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Diophantine approximation is a chapter in number theory which has witnessed
outstanding progress together with a number of deep applications during the
recent years. The proofs have long been considered as technically difficult.
However, we understand better now the underlying ideas, hence it becomes
possible to introduce the basic methods and the fundamental tools in a more
clear way.

We start with irrationality proofs. Historically, the first ones concerned irra-
tional algebraic numbers, like the square roots of non square positive integers.
Next, the theory of continued fraction expansion provided a very useful tool.
Among the first proofs of irrationality for numbers which are now known to
be transcendental are the ones by H. Lambert and L. Euler, in the XVIIIth
century, for the numbers e and π. Later, in 1815, J. Fourier gave a simple proof
for the irrationality of e.

We first give this proof by Fourier and explain how J. Liouville extended it
in 1840 (four years before his outstanding achievement, where he produced the
first examples of transcendental numbers). Such arguments are very nice but
quite limited, as we shall see. Next we explain how C. Hermite was able in 1873
to go much further by proving the transcendence of the number e. We introduce
these new ideas of Hermite in several steps: first we prove the irrationality of er

for rational r 6= 0 as well as the irrationality of π. Next we relate these simple
proofs with Hermite’s integral formula, following C.L. Siegel (1929 and 1949).
Hermite’s arguments led to the theory of Padé Approximants. They also enable
Lindemann to settle the problem of the quadrature of the circle in 1882, by
proving the transcendence of π.

One of the next important steps in transcendental number theory came
with the solution by A.O. Gel’fond and Th. Schneider of the seventh of the 23
problems raised by D. Hilbert at the International Congress of Mathematicians
in Paris in 1900: for algebraic α and β with α 6= 0, α 6= 1 and β irrational, the
number αβ is transcendental. An example is 2

√
2, another less obvious example

is eπ. The proofs of Gel’fond and Schneider came after the study, by G. Pólya,
in 1914, of integer valued entire functions, using interpolation formulae going
back to Hermite. We introduce these formulae as well as some variants for
meromorphic functions due to R. Lagrange (1935) and recently rehabilitated by
T. Rivoal (2006) [25].
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The end of the course will be devoted to a survey of the most recent irra-
tionality and transcendence results, including results of algebraic independence.
We shall also introduce the main conjectures on this topic.

We denote by Z the ring of rational integers, by Q the field of rational
numbers, by R the field of real numbers and by C the field of complex numbers.
Given a real number, we want to know whether it is rational or not, that means
whether he belongs to Q or not. The set of irrational numbers R\Q has no nice
algebraic properties: it is not stable by addition nor by multiplication.

Irrationality is the first step, the second one is transcendence. Given a
complex number, one wants to know whether it is algebraic of not. The set of
algebraic numbers, which is the set of roots of all non-zero polynomials with
rational coefficients, is nothing else than the algebraic closure of Q into C. We
denote it by Q. The set of transcendental numbers is defined as C \ Q. Since
Q is a field, the set of transcendental numbers is not stable by addition nor by
multiplication.

1 Irrationality

1.1 Simple proofs of irrationality

The early history of irrationality goes back to the Greek mathematicians Hip-
pasus of Metapontum (around 500 BC) and Theodorus of Cyrene, Eudoxus,
Euclid. There are different early references in the Indian civilisation and the
Sulba Sutras (around 800-500 BC).

Let us start with the irrationality of the number
√

2 = 1, 414 213 562 373 095 048 801 688 724 209 . . .

One of the most well known proofs is to argue by contradiction as follows:
assume

√
2 is rational and write it as a/b where a and b are relatively prime

positive rational integers. Then a2 = 2b2. It follows that a is even. Write
a = 2a′. From 2a′2 = b2 one deduces that b also is even, contradicting the
assumption that a and b were relatively prime.

There are variants of this proof - a number of them are in the nice booklet
[24]. For instance using the relation

√
2 =

2−
√

2√
2− 1

with
√

2 = a/b one deduces
√

2 =
2b− a
a− b

·

Now we have 1 <
√

2 < 2, hence 0 < a−b < b, which shows that the denominator
b of fraction

√
2 = a/b was not minimal.
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This argument can be converted into a geometric proof: starting with an
isosceles rectangle triangle with sides b and hypothenuse a, one constructs (using
ruler and compass if one wishes) another similar triangle with smaller sides a−b
and hypothenuse 2b−a. Such a proof of irrationality is reminiscent of the ancient
Greek geometers constructions, and also of the infinite descent of Fermat.

A related but different geometric argument is to start with a rectangle having
sides 1 and 1 +

√
2. We split it into two unit squares and a smaller rectangle.

The length of this second rectangle is 1, its width is
√

2−1, hence its proportion
is

1√
2− 1

= 1 +
√

2.

Therefore the first and second rectangles have the same proportion. Now if
we repeat the process and split the small rectangle into two squares (of sides√

2 − 1) and a third tiny rectangle, the proportions of this third rectangle will
again be 1 +

√
2. This means that the process will not end, each time we shall

get two squares and a remaining smaller rectangle having the same proportion.
On the other hand if we start with a rectangle having integer side lengths, if

we split it into several squares and if a small rectangle remains, then clearly the
small rectangle while have integer side lengths. Therefore the process will not
continue forever, it will stop when there is no remaining small rectangle. This
proves again the irrationality of

√
2.

In algebraic terms the number x = 1 +
√

2 satisfies

x = 2 +
1
x

,

hence also
x = 2 +

1

2 +
1
x

= 2 +
1

2 +
1

2 +
1
x

= · · · ,

which yields the continued fraction expansion of 1 +
√

2. Here is the definition
of the continued fraction expansion of a real number.

Given a real number x, the Euclidean division in R of x by 1 yields a quotient
[x] ∈ Z (the integral part of x) and a remainder {x} in the interval [0, 1) (the
fractional part of x) satisfying

x = [x] + {x}.

Set a0 = [x]. Hence a0 ∈ Z. If x is an integer then x = [x] = a0 and {x} = 0.
In this case we just write x = a0 with a0 ∈ Z. Otherwise we have {x} > 0 and
we set x1 = 1/{x} and a1 = [x1]. Since {x} < 1 we have x1 > 1 and a1 ≥ 1.
Also

x = a0 +
1

a1 + {x1}
·

Again, we consider two cases: if x1 ∈ Z then {x1} = 0, x1 = a1 and

x = a0 +
1
a1
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with two integers a0 and a1, with a1 ≥ 2 (recall x1 > 1). Otherwise we can
define x2 = 1/{x1}, a2 = [x2] and go one step further:

x = a0 +
1

a1 +
1

a2 + {x2}

·

Inductively one obtains a relation

x = a0 +
1

a1 +
1

a2 +
1

. . .
an−1 +

1
an + {xn}

with 0 ≤ {xn} < 1. The connexion with the geometric proof of irrationality of√
2 by means of rectangles and squares is now obvious: start with a positive

real number x and consider a rectangle of sides 1 and x. Divide this rectangle
into unit squares and a second rectangle. Then a0 is the number of unit squares
which occur, while the sides of the second rectangle are 1 and {x}. If x is not
an integer, meaning {x} > 0, then we split the second rectangle into squares of
sides {x} plus a third rectangle. The number of squares is now a1 and the third
rectangle has sides {x} and 1− a1{x}. Going one in the same way, one checks
that the number of squares we get at the n-th step is an.

This geometric point of view shows that the process stops after finitely many
steps (meaning that some {xn} is zero, or equivalently that xn is in Z) if and
only if x is rational.

For simplicity of notation we write

x = [a0; a1, . . . , an] or x = [a0; a1, . . . , an, . . . ]

depending on whether xn ∈ Z for some n or not. This is the continued fraction
expansion of x. Notice that any irrational number has a unique infinite con-
tinued fraction expansion, while for rational numbers, the above construction
provides a unique well defined continued fraction which bears the restriction
that the last an is ≥ 2. But we allow also the representation

[a0; a1, . . . , an − 1, 1].

For instance 11/3 = [3; 1, 2] = [3; 1, 1, 1].
We need a further notation for ultimately periodic continued fraction. As-

sume that x is irrational and that for some integers n0 and r > 0 its continued
fraction expansion [a0; a1, . . . , an, . . . ] satisfies

an+r = an for any n ≥ n0.

Then we write

x = [a0; a1, . . . , an0−1, an0 , an0+1, . . . , an0+r−1].
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For instance √
2 = [1; 2, 2, 2, . . . ] = [1; 2].

References on continued fractions are [10, 26, 17, 19, 5]. An interesting remark
[24] on the continued fraction expansion of

√
2 is to relate the A4 paper format

21× 29.7 to the fraction expansion

297
210

=
99
70

= [1; 2, 2, 2, 2, 2].

There is nothing special with the square root of 2: most of the previous
argument extend to the proof of irrationality of

√
n when n is a positive integer

which is not the square of an integer. For instance a proof of the irrationality
of
√
n when n is not the square of an integer runs as follows. Write

√
n = a/b

where b is the smallest positive integer such that b
√
n is an integer. Further,

denote by m the integral part of
√
n: this means that m is the positive integer

such that m <
√
n < m + 1. The strict inequality m <

√
n is the assumption

that n is not a square. From 0 <
√
n−m < 1 one deduces

0 < (
√
n−m)b < b.

Now the number b′ = (
√
n−m)b is a positive rational integer, the product b′

√
n

is an integer and b′ < b, which contradicts the choice of b minimal.

Exercise 1. Extend this proof to a proof of the irrationality of k
√
n, when n

and k are positive integers and n is not the k-th power of an integer.
Hint. Assume that the number x = k

√
n is rational. Then the numbers

x2, x3, . . . , xk−1

are also rational. Denote by d the least positive integer such that the numbers
dx, dx2, . . . , dxk−1 are integers. Further, denote by m the integral part of x and
consider the number d′ = (x−m)d.

The irrationality of
√

5 is equivalent to the irrationality of the Golden ratio
Φ = (1 +

√
5)/2, root of the polynomial X2 −X − 1, whose continued fraction

expansion is
Φ = [1; 1, 1, 1, 1, . . . ] = [1, 1].

This expansion follows from the relation

Φ = 1 +
1
Φ
·

The geometric irrationality proof using rectangles that we described above for
1 +
√

2 works in a similar way for the Golden ratio: a rectangle of sides Φ and
1 splits into a square and a small rectangle of sides 1 and Φ− 1, hence the first
and the second rectangles have the same proportion

Φ =
1

Φ− 1
· (1.1)

Therefore the process continues forever with one square and one smaller rect-
angle with the same proportion. Hence Φ and

√
5 are irrational numbers.
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Exercise 2. Perform the geometric construction starting with any rectangle of
sides 1 and x: split it into a maximal number of squares of sides 1, and if a
second smaller rectangle remains repeat the construction: split it into squares
as much as possible and continue if a third rectangle remains.
a) Prove that the number of squares in this process is the sequence of integers
(an)n≥0 in the continued fraction expansion of x.
b) Start with a unit square. Put on top of it another unit square: you get a
rectangle with sides 1 and 2. Next put on the right a square of sides 2, which
produces a rectangle with sides 2 and 3. Continue the process as follows: when
you reach a rectangle of small side a and large side b, complete it with a square
of sides b, so that you get a rectangle with sides b and a+ b.
Which is the sequence of sides of the rectangles you obtain with this process?
Generalizing this idea, deduce a geometrical construction of the rational number
having continued fraction expansion

[a0; a1, . . . , ak].

Another proof of the same result is to deduce from the equation (1.1) that
a relation Φ = a/b with 0 < b < a yields

Φ =
b

a− b
,

hence a/b is not a rational fraction with minimal denominator.
Other numbers for which it is easy to prove the irrationality are quotients

of logarithms: if m and n are positive integers such that (logm)/(log n) is ra-
tional, say a/b, then mb = na, which means that m and n are multiplicatively
dependent. Recall that elements x1, . . . , xr in an additive group are linearly in-
dependent if a relation a1x1 + · · · + arxr = 0 with rational integers a1, . . . , ar
implies a1 = · · · = ar = 0. Similarly, elements x1, . . . , xr in a multiplicative
group are multiplicatively independent if a relation xa1

1 · · ·xarr = 1 with ratio-
nal integers a1, . . . , ar implies a1 = · · · = ar = 0. Therefore a quotient like
(log 2)/ log 3, and more generally (logm)/ log n where m and n are multiplica-
tively independent positive rational numbers, is irrational.

We have seen that a real number is rational if and only if its continued
fraction expansion is finite. There is another criterion of irrationality using
the b-adic expansion when b is an integer ≥ 2 (for b = 10 this is the decimal
expansion, for b = 2 it is the diadic expansion). Indeed any real number x can
be written

x = [x] + d1b
−1 + d2b

−2 + · · ·+ dnb
−n + · · ·

where the integers dn (the digits of x) are in the range 0 ≤ dn < b. Again there
is unicity of such an expansion apart from the integer multiples of some b−n

which have two expansions, one where all sufficiently large digits vanish and
one for which all sufficiently large digits are b− 1. This is due to the equation

b−n =
n∑
k=0

(b− 1)b−n−k−1.
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Here is the irrationality criterion using such expaansions: fix an integer b ≥ 2.
Then the real number x is rational if and only if the sequence of digits (dn)n≥1

of x in basis b is ultimately periodic.

Exercise 3. Let b ≥ 2 be an integer. Show that a real number x is rational if
and only if the sequence (dn)n≥1 of digits of x in the expansion in basis b

x = [x] + d1b
−1 + d2b

−2 + · · ·+ dnb
−n + · · · (0 ≤ dn < b)

is ultimately periodic.
Deduce another proof of Lemma 1.17 in § 1.3.5.

One might be tempted to conclude that it should be easy to decide whether
a given real number is rational or not. However this is not the case with many
constants from analysis, because most often one does not know any expansion,
either in continued fraction or in any basis b ≥ 2. And the fact is that for
many such constants the answer is not known. For instance one does not know
whether the Euler–Mascheroni constant

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · ·+ 1
n
− log n

)
= 0, 577 215 664 901 532 860 606 512 090 082 . . .

is rational or not: one expects that it is an irrational number (and even a
transcendental number - see later). Other formulas for the same number are

γ =
∞∑
k=1

(
1
k
− log

(
1 +

1
k

))
=
∫ ∞

1

(
1

[x]
− 1
x

)
dx

= −
∫ 1

0

∫ 1

0

(1− x)dxdy
(1− xy) log(xy)

·

J. Sondow uses (a generalization of) the last double integral in [31], he was
inspired by F. Beukers’ work on Apéry’s proof of the irrationality of

ζ(3) =
∑
n≥1

1
n3

= 1, 202 056 903 159 594 285 399 738 161 511 . . .

in 1978. Recall that the values of the Riemann zeta function

ζ(s) =
∑
n≥1

n−s

was considered by Euler for real s and by Riemann for complex s, the series
being convergent for the real part of s greater than 1. Euler proved that the
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values ζ(2k) of this function at the even positive integers (k ∈ Z, k ≥ 1) are
rational multiples of π2k. For instance ζ(2) = π2/6. It is interesting to notice
that Euler’s proof relates the values ζ(2k) at the positive even integers with
the values of the same function at the odd negative integers, namely ζ(1− 2k).
For Euler this involved divergent series, while Riemann defined ζ(s) for s ∈ C,
s 6= 1, by analytic continuation.

One might be tempted to guess that ζ(2k + 1)/π2k+1 is a rational num-
ber when k ≥ 1 is a positive integer. However the folklore conjecture is that
this is not the case. In fact there are good reasons to conjecture that for
any k ≥ 1 and any non-zero polynomial P ∈ Z[X0, X1, . . . , Xk], the number
P (π, ζ(3), ζ(5), . . . , ζ(2k + 1)) is not 0. But one does not know whether

ζ(5) =
∑
n≥1

1
n5

= 1, 036 927 755 143 369 926 331 365 486 457 . . .

is irrational or not. And there is no proof so far that ζ(3)/π3 is irrational.
According to T. Rivoal, among the numbers ζ(2n + 1) with n ≥ 2, infinitely
many are irrational. And W. Zudilin proved that one at least of the four numbers

ζ(5), ζ(7), ζ(9), ζ(11)

is irrational. References with more information on this topic are given in the
Bourbaki talk [13] by S. Fischler.

A related open question is the arithmetic nature of Catalan’s constant

G =
∑
n≥1

(−1)n

(2n+ 1)2
= 0, 915 965 594 177 219 015 0 . . .

Other open questions can be asked on the values of Euler’s Gamma fonction

Γ(z) = e−γzz−1
∞∏
n=1

(
1 +

z

n

)−1

ez/n =
∫ ∞

0

e−ttz · dt
t
·

As an example we do not know how to prove that the number

Γ(1/5) · · · = 4, 590 843 711 998 803 053 204 758 275 929 152 0 . . .

is irrational.
The only rational values of z for which the answer is known (and in fact one

knows the transcendence of the Gamma value in these cases) are

r ∈
{

1
6

, 1
4

, 1
3

, 1
2

, 2
3

, 3
4

, 5
6

}
(mod 1).

The number Γ(1/n) appears when one computes periods of the Fermat curve
Xn + Y n = Zn, and this curve is simpler (in technical terms it has genus ≤ 1)
for n = 2, 3, 4 and 6. For n = 5 the genus is 2 and this is related with the fact
that one is not able so far to give the answer for Γ(1/5).
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The list of similar open problems is endless. For instance, is the number

e+ π = 5, 859 874 482 048 838 473 822 930 854 632 . . .

rational or not? The answer is not yet known. And the same is true for any
number in the following list

log π, 2π, 2e, πe, ee.

1.2 Variation on a proof by Fourier (1815)

That e is not quadratic follows from the fact that the continued fraction expan-
sion of e, which was known by L. Euler in 1737 [10, 7, 29, 33]), is not periodic:

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1
. . .

= [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]

Since this expansion is infinite we deduce that e is irrational. The fact that it
is not ultimately periodic implies also that e is not a quadratic irrationality, as
shown by Lagrange in 1770 – Euler knew already in 1737 that a number with
an ultimately period continued fraction expansion is quadratic (see [10, 5, 26]).

Exercise 4. a) Let b be a positive integer. Give the continued fraction expan-
sion of the number

−b+
√
b2 + 4

2
·

b) Let a and b be two positive integers. Write a degree 2 polynomial with integer
coefficients having a root at the real number whose continued fraction expansion
is

[0; a, b].

c) Let a, b and c be positive integers. Write a degree 2 polynomial with integer
coefficients having a root at the real number whose continued fraction expansion
is

[0; a, b, c].

The following easier and well known proof of the irrationality of e was given
by J. Fourier in his course at the École Polytechnique in 1815. Later, in 1872 ,
C. Hermite proved that e is transcendental, while the work of F. Lindemann a
dozen of years later led to a proof of the so-called Hermite–Lindemann Theorem:
for any nonzero algebraic number α the number eα is transcendental. However
for this first section we study only weaker statements which are very easy to
prove. We also show that Fourier’s argument can be pushed a little bit further
than what is usually done, as pointed out by J. Liouville in 1844.
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1.2.1 Irrationality of e

We truncate the exponential series giving the value of e at some point N :

N ! e−
N∑
n=0

N !
n!

=
∑
k≥1

N !
(N + k)!

· (1.2)

The right hand side of (1.2) is a sum of positive numbers, hence is positive (not
zero). From the lower bound (for the binomial coefficient)

(N + k)!
N !k!

≥ N + 1 for k ≥ 1,

one deduces ∑
k≥1

N !
(N + k)!

≤ 1
N + 1

∑
k≥1

1
k!

=
e− 1
N + 1

·

Therefore the right hand side of (1.2) tends to 0 when N tends to infinity. In
the left hand side, N ! and

∑N
n=0N !/n! are integers. It follows that N !e is never

an integer, hence e is an irrational number.

1.2.2 The number e is not quadratic

.
The fact that e is not a rational number implies that for each m ≥ 1 the

number e1/m is not rational. To prove that e2 for instance is also irrational is
not so easy (see the comment on this point in [1]).

The proof below is essentially the one given by J. Liouville in 1840 [20] which
is quoted by Ch. Hermite (“ces travaux de l’illustre géomètre”).

To prove that e does not satisfy a quadratic relation ae2 + be + c with a, b
and c rational integers, not all zero, requires some new trick. Indeed if we just
mimic the same argument we get

cN ! +
N∑
n=0

(2na+ b)
N !
n!

= −
∑
k≥0

(
2N+1+ka+ b

) N !
(N + 1 + k)!

·

The left hand side is a rational integer, but the right hand side tends to infinity
(and not 0) with N , so we draw no conclusion.

Instead of this approach we write the quadratic relation as ae+b+ce−1 = 0.
This time it works:

bN ! +
N∑
n=0

(a+ (−1)nc)
N !
n!

= −
∑
k≥0

(
a+ (−1)N+1+kc

) N !
(N + 1 + k)!

·

Again the left hand side is a rational integer, but now the right hand side tends
to 0 when N tends to infinity, which is what we expected. However we need a
little more work to conclude: we do not yet get the desired conclusion, we only
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deduce that both sides vanish. Now let us look more closely to the series in the
right hand side. Write the two first terms AN for k = 0 and BN for k = 1:∑

k≥0

(
a+ (−1)N+1+kc

) N !
(N + 1 + k)!

= AN +BN + CN

with

AN =
(
a− (−1)Nc

) 1
N + 1

BN =
(
a+ (−1)Nc

) 1
(N + 1)(N + 2)

CN =
∑
k≥2

(
a+ (−1)N+1+kc

) N !
(N + 1 + k)!

The above proof that the sum AN + BN + CN tends to zero as N tends to
infinity shows more: each of the three sequences

AN , (N + 1)BN , (N + 1)(N + 2)CN

tends to 0 as N tends to infinity. Hence, from the fact that the sum AN +BN +
CN vanishes for sufficiently large N , it easily follows that for sufficiently large
N , each of the three terms AN , BN and CN vanishes, hence a − (−1)Nc and
a+ (−1)Nc vanish, therefore a = c = 0, and finally b = 0.

Exercise 5. Let (an)n≥0 be a bounded sequence of rational integers.
a) Prove that the following conditions are equivalent:
(i) The number

ϑ1 =
∑
n≥0

an
n!

is rational.
(ii) There exists N0 > 0 such that an = 0 for all n ≥ N0.
b) Prove that these properties are also equivalent to
(iii) The number

ϑ2 =
∑
n≥0

an2n

n!

is rational.

1.2.3 Irrationality of e
√

2 (Following a suggestion of D.M. Masser)

The trick here is to prove the stronger statement that ϑ = e
√

2 + e−
√

2 is an
irrational number.

Summing the two series

e
√

2 =
∑
n≥0

2n/2

n!
and e−

√
2 =

∑
n≥0

(−1)n
2n/2

n!

12



we deduce
ϑ = 2

∑
m≥0

2m

(2m)!
·

Let N be a sufficiently large integer. Then

(2N)!
2N

ϑ− 2
N∑
m=0

(2N)!
2N−m(2m)!

= 4
∑
k≥0

2k(2N)!
(2N + 2k + 2)!

· (1.3)

The right hand side of (1.3) is a sum of positive numbers, in particular it is not
0. Moreover the upper bound

(2N)!
(2N + 2k + 2)!

≤ 1
(2N + 2)(2k + 1)!

shows that the right hand side of (1.3) is bounded by

2
N + 1

∑
k≥0

2k

(2k + 1)!
<

√
2e
√

2

N + 1
,

hence tends to 0 as N tends to infinity.
It remains to check that the coefficients (2N)!/2N and (2N)!/2N−m(2m)!

(0 ≤ m ≤ N) which occur in the left hand side of (1.3) are integers. The first
one is nothing else than the special case m = 0 of the second one. Now for
0 ≤ m ≤ N the quotient

(2N)!
(2m)!

= (2N)(2N − 1)(2N − 2) · · · (2m+ 2)(2m+ 1)

is the product of 2N −2m consecutive integers, N −m of which are even; hence
it is a multiple of 2N−m.

The same proof shows that the number
√

2(e
√

2 − e−
√

2) is also irrational,
but the argument does not seem to lead to the conclusion that e

√
2 is not a

quadratic number.

1.2.4 The number e2 is not quadratic

The proof below is the one given by J. Liouville in 1840 [21] . See also [8].
We saw in § 1.2.2 that there was a difficulty to prove that e is not a quadratic

number if we were to follow too closely Fourier’s initial idea. Considering e−1

provided the clue. Now we prove that e2 is not a quadratic number by truncating
the series at carefully selected places. Consider a relation ae4 + be2 + c = 0 with
rational integer coefficients a, b and c. Write ae2 + b+ ce−2 = 0. Hence

N !b
2N−1

+
N∑
n=0

(a+ (−1)nc)
N !

2N−n−1n!
= −

∑
k≥0

(
a+ (−1)N+1+kc

) 2kN !
(N + 1 + k)!

·

13



Like in § 1.2.2, the right hand side tends to 0 as N tends to infinity, and if
the two first terms of the series vanish for some value of N , then we conclude
a = c = 0. What remains to be proved is that the numbers

N !
2N−n−1n!

, (0 ≤ n ≤ N)

are integers. For n = 0 this is the coefficient of b, namely 2−N+1N !. The fact
that these numbers are integers is not true for all values of N , it is not true even
for all sufficiently large N ; but we do not need so much, it suffices that they are
integers for infinitely many N , and that much is true.

The exponent vp(N !) of p in the prime decomposition of N ! is given by the
(finite) sum (see for instance [14])

vp(N !) =
∑
j≥1

[
N

pj

]
. (1.4)

Using the trivial upper bound [m/pj ] ≤ m/pj we deduce the upper bound

vp(n!) ≤ n

p− 1

for all n ≥ 0. In particular v2(n!) ≤ n. On the other hand, when N is a power
of p, say N = pt, then (1.4) yields

vp(N !) = pt−1 + pt−2 + · · ·+ p+ 1 =
pt − 1
p− 1

=
N − 1
p− 1

.

Therefore when N is a power of 2 the number N ! is divisible by 2N−1 and we
have, for 0 ≤ m ≤ N ,

v2(N !/n!) ≥ N − n− 1,

which means that the numbers N !/2N−n−1n! are integers.

1.2.5 The number e
√

3 is irrational

Set ϑ = e
√

3 + e−
√

3. From the series expansion of the exponential function we
derive

(2N)!
3N−1

ϑ− 2
N∑
m=0

(2N)!
(2m)!3N−m−1

= 2
∑
k≥0

3k(2N)!
(2N + 2k + 2)!

·

Take N of the form (3t + 1)/2 for some sufficiently large integer t. We deduce
from (1.4) with p = 3

v3((2N)!) =
3t − 1

2
= N − 1, v3((2m)!) ≤ m, (0 ≤ m ≤ N)

hence v3((2N)!/(2m)!) ≥ N −m− 1.

14



1.2.6 Is-it possible to go further?

The same argument does not seem to yield the irrationality of e3. The range
of applications of this method is limited. The main ideas allowing to go further
have been introduced by Charles Hermite. These new ideas are basic for the
development of transcendental number theory which we shall discuss later.

1.2.7 A geometrical proof of the irrationality of e

The following proof of the irrationality of e is due to Jonathan Sondow [32].
Start with an interval I1 of length 1. We are going to construct inductively a
sequence of intervals (In)n≥1, where for each n the interval In is obtained by
splitting In−1 into n intervals of the same length and keeping only one such
piece. Hence the length of In will be 1/n!.

In order to have the origin of In as

1 +
1
1!

+
1
2!

+ · · ·+ 1
n!

we start with I1 = [2, 3]. For n ≥ 2, split In−1 into n intervals and keep the
second one: this is In. Hence

I1 =
[
1 +

1
1!

, 1 +
2
1!

]
= [2, 3],

I2 =
[
1 +

1
1!

+
1
2!

, 1 +
1
1!

+
2
2!

]
=
[

5
2!

, 6
2!

]
,

I3 =
[
1 +

1
1!

+
1
2!

+
1
3!

, 1 +
1
1!

+
1
2!

+
2
3!

]
=
[

16
3!

, 17
3!

]
·

The origin of In is

1 +
1
1!

+
1
2!

+ · · ·+ 1
n!

=
an
n!

,

the length is 1/n!, hence the endpoint of In is (an + 1)/n!. Also for n ≥ 1 we
have an+1 = (n+ 1)an + 1.

The number e is the intersection of all these intervals2, hence it lies in the
interior of each In, and therefore it cannot be written as a/n! with a ∈ Z.

Since
p

q
=

(q − 1)! p
q!

,

the irrationality of e follows.
As pointed out by Sondow in [32], the proof shows that for any integer n > 1,

1
(n+ 1)!

< min
m∈Z

∣∣∣e− m

n!

∣∣∣ < 1
n!
·

2[32]; a more detailed proof that the intersection of the intervals In is e is given in Editor’s
Endnotes, Amer. Math. Monthly 114 (2007), 659.
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The Smarandache function is defined as follows: S(q) is the least positive
integer such that S(q)! is a multiple of q:

S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3 . . .

Hence S(n) ≤ n or all n ≥ 1, S(p) = p for p prime and S(n!) = n. From his
proof Sondow [32] deduces an irrationality measure for e: for any p/q ∈ Q with
q ≥ 2, ∣∣∣∣e− p

q

∣∣∣∣ > 1
(S(q) + 1)!

·

1.3 Irrationality Criteria

The main tool in Diophantine approximation is the basic property that any
non-zero integer has absolute value at least 1. There are many corollaries of
this fact. The first one we consider here is the following:
If ϑ is a rational number, there is a positive constant c = c(ϑ) such that, for
any rational number p/q with p/q 6= ϑ,∣∣∣∣ϑ− p

q

∣∣∣∣ ≥ c

q
· (1.5)

This result is obvious: if ϑ = a/b then an admissible value for c is 1/b, because
the non-zero integer aq − bp has absolute value at least 1.

This property is characteristic of rational numbers: a rational number cannot
be well approximated by other rational numbers, while an irrational number can
be well approximated by rational numbers.

We now give several such criteria. The first one was used implicitly in § 1.2.

1.3.1 Statement of the first criterion

Lemma 1.6. Let ϑ be a real number. The following conditions are equivalent
(i) ϑ is irrational.
(ii) For any ε > 0 there exists p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any real number Q > 1 there exists an integer q in the range 1 ≤ q < Q
and a rational integer p such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
qQ
·

(iv) There exist infinitely many p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
q2
·
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So far we needed only (ii)⇒(i), which is the easiest part, as we just checked
in (1.5).

According to this implication, in order to prove that some number is ir-
rational, it is sufficient (and in fact also necessary) to produce good rational
approximations. Lemma 1.6 tells us that an irrational real number ϑ has very
good friends among the rational numbers, the sharp inequality (iv) shows in-
deed that ϑ is well approximated by rational numbers (and a sharper version
of (iv) will be proved in Lemma 1.8 below). Conversely, the proof we just gave
shows that a rational number has no good friend, apart from himself. Hence
in this world of rational approximation it suffices to have one good friend (not
counting oneself) to guarantee that one has many very good friends.

1.3.2 Proof of Dirichlet’s Theorem (i)⇒(iii) in the criterion 1.6

The implications (iii)⇒(iv)⇒(ii)⇒(i) in Lemma 1.6 are easy. It only remains
to prove (i)⇒(iii), which is a Theorem due to Dirichlet. For this we shall use
the box or pigeon hole principle.

Proof of (i)⇒(iii). Let Q > 1 be given. Define N = dQe: this means that N is
the integer such that N − 1 < Q ≤ N . Since Q > 1, we have N ≥ 2.

For x ∈ R write x = [x] + {x} with [x] ∈ Z (integral part of x) and 0 ≤
{x} < 1 (fractional part of x). Let ϑ ∈ R\Q. Consider the subset E of the unit
interval [0, 1] which consists of the N + 1 elements

0, {ϑ}, {2ϑ}, {3ϑ}, . . . , {(N − 1)ϑ}, 1.

Since ϑ is irrational, these N+1 elements are pairwise distinct. Split the interval
[0, 1] into N intervals

Ij =
[
j

N
,
j + 1
N

]
(0 ≤ j ≤ N − 1).

One at least of these N intervals, say Ij0 , contains at least two elements of
E. Apart from 0 and 1, all elements {qϑ} in E with 1 ≤ q ≤ N − 1 are
irrational, hence belong to the union of the open intervals (j/N, (j + 1)/N)
with 0 ≤ j ≤ N − 1.

If j0 = N − 1, then the interval

Ij0 = IN−1 =
[
1− 1

N
; 1
]

contains 1 as well as another element of E of the form {qϑ} with 1 ≤ q ≤ N −1.
Set p = [qϑ] + 1. Then we have 1 ≤ q ≤ N − 1 < Q and

p− qϑ = [qϑ] + 1− [qϑ]− {qϑ} = 1− {qϑ}, hence 0 < p− qϑ < 1
N
≤ 1
Q
·

Otherwise we have 0 ≤ j0 ≤ N − 2 and Ij0 contains two elements {q1ϑ} and
{q2ϑ} with 0 ≤ q1 < q2 ≤ N − 1. Set

q = q2 − q1, p = [q2ϑ]− [q1ϑ].
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Then we have 0 < q = q2 − q1 ≤ N − 1 < Q and

|qϑ− p| = |{q2ϑ} − {q1ϑ}| < 1/N ≤ 1/Q.

There are other proofs of (i)⇒(iii) – for instance one can use Minkowski’s
Theorem in the geometry of numbers, which is more powerful than Dirichlet’s
box principle. We shall come back to this point in section § 2.2.4.

Exercise 6. This exercise extends the irrationality criterion Lemma 1.6 by
replacing Q by Q(i). The elements in Q(i) are called the Gaussian numbers,
the elements in Z(i) are called the Gaussian integers. The elements of Q(i) will
be written p/q with p ∈ Z[i] and q ∈ Z, q > 0.

Let ϑ be a complex number. Check that the following conditions are equiv-
alent.
(i) ϑ 6∈ Q(i).
(ii) For any ε > 0 there exists p/q ∈ Q(i) such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any rational integer N ≥ 1 there exists a rational integer q in the range
1 ≤ q ≤ N2 and a Gaussian integer p such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < √2
qN
·

(iv) There exist infinitely many Gaussian numbers p/q ∈ Q(i) such that∣∣∣∣ϑ− p

q

∣∣∣∣ < √2
q3/2
·

1.3.3 Irrationality of at least one number

We shall use the following variant of Lemma 1.6 later.

Lemma 1.7. Let ϑ1, . . . , ϑm be real numbers. The following conditions are
equivalent
(i) One at least of ϑ1, . . . , ϑm is irrational.
(ii) For any ε > 0 there exist p1, . . . , pm, q in Z with q > 0 such that

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < ε

q
·

(iii) For any integer Q > 1 there exists p1, . . . , pm, q in Z such that 1 ≤ q ≤ Qm
and

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ ≤ 1
qQ
·
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(iv) There is an infinite set of q ∈ Z, q > 0, for which there there exist p1, . . . , pm
in Z satisfying

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < 1
q1+1/m

·

Proof. The proofs of (iii)⇒(iv)⇒(ii)⇒(i) are easy.
For (i)⇒(iii) we use Dirichlet’s box principle 3 like in the proof of Lemma

1.6. Consider the Qm + 1 elements

ξq =
(
{qϑ1}, . . . , {qϑm}

)
(q = 0, 1, . . . , Qm)

in the unit cube [0, 1)m of Rm. Split this unit cube into Qm cubes having sides
of lengths 1/Q. One at least of these small cubes contains at least two ξq, say
ξq1 and ξq2 , with 0 ≤ q2 < q1 ≤ Qm. Set q = q1 − q2 and take for pi the nearest
integer to ϑi, 1 ≤ i ≤ m. This completes the proof of Lemma 1.7.

1.3.4 Hurwitz Theorem

The following result improves the implication (i)⇒(iv) of Lemma 1.6.

Lemma 1.8. Let ϑ be a real number. The following conditions are equivalent
(i) ϑ is irrational.
(ii) There exist infinitely many p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·

Of course the implication (ii)⇒(i) in Lemma 1.8 is weaker than the implica-
tion (iv)⇒(i) in Lemma 1.6. What is new is the converse.

Classical proofs of the equivalence between (i) and (ii) in Lemma 1.8 involve
either continued fractions or Farey series. We give here a proof which does not
involve continued fractions, but they occur implicitly.

Lemma 1.9. Let ϑ be a real irrational number. Then there exists infinitely
many pairs (p/q, r/s) of irreducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

In this statement and the next ones it is sufficient to prove inequalities ≤ in
place of <: the strict inequalities are plain from the irrationality of ϑ.

3An alternative arguments relies on geometry of numbers - see section § 2.2.4 and
W.M. Schmidt’s lecture notes - it follows that it is not necessary to assume Q to be an
integer, and the strict inequality q < Qm can be achieved.
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Proof. Let H be a positive integer. Among the irreducible rational fractions a/b
with 1 ≤ b ≤ H, select one for which |ϑ − a/b| is minimal. If a/b < ϑ rename
a/b as p/q, while if a/b > ϑ, then rename a/b as r/s.

First consider the case where a/b < ϑ, hence a/b = p/q. Since gcd(p, q) = 1,
using Euclidean’s algorithm, one deduces (Bézout’s Theorem) that there exist
(r, s) ∈ Z2 such that qr − sp = 1 with 1 ≤ s < q and |r| < |p|. Since 1 ≤ s <
q ≤ H, from the choice of a/b it follows that∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ ∣∣∣ϑ− r

s

∣∣∣
hence r/s does not belong to the interval [p/q, ϑ]. Since qr − sp > 0 we also
have p/q < r/s, hence ϑ < r/s.

In the second case where a/b > ϑ and r/s = a/b we solve qr − sp = 1 by
Euclidean algorithm with 1 ≤ q < s and |p| < r, and the argument is similar.

We now complete the proof of infinitely many such pairs. Once we have a
finite set of such pairs (p/q, r/s), we use the fact that there is a rational number
m/n closer to ϑ than any of these rational fractions. We use the previous
argument with H ≥ n. This way we produce a new pair (p/q, r/s) of rational
numbers which is none of the previous ones (because one at least of the two
rational numbers p/q, r/s is a better approximation than the previous ones).
Hence this construction yields infinitely many pairs, as claimed.

Lemma 1.10. Let ϑ be a real irrational number. Assume (p/q, r/s) are irre-
ducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

Then

min
{
q2
(
ϑ− p

q

)
, s2

(r
s
− ϑ

)}
<

1
2
·

Proof. Define

δ = min
{
q2
(
ϑ− p

q

)
, s2

(r
s
− ϑ

)}
.

From
δ

q2
≤ ϑ− p

q
and

δ

s2
≤ r

s
− ϑ

with qr − ps = 1 one deduces that the number t = s/q satisfies

t+
1
t
≤ 1
δ
·

Since the minimum of the function t 7→ t+ 1/t is 2 and since t 6= 1, we deduce
δ < 1/2.
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Remark. The inequality t+ (1/t) ≥ 2 for all t > 0 with equality if and only if
t = 1 is equivalent to the arithmetico-geometric inequality

√
xy ≤ x+ y

2
,

when x and y are positive real numbers, with equality if and only if x = y. The
correspondance between both estimates is t =

√
x/y.

From Lemmas 1.9 and 1.10 it follows that for ϑ ∈ R\Q, there exist infinitely
many p/q ∈ Q such that

0 <
∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
2q2
·

A further step is required in order to complete the proof of Lemma 1.8.

Lemma 1.11. Let ϑ be a real irrational number. Assume (p/q, r/s) are irre-
ducible fractions such that

p

q
< ϑ <

r

s
and qr − ps = 1.

Define u = p+ r and v = q + s. Then

min
{
q2
(
ϑ− p

q

)
, s2

(r
s
− ϑ

)
, v2

∣∣∣ϑ− u

v

∣∣∣} <
1√
5
·

Proof. First notice that qu− pv = 1 and rv − su = 1. Hence

p

q
<
u

v
<
r

s
·

We repeat the proof of lemma 1.10 ; we distinguish two cases according to
whether u/v is larger or smaller than ϑ. Since both cases are quite similar, let
us assume ϑ < u/v. The proof of lemma 1.10 shows that

s

q
+
q

s
≤ 1
δ

and
v

q
+
q

v
≤ 1
δ
·

Hence each of the four numbers s/q, q/s, v/q, q/v satisfies t+ 1/t ≤ 1/δ. Now
the function t 7→ t+1/t is decreasing on the interval (0, 1) and increasing on the
interval (1,+∞). It follows that our four numbers all lie in the interval (1/x, x),
where x is the root > 1 of the equation x+1/x = 1/δ. The two roots x and 1/x
of the quadratic polynomial X2 − (1/δ)X + 1 are at a mutual distance equal to
the square root of the discriminant ∆ = (1/δ)2 − 4 of this polynomial. Now

v

q
− s

q
= 1,

hence the length
√

∆ of the interval (1/x, x) is ≥ 1 and therefore δ ≤ 1/
√

5.
This completes the proof of Lemma 1.11.
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We now show that Lemma 1.8 is optimal.
Denote again by Φ = 1.6180339887499 . . . the Golden ratio, which is the

root > 1 of the polynomial X2 −X − 1. The discriminant of this polynomial is
5. Recall also the definition of the Fibonacci sequence (Fn)n≥0:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).

Lemma 1.12. For any q ≥ 1 and any p ∈ Z,∣∣∣∣Φ− p

q

∣∣∣∣ > 1√
5q2 + (q/2)

·

On the other hand

lim
n→∞

F 2
n−1

∣∣∣∣Φ− Fn
Fn−1

∣∣∣∣ =
1√
5
·

Proof. It suffices to prove the lower bound when p is the nearest integer to qΦ.
From X2 −X − 1 = (X − Φ)(X + Φ−1) we deduce

p2 − pq − q2 = q2
(
p

q
− Φ

)(
p

q
+ Φ−1

)
.

The left hand side is a non-zero rational integer, hence has absolute value at
least 1. We now bound the absolute value of the right hand side from above.
Since p < qΦ + (1/2) and Φ + Φ−1 =

√
5 we have

p

q
+ Φ−1 ≤

√
5 +

1
2q
·

Hence

1 ≤ q2
∣∣∣∣pq − Φ

∣∣∣∣ (√5 +
1
2q

)
The first part of Lemma 1.12 follows.

The real vector space of sequences (vn)n≥0 satisfying vn = vn−1 + vn−2 has
dimension 2, a basis is given by the two sequences (Φn)n≥0 and ((−Φ−1)n)n≥0.
From this one easily deduces the formula

Fn =
1√
5

(Φn − (−1)nΦ−n)

due to A. De Moivre (1730), L. Euler (1765) and J.P.M. Binet (1843). It follows
that Fn is the nearest integer to

1√
5

Φn,

hence the sequence (un)n≥2 of quotients of Fibonacci numbers

un = Fn/Fn−1
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satisfies limn→∞ un = Φ.
By induction one easily checks

F 2
n − FnFn−1 − F 2

n−1 = (−1)n−1

for n ≥ 1. The left hand side is F 2
n−1(un − Φ)(un + Φ−1), as we already saw.

Hence
F 2
n−1|Φ− un| =

1
Φ−1 + un

,

and the limit of the right hand side is 1/(Φ + Φ−1) = 1/
√

5. The result follows.

Remark. The sequence un = Fn/Fn−1 is also defined by

u2 = 2, un = 1 +
1

un−1

, (n ≥ 3).

Hence
un = 1 +

1

1 +
1

un−2

= 1 +
1

1 +
1

1 +
1

un−3

= · · ·

Remark. It is known (see for instance [26] p. 25) that if k is a positive integer,
if an irrational real number ϑ has a continued fraction expansion [a0; a1, a2, . . . ]
with an ≥ k for infinitely many n, then

lim inf
q→∞

q2
∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ 1√
4 + k2

·

This proof of Lemma 1.12 can be extended by replacing X2 −X − 1 by any
irreducible polynomial with integer coefficients. Recall that the ring Z[X] is
factorial, its irreducible elements of positive degree are the non-constant poly-
nomials with integer coefficients which are irreducible in Q[X] (i.e. not a product
of two non-constant polynomials in Q[X]) and have content 1. The content of
a polynomial in Z[X] is the greatest common divisor of its coefficients.

The minimal polynomial of an algebraic number α is the unique irreducible
polynomial P ∈ Z[X] which vanishes at α and has a positive leading coefficient.

The next lemma ([26] p. 6 Lemma 2E) is a variant of Liouville’s inequality
that we shall study more throughly later.

Lemma 1.13. Let α be a real algebraic number of degree d ≥ 2 and minimal
polynomial P ∈ Z[X]. Define c = |P ′(α)|. Let ε > 0. Then there exists an
integer q0 such that, for any p/q ∈ Q with q ≥ q0,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1
(c+ ε)qd

·
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Proof. Let q be a sufficiently large positive integer and let p be the nearest
integer to qα. In particular ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1
2
·

Denote a0 the leading coefficient of P and by α1, . . . , αd its the roots with
α1 = α. Hence

P (X) = a0(X − α1)(X − α2) · · · (X − αd)

and

qdP (p/q) = a0q
d

d∏
i=1

(
p

q
− αi

)
. (1.14)

Also

P ′(α) = a0

d∏
i=2

(α− αi).

The left hand side of (1.14) is a rational integer. It is not zero because P is
irreducible of degree ≥ 2. For i ≥ 2 we use the estimate∣∣∣∣αi − p

q

∣∣∣∣ ≤ |αi − α|+ 1
2q
·

We deduce

1 ≤ qda0

∣∣∣∣α− p

q

∣∣∣∣ d∏
i=2

(
|αi − α|+

1
2q
)
.

For sufficiently large q the right hand side is bounded from above by

qd
∣∣∣∣α− p

q

∣∣∣∣ (|P ′(α)|+ ε).

If α is a real root of a quadratic polynomial P (X) = aX2 + bX + c, then
P ′(α) = 2aα+ b is a square root of the discriminant of P . So Hurwitz Lemma
1.8 is optimal for all quadratic numbers having a minimal polynomial of dis-
criminant 5. Incidentally, this shows that 5 is the smallest positive discriminant
of an irreducible quadratic polynomial in Z[X] (of course it is easily checked di-
rectly that if a, b, c are three rational integers with a > 0 and b2 − 4ac positive
and not a perfect square in Z, then b2 − 4ac ≥ 5).

It follows that for the numbers of the form (aΦ + b)/(cΦ + d) with integers
a, b, c, d having ad − bc = ±1, one cannot replace in Lemma 1.8 the number√

5 by a larger number.
If one omits these irrational numbers in the field generated by the Golden

ratio, then Hurwitz showed that one can replace
√

5 by 2
√

2, and again this
is optimal. This is the beginning of the so-called Markoff 4 spectrum

√
5,
√

8,
4His name is spelled Markov in probability theory.
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√
221/5,

√
1517/13, . . . which tends to 1/3 and is obtained as follows. First

consider the set of integers m for which the Markoff equation

m2 +m2
1 +m2

2 = 3mm1m2

has a solution in positive integers (m1,m2) with 0 < m1 ≤ m2 ≤ m. The
infinite increasing sequence of these integers m starts with

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, . . . (1.15)

and there is an easy and well known algorithm to construct it (see for instance
[36]): apart from (1, 1, 1) and (2, 1, 1), for any solution (m,m1,m2) there are
three exactly solutions sharing two components with (m,m1,m2), namely

(m′,m1,m2), (m,m′1,m2), (m,m1,m
′
2),

where

m′ = 3m1m2 −m, m′1 = 3mm2 −m1, m′2 = 3mm1 −m2.

This produces the Markoff tree

(1, 1, 1)
|

(2, 1, 1)
|

(5, 2, 1)

|
| |

(29, 5, 2) (13, 5, 1)

| |
| | | |

(433, 29, 5) (169, 29, 2) (194, 13, 5) (34, 13, 1)
|

...
...

|
...

...
|

...
...

|
...

...

For each m in the Markoff sequence (1.15), we define

µm =
√

9m2 − 4
m

·

Then there is an explicit quadratic form fm(x, y) such that fm(x, 1) = 0 and
there is a root αm of fm for which

lim sup
q∈Z, q→∞

(q‖qαm‖) =
1
µm

,

where ‖ · ‖ denotes the distance too the nearest integer:

‖x‖ = min
m∈Z
|x−m| = min

{
{x} ; 1− {x}

}
.
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The sequence of (m, fm, αm, µm) starts as follows,

m 1 2 5 13

fm(x, 1) x2 + x− 1 x2 + 2x− 1 5x2 + 11x− 5 13x2 + 29x− 13

αm [0; 1] [0; 2] [0; 2211] [0; 221111]

µm
√

5
√

8
√

221/5
√

1517/13

The third row gives the continued fraction expansion for αm.

Exercise 7. Check that any solution (m,m1,m2) of Markoff’s equation (1.15)
is in Markoff’s tree.

1.3.5 Irrationality of series studied by Liouville and Fredholm

The implication (ii)⇒(i) in lemma 1.6 was used implicitely in § 1.1. We give
here another application.

Several methods are available to investigate the arithmetic nature of numbers
of the form ∑

n≥0

a−n
2

and
∑
n≥0

a−2n (1.16)

where a is a positive integer.
There is apparently a confusion in the litterature between these two series.

The name Fredholm series is often wrongly attributed to the power series∑
n≥0

z2n .

However Fredholm studied rather the series∑
n≥0

zn
2

(see the book [2] by Allouche & Shallit, Notes on chapter 13, page 403 as well
as Shallit’s paper [28]).

The series
∑
n≥0 z

n2
was explicitly quoted by Liouville (see for instance [11]).

We shall come back to this question later (where we discuss Nesterenko’s result
in 1995 according to which this number is transcendental). Right now we only
prove the irrationality of the numbers (1.16) for a ∈ Z, a ≥ 2 by means of
Lemma 1.6. More generally we replace the sequences (n2)n≥0 and (2n)n≥0 by
more general ones: one requires that they grow and tend to infinity sufficiently
fast.
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Lemma 1.17. Let (un)n≥0 be an increasing sequence of positive integers. As-
sume there exists c > 0 such that, for all sufficiently large n,

un − un−1 ≥ cn.

Let a ∈ Z, a ≥ 2. Then the number

ϑ =
∑
n≥0

a−un

is irrational.

Proof. Let N be a sufficiently large integer. Set

qN = auN , pN =
N∑
n=0

auN−un and RN = qNϑ− pN .

Then pN and qN are rational integers, while

RN =
∞∑
k=1

auN−uN+k

is > 0.
By induction on k ≥ 1 one checks

uN+k ≥ uN + ckN + vk where vk := c
k(k − 1)

2
·

Therefore
uN+k − uN − cN ≥ (k − 1)cN + vk ≥ vk

and
0 < RN ≤ a−cN

∑
k≥1

a−vk .

Hence RN tends to 0 as N tends to infinity and Lemma 1.6 shows that ϑ is
irrational.

Exercise 8. Let b ≥ 2 be an integer. Let (an)n≥0 be a bounded sequence
of rational integers and (un)n≥0 an increasing sequence of positive integers.
Assume there exists c > 0 and n0 ≥ 0 such that, for all n ≥ n0,

un+1 − un ≥ cn.

a) Deduce, for all k ≥ 1 and n ≥ n0,

un+k − un ≥ cnk + c · k(k − 1)
2

·

b) Show that the number
ϑ =

∑
n≥0

anb
−un

is irrational if and only if the set {n ≥ 0 ; an 6= 0} is infinite.
c) Deduce another proof of Lemma 1.17 in § 1.3.5.
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1.3.6 A further irrationality criterion

Lemma 1.18. Let ϑ be a real number. The following conditions are equivalent
(i) ϑ is irrational.
(ii) For any ε > 0 there exists p/q and r/s in Q such that

p

q
< ϑ <

r

s
, qr − ps = 1

and
max{qϑ− p ; r − sϑ} < ε.

(iii)There exist infinitely many pairs (p/q, r/s) of rational numbers such that

p

q
< ϑ <

r

s
, qr − ps = 1

and
max{q(qϑ− p) ; s(r − sϑ)} < 1.

Proof. The implications (iii)⇒(ii)⇒(i) are easy. For (i)⇒(iii) we use the argu-
ments in the proof of Lemma 1.9, but we use also an auxiliary result from the
theory of continued fractions.

Since ϑ is irrational, Hurwitz Lemma 1.8 shows that there are infinitely many
p/q such that ∣∣∣∣ϑ− p

q

∣∣∣∣ < 1
2q2
·

We shall use the fact that such a p/q is a so-called best approximation to ϑ: this
means that for any a/b ∈ Q with 1 ≤ b ≤ q and a/b 6= p/q, we have∣∣∣ϑ− a

b

∣∣∣ > ∣∣∣∣ϑ− p

q

∣∣∣∣ .
Assume first p/q < ϑ. Let r/s be defined by qr − ps = 1 and 1 ≤ s < q,

|r| < |p|. We have

0 <
r

s
− ϑ < r

s
− p

q
=

1
qs
≤ 1
s2
·

Next assume p/q > ϑ. In this case rename it r/s and define p/q by qr− ps = 1
and 1 ≤ q < s, |p| < |r|.

Finally repeat the argument in the proof of Lemma 1.9 to get an infinite set
of approximations. Lemma 1.18 follows.
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1.4 Irrationality of er and π

The proofs given in subsection 1.2 of the irrationality of er for several rational
values of r (namely r ∈ {1/a, 2/a,

√
2/a,
√

3/a ; a ∈ Z, a 6= 0}) are similar:
the idea is to start from the expansion of the exponential function, to truncate
it and to deduce rational approximations to er. In terms of the exponential
function this amounts to approximate ez by a polynomial. The main idea, due
to C. Hermite [15], is to approximate ez by rational functions A(z)/B(z). The
word “approximate” has the following meaning (Hermite-Padé): an analytic
function is well approximated by a rational function A(z)/B(z) (where A and
B are polynomial) if the difference B(z)f(z)− A(z) has a zero at the origin of
high multiplicity.

When we just truncate the series expansion of the exponential function,
we approximate ez by a polynomial in z with rational coefficients; when we
substitute z = a where a is a positive integer, this polynomial produces a
rational number, but the denominator of this number is quite large (unless
a = ±1). A trick gave the result also for a = ±2, but definitely for a a larger
prime number for instance there is a problem: if we multiply by the denominator
then the “remainder” is by no means small. To produce a sufficiently large gap
in the power expansion of B(z)ez will solve the problem.

Our first goal in this section is to prove the irrationality of er when r is a
non-zero rational number. Next we show how a slight modification implies the
irrationality of π.

This proof serves as an introduction to Hermite’s method. There are slightly
different ways to present it: one is Hermite’s original paper, another one is Siegel
more algebraic point of view [30], and another was derived by Yu. V.Ñesterenko
for [11] (unpublished manuscript).

1.4.1 Irrationality of er for r ∈ Q

If r = a/b is a rational number such that er is also rational, then e|a| is also
rational, and therefore the irrationality of er for any non-zero rational number r
follows from the irrationality of ea for any positive integer a. We shall approx-
imate the exponential function ez by a rational function A(z)/B(z) and show
that A(a)/B(a) is a good rational approximation to ea, sufficiently good in fact
so that one may use Lemma 1.6.

Write

ez =
∑
k≥0

zk

k!
·

We wish to multiply this series by a polynomial so that the Taylor expansion
at the origin of the product B(z)ez has a large gap: the polynomial preceding
the gap will be A(z), the remainder R(z) = B(z)ez − A(z) will have a zero of
high multiplicity at the origin.

In order to create such a gap, we shall use the differential equation of the
exponential function - hence we introduce derivatives.
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1.4.2 Following Nesterenko

We first explain how to produce, from an analytic function whose Taylor devel-
opment at the origin is

f(z) =
∑
k≥0

akz
k, (1.19)

another analytic function with one given Taylor coefficient, say the coefficient
of zm, is zero. The coefficient of zm for f is am = m!f (m)(0). The same number
am occurs when one computes the Taylor coefficient of zm−1 for the derivative
f ′ of f . Writing

mam = m!(zf ′)(m)(0),

we deduce that the coefficient of zm in the Taylor development of zf ′(z)−mf(z)
is 0, which is what we wanted.

It is the same thing to write

zf ′(z) =
∑
k≥0

kakz
k

so that
zf ′(z)−mf(z) =

∑
k≥0

(k −m)akzk.

Now we want that several consecutive Taylor coefficients cancel. It will be
convenient to introduce derivative operators.

We start with D = d/dz. As usual D2 denotes D ◦D and Dm = Dm−1 ◦D
for m ≥ 2. The derivation D and the multiplication by z do not commute:

D(zf) = f + zD(f),

relation which we write Dz = 1+zD. From this relation it follows that the non-
commutative ring generated by z and D over C is also the ring of polynomials
in D with coefficients in C[z]. In this ring C[z][D] there is an element which
will be very useful for us, namely δ = zd/dz. It satisfies δ(zk) = kzk. To any
polynomial T ∈ C[X] one associate the derivative operator T (δ).

By induction on m one checks δmzk = kmzk for all m ≥ 0. By linearity, one
deduces that if T is a polynomial with complex coefficients, then

T (δ)zk = T (k)zk.

For our function f with the Taylor development (1.19) we have

T (δ)f(z) =
∑
k≥0

akT (k)zk.

Hence if we want a function with a Taylor expansion having 0 as coefficient of
zk, it suffices to consider T (δ)f(z) where T is a polynomial satisfying T (k) = 0.
For instance if n0 and n1 are two non-negative integers and if we take

T (X) = (X − n0 − 1)(X − n0 − 2) · · · (X − n0 − n1),
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then the series T (δ)f(z) can be written A(z) +R(z) with

A(z) =
n0∑
k=0

T (k)akzk

and
R(z) =

∑
k≥n0+n1+1

T (k)akzk.

This means that in the Taylor expansion at the origin of T (δ)f(z), all coefficients
of zn0+1, zn0+2, . . . , zn0+n1 are 0.

Let n0 ≥ 0, n1 ≥ 0 be two integers. Define N = n0 + n1 and

T (X) = (X − n0 − 1)(X − n0 − 2) · · · (X −N).

Since T is monic of degree n1 with integer coefficients, it follows from the dif-
ferential equation of the exponential function

δ(ez) = zez

that there is a polynomial B ∈ Z[z], which is monic of degree n1, such that
T (δ)ez = B(z)ez.

Set

A(z) =
n0∑
k=0

T (k)
zk

k!
and R(z) =

∑
k≥N+1

T (k)
zk

k!
·

Then
B(z)ez = A(z) +R(z),

where A is a polynomial with rational coefficients of degree n0 and leading
coefficient

T (n0)
n0!

= (−1)n1
n1!
n0!
·

Also the analytic function R has a zero of multiplicity ≥ N + 1 at the origin.
We can explicit these formulae for A and R. For 0 ≤ k ≤ n0 we have

T (k) = (k − n0 − 1)(k − n0 − 2) · · · (k −N)
= (−1)n1(N − k) · · · (n0 + 2− k)(n0 + 1− k)

= (−1)n1
(N − k)!
(n0 − k)!

·

For k ≥ N + 1 we write in a similar way

T (k) = (k − n0 − 1)(k − n0 − 2) · · · (k −N) =
(k − n0 − 1)!
(k −N − 1)!

·

Hence we have proved:
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Proposition 1.20 (Hermite’s formulae for the exponential function). Let n0 ≥
0, n1 ≥ 0 be two integers. Define N = n0 + n1. Set

A(z) = (−1)n1

n0∑
k=0

(N − k)!
(n0 − k)!k!

· zk and R(z) =
∑

k≥N+1

(k − n0 − 1)!
(k −N − 1)!k!

· zk.

Finally, define B ∈ Z[z] by the condition

(δ − n0 + 1)(δ − n0 + 2) · · · (δ −N)ez = B(z)ez.

Then
B(z)ez = A(z) +R(z).

Further, B is a monic polynomial with integer coefficients of degree n1, A
is a polynomial with rational coefficients of degree n0 and leading coefficient
(−1)n1n1!/n0!, and the analytic function R has a zero of multiplicity N + 1 at
the origin.
Furthermore, if n1 ≥ n0, then the coefficients of A are integers.

Proof. It remains only to check the last assertion on the integrality of the coeffi-
cients of A for n1 ≥ n0. Indeed when n1 ≥ n0 each coefficient of the polynomial
A is an integral multiple of a binomial coefficient:

(N − k)!
(n0 − k)!k!

= (N − k)(N − k − 1) · · · (n0 + 1) · n0!
(n0 − k)!k!

for 0 ≤ k ≤ n0. Hence A ∈ Z[z].

We now restrict to the case n0 = n1 and we set n = n0 = n1. We write also

Tn(z) = (z − n− 1)(z − n− 2) · · · (z − 2n)

and we denote by An, Bn and Rn the Hermite polynomials and the remainder
in Hermite’s Proposition 1.20.

Remark. For n1 < n0 the leading coefficient (−1)n1n1!/n0! of A is not an
integer, but the polynomial (n0!/n1!)A always has integer coefficients.

Lemma 1.21. Let z ∈ C. Then

|Rn(z)| ≤ |z|
2n+1

n!
e|z|.

In particular the sequence (Rn(z))n≥0 tends to 0 as n tends to infinity.

Proof. We have

Rn(z) =
∑

k≥2n+1

(k − n− 1)!
(k − 2n− 1)!k!

· zk =
∑
`≥0

(`+ n)!
(`+ 2n+ 1)!

· z
`+2n+1

`!
·
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The trivial estimates

(`+ 2n+ 1)!
(`+ n)!

= (`+ 2n+ 1)(`+ 2n)(`+ 2n− 1) · · · (`+ n+ 1)ge(n+ 1)! ≥ n!

yields

|Rn(z)| ≤ |z|
2n+1

n!

∑
`≥0

|z|`

`!
·

Lemma 1.21 follows.

We are now able to complete the proof of the irrationality of er for ∈ Q,
r 6= 0.

Let r = a/b be a non-zero rational number. Assume first r is positive. Set
s = er and replace z by a = br in the previous formulae; we deduce

Bn(a)sb −An(a) = Rn(a).

All coefficients in Rn are positive, hence Rn(a) > 0. Therefore Bn(a)sb −
An(a) 6= 0. Since Rn(a) tends to 0 when n tends to infinity and since Bn(a)
and An(a) are rational integers, we may use the implication (ii)⇒(i) in Lemma
1.6: we deduce that the number sb is irrational. As we already saw this readily
implies that s = er and s−1 = e−r are irrational.

1.4.3 Irrationality of π

The proof of the irrationality of log s for s a positive rational number given in
§ 1.4.1 can be extended to the case s = −1 in such a way that one deduces the
irrationality of the number π (this result was first proved by H. Lambert in 1761
[18], using continued fraction expansion for the tangent function).

Assume π is a rational number, π = a/b. Substitute z = ia = iπb in the
previous formulae. Notice that ez = (−1)b:

Bn(ia)(−1)b −An(ia) = Rn(ia),

and that the two complex numbers An(ia) and Bn(ia) are in Z[i]. The left hand
side is in Z[i], the right hand side tends to 0 as n tends to infinity, hence both
sides are 0.

In the proof of § 1.4.1 we used the positivity of the coefficients of Rn and
we deduced that Rn(a) was not 0 (this is the so-called “zero estimate” in tran-
scendental number theory). Here we need another argument.

The last step of the proof of the irrationality of π is achieved by using two
consecutive indices n and n+ 1. We eliminate ez among the two relations

Bn(z)ez −An(z) = Rn(z) and Bn+1(z)ez −An+1(z) = Rn+1(z).

We deduce that the polynomial

∆n = BnAn+1 −Bn+1An (1.22)
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can be written
∆n = −BnRn+1 +Bn+1Rn. (1.23)

As we have seen, the polynomial Bn is monic of degree n; the polynomial An
also has degree n, its highest degree term is (−1)nzn. It follows from (1.22) that
∆n is a polynomial of degree 2n+ 1 and highest degree term (−1)n2z2n+1. On
the other hand since Rn has a zero of multiplicity at least 2n + 1, the relation
(1.23) shows that it is the same for ∆n. Consequently

∆n(z) = (−1)n2z2n+1.

We deduce that ∆n does not vanish outside 0. From (1.23) we deduce that Rn
and Rn+1 have no common zero apart from 0. This completes the proof of the
irrationality of π.

1.5 Padé approximation to the exponential function

For h ≥ 0, the h-th derivative DhR(z) of the remainder in Proposition 2.7 is
given by

DhR(z) =
∑

k≥N+1

(k − n0 − 1)!
(k −N − 1)!

· zk−h

(k − h)!
·

In particular for h = n0 + 1 the formula becomes

Dn0+1R =
∑

k≥N+1

zk−n0−1

(k −N − 1)!
= zn1ez. (1.24)

This relations determines R since R has a zero of multiplicity ≥ n0 + 1 at the
origin.

1.5.1 Siegel’s point of view

Theorem 1.25. Given two integers n0 ≥ 0, n1 ≥ 0, there exist two polynomials
A and B in C[z] with A of degree ≤ n0 and B 6= 0 of degree ≤ n1 such that the
function R(z) = B(z)ez −A(z) has a zero at the origin of multiplicity ≥ N + 1
with N = n0 +n1. This solution (A,B,R) is unique if we require B to be monic.
Moreover A has degree n0, B has degree n1 and R has multiplicity N + 1 at the
origin.

We denote by D the derivation d/dz. When f is a complex valued function
of one complex variable z, we shall sometimes write D

(
f(z)

)
in place of Df . For

instance D(zf) = f+zDf . We write as usual D2 for D◦D and D` = D◦D`−1.
The Taylor expansion at the origin of an analytic function f is

f(z) =
∑
`≥0

1
`!
D`f(0)z`.
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Proof. We first prove the existence of a non-trivial solution (A,B,R). For n ≥ 0
denote by C[z]≤n the C–vector space of polynomials of degree≤ n. Its dimension
is n+ 1. Consider the linear mapping

L : C[z]≤n1 −→ Cn1

B(z) 7−→
(
D`
(
B(z)ez

)
z=0

)
n0<`≤N

This map is not injective, its kernel has dimension ≥ 1. Let B ∈ kerL. Define

A(z) =
n0∑
`=0

D`
(
B(z)ez

)
z=0

z`

`!

and

R(z) =
∑

`≥N+1

D`
(
B(z)ez

)
z=0

z`

`!
·

Then (A,B,R) is a solution to the problem:

B(z)ez = A(z) +R(z). (1.26)

There is an alternative proof of the existence as follows [30]. Consider the
linear mapping

C[z]≤n0 × C[z]≤n1 −→ CN+1(
A(z), B(z)

)
7−→

(
D`
(
B(z)ez

)
z=0

)
0≤`≤N

This map is not injective, its kernel has dimension ≥ 1. If (A,B) is a non-zero
element in the kernel, then B 6= 0.

We now check that the kernel of L has dimension 1. Let B ∈ kerL, B 6= 0
and let (A,B,R) be the corresponding solution to (1.26).

Since A has degree ≤ n0, the (n0 + 1)-th derivative of R is

Dn0+1R = Dn0+1(B(z)ez),

hence it is the product of ez with a polynomial of the same degree as the degree
of B and same leading coefficient. Now R has a zero at the origin of multiplicity
≥ n0 + n1 + 1, hence Dn0+1R(z) has a zero of multiplicity ≥ n1 at the origin.
Therefore

Dn0+1R = czn1ez (1.27)

where c is the leading coefficient of B; it follows also that B has degree n1. This
proves that kerL has dimension 1.

Since Dn0+1R has a zero of multiplicity exactly n1, it follows that R has a
zero at the origin of multiplicity exactly N + 1, so that R is the unique function
satisfying Dn0+1R = czn1ez with a zero of multiplicity n0 at 0.

It remains to check that A has degree n0. Multiplying (1.26) by e−z, we
deduce

A(z)e−z = B(z)−R(z)e−z.
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We replace z by −z:

A(−z)ez = B(−z)−R(−z)ez. (1.28)

It follows that
(
B(−z), A(−z),−R(−z)ez

)
is a solution to the Padé problem

(1.26) for the parameters (n1, n0), hence A has degree n0.

Following [30], we give formulae for A, B and R.
Consider the operator J defined by

J(ϕ) =
∫ z

0

ϕ(t)dt.

It satisfies
DJϕ = ϕ and JDf = f(z)− f(0).

The restriction of the operator of D to the functions vanishing at the origin is
a one-to-one map with inverse J .

Lemma 1.29. For n ≥ 0,

Jn+1ϕ =
1
n!

∫ z

0

(z − t)nϕ(t)dt.

Proof. The formula is valid for n = 0. We first check it for n = 1. The derivative
of the function ∫ z

0

(z − t)ϕ(t)dt = z

∫ z

0

ϕ(t)dt−
∫ z

0

tϕ(t)dt

is ∫ z

0

ϕ(t)dt+ zϕ(z)− zϕ(z) =
∫ z

0

ϕ(t)dt.

We now proceed by induction. The derivative of the function of z

1
n!

∫ z

0

(z − t)nϕ(t)dt =
n∑
k=0

(−1)n−k

k!(n− k)!
· zk

∫ z

0

tn−kϕ(t)dt

is
n∑
k=0

(−1)n−k

k!(n− k)!

(
kzk−1

∫ z

0

tn−kϕ(t)dt+ znϕ(z)
)
.

Since
n∑
k=0

(−1)n−k

k!(n− k)!
= 0,

the right hand side is nothing else than
n∑
k=1

(−1)n−k

(k − 1)!(n− k)!
· zk−1

∫ z

0

tn−kϕ(t)dt =
1

(n− 1)!

∫ z

0

(z − t)n−1ϕ(t)dt.
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From (1.27) with c = 1 and Lemma 1.29 it plainly follows:

Lemma 1.30. The remainder R(z) in Hermite’s fomula with parameters n0

and n1 (and B monic) is given by

R(z) =
1
n0!

∫ z

0

(z − t)n0tn1etdt.

Replacing t by tz yields

R(z) =
zN+1

n0!

∫ 1

0

(1− t)n0tn1etzdt.

Hence:

Lemma 1.31. Let z ∈ C. Then

|R(z)| ≤ |z|
N+1

n0!
e|z|.

In particular for n0 = n1 = n, if we denote R by Rn, then the sequence
(Rn(z))n≥0 tends to 0 as n tends to infinity.

Remark. This is the estimate for B monic. When n1 < n0 the coefficients
of the associated polynomial A are not integers. For instance in case n1 = 0
(hence n0 = N) the polynomial B is 1 and A (which is the head of the Taylor
expansion of the exponential function) has denominator N !. In case n1 = 1 we
need to multiply by (N−1)!, as explained above, to get integer coefficients. More
generally in case n1 < n0 we need to multiply by n0!/n1! in order to get integer
coefficients, so the remainder in this case is bounded by

n0!
n1!
|R(z)| ≤ |z|

N+1

n1!
e|z|.

If we want to have a small remainder we need to take n1 at least a constant
times N/ logN . The choice n1 = n0 = N/2 is the most natural one.

We now give formulae for A and B in Theorem 1.25.
When S ∈ C[[X]] is a power series, say

S(X) =
∑
i≥0

siX
i,

and f an analytic complex valued function, we define

S(D)f =
∑
i≥0

siD
if,

and we shall use this notation only when the sum is finite: either S is a poly-
nomial in C[X] or f is a polynomial in C[z].
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We reproduce [30], Chap.I § 1: for two powers series S1 and S2 and an
analytic function f we have(

S1(D) + S2(D)
)
f = S1(D)f + S2(D)f

and (
S1(D)S2(D)

)
f = S1(D)

(
S2(D)

)
f.

Also if s0 6= 0 then the series S has an inverse in the ring C[[X]]

S−1(X) =
∑
i≥0

tiX
i, (t0 = 1/s0)

and
S−1(D)

(
S(D)f

)
= f.

If the power series S and the polynomial f have integer coefficients, then S(D)f
is also a polynomial with integer coefficients. The same holds also for S−1(D)f
if, further, s0 = ±1.

For λ ∈ C and P ∈ C[z], we have

D(eλzP ) = eλz(λ+D)P.

Hence for n ≥ 1,
Dn(eλzP ) = eλz(λ+D)nP

and (λ + D)nP is again a polynomial of the same degree as P when λ 6= 0.
Conversely, assuming λ 6= 0, given a polynomial Q ∈ C[z], the unique solution
P ∈ C[z] to the differential equation

(λ+D)nP = Q

is
P = (λ+D)−nQ.

In the case λ = ±1, when Q has integer coefficients, then so does P .
We come back now to the solution (A,B,R) to the Padé problem (1.26) in

Theorem 1.25, where B ∈ C[z] is monic of degree n1 and A ∈ C[z] has degree
n0, while R ∈ C[[z]] has a zero of multiplicity N + 1 at 0.

From
Dn0+1

(
B(z)ez

)
= zn1ez

we deduce
B(z) = (1 +D)−n0−1zn1 .

From this formula it follows that B has integer coefficients. It is easy to explicit
the polynomial B. From

(1 +D)−n0−1 =
∑
`≥0

(−1)`
(
n0 + `

`

)
D`,
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we deduce

B(z) =
n1∑
`=0

(−1)`
(
n0 + `

`

)
n1!

(n1 − `)!
zn1−`,

which can be written also as

B(z) = (−1)n1
n1!
n0!

n1∑
k=0

(−1)k
(N − k)!

(n1 − k)!k!
zk. (1.32)

One checks that B is monic of degree n1.
If B is monic then c = 1 in (1.27) and it follows that the coefficient of zN+1

in R is
n1!

(N + 1)!
·

In the proof of Theorem 1.25, we found a link between the Padé solution with
parameters (n0, n1) and the solution with parameters (n1, n0). We explicit this
link. For that we denote by (An0,n1 , Bn0,n1 , Rn0,n1) the solution of (1.26) for
the parameters (n0, n1). From (1.28) we infer

An0,n1(z) = (−1)N
n1!
n0!

Bn1,n0(−z),

Bn0,n1(z) = (−1)N
n1!
n0!

An1,n0(−z),

Rn0,n1(z) = (−1)N
n1!
n0!

Rn1,n0(−z)e−z.

Hence

A(z) = (−1)n1

n0∑
k=0

(N − k)!
(n0 − k)!k!

· zk. (1.33)

The leading coefficient of A is (−1)n1n1!/n0!. It follows also from (1.33) that
(n0!/n1!)A has integer coefficients. In particular if n1 ≥ n0, then A is in Z[z].

We can also check this formula (1.33) starting from

Dn1+1
(
A(z)e−z

)
= −Dn1+1

(
R(z)e−z

)
,

where the left hand side is the product of e−z with a polynomial of degree ≤ n0,
while the right hand side has a multiplicity ≥ n0 at the origin. We deduce

Dn1+1
(
A(z)e−z

)
= azn0e−z

where a is the leading coefficient of a. From

Dn1+1
(
A(z)e−z

)
= e−z(−1 +D)n1+1A(z)

we deduce
(−1 +D)n1+1A(z) = −azn0
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and
A(z) = −a(−1 +D)−n1−1zn0 .

We shall give another proof of the formulae (1.32) and (1.33), which provide
also the next formula for R:

R(z) =
∑

k≥N+1

(k − n0 − 1)!
(k −N − 1)!k!

· zk. (1.34)

Lemma 1.31 also follows from 1.34. Indeed we have

Rn(z) =
∑

k≥2n+1

(k − n− 1)!
(k − 2n− 1)!k!

· zk =
∑
`≥0

(`+ n)!
(`+ 2n+ 1)!

· |z|
`+2n+1

`!
·

The trivial upper bound

n+∏̀
j=n+1

j ≤
n+∏̀
j=n+1

(j + n+ 1)

is equivalent to
(`+ n)!

(`+ 2n+ 1)!
≤ n!

(2n+ 1)!
,

hence

|Rn(z)| ≤ n!|z|2n+1

(2n+ 1)!

∑
`≥0

|z|`

`!
·

We bound n!/(2n+ 1)! by n!: Lemma 1.31 follows.

1.5.2 Hermite’s identity

The next formula is one of the many disguises of Hermite’s identity.

Lemma 1.35. Let f be a polynomial of degree ≤ N . Define

F = f +Df +D2 + · · ·+DNf.

Then for z ∈ C ∫ z

0

e−tf(t)dt = F (0)− e−zF (z).

We can also write the definition of F as

F = (1−D)−1f where (1−D)−1 =
∑
k≥0

Dk.

The series in the right hand side is infinite, but when we apply the operator to a
polynomial only finitely many Dkf are not 0: when f is a polynomial of degree
≤ N then Dkf = 0 for k > N .
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Proof. More generally, if f is a complex function which is analytic at the origin
and N is a positive integer, if we set

F = f +Df +D2 + · · ·+DNf,

then the derivative of e−tF (t) is −e−tf(t) + e−tDN+1f(t).

We shall come back to such formulae in section § 2.1.3.
In Fourier’s proof, we use for B a constant polynomial, of degree 0. For N

sufficiently large set

BN = N !, AN (z) =
N∑
n=0

N !
n!
zn, RN (z) =

∑
n≥N+1

N !
n!
zn.

Notice that the first term in the Taylor expansion of RN is

1
N + 1

zN+1.

This is sufficient for proving the irrationality of e, since for z = 1 we have

lim
N→∞

RN (1) = 0.

But for a > 1 the sequence (RN (a))N≥1 tends to infinity.
Now take for BN a degree 1 polynomial in Z[z] that we select so that the

coefficient of zN vanishes. It is easy to check that the solution is to take a
multiple of z−N , and we take the product by (N −1)! in order to have integral
coefficients for A. So set

BN (z) = (N − 1)!z −N !, AN (z) = −N !−
N−1∑
n=1

(N − 1)!
n!

(N − n)zn,

RN (z) =
∑

n≥N+1

(N − 1)!
n!

(n−N)zn

so that again BN (z)ez = AN (z) + RN (z). Here the first term in the Taylor
expansion of RN is

1
N(N + 1)

zN+1.

This is a tiny progress, since in the denominator we get a degree 2 polynomial
in place of a degree 1 polynomial in N . But this is not sufficient to ensure that
for fixed a > 1 the sequence (RN (a))N≥1 tends to zero. So we shall take for BN
a polynomial of larger degree, depending on N .
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2 Transcendence

2.1 Hermite’s Method

In 1873 C. Hermite [15] proved that the number e is transcendental. In his
paper he explains in a very clear way how he found his proof. He starts with an
analogy between simultaneous diophantine approximation of real numbers on
the one hand and analytic complex functions of one variable on the other. He
first solves the analytic problem by constructing explicitly what is now called
Padé approximants for the exponential function. In fact there are two types of
such approximants, they are now called type I and type II, and what Hermite
did in 1873 was to compute Padé approximants of type II. He also found those
of type I in 1873 and studied them later in 1893. K. Mahler was the first in the
mid’s 1930 to relate the properties of the two types of Padé’s approximants and
to use those of type I in order to get a new proof of Hermite’s transcendence
Theorem (and also of the generalisation by Lindemann and Weierstraß as well
as quantitative refinements). See [11] Chap. 2 § 3.

In the analogy with number theory, Padé approximants of type II are related
with the simultaneous approximation of real numbers ϑ1, . . . , ϑm by rational
numbers pi/q with the same denominator q (one does not require that the
fractions are irreducible), which means that we wish to bound from below

max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣
in terms of q, while type I is related with the study of lower bounds for linear
combinations

|a0 + a1ϑ1 + · · ·+ amϑm|
when a0, . . . , am are rational integers, not all of which are 0, in terms of the
number max0≤i≤m |ai|.

After Hermite’s seminal work, F. Lindemann was able to extend the argu-
ment and to prove the transcendence of π (hence he solved the old greek problem
of the quadrature of the circle: it is not possible using ruler and compass to draw
a square and a circle having the same area). This extension led to the so-called
Hermite-Lindemann’s Theorem:

Theorem 2.1 (Hermite–Lindemann). Let α be a non zero complex algebraic
number. Let logα be any non-zero logarithm of α. Then logα is transcendental.

Equivalently, let β be a non-zero algebraic number. Then eβ is transcenden-
tal.

Recall that any non-zero complex number z has complex logarithms: these
are the solutions ` ∈ C of the equation e` = z. If ` is one of them, then all
solutions ` to this equation e` = z are `+ 2ikπ with k ∈ Z. The only non-zero
complex of which 0 is a logarithm is 1.

The equivalence between both statements in Theorem 2.1 is easily seen by
setting eβ = α: one can phrase the result by saying that for any non-zero
complex number β, one at least of the two numbers β, eβ is transcendental.
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After the proofs by Hermite and Lindemann, a number of authors in the XIX-
th century worked out variants of the argument. The main goal was apparently
to get the shorter possible proof, and most often the reason for which it works
is by no means so clear as in Hermite’s original version. One can find in the
literature such short proofs (see for instance [23]), the connexion with Hermite’s
arguments are most often not so transparent. So we shall come back to the origin
and try to explain what is going on.

We concentrate now on Hermite’s proof for the transcendence of e. The
goal is to prove that for any positive integer m, the numbers 1, e, e2, . . . , em are
linearly independent over Q.

2.1.1 Criterion of linear independence

We first state a criterion for linear independence. This is a generalisation (from
personal notes of Michel Laurent after a course he gave in Marseille) of one
of the previous criteria for irrationality, namely Lemma 1.18. Most often in
mathematics there is sort of an entropy: when a statement provides a necessary
and sufficient condition, and when one of the two implication is easy while the
other requires more work, then it is the difficult part which is most useful. Here
we have a counterexample to this claim (which does not belong to mathematics
but rather to social science): in the criterion 2.2 below, one of the implications
is easy while the other is deeper; but it turns out that it is the easy one which is
required in transcendence proofs. So we state the statement and prove the easy
part now, we postpone the reverse to a later section where we introduce some
tools from geometry of numbers and give further corollaries of these tools.

Let ϑ1, . . . , ϑm be real numbers and a0, a1, . . . , am rational integers, not all
of which are 0. Our goal is to prove that the number

L = a0 + a1ϑ1 + · · ·+ amϑm

is not 0.
The idea is to approximate simultaneously ϑ1, . . . , ϑm by rational numbers

p1/q, . . . , pm/q with the same denominator q > 0.
Let q, p1, . . . , pm be rational integers with q > 0. For 1 ≤ k ≤ m set

εk = qϑk − pk.

Then qL = M +R with

M = a0q + a1p1 + · · ·+ ampm ∈ Z and R = a1ε1 + · · ·+ amεm ∈ R.

If M 6= 0 and |R| < 1 we deduce L 6= 0.
One of the main difficulties is often to check M 6= 0. This question gives

rise to the so-called zero estimates or non-vanishing lemmas. In the present
situation, we wish to find a m + 1–tuple (q, p1, . . . , pm) giving a simultaneous
rational approximation to (ϑ1, . . . , ϑm), but we also require that it lies outside
the hyperplane a0x0 + a1x1 + · · · + ampm = 0 of Qm+1. Since this needs
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to be checked for all hyperplanes, the solution is to construct not only one
tuple (q, p1, . . . , pm) in Zm+1 \ {0}, but m + 1 such tuples which are linearly
independent. This yields m + 1 pairs (Mk, Rk), k = 0, . . . ,m in place of a
single pair (M,R), and from (a0, . . . , am) 6= 0 one deduces that one at least of
M0, . . . ,Mm is not 0.

It turns out that nothing is lossed by using such arguments: existence of
linearly independent simultaneous rational approximations for ϑ1, . . . , ϑm are
characteristic of linearly independent numbers 1, ϑ1, . . . , ϑm. As we just said
earlier, we shall use only the easy part of the next lemma 2.2.

Lemma 2.2. Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm. Then the following conditions are
equivalent.
(i) The numbers 1, ϑ1, . . . , ϑm are linearly independent over Q.
(ii) For any ε > 0 there exist m+ 1 linearly independent elements b0, b1, . . . , bm
in Zm+1, say

bi = (qi, p1i, . . . , pmi), (0 ≤ i ≤ m)

with qi > 0, such that

max
1≤k≤m

∣∣∣∣ϑk − pki
qi

∣∣∣∣ ≤ ε

qi
, (0 ≤ i ≤ m). (2.3)

In (ii) there is no non-vanishing condition. For m = 1 this criterion is not
identical to the irrationality criterion: in Lemma 1.6, we required for each ε
one approximation p/q distinct from θ. Here we need two linearly independent
approximations: hence, if θ is rational, one at least of them is not the trivial
one.

The condition on linear independence of the elements b0, b1, . . . , bm means
that the determinant ∣∣∣∣∣∣∣

q0 p10 · · · pm0

...
...

. . .
...

qm p1m · · · pmm

∣∣∣∣∣∣∣
is not 0.

For 0 ≤ i ≤ m, set

ri =
(
p1i

qi
, . . . ,

pmi
qi

)
∈ Qm.

Further define, for x = (x1, . . . , xm) ∈ Rm

|x| = max
1≤i≤m

|xi|.

Also for x = (x1, . . . , xm) ∈ Rm and x = (x1, . . . , xm) ∈ Rm set

x− y = (x1 − y1, . . . , xm − ym),

so that
|x− y| = max

1≤i≤m
|xi − yi|.
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Then the relation (2.3) in Lemma 2.2 can be written

|ϑ− ri| ≤
ε

qi
, (0 ≤ i ≤ m).

We shall prove a more explicit version of (ii)⇒(i): we check that any tuple
(q, p1, . . . , pm) ∈ Zm+1 producing a tuple (p1/q, . . . , pm/q) ∈ Qm of sufficiently
good rational approximations to ϑ satisfies the same linear dependence relations
as 1, ϑ1, . . . , ϑm.

Lemma 2.4. Let ϑ1, . . . , ϑm be real numbers. Assume that the numbers 1, ϑ1, . . . , ϑm
are linearly dependent over Q: let a, b1, . . . , bm be rational integers, not all of
which are zero, satisfying

a+ b1ϑ1 + · · ·+ bmϑm = 0.

Let ε > 0 satisfy
∑m
k=1 |bk] > 1/ε. Assume further that (q, p1, . . . , pm) ∈ Zm+1

satisfies q > 0 and
max

1≤k≤m
|qϑk − pk| ≤ ε.

Then
aq + b1p1 + · · ·+ bmpm = 0.

Proof. In the relation

qa+
m∑
k=1

bkpk = −
m∑
k=1

bk(qϑk − pk),

the right hand side has absolute value less than 1 and the left hand side is a
rational integer, so it is 0.

Proof of (ii)⇒(i) in Lemma 2.2. By assumption (ii) we havem+1 linearly inde-
pendent elements bi ∈ Zm+1 such that the corresponding rational approximation
satisfy the assumptions of Lemma 2.4. For each non-zero linear form

aX0 + b1X1 + · · ·+ bmXm = 0

one at least of the L(bi) is not 0. Hence

a+ b1ϑ1 + · · ·+ bmϑm 6= 0.

Proof of (i)⇒(ii) in Lemma 2.2. Let ε > 0. Assume (i) holds. By Dirichlet’s
box principle (Lemma 1.7), there exists b = (q, p1, . . . , pm) ∈ Zm+1 with q > 0
such that

max
1≤k≤m

∣∣∣∣ϑk − pk
q

∣∣∣∣ ≤ ε

q
·
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Consider the subset Eε ⊂ Zm+1 of these tuples. We show that the Q-vector
subspace Vε of Qm+1 spanned by Eε is Qm+1. It will follow that there are m+1
linearly independent elements in Eε.

If Vε 6= Qm+1, then there is a hyperplane a0z0 + a1z1 + · · · + amzm = 0
containing Eε. Any b = (q, p1, . . . , pm) in Eε has

a0q + a1p1 + · · ·+ ampm = 0.

For each n ≥ 1/ε, let b = (qn, p1n, . . . , pmn) ∈ Eε satisfy

max
1≤k≤m

∣∣∣∣ϑk − pkn
qn

∣∣∣∣ ≤ 1
nqn
·

Then

−a0 + a1θ1 + · · ·+ amθm =
m∑
k=1

ak

(
θk −

pkn
qn

)
.

Hence

| − a0 + a1θ1 + · · ·+ amθm| ≤
1
nqn

m∑
k=1

|ak|.

The right hand side tends to 0 as n tends to infinity, hence the left hand side
vanishes, and 1, ϑ1, . . . , ϑm are Q–linearly dependent, which contradicts (i).

2.1.2 Padé approximants

Henri Eugène Padé (1863–1953), who was a student of Charles Hermite (1822–
1901), gave his name to the following objects.

Lemma 2.5. Let f1, . . . , fm be analytic functions of one complex variable near
the origin. Let n0, n1, . . . , nm be non-negative integers. Set

N = n0 + n1 + · · ·+ nm.

Then there exists a tuple (Q,P1, . . . , Pm) of polynomials in C[X] satisfying the
following properties:
(i) The polynomial Q is not zero, it has degree ≤ N − n0.
(ii) For 1 ≤ µ ≤ m, the polynomial Pµ has degree ≤ N − nµ.
(iii) For 1 ≤ µ ≤ m, the function x 7→ Q(x)fµ(x) − Pµ(x) has a zero at the
origin of multiplicity ≥ N + 1.

Definition. A tuple (Q,P1, . . . , Pm) of polynomials in C[X] satisfying the con-
dition of Lemma 2.5 is called a Padé system of the second type for (f1, . . . , fm)
attached to the parameters n0, n1, . . . , nm.

Proof. The polynomial Q of Lemma 2.5 should have degree ≤ N − n0, so we
have to find (or rather to prove the existence) its N − n0 + 1 coefficients, not
all being zero. We consider these coefficients as unknowns. The property we
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require is that for 1 ≤ µ ≤ m, the Taylor expansion at the origin of Q(z)fµ(z)
has zero coefficients for zN−nµ+1, zN−nµ+1, . . . , zN . If this property holds for
1 ≤ µ ≤ m, we shall define Pµ by truncating the Taylor series at the origin of
Q(z)fµ(z) at the rank zN−nµ , hence Pµ will have degree ≤ N − nµ, while the
remainder Q(z)fµ(z)− Pµ(z) will have a mutiplicity ≥ N + 1 at the origin.

Now for each given µ the condition we stated amounts to require that our
unknowns (the coefficients of Q) satisfy nµ homogeneous linear relations, namely(

d

dx

)k
[Q(x)fµ(x)]x=0 = 0 for N − nµ < k ≤ N.

Therefore altogether we get n1+· · ·+nm = N−n0 homogeneous linear equations,
and since the number N − n0 + 1 of unknowns (the coefficients of Q) is larger,
linear algebra tells us that a non-trivial solution exists.

There is no unicity, because of the homogeneity of the problem: the set of
solutions (together with the trivial solution 0) is a vector space over C, and
Lemma 2.5 tells us that it has positive dimension. In the case where this di-
mension is 1 (which means that there is unicity up to a multiplicative factor),
the system of approximants is called perfect. An example is with m = 1 and
f(z) = ez, as shown by Hermite’s work.

Exercise 9. Let f1, . . . , fm be analytic functions of one complex variable near
the origin. Let d0, d1, . . . , dm be non-negative integers. Set

M = d0 + d1 + · · ·+ dm +m.

a) Show that there exists a tuple (A0, . . . , Am) of polynomials in C[X], not all
of which are zero, where Ai has degree ≤ di, such that the function

A0 +A1f1 + · · ·+Amfm

has a zero at the origin of multiplicity ≥M .
These are the Padé approximants of type I.
b) Give an explicit solution (A0, A1) in the case m = 1 and f1(z) = ez.

Most often it is not easy to find explicit solutions: we only know their exis-
tence. As we are going to show, Hermite succeeded to produce explicit solutions
for the systems of Padé approximants of the functions (ex, e2x, . . . , emx).

2.1.3 Hermite’s identity

Let us come back to the problem which was considered in § 1.4.1 and solved by
Hermite (Proposition 1.20):

Given two integers n0 ≥ 0, n1 ≥ 0, find two polynomials A and B with A of
degree ≤ n0 and B of degree ≤ n1 such that the function R(z) = B(z)ez −A(z)
has a zero at the origin of multiplicity ≥ N + 1 with N = n0 + n1.
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From § 1.5 one easily deduces that there is a non-trivial solution, and it is
unique if one requires B to be monic. Moreover B has degree n1 and R has
multiplicity exactly N + 1 at the origin.

Indeed, since A has degree ≤ n0, the (n0 + 1)-th derivative of R is

Dn0+1R = Dn0+1(B(z)ez),

hence it is the product of ez with a polynomial of the same degree as the degree
of B and same leading coefficient. Now R has a zero at the origin of multiplicity
≥ n0 + n1 + 1, hence Dn0+1R(z) has a zero of multiplicity ≥ n1 at the origin.
Therefore Dn0+1R = czn1ez where c is the leading coefficient of B. Since
Dn0+1R has a zero of multiplicity exactly n1, it follows that R has a zero at the
origin of multiplicity exactly N + 1. Finally R is the unique function satisfying
Dn0+1R = czn1ez with a zero of multiplicity ≥ n0 at 0. According to Lemma
1.29, this implies that the unique solution R for which c = 1 is given by the
formula of Lemma 1.30:

R(z) =
1
n0!

∫ z

0

(z − t)n0tn1etdt.

Hence Padé system for the exponential function is perfect.
Our goal is to generalize these results.
Let f be a polynomial. Hermite’s Lemma 1.35 gives a formula for∫ z

0

e−tf(t)dt

for z ∈ C. A change of variables leads to a formula for∫ u

0

e−xtf(t)dt

when x and u are complex numbers. Here, in place of using Lemma 1.35, we
repeat the proof. Integrate by part e−xtf(t) between 0 and u:∫ u

0

e−xtf(t)dt = −
[

1
x
e−xtf(t)

]u
0

+
1
x

∫ u

0

e−xtf ′(t)dt.

By induction we deduce∫ u

0

e−xtf(t)dt = −
m∑
k=0

[
1

xk+1
e−xtDkf(t)

]u
0

+
1

xm+1

∫ u

0

e−xtDm+1f(t)dt.

Let N be an upper bound for the degree of f . For m = N the last integral
vanishes and∫ u

0

e−xtf(t)dt = −
N∑
k=0

[
1

xk+1
e−xtDkf(t)

]u
0

=
N∑
k=0

1
xk+1

Dkf(0)− e−xu
N∑
k=0

1
xk+1

Dkf(u).

Multipling by xN+1eux yields:
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Lemma 2.6. Let f be a polynomial of degree ≤ N and let x, u be complex
numbers. Then

exu
N∑
k=0

xN−kDkf(0) =
N∑
k=0

xN−kDkf(u) + xN+1exu
∫ u

0

e−xtf(t)dt.

With the notation of Lemma 2.6, the function

x 7→
∫ u

0

e−xtf(t)dt

is analytic at x = 0, hence its product with xN+1 has a mutiplicity ≥ N + 1 at
the origin. Moreover

Q(x) =
N∑
k=0

xN−kDkf(0) and P (x) =
N∑
k=0

xN−kDkf(u)

are polynomials in x.
If the polynomial f has a zero of multiplicity ≥ n0 at the origin, then Q has

degree ≤ N −n0. If the polynomial f has a zero of multiplicity ≥ n1 at u, then
P has degree ≤ N − n1.

For instance in the case u = 1, N = n0 + n1, f(t) = tn0(t − 1)n1 , the two
polynomials

Q(x) =
N∑

k=n0

xN−kDkf(0) and P (x) =
N∑

k=n1

xN−kDkf(1)

satisfy the properties which were required in section §1.4.1 (see Proposition
1.20), namely R(z) = Q(z)ez −P (z) has a zero of multiplicity > n0 + n1 at the
origin, P has degree ≤ n0 and Q has degree ≤ n1.

Lemma 2.6 is a powerful tool to go much further.

Proposition 2.7. Let m be a positive integer, n0, . . . , nm be non-negative in-
tegers. Set N = n0 + · · · + nm. Define the polynomial f ∈ Z[t] of degree N
by

f(t) = tn0(t− 1)n1 · · · (t−m)nm .

Further set, for 1 ≤ µ ≤ m,

Q(x) =
N∑

k=n0

xN−kDkf(0), Pµ(x) =
N∑

k=nµ

xN−kDkf(µ)

and
Rµ(x) = xN+1exµ

∫ µ

0

e−xtf(t)dt.
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Then the polynomial Q has exact degree N − n0, while Pµ has exact degree
N − nµ, and Rµ is an analytic function having at the origin a multiplicity
≥ N + 1. Further, for 1 ≤ µ ≤ m,

Q(x)eµx − Pµ(x) = Rµ(x).

Hence (Q,P1, . . . , Pm) is a Padé system of the second type for the m-tuple of
functions (ex, e2x, . . . , emx), attached to the parameters n0, n1, . . . , nm. Fur-
thermore, the polynomials (1/n0!)Q and (1/nµ!)Pµ for 1 ≤ µ ≤ m have integral
coefficients.

These polynomials Q,P1, . . . , Pm are called the Hermite-Padé polynomials
attached to the parameters n0, n1, . . . , nm.

Proof. The coefficient of xN−n0 in the polynomial Q is Dn0f(0), so it is not
zero since f has mutiplicity exactly n0 at the origin. Similarly for 1 ≤ µ ≤ m
the coefficient of xN−nµ in Pµ is Dn0f(µ) 6= 0.

The assertion on the integrality of the coefficients follows from the next
lemma.

Lemma 2.8. Let f be a polynomial with integer coefficients and let k be a
non-negative integer. Then the polynomial (1/k!)Dkf has integer coefficients.

Proof. If f(X) =
∑
n≥0 anX

n then

1
k!
Dkf =

∑
n≥0

an

(
n

k

)
Xn with

(
n

k

)
=

n!
k!(n− k)!

,

and the binomial coefficients are rational integers.

From Lemma 2.8 it follows that for any polynomial f ∈ Z[X] and for any
integers k and n with n ≥ k, the polynomial (1/k!)Dnf also belongs to Z[X].
This completes the proof of Proposition 2.7.

In order to complete the proof of the transcendence of e, we shall substitute
1 to x in the relations

Q(x)eµx = Pµ(x) +Rµ(x)

and deduce simultaneous rational approximations (p1/q, p2/q, . . . , pm/q) to the
numbers e, e2, . . . , em. In order to use Lemma 2.2, we need to have independent
such approximations. This is a subtle point which Hermite did not find easy to
overcome, according to his owns comments in [15]. The following approach is
due to K. Mahler, we can view it as an extension of the simple non-vanishing
argument used in § 1.4.3 for the irrationality of π.

We fix integers n0, . . . , n1, all ≥ 1. For j = 0, 1, . . . ,m we denote by
Qj , Pj1, . . . , Pjm the Hermite-Padé polynomials attached to the parameters

n0 − δj0, n1 − δj1, . . . , nm − δjm,
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where δji is Kronecker’s symbol

δji =

{
1 if j = i,
0 if j 6= i.

These parameters are said to be contiguous to n0, n1, . . . , nm. They are the rows
of the matrix 

n0 − 1 n1 n2 · · · nm
n0 n1 − 1 n2 · · · nm
...

...
. . .

...
n0 n1 n2 · · · nm − 1

 .

Proposition 2.9. There exists a non-zero constant c such that the determinant

∆(x) =

∣∣∣∣∣∣∣
Q0 P10 · · · Pm0

...
...

. . .
...

Qm P1m · · · Pmm

∣∣∣∣∣∣∣
is the monomial cxmN .

Proof. The matrix of degrees of the entries in the determinant defining ∆ is
N − n0 N − n1 − 1 · · · N − nm − 1

N − n0 − 1 N − n1 · · · N − nm − 1
...

...
. . .

...
N − n0 − 1 N − n1 − 1 · · · N − nm

 .

Therefore ∆ is a polynomial of exact degree N−n0+N−n1+· · ·+N−nm = mN ,
the leading coefficient arising from the diagonal. This leading coefficient is
c = c0c1 · · · cm, where c0 is the leading coefficient of Q0 and cµ is the leading
coefficient of Pµµ, 1 ≤ µ ≤ m.

It remains to check that ∆ has a multiplicity at least mN at the origin.
Linear combinations of the columns yield

∆(x) =

∣∣∣∣∣∣∣
Q0 P10 − exQ0 · · · Pm0 − emxQ0

...
...

. . .
...

Qm P1m − exQm · · · Pmm − emxQm

∣∣∣∣∣∣∣ .
Each Pµj − eµxQj , 1 ≤ µ ≤ m, 0 ≤ j ≤ m, has multiplicity at least N at the
origin, because for each contiguous triple (1 ≤ j ≤ m) we have

m∑
i=0

(ni − δji) = n0 + n1 + · · ·+ nm − 1 = N − 1.

Looking at the multiplicity at the origin, we can write

∆(x) =

∣∣∣∣∣∣∣
Q0 O(xN ) · · · O(xN )
...

...
. . .

...
Qm O(xN ) · · · O(xN )

∣∣∣∣∣∣∣ .
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This completes the proof of Proposition 2.9.

Now we fix a sufficiently large integer n and we use the previous results for
n0 = n1 = · · · = nm = n with N = (m + 1)n. We define, for 0 ≤ j ≤ m, the
integers qj , p1j , . . . , pnj by

(n− 1)!qj = Qj(1), (n− 1)!pµj = Pµj(1), (1 ≤ µ ≤ m).

Proposition 2.10. There exists a constant κ > 0 independent on n such that
for 1 ≤ µ ≤ m and 0 ≤ j ≤ m,

|qieµ − pµj | ≤
κn

n!
·

Further, the determinant ∣∣∣∣∣∣∣
q0 p10 · · · pm0

...
...

. . .
...

qm p1m · · · pmm

∣∣∣∣∣∣∣
is not zero.

Proof. Recall Hermite’s formulae in Proposition 2.7:

Qj(x)eµx − Pµj(X) = xmneµx
∫ µ

0

e−xtfj(t)dt, (1 ≤ µ ≤ m, 0 ≤ j ≤ m),

where

fj(t) = (t− j)−1
(
t(t− 1) · · · (t−m)

)n
= (t− j)n−1

∏
1≤i≤m
i6=j

(t− i)n.

We substitute 1 to x and we divide by (n− 1)!:

qje
µ − pµj =

1
(n− 1)!

(
Qj(1)eµ − Pµj(1)

)
=

eµ

(n− 1)!

∫ µ

0

e−tfj(t)dt.

Now the integral is bounded from above by∫ µ

0

e−t|fj(t)|dt ≤ m sup
0≤t≤m

|fj(t)| ≤ m1+(m+1)n.

Finally the determinant in the statement of Proposition 2.10 is ∆(1)/n!m+1,
where ∆ is the determinant of Proposition 2.9. Hence it does not vanish since
∆(1) 6= 0.
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Since κn/n! tends to 0 as n tends to infinity, we may apply the criterion
for linear independence Lemma 2.2. Therefore the numbers 1, e, e2, . . . , em are
linearly independent, and since this is true for all integers m, Hermite’s Theorem
on the transcendence of e follows.

Exercise 10. Using Hermite’s method as explained in § 2.1, prove that for any
non-zero r ∈ Q(i), the number er is transcendental.

Exercise 11. Let m be a positive integer and ε > 0 a real number. Show that
there exists q0 > 0 such that, for any q ≥ q0 and for any tuple (q, p1, . . . , pm) of
rational integers with q > q0,

max
1≤µ≤m

∣∣∣∣eµ − pµ
q

∣∣∣∣ ≥ 1
q1+(1/m)+ε

·

Is it possible to improve the exponent by replacing 1 + (1/m) with a smaller
number?
Hint. Consider Hermite’s proof of the transcendence of e (§ 2.1.3), especially
Proposition 2.10. First check (for instance using Cauchy’s formulae)

max
0≤j≤m

1
k!
|Dkfj(µ)| ≤ cn1 ,

where c1 is a positive real number which does not depend on n. Next, check
that the numbers pj and qµj satisfy

max{qj , |pµj |} ≤ (n!)mcm2

for 1 ≤ µ ≤ m and 0 ≤ j ≤ n, where again c2 > 0 does not depend on n.
Then repeat the proof of Hermite in § 2.1 with n satisfying

(n!)mc−2mn
3 ≤ q <

(
(n+ 1)!

)m
c
−2m(n+1)
3 ,

where c3 > 0 is a suitable constant independent on n. One does not need to
compute c1, c2 and c3 in terms of m, one only needs to show their existence so
that the proof yields the desired estimate.

2.2 Transcendental numbers: historical survey

We already stated Hermite’s Theorem on the transcendence of e, Lindemann’s
Theorem on the transcendence of π and Hermite-Lindemann’s Theorem on the
transcendence of logα and eβ for non-zero algebraic numbers α and β (with the
proviso logα 6= 0) – see Theorem 2.1. We complete the history of the theory in
the XIX-th century, and then discuss the development in the XX-th century.

References are [12] and [11].
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2.2.1 Transcendental numbers before 1900: Liouville, Hermite, Lin-
demann, Weierstraß

The next corollary of Lemma 1.13 was proved by J. Liouville in 1844: this his
how he constructed the first examples of transcendental numbers. His first ex-
plicit examples were given by continued fractions, next he gave further examples
with series like

θa =
∑
n≥0

a−n! (2.11)

for any integer a ≥ 2.

Lemma 2.12. For any algebraic number α, there exist two constants c and d
such that, for any rational number p/q 6= α,∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qd
·

It follows also from Lemma 1.13 that in Lemma 2.12, one can take for d the
degree of α (that is the degree of the minimal polynomial of α).

Exercise 12. Denote by P ∈ Z[X] the minimal polynomial of α.
a) Prove this result with d the degree of P and κ given by

κ = max
{

1 ; max
|t−α|≤1

|P ′(t)|
}
.

b) Check also that the same estimate is true with again d the degree of P and
κ given by

κ = a0

d∏
i=2

(|αj − α|+ 1),

where a0 is the leading coefficient and α1, . . . , αd the roots of P with α1 = α:

P (X) = a0(X − α1)(X − α2) · · · (X − αd).

Hint: For both parts of this exercise one may distinguish two cases, whether
|α− (p/q)| is ≥ 1 or < 1.

Definition. A real number θ is a Liouville number if for any κ > 0 there exists
p/q ∈ Q with q ≥ 2 and

0 <
∣∣∣∣α− p

q

∣∣∣∣ ≤ c

qκ
·

It follows from Lemma 2.12 that Liouville numbers are transcendental. In
dynamical systems one says that an irrational real number satisfies a Diophan-
tine condition if is not Liouville: this means that there exists a constant κ > 0
such that, for any p/q ∈ Q with sufficiently large q,∣∣∣∣α− p

q

∣∣∣∣ > c

qκ
·
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Let us check that the numbers (2.11) are Liouville numbers: let a ≥ 2 be an
integer and κ > 0 a real number. For sufficiently large N , set

q = aN !, p =
N∑
n=0

aN !−n!.

Then we have
0 < θa −

p

q
=
∑
k≥1

1
a(N+k)!−N !

·

For k ≥ 1 we use the crude estimate

(N + k)!−N ! ≥ N !N(N + 1) · (N + k − 1) ≥ N !
(
N + (k − 1)!

)
,

which yields
0 < θa −

p

q
≤ e

qN
·

We shall discuss the development of this topic in the next subsection.
After the contributions of Ch. Hermite in 1873, F. Lindemann in 1882 and

the Theorem of Hermite Lindemann 2.1, K. Weierstraß completed in 1888 the
proof of a claim by Lindemann:

Theorem 2.13 (Lindemann–Weierstraß – first form). Let α1, . . . , αm be alge-
braic numbers which are pairwise distinct: αi 6= αj for i 6= j. Then the numbers
eα1 , . . . , eαm are linearly independent over Q.

It is easy to checked that Theorem 2.13 is equivalent to the next statement:

Theorem 2.14 (Lindemann–Weierstraß – second form). Let β1, . . . , βn be al-
gebraic numbers which are linearly independent over Q. Then the numbers
eβ1 , . . . , eβn are algebraically independent over Q.

Now the algebraic independence of complex numbers over Q is equivalent
to the algebraic independence over the field Q of algebraic numbers. Therefore
Theorem 2.13 is also equivalent to the next statement:

Theorem 2.15 (Lindemann–Weierstraß – third form). Let α1, . . . , αm be alge-
braic numbers which are pairwise distinct. Then the numbers eα1 , . . . , eαm are
linearly independent over Q.

This does not cover all the history of transcendental numbers in the XIX-th
Century. In particular the work of Cantor is another main contribution which
gave rise to many development in the XX-th Century.

2.2.2 Diophantine approximation and applications

Diophantine approximation is the study of the approximation of real or complex
numbers by rational or algebraic numbers. It has its early sources in astronomy,
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with the study of movement of the celestials bodies, and in the computations
of π.

The number π occurs more or less explicitly in a number of ancient docu-
ments from different civilisations. In the Bible there is an implicit value 3. The
Rhind Papyrus around 2000 BC gives an approximate value 28/34 = 3.1604 . . .

In the early times in India, ancient Hindu and Jaina mathematicians consid-
ered this question. Sometimes between the 8th and the 4th century, the Indian
sacred texts Sulvasūtras from Baudhāyana give 3, 088. Also in India, around
500 BC, Suryaprajnapati (a Jaina mathematician) gives

√
10 = 3.162 . . .

The value of π was studied in ancient Greece (especially by Archimedes
around 2500 BC), also in China where the approximation 355/113 = 3.1415929 . . .
was known. In the Vth Century AC Aryabhat.̄ıya, Āryabhat.a I had the approx-
imation 3.1416 and he suggested that π might be irrational. One century later
Bhāskara I suggests a negative solution to the problem of squaring the cir-
cle. In the XIIth century Bhāskarācārya (Bhāskara II) has the approximation
3927/1250 = 3.1416.

It is remarkable that Madhava (1380–1420) knew a series which gave him
11 exact decimals 3.14159265359 (while Viète in 1579 had 9 decimals only).
A number of other mathematicians in Europa studied this question (including
Leibniz and Gregory).

Getting sharp rational approximations is now easy using the continued frac-
tion expansion of π = 3.1415926535898 . . . which starts with

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1 . . . ]

The sequence of rational approximations we get by truncating this expansion is

3,
22
7

, 333
106

, 355
113

, . . .

Computation of billions of decimals of π have been performed: it serves as a test
for computers, and produces also good candidates for random sequences, even
if proofs are not available that such sequences satisfy the required properties.

Another type of approximation for π is due to Ramanujan:

63
25

(
17 + 15

√
5

7 + 15
√

5

)
= 3.141 592 653 805 . . .

which is a root of P (x) = 168 125x2 − 792 225x + 829 521. Of course we know
from Lindemann’s Theorem that such estimate will not produce an exact value,
since

π = 3.141 592 653 589 . . .

is not root of a polynomial with integer coefficients.
One recent (1997) formula for π produces efficiently its digits in base 16:

π =
∑
n≥0

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)
2−4n.
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For computing a number with a sharp accuracy, one wishes to get many
decimals (or binary digits) with a number of operations as small as possible. As
we have seen for Diophantine questions, the cost is measured by the denominator
q: one investigates how well ξ can be approximated in terms of q. So the notion
of complexity is very different in these two points of view.

Diophantine approximation occurs in many different disguises (a very good
reference here is [27]). It plays a crucial role in the question of small divisors
and dynamical systems, introduced by H. Poincaré. See in particular [40]. In
the study of the periods of Saturn orbits (Cassini divisions), Diophantine ap-
proximation is also there. It plays a role in the question of the stability of
the solar system, in resonance in astronomy, in the problems of engrenages, in
quasi-cristals, in the acoustic of concert halls, in calendars (bissextile years).

We give now an example of application of the question of rational approxi-
mations to log2 3 to musical scales.

The successive harmonics of a note of frequency n are the vibrations with
frequencies 2n, 3n, 4n, 5n, . . . with decreasing intensity. The successive octaves
of a note of frequency n are vibrations with frequencies 2n, 4n, 8n, 16n. . .

Using octaves, one replaces each note by a note with frequency in a given
interval, say [n, 2n). The classical choice in Hertz is [264, 528). For simplicity
we take rather [1, 2). Hence a note with frequency f is replaced by a note with
frequency r with 1 ≤ r < 2, where

f = 2ar, a = [log2 f ] ∈ Z, r = 2{log2 f} ∈ [1, 2).

For instance a note with frequency 3 (which is a harmonic of 1) is at the octave
of a note with frequency 3/2. The musical interval [1, 3/2] is called fifth, the
ratio of the endpoints of the interval is 3/2.

The musical interval [3/2, 2] is the fourth, with ratio 4/3.
The successive fifths are the notes in the interval [1, 2], which are at the

octave of notes with frequency

1, 3, 9, 27, 81 . . .

namely:
1, 3/2, 9/8, 27/16, 81/64 . . .

We shall never come back to the initial value 1, since the Diophantine equation
3a = 2b has no solution in positive integers a, b. We cannot solve exactly the
equation 2a = 3b in positive rational integers a and b, but we can look for powers
of 2 which are close to powers of 3.

There are just three solutions to the equation 3x − 2y = ±1 in positive
integers x and y, namely 3 − 2 = 1, 4 − 3 = 1 and 9 − 8 = 1. This question
leads to the study of so-called exponential Diophantine equations, which include
the Catalan’s equation xp − yq = 1 where x,y, p and q are unknowns in Z all
≥ 2 (this was solved recently, the only solution is 32 − 23 = 1, as suggested in
1844 by E. Catalan, the same year when Liouville produced the first examples
of transcendental numbers). A generalisation of this question is a conjecture
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of Pillai, according to which for any fixed positive k ∈ Z there are only finitely
many x,y, p and q in Z, all ≥ 2, with xp−yq = k. It is easy to check that Pillai’s
conjecture is equivalent to the fact that in the increasing sequence (un)n≥1 of
perfect powers (namely integers of the form ab with a ≥ 1 and b ≥ 2), the
difference between two consecutive terms un+1 − un tends to infinity.

Instead of looking at Diophantine equations, one can consider rather the
question of approximating 3a by 2b from another point of view. The fact that
the equation 3a = 2b has no solution in positive integers a, b means that the
logarithm in basis 2 of 3:

log2 3 = (log 3)/ log 2 = 1.58496250072 . . . ,

which is the solution x of the equation 2x = 3, is irrational. Powers of 2 which
are close to powers of 3 correspond to rational approximations a/b to log2 3:

log2 3 ' a/b, 2a ' 3b.

Hence it is natural to consider the continued fraction expansion

log2 3 = [1; 1, 1, 2, 2, 3, 1, 5, . . . ]

The first approximations we obtain by truncating this expansion are

[1] = 1, [1; 1] = 2, [1; 1, 1] =
3
2
, [1; 1, 1, 2] =

8
5

= 1.6.

This last approximation suggest to consider a = 3 and b = 5:

28 = 256 is not too far from 35 = 243.

The approximation of (3/2)5 = 7.593 . . . by 23 means that 5 fifths produces
almost to 3 octaves.

The next approximation is

[1; 1, 1, 2, 2] = 1 +
1

1 +
1

1 +
1

2 +
1
2

=
19
12

= 1.5833 . . .

It is related to the fact that 219 is close to 312:

219 = 524 288 ' 312 = 531 441, (3/2)12 = 129.74 . . . is close to 27 = 128.

In music it means that twelve fifths is a bit more than seven octaves. The comma
of Pythagoras is 312/219 = 1, 01364. It produces an error of about 1.36%, which
most people cannot ear.

A further remarkable Diophantine approximation is

53 = 125 ' 27 = 128, (5/4)3 = 1.953 ' 2.
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meaning that three thirds (ratio 5/4) produce almost one octave. This approxi-
mation can be written 210 = 1024 ' 103. It plays an important role in comput-
ers (kilo octets), of course, but also in acoustic: multiplying the intensity of a
sound by 10 means adding 10 decibels. Multiplying the intensity by k, amounts
to add d decibels with 10d = k10. Since 210 ' 103, doubling the intensity, is
close to adding 3 decibels.

A further example of application of continued fractions given in [27] deals
with electric networks. The resistance of a network in series

◦ R1−−−→• R2−−−→◦
is the sum R1 +R2. The resistance R of the parallel network

◦−−−→•−−−→•yR1

y R2

◦−−−→•−−−→•
satisfies

1
R

=
1
R1

+
1
R2
·

The resistance U of the circuit
◦−−−→• R−−−→•y1/S

y 1/T

◦−−−→•−−−→•
is given by

U =
1

S +
1

R+
1
T

·

The resistance of the following network is given by a continued fraction

[R0;S1, R1, S2, R2 . . . ]

for the circuit
◦ R0−−−→• R1−−−→• R2−−−→• · · ·y1/S1

y1/S2

◦−−−→•−−−→•−−−→• · · ·
For instance when Ri = Sj = 1 we get the quotients of consecutive Fibonacci
numbers.

This fact provides a connexion between electric networks, and continued
fractions, it has a surprising application on the problem of decomposition of
a square into squares (squaring the square!): electric networks and continued
fractions were used to find the first solution to the problem of decomposing a
geometric integer square into distinct integer squares.
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We conclude this list of applications of Diophantine questions with a connex-
ion between a problem raised by K. Mahler in 1967 and theoretical computer
science.

Mahler noticed that an integer power of e is never an integer, since e is
transcendental. He asks whether there exists an absolute constant c > 0 such
that, for a and b positive integers,

|eb − a| > a−c?

This is not yet solved. He also noticed that the inequality

|b− log a| < 1
a

has infinitely many solutions in positive integers a and b. Indeed, if a denotes
the integral part of eb, then we have

0 < eb − a < 1, 0 < a(b− log a) < eb − a < eb(b− log a),
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hence

0 < b− log a <
eb − a
a

<
1
a
·

Mahler’s conjecture arises by considering the numbers log a−ba for a = 1, . . . , A,
where ba is the nearest integer to log a, for growing values of A, and assum-
ing that these numbers are more or less evenly distributed in the interval
(−1/2, 1/2).

Mahler’s conjecture is equivalent to the existence of a constant c > 0 such
that, for a and b positive integers,

|eb − a| > e−cb.

This question is considered in [35] where it is suggested that the numbers eb−ab
for b = 1, . . . , B, for growing values of B, are evenly distributed in the interval
(−1/2, 1/2), where ab is the nearest integer to eb. This amounts to suggest the
stronger conjecture that there exists a constant c > 0 for which

|eb − a| > b−c.

As explained in [35], this conjecture is equivalent to the existence of a constant
c > 0 for which

|eb − a| > 1
a(log a)c

·

Thanks to a remark by Iam Ho on September 27, 2007, I noticed that there is
a misprint concerning this question on p. 266 of [36] where the factor a in the
denominator of the right hand side is missing.

The question of a lower bound for |eb− a| was considered first by K. Mahler
(1953, 1967), then by M. Mignotte (1974), and more recently by F. Wielonsky
(1997). The sharpest known estimate on Mahler’s problem is

|eb − a| > b−20b.

In a joint work with Yu.V. Nesterenko [22] in 1996, we considered an extension
of this question when a and b are rational numbers. A refinement of our estimate
has been obtained by S. Khemira in 2005 and is currently being sharpened in a
joint work of S. Khemira and P. Voutier.

Define H(p/q) = max{|p|, q}. Then for a and b in Q with b 6= 0, the estimate
is

|eb − a| ≥ exp{−1, 3 · 105(logA)(logB)}

where A = max{H(a), A0}, B = max{H(b), 2}. The numerical value of the
absolute constant A0 will be explicitly computed.

There is a connexion with the question of exact rounding of the elementary
functions in theoretical computer science. A reference to the Arénaire project
in Computer Arithmetic is
http://www.ens-lyon.fr/LIP/Arenaire/
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This team works on validated scientific computing: arithmetic. reliability, ac-
curacy, and speed. Their goal is to improve the available arithmetic on comput-
ers, processors, dedicated or embedded chips, and they want to achieve more
accurate results or getting them more quickly. This has implication in power
consumption as well as reliability of numerical software.

Further applications of Diophantine Approximation include (see [16]): equidis-
tribution modulo 1, discrepancy, numerical integration, interpolation, approxi-
mate solutions to integral and differential equations.

2.2.3 Diophantine approximation and Diophantine Equations

There are deep connexions between diophantine approximation and Diophantine
equations. In this section we show how continued fractions expansions are used
for solving the equation:

x2 − dy2 = ±1 (2.16)

(where the unknowns x, y are in Z) which is named Pell’s equation (see [19,
9] and the references given in these papers). Later we shall consider other
examples.

There is a natural ordering among the solutions, by increasing x (or y, it
amounts to the same). Since we are looking at positive solutions there is a
smallest one, called the fundamental solution, say (x1, y1).

From x2
1 − dy2

1 = ±1 it readily follows that the sequence of pairs of integers
(xn, yn) defined by

xn + yn
√
d = (x1 + y1

√
d)n

satisfies also xn − yn
√
d = (x1 − y1

√
d)n hence

x2
n − dy2

n = ±1.

If the fundamental solution has x2
1−dy2

1 = 1, then all xn, yn also have x2
n−dy2

n =
1, while if x2

1 − dy2
1 = −1, then for all n we have x2

n − dy2
n = (−1)n. In the

second case (x2, y2) is the fundamental solution of the equation x2
1 − dy2

1 = 1.
Let us check that all solutions of the Pell’s equation are the (xn, yn) with

n ≥ 0 (with n = 0 giving the trivial solution (1, 0)). Consider the following
subset of R2:

G =
{

(log |x+ y
√
d|, log |x− y

√
d|) ; (x, y) ∈ Z2, x2 − dy2 = ±1}.

It is easily checked that G is an additive subgroup of R2. This is due to the
fact that the equation x2− dy2 = ±1 can be written (x+

√
dy)(x−

√
dy) = ±1,

hence the solutions (x, y) form a multiplicative group with the law given by

(x+ y
√
d)(x′ + y′

√
d) = xx′ + dyy′ + (xy′ + x′y)

√
d,

corresponding to the identity

(xx′ + dyy′)2 − d(xy′ + x′y)2 = (x2 − dy2)(x′2 − dy′2).
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Now G is discrete in R2: any compact subset of R2 contains only finitely many
elements in G, because for each C > 0, if (x, y) ∈ Z2 satisfies |x + y

√
d| ≤ C

and |x− y
√
d| ≤ C, then |x| and |y| are bounded.

Further G is contained in the one dimensional subspace t1 + t2 = 0 of R2.
A discrete subgroup in a real vector space of dimension 1 has rank ≤ 1 (see
§ 2.2.4). It easily follows that any solution (x, y) ∈ Z2 with x > 0 and y ≥ 0 of
Pell’s equation satisfies x+ y

√
d = (x1 + y1

√
d)n for some n ≥ 0.

Hence the problems remains to find the fundamental solution (x1, y1). It
turns out, as we shall see, that x1 may be quite large without d being to large.
But there is an efficient algorithm to solve the problem.

The connexion with Diophantine approximation arises from the following
remark. If (x, y) is a solution, then (x −

√
dy)(x +

√
dy) = 1, hence x/y is a

good rational approximation of
√
d and this approximation is sharper when x

is larger. Hence a strategy for solving Pell’s equation (2.16) is based on the
continued fraction expansion of

√
d.

Let again d be a positive integer which is not a square. It is known that the
continued fraction expansion

√
d = [a0; a1, a2, . . . , ak]

of the square root of d > 0 has a0 = [
√
d] and ak = 2a0. Moreover

a1, a2, . . . , ak−1

is a palindrome: ai = ak−i (1 ≤ i ≤ k − 1). The next proposition shows
that the length k of the period is odd if and only if the Diophantine equation
x2 − dy2 = −1 has a root in rational integers x, y.

Proposition 2.17. Let d be a positive which is not a square. Write
√
d = [a0; a1, a2, . . . , ak].

a) When k is even, the fundamental solution of the equation x2 − dy2 = 1 is
given by

x1

y1
= [a0; a1, a2, . . . , ak−1]

and there is no solution to the equation x2 − dy2 = −1.
b) When k is odd, the fundamental solution to x2 − dy2 = −1 is given by

x1

y1
= [a0; a1, a2, . . . , ak−1]

and the fundamental solution to x2 − dy2 = 1 is given by

x2

y2
= [a0; a1, a2, . . . , ak−1, ak, a1, a2, . . . , ak−1].
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The solutions (xn, yn) are obtained by a similar formula: writing A for the
block a1, a2, . . . , ak−1,

xn
yn

= [a0; A, ak, A, ak, . . . , A, ak, A]

where A occurs n times.
We consider numerical examples. The easiest Pell’s equation is x2−2y2 = −1

with d = 2 and
√

2 = [1; 2]. The fundamental solution is (x1, y1) = (1, 1).
For the equation x2 − 2y2 = 1 the fundamental solution is x = 3, y = 2,
corresponding to the expansion

[1; 2] = 1 +
1
2

=
3
2
·

Here is another example due to Brahmagupta in 628:

x2 − 92y2 = 1.

Brahmagupta did not use continued fractions but a method of his own (called
“cyclic method” — Chakravala — see [39]), and he found the fundamental
solution which is x = 1151, y = 120:

11512 − 92 · 1202 = 1 324 801− 1 324 800 = 1.

The continued fraction expansion of
√

92 = 9, 591663046625 . . . is 5

√
92 = [9; 1, 1, 2, 4, 2, 1, 1, 18]

and the fundamental solution arises from

[9; 1, 1, 2, 4, 2, 1, 1] =
1151
120
·

The next example is due to Bhaskara II in his work Bijaganita (1150): the
fundamental solution to x2 − 61y2 = 1 is

x = 1 766 319 049, y = 226 153 980.

Here
√

61 = [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14] and

[7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 5] =
1 766 319 049
226 153 980

·

The fundamental solution to x2 − 61y2 = −1 is obtained as follows:

[7; 1, 4, 3, 1, 2, 2, 1, 3, 5] =
29 718
3 805

,

29 7182 = 883 159 524, 61 · 38052 = 883 159 525.
5Easy to compute using http://wims.unice.fr/wims/
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A further example due to Narayana (14th Century) is x2 − 103y2 = 1 with the
fundamental solution x = 227 528, y = 22 419. Indeed

227 5282 − 103 · 22 4192 = 51 768 990 784− 51 768 990 783 = 1.
√

103 = [10; 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6, 20]

and
[10; 6, 1, 2, 1, 1, 9, 1, 1, 2, 1, 6] =

227 528
22 419

·

Fermat also knew how to solve Pell’s equation x2 − dy2 = 1 : he found the
fundamental solution for d = 61 (Bhaskara’s equation) as well as for d = 109:

x = 158070671986249, y = 15140424455100.

A Pell equation occurred already much earlier in the Cattle problem attributed
to Archimedes. There are bulls and cows of different colors, the first part of the
problem involves several unknowns and easy equations so solve:

B −
(

1
2

+
1
3

)
N = N −

(
1
4

+
1
5

)
X = X −

(
1
6

+
1
7

)
B = J.

Up to a factor, the solution is

B = 2226, N = 1602, X = 1580, J = 891.

The second part of the Cattle problem amounts to solving the Pell equation

x2 − 4729494y2 = 1.

A partial solution was given in 1880 by A. Amthor. The fundamental solution
has been given in 1998 by Ilan Vardi in a simple explicit formula[

25194541
184119152

(109931986732829734979866232821433543901088049+

50549485234315033074477819735540408986340
√

4729494
)4658]

The size of the fundamental solution is ' 10103275.
Pell-Fermat Diophantine equations occur in the construction of Riemannian

varieties with negative curvature called arithmetic varieties. See [3].
We consider another connexion between Diophantine approximation and

Diophantine equations which we shall expand in § 2.2.5. In 1909 A. Thue found
a connection between Diophantine equation and refinements of Liouville’s esti-
mate. We restrict here on one specific example.

Liouville’s estimate for the rational Diophantine approximation of 3
√

2 is∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1
9q3
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for sufficiently large q (use Lemma 1.13 with P (X) = X3 − 2, c = 3 3
√

2 < 9).
Thue was the first to achieve an improvement of the exponent 3. A explicit
estimate was then obtained by A. Baker∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1
106q2.955

and refined by Chudnovskii, Easton, Rickert, Voutier and others, until 1997
when M. Bennett proved that for any p/q ∈ Q,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ ≥ 1
4 q2,5

·

From his result, Thue deduced that for any fixed k ∈ Z \ {0}, there are only
finitely many (x, y) ∈ Z × Z satisfying the Diophantine equation x3 − 2y3 = k.
The result of Baker shows more precisely that if (x, y) ∈ Z× Z is a solution to
x3 − 2y3 = k, then

|x| ≤ 10137|k|23.

M. Bennett gave the sharper estimate: for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥
√
x.

The connexion between Diophantine approximation to 3
√

2 and the Diophantine
equation x3 − 2y3 = k is explained in the next lemma.

Lemma 2.18. Let η be a positive real number. The two following properties
are equivalent.
(i) There exists a constant c1 > 0 such that, for any p/q ∈ Q with q > 0,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1
qη
·

(ii) There exists a constant c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥ c2x3−η.

Properties (i) and (ii) are true but uninteresting with η ≥ 3. They are not
true with η < 2. It is not expected that they are true with η = 2, but it is
expected that they are true for any η > 2.

Proof. We assume η < 3, otherwise the result is trivial. Set α = 3
√

2.
Assume (i) and let (x, y) ∈ Z × Z have x > 0. Set k = x3 − 2y3. Since 2 is

not the cube of a rational number we have k 6= 0. If y = 0 assertion (ii) plainly
holds. So assume y 6= 0.

Write
x3 − 2y3 = (x− αy)(x2 + αxy + α2y2).
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The polynomial X2 + αX + α2 has negative discriminant −3α2, hence has a
positive minimum c0 = 3α2/4. Hence the value at (x, y) of the quadratic form
X2 + αXY + α2Y 2 is bounded form below by c0y2. From (i) we deduce

|k| = |y|3
∣∣∣∣ 3
√

2− x

y

∣∣∣∣ (x2 + αxy + α2y2) ≥ c1c0|y|3

|y|η
= c3|y|3−η.

This gives an upper bound for |y|:

|y| ≤ c4|k|1/(3−η), hence |y3| ≤ c4|k|3/(3−η).

We want an upper bound for x: we use x3 = k + 2y3 and we bound |k| by
|k|3/(3−η) since 3/(3− η) > 1. Hence

x3 ≤ c5|k|3/(3−η) and x3−η ≤ c6|k|.

Conversely, assume (ii). Let p/q be a rational number. If p is not the nearest
integer to qα, then |qα− p| > 1/2 and the estimate (i) is trivial. So we assume
|qα − p| ≤ 1/2. We need only the weaker estimate c7q < p < c8q with some
positive constants c7 and c8, showing that we may replace p by q or q by p in
our estimates, provided that we adjust the constants. From

p3 − 2q3 = (p− αq)(p2 + αpq + α2q2),

using (ii), we deduce

c2p
3−η ≤ c10q3

∣∣∣∣α− p

q

∣∣∣∣ ,
and (i) easily follows.

2.2.4 Geometry of numbers: subgroups of Rn.

References for this section are [4, 14, 26].

Lemma 2.19. A subgroup G of Rn is discrete in Rn if and only if there exists
an open subset U of Rn containing 0 such that G ∩ U is discrete.

Exercise 13. 1. Check that a non discrete subgroup of R is dense in R
2. Give the list of closed subgroups of R.
3. Let G be a finitely generated subgroup of R. Give a necessary and sufficient
condition on the rank of G for G to be dense in R.
4. Let ϑ ∈ R. Give a necessary and sufficient condition on ϑ for the subgroup
Z + Zϑ to be dense in R.

Proposition 2.20. Let G be a discrete subgroup of Rn. There exists an integer
t in the interval 0 ≤ t ≤ n and there exist elements e1, . . . , et in G, which are
linearly independent over R, such that G = Ze1 + · · ·+ Zet.

In particular e1, . . . , et are linearly independent over Z, hence G is free of
rank t. The integer t is the dimension of the R–subspace of Rn spanned by G.
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Exercise 14. From Proposition 2.20, deduce that in a discrete subgroup of Rn,
linearly independent elements over Z are linearly independent over R.

Definition. A discrete subgroup of Rn of maximal rank n is called a lattice) of
Rn.

Proof of Proposition 2.20. Denote by V the vector subspace of Rn over R spanned
by G, by t its dimension and let {f1, . . . , ft} be a maximal subset of G which is
free over R: it is a basis of V over Rn and G′ = Zf1 + · · · + Zft is a subgroup
of G. We show that G′ has finite index in G, which means that there are only
finitely many classes of G modulo G′.

Let K be the compact subset of Rn defined by

{u1f1 + · · ·+ utft ; 0 ≤ ui ≤ 1 (1 ≤ i ≤ t)}.

Since G is discrete, G ∩K is finite.
Let x ∈ G. Then x ∈ V , hence we can write x = x1f1 + · · · + xtft with

xi ∈ R. Let mi = [xi] be the integral part of xi:

mi ∈ Z, 0 ≤ xi −mi < 1 (1 ≤ i ≤ n).

Set x′ = m1f1 + · · ·+mtft. Then x′ ∈ G′ and x− x′ ∈ G∩K. Therefore there
are only finitely many classes of G modulo G′, which means that G′ has finite
index in G.

Denote by s the order of the finite group G/G′ and set f ′i = fi/s (1 ≤ i ≤ t).
We have

G′ = Zf1 + · · ·+ Zft ⊂ G ⊂ Zf ′1 + · · ·+ Zf ′t ,

and the conclusion follows from the classical structure theorem on modules on
principal rings.

Theorem 2.21 (Structure of subgroups of Rn). Let G be an additive subgroup of
Rn. There exists a maximal vector subspace V of Rn over R which is contained
in the topological closure of G. Let d be the dimension of V and d + t the
dimension of the vector space spanned by G over R. Set G′ = G ∩ V . Then G′

is dense in V and there exists a discrete subgroup G′′ of G, of rank t, such that
G is the direct sum of G′ and G′′.

Exercise 15. Let x = (x1, . . . , xn) ∈ Rn. Consider the subgroup

G = Zn + Zx = {(a1 + a0x1, . . . , an + a0xn) ; (a0, . . . , an) ∈ Zn+1}

of Rn.
1. Show that G is discrete in Rn if and only if x ∈ Qn.
2. Deduce that the following properties are equivalent.
(i) 0 is an accumulation point of G.
(ii) For any ε > 0, there exist integers p1, . . . , pn, q, with q > 0, such that

0 < max
1≤i≤n

|qxi − pi| < ε.
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(iii) A least one of the n numbers x1, . . . , xn is irrational.
3. Check that G is dense in Rn if and only if the numbers 1, x1, . . . , xn are
linearly independent over Q.
Deduce that for any (ξ1, ξ2) ∈ R2 and for any ε > 0, there exist rational integers
p1, p2 and q with

|ξ1 − p1 − q
√

2| ≤ ε and |ξ2 − p1 − q
√

3| ≤ ε.

Let G be a lattice in Rn. For each basis e = {e1, . . . , en} of G the parallelo-
gram

Pe = {x1e1 + · · ·+ xnen ; 0 ≤ xi < 1 (1 ≤ i ≤ n)}

is a fundamental domain for G, which means a complete system of representa-
tive of classes modulo G. We get a partition of Rn as

Rn =
⋃
g∈G

(Pe + g) (2.22)

A change of bases of G is obtained with a matrix with integer coefficients
having determinant ±1, hence the Lebesgue measure µ(Pe) of Pe does not de-
pend on e: this number is called the volume of the lattice G and denoted by
v(G).

Here is an example of results obtained by H. Minkowski in the XIX–th
century as an application of his geometry of numbers.

Theorem 2.23 (Minkowski). Let G be a lattice in Rn and B a measurable
subset of Rn. Set µ(B) > v(G). Then there exist x 6= y in B such that x−y ∈ G.

Proof. From (2.22) we deduce that B is the disjoint union of the B ∩ (Pe + g)
with g running over G. Hence

µ(B) =
∑
g∈G

µ (B ∩ (Pe + g)) .

Since Lebesgue measure is invariant under translation

µ (B ∩ (Pe + g)) = µ ((−g +B) ∩ Pe) .

The sets (−g+B)∩Pe are all contained in Pe and the sum of their measures is
µ(B) > µ(Pe). Therefore they are not all pairwise disjoint – this is one of the
versions of the Dirichlet box principle). There exists g 6= g′ in G such that

(−g +B) ∩ (−g′ +B) 6= ∅.

Let x and y in B satisfy −g + x = −g′ + y. Then x− y = g − g′ ∈ G \ {0}.
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Corollary 2.24. Let G be a lattice in Rn and let B be a measurable subset of
Rn, convex and symmetric with respect to the origin, such that µ(B) > 2nv(G).
Then B ∩G 6= {0}.

Proof. We use Theorem 2.23 with the set

B′ =
1
2
B = {x ∈ Rn ; 2x ∈ B}.

We have µ(B′) = 2−nµ(B) > v(G), hence by Theorem 2.23 there exists x 6= y
in B′ such that x− y ∈ G. Now 2x and 2y are in B, and since B is symmetric
−2y ∈ B. Finally B is convex, hence (2x− 2y)/2 = x− y ∈ G ∩B \ {0}.

Remark. With the notations of Corollary 2.24, if B is also compact in Rn,
then the weaker inequality µ(B) ≥ 2nv(G) suffices to reach the conclusion. This
is obtained by applying Corollary 2.24 with (1 + ε)B for ε→ 0.

Exercise 16. Let m and n be positive integers.
a) Let tij for 1 ≤ i, j ≤ n be n2 real numbers with determinant ±1. Let
A1, . . . , An be positive real numbers with A1 · · ·An = 1. Show that there exists
an non–zero element (x1, . . . , xn) in Zn such that

|x1ti1 + · · ·+ xntin| < Ai for 1 ≤ i ≤ n− 1

and
|x1t1n + · · ·+ xntnn| ≤ An.

Hint. First solve the system with the weaker inequality < in place of <

|x1ti1 + · · ·+ xntin| ≤ Ai for 1 ≤ i ≤ n

by using Corollary 2.24. Next use the same method but with An replaced with
An + ε for a sequence of ε which tends to 0.
b) Deduce the following result. Let ϑij (1 ≤ i ≤ n, 1 ≤ j ≤ m) be mn real
numbers. Let Q > 1 be a real number. Show that there exists rational integers
q1, . . . , qm, p1, . . . , pn with

1 ≤ max{|q1|, . . . , |qm|} < Qn/m

and
max

1≤i≤n
|ϑi1q1 + · · ·+ ϑimqm − pi| ≤

1
Q
·

Hint. Use a) with n replaced by n+m and for a triangular matrix (tij)1≤i,j≤m+n

with 1 on the diagonal.
c) Deduce that if ϑ1, . . . , ϑm are real numbers and H a real number > 1, then
there exists a tuple (a0, a1, . . . , am) of rational integers such that

0 < max
1≤i≤m

|ai| < H and |a0 + a1ϑ1 + · · ·+ amϑm| ≤ H−m.
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d) Let ϑ be a real number with |ϑ| ≤ 1/2, d a positive integer and H a positive
integer. Show that there exists a non–zero polynomial P ∈ Z[X] of degree ≤ d
and coefficients in the interval [−H,H] such that

|P (ϑ)| ≤ H−d.

Exercise 17. Let m and n be positive integers and ϑij (1 ≤ i ≤ n, 1 ≤ j ≤ m
be mn real numbers. Let Q ≥ 1 be a positive integer. Show that there exists
rational integers q1, . . . , qm, p1, . . . , pn with

1 ≤ max{|q1|, . . . , |qm|} < Qn/m

and
max

1≤i≤n
|ϑi1q1 + · · ·+ ϑimqm − pi| ≤

1
Q
·

Deduce that if ϑ1, . . . , ϑm are real numbers and H a positive integer, then there
exists a tuple (a0, a1, . . . , am) of rational integers such that

0 < max
1≤i≤m

|ai| ≤ H and |a0 + a1ϑ1 + · · ·+ amϑm| ≤ H−m.

We conclude this section with the definition of a rational subspace. Let
k ⊂ K be a field extension and n a positive integer. For a K-vector subspace
V of Kn, the two following properties are equivalent:
(i) There exists a basis of V which consists of elements in kn.
(ii) There exist linear forms L1, . . . , Lm with coefficients in k such that V is the
intersection of the hyperplans Li = 0, (1 ≤ i ≤ m).
When there properties are satisfied the subspace V is called rational over k.

Exercise 18. Let ϑ1, . . . , ϑm be real numbers. Assume that 1, ϑ1, . . . , ϑm are
linearly independent over Q. Let V be a vector subspace of Rm+1 which is
rational over Q and has dimension ≤ m.
a) Check that the intersection of V with the real line R(1, ϑ1, . . . , ϑm) is {0}.
b) Deduce that

‖(x0, x1, . . . , xm)‖ = max
1≤i≤m

|x0ϑj − xj |

defines a norm on V .

2.2.5 Diophantine Approximation: historical survey

References for this section are [12, 26, 11, 5].

Definition. Given a real irrational number ϑ, a function ϕ = N → R>0 is an
irrationality measure for ϑ if there exists an integer q0 > 0 such that, for any
p/q ∈ Q with q ≥ q0, ∣∣∣∣ϑ− p

q

∣∣∣∣ ≥ ϕ(q).

Further, a real number κ is an irrationality exponent for ϑ if there exists a
positive constant c such that the function c/qκ is an irrationality measure for ϑ.
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From Dirichlet’s box principle (see (i)⇒(iv) in Lemma 1.6) it follows that
any irrationality exponent κ satisfies κ ≥ 2. Irrational quadratic numbers have
irrationality exponent 2. It is known (see for instance [26] Th. 5F p. 22) that
2 is an irrationality exponent for an irrational real number ϑ if and only if the
sequence of partial quotients (a0, a1, . . .) in the continued fraction expansion of
ϑ is bounded: these are called the badly approximable numbers.

From Liouville’s inequality in Lemma 2.12 it follows that any irrational alge-
braic real number α has a finite irrationality exponent ≤ d. Liouville numbers
are by definition exactly the irrational real numbers which have no finite irra-
tionality exponent.

For any κ ≥ 2, there are irrational real numbers ϑ for which κ is an irrational-
ity exponent and is the best: no positive number less than κ is an irrationality
exponent for ϑ. Examples due to Y. Bugeaud in connexion with the triadic
Cantor set (see [38]) are

∞∑
n=0

3−dλκe
n

where λ is any positive real number.
The first significant improvement to Liouville’s inequality is due to the Nor-

wegian mathematician Axel Thue who proved in 1909:

Theorem 2.25 (A. Thue, 1909). Let α be a real algebraic number of degree
d ≥ 3. Then any κ > (d/2) + 1 is an irrationality exponent for α.

The fact that the irrationality exponent is < d has very important corollaries
in the theory of Diophantine equations. We gave an example in § 2.2.3, here is
the more general result of Thue on Diophantine equations.

Theorem 2.26 (Thue). Let f ∈ Z[X] be an irreducible polynomial of degree
d ≥ 3 and m a non-zero rational integer. Define F (X,Y ) = Y df(X/Y ). Then
the Diophantine equation F (x, y) = m has only finitely many solutions (x, y) ∈
Z× Z.

The equation F (x, y) = m in Proposition 2.26 is called Thue equation. The
connexion between Thue equation and Liouville’s inequality has been explained
in Lemma 2.18 in the special case 3

√
2; the general case is similar.

Lemma 2.27. Let α be an algebraic number of degree d ≥ 3 and minimal
polynomial f ∈ Z[X], let F (X,Y ) = Y df(X/Y ) ∈ Z[X,Y ] be the associated ho-
mogeneous polynomial. Let 0 < κ ≤ d. The following conditions are equivalent:
(i) There exists c1 > 0 such that, for any p/q ∈ Q,∣∣∣∣α− p

q

∣∣∣∣ ≥ c1
qκ
·

(ii) There exists c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|F (x, y)| ≥ c2 xd−κ.

72



In 1921 C.L. Siegel sharpened Thue’s result 2.25 by showing that any real
number

κ > min
1≤j≤d

(
d

j + 1
+ j

)
is an irrationality exponent for α. With j = [

√
d] it follows that 2

√
d is an

irrationality exponent for α. Dyson and Gel’fond in 1947 independently refined
Siegel’s estimate and replaced the hypothesis in Thue’s Theorem 2.25 by κ >√

2d. The essentially best possible estimate has been achieved by K.F. Roth
in 1955: any κ > 2 is an irrationality exponent for a real irrational algebraic
number α.

Theorem 2.28 (A. Thue, C.L. Siegel, F. Dyson, K.F. Roth 1955). For any real
algebraic number α, for any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is
finite.

It is expected that the result is not true with ε = 0 as soon as the degree of
α is ≥ 3, which means that it is expected no real algebraic number of degree at
least 3 is badly approximable, but essentially nothing is known on the continued
fraction of such numbers: we do not know whether there exists an irrational
algebraic number which is not quadratic and has bounded partial quotient in
its continued fraction expansion, but we do not know either whether there exists
a real algebraic number of degree at least 3 whose sequence of partial quotients
is not bounded!

A guide to state conjectures is to consider which properties are valid for
almost all numbers, which means outside a set of Lebesgue measure 0, and to
expect that algebraic numbers will share these properties. This guideline should
not be followed carelessly: an intersection of subsets of full measure (that means
that the complementary has measure 0) may be empty. For instance⋂

x∈R
R \ {x} = ∅.

Nevertheless, this point of view may yields valid guesses.
The so–called metrical theory of Diophantine approximation goes back to

Cantor’s proof of the existence of transcendental numbers. If you list the al-
gebraic numbers in the interval [0, 1], if, for each of them, you write its binary
expansion (writing the two expansions if this algebraic number is a rational num-
ber with denominator a power of two), then taking the digits on the diagonal
yields a number θ such that 1− θ is not in the list, hence θ is transcendental.

It is known from a result by Khinchin (1924) that for almost all real numbers,
any κ > 2 is an irrationality exponent. Hence from this point of view algebraic
numbers behave like almost all numbers.

Khinchin’s Theorem is much more precise: Denote by K (like Khinchin) the
set of non-increasing functions ψ from R≥1 to R>0. Set

Kc =

Ψ ∈ K ;
∑
n≥1

Ψ(n) converges

 , Kd =

Ψ ∈ K ;
∑
n≥1

Ψ(n) diverges
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Hence K = Kc ∪ Kd.

Theorem 2.29 (Khinchin). Let Ψ ∈ K. Then for almost all real numbers ξ,
the inequality

|qξ − p| < Ψ(q) (2.30)

has

• only finitely many solutions in integers p and q if Ψ ∈ Kc
• infinitely many solutions in integers p and q if Ψ ∈ Kd.

For instance, for any ε > 0, the set of irrational real numbers for which the
function

q 7→ 1
q2(log q)1+ε

(2.31)

is not an irrationality measure has Lebesgue measure 0. One expects that for
any irrational algebraic number α, the function 2.31 is an irrationality measure.

However B. Adamczewski and Y. Bugeaud noticed recently (see [38]) that for
any ξ ∈ R\Q, there exists ψ ∈ Kd for which the inequality (2.30) has no solution.
Hence no real number behaves generically with respect to Khinchin’s Theorem
in the divergent case. Also S. Schanuel proved that the set of real numbers which
behave like almost all numbers from the point of view of Khinchin’s Theorem in
the convergent case is the set of real numbers with bounded partial quotients,
and this set has measure 0.

Here is an example of application of Diophantine approximation to transcen-
dental number theory. Let (un)n≥0 be an increasing sequence of integers and
let b be a rational integer, b ≥ 2. We wish to prove that the number

ϑ =
∑
n≥0

b−un (2.32)

is transcendental. A conjecture of Borel (1950 – see [37]) states that the digits
in the binary expansion of a real algebraic irrational number should be uniformly
equidistributed; in particular the sequence of 1’s should not be lacunary.

For sufficiently large n, define

qn = bun , pn =
n∑
k=0

bun−uk and rn = ϑ− pn
qn
·

Since the sequence (un)n≥0 is increasing, we have un+h − un+1 ≥ h− 1 for any
h ≥ 1, hence

0 < rn ≤
1

bun+1

∑
h≥1

1
bh−1

=
b

2un+1(b− 1)
≤ 2

q
un+1/un
n

·

Therefore if the sequence (un)n≥0 satisfies

lim sup
n→∞

un+1

un
= +∞
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then ϑ is a Liouville number, and therefore is transcendental. For instance
un = n! satisfies this condition: hence the number

∑
n≥0 b

−n! is transcendental.

Exercise 19. Let (an)n≥0 be a bounded sequence of rational integers and
(un)n≥0 be an increasing sequence of integers satisfying

lim sup
n→∞

un+1

un
= +∞.

Assume that the set {n ≥ 0 ; an 6= 0} is infinite.
Define

ϑ =
∑
n≥0

an2−un .

Show that ϑ is a Liouville number.

Roth’s Theorem 2.28 yields the transcendence of the number ϑ in (2.32)
under the weaker hypothesis

lim sup
n→∞

un+1

un
> 2.

The sequence un = [2θn] satisfies this condition as soon as θ > 1. For example
the transcendence of the number ∑

n≥0

b−3n

follows from Theorem 2.28.
A stronger result follows from Ridout’s Theorem 2.33 below, using the fact

that the denominators bun are powers of b.
Let S be a set of prime. A rational number is called a S–integer if it can

be written u/v where all prime factors of the denominator v belong to S. For
instance when a, b and m are rational integers with b 6= 0, the number a/bm is
a S–integer for S the set of prime divisors of b.

Theorem 2.33 (D. Ridout, 1957). Let S be a finite set of prime numbers. For
any real algebraic number α, for any ε > 0, the set of p/q ∈ Q with q a S–integer
and |α− p/q| < q−1−ε is finite.

Therefore the condition

lim sup
n→∞

un+1

un
> 1

suffices to imply the transcendence of the sum of the series (2.32). An example
is the transcendence of the number∑

n≥0

b−2n .
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This result goes back to A. J. Kempner in 1916.

The theorems of Thue–Siegel–Roth and Ridout are very special cases of
Schmidt’s subspace Theorem (1972) together with its p-adic extension by H.P. Schlick-
ewei (1976). We state do not state it in full generality but we give only two
special cases.

For x = (x1, . . . , xm) ∈ Zm, define |x| = max{|x1|, . . . , |xm|}.

Theorem 2.34 (W.M. Schmidt (1970): simplified form). For m ≥ 2 let L1, . . . , Lm
be independent linear forms in m variables with algebraic coefficients. Let ε > 0.
Then the set

{x = (x1, . . . , xm) ∈ Zm ; |L1(x) · · ·Lm(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces of Qm.

Thue–Siegel–Roth’s Theorem 2.28 follows from Theorem 2.34 by taking

m = 2, L1(x1, x2) = x1, L2(x1, x2) = αx1 − x2.

A Q-vector subspace of Q2 which is not {0} not Q2 (that is a proper subspace
is of the generated by an element (p0, q0) ∈ Q2. There is one such subspace
with q0 = 0, namely Q × {0} generated by (1, 0), the other ones have q0 6= 0.
Mapping such a rational subspace to the rational number p0/q0 yields a 1 to
1 correspondence. Hence Theorem 2.34 says that there is only a finite set of
exceptions p/q in Roth’s Theorem.

For x a non–zero rational number, write the decomposition of x into prime
factors

x =
∏
p

pvp(x),

where p runs over the set of prime numbers and vp(x) ∈ Z (with only finitely
many vp(x) distinct from 0), and set

|x|p = p−vp(x).

For x = (x1, . . . , xm) ∈ Zm and p a prime number, define |x| = max{|x1|p, . . . , |xm|p}.

Theorem 2.35 (Schmidt’s Subspace Theorem). Let m ≥ 2 be a positive integer,
S a finite set of prime numbers. Let L1, . . . , Lm be independent linear forms in
m variables with algebraic coefficients. Further, for each p ∈ S let L1,p, . . . , Lm,p
be m independent linear forms in m variables with rational coefficients. Let
ε > 0. Then the set of x = (x1, . . . , xm) ∈ Zm such that

|L1(x) · · ·Lm(x)
∏
p∈S
|L1,p(x) · · ·Lm,p(x)|p ≤ |x|

−ε

is contained in the union of finitely many proper subspaces of Qm.
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Ridout’s Theorem 2.33 is a corollary of Schmidt’s subspace Theorem: in
Theorem 2.35 take m = 2,

L1(x1, x2) = L1,p(x1, x2) = x1,

L2(x1, x2) = αx1 − x2, L2,p(x1, x2) = x2.

For (x1, x2) = (b, a) with b a S–integer and p ∈ S, we have

|L1(x1, x2)| = b, |L2(x1, x2)| = |bα− a|,
|L1p(x1, x2)|p = |b|p, |L2,p(x1, x2)|p = |a|p ≤ 1.

and ∏
p∈S
|b|p = b−1

since b is a S–integer.

Problem of effectivity.
Content of the lecture: Sketch of proof of Thue’s inequality, of Roth’s re-
finement. Upper bound for the number of exceptions in Roth’s Theorem, for the
number of exceptional subspaces in Schmidt’s Theorem. Effective refinement of
Liouville’s inequality, applications to Diophantine equations: Baker’s method.

2.2.6 Hilbert’s seventh problem and its development.

Euler question, Hilbert’s 7th problem: transcendence of αβ , of quotients of log-
artithms. Examples: 2

√
2, eπ.

Transcendental functions: definition; example of an irrational algebraic func-
tion:

∞∑
m=0

(
2m
m

)
zm = (1− 4z)−1/2.

Entire transcendental functions = polynomials.
Weierstraß: example of transcendental entire functions with many algebraic
values. Interpolation series (see Exercise 20).
Polya (1914): integer valued entire functions — 2z is the “smallest” entire
transcendental function mapping the positive integers to rational integers. More
precisely, if f(n) ∈ Z for all n ∈ Z≥0, then

lim sup
R→∞

2−R|f |R ≥ 1.

Interpolation series: write

f(z) = f(α1) + (z − α1)f1(z), f1(z) = f(α2) + (z − α2)f2(z), . . .

We deduce an expansion

f(z) = a0 + a1(z − α1) + a2(z − α1)(z − α2) + · · ·

with
a0 = f(α1), a1 = f1(α2), . . . , an = fn(αn+1).
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Exercise 20. Let x, z, α1, . . . , αn be complex numbers with x 6∈ {z, α1, . . . , αn}.
a) Check

1
x− z

=
1

x− α1
+
z − α1

x− α1
· 1
x− z

·

b) Deduce the next formula due to Hermite:

1
x− z

=
n−1∑
j=0

(z − α1)(z − α2) · · · (z − αj)
(x− α1)(x− α2) · · · (x− αj+1)

+
(z − α1)(z − α2) · · · (z − αn)
(x− α1)(x− α2) · · · (x− αn)

· 1
x− z

·

c) Let D be an open disc containing α1, . . . , αn, let C denote the circumference
of D, let D′ be an open disc containing the closure of D and let f be an analytic
function in D′. Define

Aj(z) =
1

2iπ

∫
C

F (x)dx
(x− α1)(x− α2) · · · (x− αj+1)

(0 ≤ j ≤ n− 1)

and

Rn(z) = (z−α1)(z−α2) · · · (z−αn)· 1
2iπ

∫
C

F (x)dx
(x− α1)(x− α2) · · · (x− αn)(x− z)

·

Check the following formula, known as Newton interpolation expansion: for any
z ∈ D′,

f(z) =
n−1∑
j=0

Aj(z − α1) · · · (z − αj) +Rn(z).

G.H. Hardy, G. Pólya, D. Sato, E.G. Straus, A. Selberg, Ch. Pisot, F. Carlson,
F. Gross,. . . .
Gel’fond (1929): same problem for Z[i]: A transcendental entire function f such
that f(a+ ib) ∈ Z[i] for all a+ ib ∈ Z[i] satisfies

lim sup
R→∞

1
R2

log |f |R ≥ γ.

Weierstraß sigma function (Hadamard canonical product for Z[i]): γ ≤ π/2.
A.O. Gel’fond: γ = 10−45.
Fukasawa, D.W. Masser, F. Gramain (1981): γ = π/(2e).
Connection with eπ = 23, 140 692 632 779 269 005 729 086 367 . . .
Siegel (1929): Dirichlet’s box principle, lemma of Thue–Siegel, application to
transcendence (elliptic curves).
Gel’fond–Schneider’s Theorem in 1934.
“Criteria” for analytic functions satisfying differential equations: Schneider,
Lang. Statement of the Schneider–Lang Theorem. Corollaries: Hermite–Lindemann,
Gel’fond–Schneider.
Mahler’s method:

f(z) =
∑
n≥0

2−n(n−1)zn, f(z) = 1 + zf(z/4), f(1/2) =
∑
n≥0

2−n
2
.
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Also f(z) =
∑
n≥0

zd
n

, for d ≥ 2, satisfies the functional equation f(zd)+z = f(z)

for |z| < 1.
Baker’s Theorem.
Algebraic independence: Gel’fond’s criterion, algebraic independence of 2

3√2 and
2

3√4. Gel’fond–Schneider problem on the transcendence degree of Q(αβ1 , . . . , αβm)
(see Exercise 21).
Algebraic independence of π and Γ(1/4): Chudnovskii (1978). Algebraic inde-
pendence of π, eπ and Γ(1/4): Nesterenko (1996).
Schanuel’s conjecture. Corollaries.
Auxiliary functions, zero estimates, Laurent’s interpolation determinants. Arakelov
Theory (J-B. Bost): slope inequalities.

Exercise 21. Let α be a non-zero algebraic number and let ` be any non–zero
number such that e` = α. For z ∈ C define αz as exp{z`} (which is the same
as ez`). Show that the following statements are equivalent.
(i) For any irrational algebraic complex number β, the transcendence degree
over Q of the field

Q
{
αβ

i

; i ≥ 1
}

is d− 1 where d is the degree of β.
(ii) For any algebraic numbers β1, . . . , βm such that the numbers 1, β1, . . . , βm
are Q-linearly independent, the numbers αβ1 , . . . , αβm are algebraically inde-
pendent.
Remark: that both statements are true is a conjecture of Gel’fond and Schnei-
der. It is not yet proved.

Exercise 22. Deduce from Schanuel’s Conjecture the following statement: the
numbers

e, π, eπ, πe, ee, ππ, (log 2)log 3, (log 3)log 2, πlog 2, πlog 3,

log π, log log π, log log 2, log log 3 (2.36)

are algebraically independent.

79



References

[1] M. Aigner & G.M. Ziegler – Proofs from THE BOOK, Springer (2001).

[2] J.-P. Allouche & J. Shallit – Automatic sequences, Theory, applica-
tions, generalizations, Cambridge University Press, Cambridge, 2003,

[3] N. Bergeron – Sur la topologie de certains espaces provenant de construc-
tions arithmétiques.
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[22] Yu. V.Ñesterenko & M. Waldschmidt – On the approximation of
the values of exponential function and logarithm by algebraic numbers. (In
russian) Mat. Zapiski, 2 Diophantine approximations, Proceedings of papers
dedicated to the memory of Prof. N. I. Feldman, ed. Yu. V. Nesterenko,
Centre for applied research under Mech.-Math. Faculty of MSU, Moscow
(1996), 23–42.
http://fr.arXiv.org/abs/math/0002047

[23] I. Niven – Irrational numbers, Carus Math. Monographs 11 (1956).
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