(lI,lZ) delivers as a result the list of elements in 11 which 
are not in 12. For example: let x +- list(1,2,3,4) and y + list(2,3,5). A call to set- 
difference(x,y) delivers the list (I 4). * 

union: union(ll,D) delivers as a result a new list containing everything that is an 
element of either of the lists I1 and 12. For example: let x t list(1,4,3) and y t 
list(1,3,5). A call to union(x.y) delivers as a result the list (I 4 3 5). 

max-list: max-list(0 delivers the largest value in a list of integers. If 1 is empty (nin 
then mu*-list(ni0 delivers-rnux.int. 

On first executing the ;,hove construct, the condition is tested. and if condition is true, 
v is then assigned the first element of the list S and body is executed. On each 


