
Taxonomy of XML Schema Languages using

Formal Language Theory

MAKOTO MURATA

IBM Tokyo Research Lab

DONGWON LEE

Penn State University

MURALI MANI

Worcester Polytechnic Institute

and

KOHSUKE KAWAGUCHI

Sun Microsystems

On the basis of regular tree grammars, we present a formal framework for XML schema languages.
This framework helps to describe, compare, and implement such schema languages in a rigorous
manner. Our main results are as follows: (1) a simple framework to study three classes of tree
languages (“local”, “single-type”, and “regular”); (2) classification and comparison of schema
languages (DTD, W3C XML Schema, and RELAX NG) based on these classes; (3) efficient doc-
ument validation algorithms for these classes; and (4) other grammatical concepts and advanced
validation algorithms relevant to XML model (e.g., binarization, derivative-based validation).

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—Schema
and subschema; F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages—
Classes defined by grammars or automata

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: XML, schema, validation, tree automaton, interpretation

1. INTRODUCTION

XML [Bray et al. 2000] is a meta language for creating markup languages. To
represent an XML based language, we design a collection of names for elements
and attributes that the language uses. These names (i.e., tag names) are then
used by application programs dedicated to this type of information. For instance,
XHTML [Altheim and McCarron (Eds) 2000] is such an XML-based language. In it,
permissible element names include p, a, ul, and li, and permissible attribute names
include href and style. Then, an application program of XHTML (e.g., XHTML
browser) relies on these names for identifying paragraphs, anchors, itemized lists,

An earlier version [Murata et al. 2001] of this paper was presented at Extreme Markup Language
2001, but has been improved and expanded significantly.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0000-0000/2004/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, November 2004, Pages 1–44.

2 · ...

or links.
An XML schema is a rigorous specification of an XML-based language in terms

of constraints on elements and attributes. An XML document is said to be valid
against a schema if the elements and attributes in this XML document satisfy the
constraints specified in the schema. For example, a schema for XHTML specifies
p, a, ul, or li as element names, and specifies href or style as attribute names.
This schema further specifies a constraint that a ul element has li elements as
child elements. The W3C XHTML recommendation [Altheim and McCarron (Eds)
2000] contains an authoritative schema for XHTML.

We typically use some computer language, which we call schema language, for
expressing a schema. A validator for a schema language is a computer program
that determines whether or not a given XML document is valid against a schema
written in that schema language. The primary advantage of schema languages is
that descriptions in schema languages are more precise than those in prose and that
we can rely on validators rather than carrying out human inspections.

Several schema languages have been proposed in the past. Among them, DTD [Bray
et al. 2000], W3C XML Schema1 [Thompson et al. 2001], and RELAX NG [Clark
and Murata (Eds) 2001] are general-purpose schema languages created by stan-
dardization organizations, and we are mainly concerned about these languages.
However, other schema languages are of interest, too. Some (e.g., XDuce [Hosoya
and Pierce 2000] and DSD [Klarlund et al. 2000]) are research activities rather than
industrial specifications. Others (e.g, RDF Schema [Brickley and Guha (Eds) 2000])
are special-purpose schema languages for particular type of information, which may
be represented in the XML syntax. Yet others (e.g., Schematron [Jelliffe 2000]) are
languages for representing integrity constraints. We discuss these schema languages
in Section 8.

Unlike other survey papers (e.g., [Jelliffe 2000] and [Lee and Chu 2000]), we
study schema languages using a formal framework. We believe that providing a
formal framework is crucial in understanding various features of schema languages
and facilitating efficient implementations of schema languages. However, our for-
mal approach has limitations: we do not consider some important characteristics
of schema languages such as comprehensiveness, readability, and maintainability.
Although these characteristics are highly important, they are outside the scope of
this paper.

To formally capture schemas, schema languages, and document validation, we
use regular tree grammar or tree automata theory [Comon et al. 1997; Takahashi
1975]. Regular tree grammars and tree automata have recently been used by many
researchers for representing schemas or queries for XML and have become the main-
stream in this area (see [OASIS 2003], [Vianu 2001], [Neven 2002], [Klarlund et al.
2003]). For example, XML Query [Chamberlin et al. 2001] of W3C is based on tree
automata.

Our major contributions in this paper are as follows:

—Based on three subclasses of regular tree grammars and languages, we classify

1Throughout the paper, we differentiate two terms – XML schema(s) and W3C XML Schema.
The former refers to a general term for schema in XML model, while the latter refers to one
particular kind of XML schema language proposed by W3C in [Thompson et al. 2001].

ACM Journal Name, Vol. V, No. N, November 2004.

... · 3

XML schema languages such as DTD, W3C XML Schema, and RELAX NG.

—We show algorithms for validating documents against schemas under these sub-
classes, and further consider the characteristics of these algorithms (e.g., the tree
model vs. the event model, and complexity);

—Based on regular tree grammar theory, we present a detailed analysis and com-
parison of the XML schema languages with respect to their expressive power and
closure properties under boolean set operations such as union, intersection and
difference.

—We also discuss other grammatical concepts (e.g., deterministic content models,
balanced context-free grammars) and validation algorithms (e.g., binarization,
derivative-based validation) relevant to XML model and our framework.

1.1 Roadmap

The remainder of this paper is organized as follows. In Section 2, we introduce the
class of regular tree languages, introduce two restricted classes called “local” and
“single-type”, and study properties of these classes of tree languages. In Section 3,
using these classes of tree languages, different XML schema languages proposals
are analyzed and classified accordingly. In Section 4, we study efficient validation
algorithms for these classes. In Section 5, we discuss properties of these classes such
as expressive power and boolean closure. Other grammatical concepts relevant to
tree grammars, and advanced validation algorithms are discussed in Sections 6
and 7. In Section 8, we consider related works such as other survey papers on XML
schema languages. Finally, concluding remarks and thoughts on future research
directions are discussed in Section 9.

2. TREE GRAMMARS

In this section, as a mechanism for describing permissible trees, we introduce tree
grammars. Tree grammars generate trees, and as such, they should not be confused
with context-free grammars, which generate strings. Since XML documents are
trees rather than strings, tree grammars are more appropriate than context-free
grammars are. We will further compare tree grammars and context-free grammars
in Section 5.

We begin with a class of tree grammars called “regular”, and then introduce two
restricted classes called “local” and “single-type”.

2.1 Regular Tree Grammars and Languages

In preparation, we clarify what we mean by “trees”. Our trees are ordered (i.e., a
node has an ordered sequence of child nodes) and do not have fixed arities (i.e., a
node is allowed to have any number of child nodes). Nodes are labeled with the
exception of text nodes being leaves. Such trees capture element structures of XML
documents.

We borrow the definitions of regular tree languages and tree automata from [Comon
et al. 1997], but allow the right-hand side of a production rule to have a regular
expression over non-terminals.

Definition 2.1. A regular tree grammar is a 4-tuple G = (N, T, S, P), where:

ACM Journal Name, Vol. V, No. N, November 2004.

4 · ...

—N is a finite set of non-terminals,

—T is a finite set of terminals,

—S is a set of start symbols, where S is a subset of N ,

—P is the set of production rules of the form X → a r, where X ∈ N , a ∈ T , and
r is a regular expression over N ; X is the left-hand side, a r is the right-hand
side, and r is called the content model of this production rule. 2

We often use bold lowercase for terminal symbols and capitalized Italic font for
non-terminal symbols or regular expressions. Furthermore, the null sequence of
non-terminals is represented by ǫ. Any text node in a tree is assumed to match a
special terminal pcdata.

Example 2.1. The following grammar G2.1 = (N, T, S, P) is a regular tree gram-
mar. The left-hand side, right-hand side, and content model of the first production
rule are Doc, doc (Para1, Para2∗), and (Para1, Para2∗), respectively.

N = {Doc,Para1 ,Para2 ,Pcdata}

T = {doc,para,pcdata}

S = {Doc}

P = {Doc → doc (Para1 ,Para2 ∗),Para1 → para (ǫ),

Para2 → para (Pcdata),Pcdata → pcdata (ǫ)} 2

Without loss of generality, we can assume that no two production rules have
the same non-terminal in the left-hand side and the same terminal in the right-
hand side at the same time. If a regular tree grammar contains such production
rules, we only have to merge them into a single production rule. For example,
Doc → doc (Para1 ,Para2 ∗) and Doc → doc (Para2 ∗) can be merged into Doc →
doc (Para1 ?,Para2 ∗). We have to define when a tree is valid against a regular tree
grammar. We first define interpretations.

Definition 2.2. An interpretation I of a tree t against a regular tree grammar G

is a mapping from each node e in t to a non-terminal, denoted I(e), such that:

—I(e) is a start symbol when e is the root of t, and

—for each node e and its child nodes e0, e1, ..., em, there exists a production rule
X → a r in G such that

—I(e) is X ,

—the terminal symbol (label) of e is a, and

—I(e0)I(e1)...I(em) matches r. 2

Recall that any text node is replaced by the terminal symbol pcdata. There will
be only one production rule in our grammar that has pcdata on the right hand
side, Pcdata → pcdata(ǫ).2 Now, we are ready to define validity against a regular
tree grammar and to introduce regular tree languages.

2This is a simplifying assumption. The handling of text nodes in real schema languages is much
more complicated, and is outside the scope of this paper.

ACM Journal Name, Vol. V, No. N, November 2004.

... · 5

doc

para
����

��
��

�

para
��

??
??

??
?

pcdata
��

Doc

Para1

����
��

��
�

Para2

��
??

??
??

?

Pcdata
��

(a) Tree (b) Interpretation

Fig. 1. A tree t and its interpretation against G2.1.

Definition 2.3. A tree t is valid against a regular tree grammar G if there is an
interpretation of t against G. A set of trees is a regular tree language if, for some
regular tree grammar, all trees in this set are valid and no other trees are valid. 2

Example 2.2. A tree <doc><para/><para>text chunk</para></doc> and its in-
terpretation against G2.1 are shown in Figure 1. Observe that “text chunk” matches
pcdata and is associated with Pcdata . 2

2.2 Local Tree Grammars and Languages

We first define competition of non-terminals, which makes document validation
difficult. Then, we introduce a restricted class called “local” [Takahashi 1975] by
prohibiting competition of non-terminals. This class roughly corresponds to DTD.

Definition 2.4. Two different non-terminals A and B are said to be competing
with each other if

—one production rule has A in the left-hand side,

—another production rule has B in the left-hand side, and

—these two production rules share the same terminal in the right-hand side. 2

Example 2.3. Consider a regular tree grammar G2.3 = (N, T, S, P), where:

N = {Book ,Author1 ,Author2 ,Son,Article,Daughter}

T = {book,author, son,article,daughter}

S = {Book ,Article}

P = {Book → book (Author1),Article → article (Author2),

Author1 → author (Son),Author2 → author (Daughter),

Son → son (ǫ),Daughter → daughter (ǫ)}

Author1 and Author2 compete with each other, since the production rule for Au-
thor1 and that for Author2 share the terminal author in the right-hand side. There
are no other competing non-terminal pairs in this grammar. 2

The implication of the existence of competing non-terminals in a regular tree
grammar is that it makes the validation of XML documents more difficult. That
is, given the author, validators have to somehow figure out if the author matches
with either Author1 or Author2 .

ACM Journal Name, Vol. V, No. N, November 2004.

6 · ...

Definition 2.5. A local tree grammar is a regular tree grammar without compet-
ing non-terminals. A set of trees is a local tree language if, for some local tree
grammar, all trees in this set are valid and no other trees are valid. 2

Example 2.4. The grammar G2.1 in Example 2.1 is not local, since non-terminals
Para1 and Para2 compete with each other. 2

Example 2.5. The grammar G2.3 in Example 2.3 is not local, since non-terminals
Author1 and Author2 compete with each other. 2

Example 2.6. The following grammar G2.6 = (N, T, S, P) is a local tree grammar:

N = {Book ,Author1 ,Son,Pcdata}

T = {book,author, son,pcdata}

S = {Book}

P = {Book → book (Author1),Author1 → author (Son),

Son → son (Pcdata),Pcdata → pcdata (ǫ)} 2

2.3 Single-Type Tree Grammars and Languages

Next, we introduce a less restricted class called “single-type” by prohibiting com-
petition of non-terminals within a single content model. This class roughly corre-
sponds to W3C XML Schema.

Definition 2.6. A single-type tree grammar is a regular tree grammar such that

—for each production rule, non-terminals in its content model do not compete with
each other, and

—start symbols do not compete with each other.

A set of trees is a single-type tree language if, for some single-type tree grammar,
all trees in this set are valid and no other trees are valid. 2

Example 2.7. The grammar G2.1 in Example 2.1 is not single-type. Observe that
non-terminals Para1 and Para2 compete, and they occur in the content model of
the production rule for Doc. 2

Example 2.8. G2.3 in Example 2.3 is a single-type tree grammar; although Au-
thor1 and Author2 compete each other, they do not appear in the same content
model. 2

2.4 Expressive Power

Having introduced three classes of tree grammars, we devote the rest of this section
to properties of these classes. In this subsection, we study expressive power of
these classes. This study helps to compare expressive power of schema languages
in Section 3.

By definition, a single-type tree grammar is always a regular tree grammar. Thus,
a single-type tree language is always a regular tree language. Likewise, a local tree
grammar is always a single-type tree grammar, since the restriction on a local tree
grammar is tighter than that on a single-type tree grammar. Thus, a local tree
language is always a single-type tree language.

ACM Journal Name, Vol. V, No. N, November 2004.

... · 7

Regular Single-Type Local

G2.1 Yes No No
G2.3 Yes Yes No
G2.6 Yes Yes Yes

Table I. Summary of examples.

Lemma 2.1. Any single-type tree language is a regular tree language, and any
local tree language is a single-type tree language.

We are now interested in the converse: can regular tree grammars be rewritten
to single-type tree grammars and can single-tree grammars be rewritten to local
tree grammars? The following lemma shows that the answer is negative.

Lemma 2.2. Some regular tree languages are not single-type tree languages, and
some single-type tree languages are not local tree languages.

To prove this lemma, we only have to show that (1) the regular tree grammar
G2.1 in Example 2.1 cannot be captured by any single-type tree grammar and that
(2) the single-type tree grammar G2.3 in Example 2.3 cannot be captured by any
local tree grammar. Both (1) and (2) can be easily proved by contradiction, and
are thus omitted.

The next theorem directly follows from the above lemmas.

Theorem 2.1. The class of regular tree languages properly includes the class of
single-type tree languages, which in turn properly includes the class of local tree
languages.

Table I summarizes which class each of example grammars so far belongs to.

2.5 Uniqueness of interpretations

In this subsection, we consider whether or not a tree can have more than one
interpretation against a grammar.

Proposition 1. Any tree has at most one interpretation against a local tree gram-
mar. 2

When a tree is valid against a local tree grammar, we can easily construct an
interpretation of this tree as follows. For each node in this tree, we find a production
rule having the terminal of this node in the right-hand side. Since we prohibited
competition of non-terminals in local tree grammars, it is guaranteed that we find
at most one such production rule. We determine that the non-terminal in the left-
hand side of this production rule be the non-terminal for this node. It is obvious
that this tree has no other interpretations.

Example 2.9. Consider the grammar G2.6 in Example 2.6 and a valid tree:

<book><author><son>text chunk</son></author></book>

The non-terminals for the book, author, and son elements are Book , Author , and
Son, respectively and the non-terminal for the text node is Pcdata . Figure 2 depicts
the tree and its unique interpretation. 2

ACM Journal Name, Vol. V, No. N, November 2004.

8 · ...

book

author
��

son
��

pcdata
��

Book

Author1
��

Son
��

Pcdata
��

(a) Tree (b) Interpretation

Fig. 2. A tree and its interpretation against G2.6.

Observe that the above procedure for constructing interpretations does not re-
quire full validation. In fact, it does not even examine content models.

Proposition 2. Any tree has at most one interpretation against a single-type tree
grammar. 2

Given a single-type tree grammar and a tree valid against it, we can construct
the interpretation of this tree as before. The only difference is that we have to
resolve competition of non-terminals by using content models of parent nodes. As
for the root node, it is guaranteed that competition does not occur. As for each
non-root node, we can assume that we have already determined the non-terminal
for its parent node. Note that we can uniquely determine the content model for
the parent node, since no two production rules share the same non-terminal in
the left-hand side and share the same terminal in the right-hand side at the same
time. Since two different non-terminals in this content model do not compete, we
can uniquely determine the non-terminal for the current node. As previously, it is
obvious that this tree has no other interpretations.

Example 2.10. Consider the single-type tree grammar G2.3 in Example 2.3 and
a valid tree:

<book><author><son>text chunk</son></author></book>

Obviously, the non-terminal for the root book element is Book . Although non-
terminals Author1 and Author2 compete for the terminal author, only the former
appears in the content model for the non-terminal Book . Thus, the non-terminal for
the author element is Author1 . The non-terminal for the son element is obviously
Son. Again, Figure 2 (used in the Example 2.9) depicts the tree and interpreta-
tion. 2

Again, this procedure does not require full validation. Although it examines
content models for resolving competition, it does not ensure if content models are
satisfied or not. Unlike local or single-type tree grammars, regular tree grammars
do not guarantee uniqueness of interpretations.

Proposition 3. A tree may have more than one interpretation against a regular
tree grammar. 2

ACM Journal Name, Vol. V, No. N, November 2004.

... · 9

We demonstrate a regular tree grammar that has multiple interpretations.

Example 2.11. The following regular tree grammar G2.11 = (N, T, S, P) is not
single-type. Observe that competing non-terminals Para1 and Para2 occur in the
content model (Para1∗, Para2∗).

N = {Doc,Para1 ,Para2 ,Pcdata}

T = {doc,para,pcdata}

S = {Doc}

P = {Doc → doc (Para1 ∗,Para2 ∗),Para1 → para (Pcdata),

Para2 → para (Pcdata),Pcdata → pcdata (ǫ)}

Uniqueness of interpretation does not hold for this grammar, since Para1 and Para2
are interchangeable for the document <doc><para/></doc>. 2

This regular tree grammar is artificial, since the distinction between Para1 and
Para2 is unnecessary. If we merge these non-terminals, we obtain an equivalent
single-type tree grammar, which certainly ensures uniqueness of interpretations.
However, as we have seen in the previous subsection, it is not always possible to
rewrite a regular tree grammar to an equivalent single-type tree grammar.

As we will see in Section 5, uniqueness of interpretations is one of the most
contentious issues around XML schema languages. Some people consider unique-
ness of interpretations to be crucial, since they believe that validators should pass
interpretations to application programs. Others do not care about uniqueness of
interpretations, since they believe that validators must not pass interpretations to
application programs. We will provide a concise overview of this controversy in
Section 5.

2.6 Boolean Closure

The last topic in this section is boolean closure. In contrast to uniqueness of
interpretations, boolean closure holds for regular tree languages but does not hold
for single-type or local tree languages.

Definition 2.7. A class of languages is said to be closed under union (respectively,
intersection and set difference), when, for any two languages in that class, their
union (respectively, intersection and set difference) also belongs to the same class.2

Theorem 2.2. The class of single-type tree languages and that of local tree lan-
guages are not closed under union.

We can make a stronger claim: the union of two local tree languages is not always
single-type. Consider two local tree grammars G2.2.1 and G2.2.2 as below3.

G2.2.1 = ({Doc,Sec1 ,Para}, {doc, sec,para}, {Doc},

{Doc → doc (Sec1 ∗),Sec1 → sec (Para),Para → para (ǫ)}),

G2.2.2 = ({Doc,Sec2 ,Para}, {doc, sec,para}, {Doc},

{Doc → doc (Sec2 ∗),Sec2 → sec (Para,Para+),Para → para (ǫ)}).

3For convenience, we use A+ to denote A, A∗.

ACM Journal Name, Vol. V, No. N, November 2004.

10 · ...

The union of L(G2.2.1) and L(G2.2.2) can be captured by a regular tree grammar,
but cannot be captured by a single-type tree grammar. In fact, it can be captured
by a regular tree grammar G2.2.3 shown below:

G2.2.3 = ({Doc,Sec1 ,Sec2 ,Para}, {doc, sec,para}, {Doc},

{Doc → doc (Sec1 ∗ |Sec2 ∗),

Sec1 → sec (Para),Sec2 → sec (Para,Para+),Para → para (ǫ)}.

Observe that G2.2.3 is not a single-type tree grammar, since non-terminals Sec1
and Sec2 compete with each other and occur in the content model of the first
production rule. If we “improve” this grammar by merging Sec1 and Sec2 , we
will allow unnecessary trees that are not valid against either G2.2.1 or G2.2.2. By
contradiction, we can easily show that no single-type tree grammars capture the
union.

Theorem 2.3. The class of single-type tree languages and that of local tree lan-
guages are not closed under set difference.

Again, we can make a stronger claim: the set difference of two local tree languages
is not always single-type. Consider two local tree grammars G2.3.1 and G2.3.2 as
below:

G2.3.1 = ({Doc,Sec1 ,Para}, {doc, sec,para}, {Doc},

{Doc → doc (Sec1 ,Sec1),Sec1 → sec (Para∗),Para → para (ǫ)}),

G2.3.2 = ({Doc,Sec2 ,Para}, {doc, sec,para}, {Doc},

{Doc → doc (Sec2 ,Sec2),Sec2 → sec (Para+),Para → para (ǫ)}).

The set difference L(G2.3.1) − L(G2.3.2) cannot be captured by a single-type tree
grammar. In fact, it can be captured by a regular tree grammar G2.3.3 defined
below:

G2.3.3 = ({Doc,Sec1 ,Sec2 ,Para}, {doc, sec,para}, {Doc},

{Doc → doc ((Sec1 ,Sec2) | (Sec2 ,Sec1)),

Sec1 → sec (Para∗),Sec2 → sec (ǫ),Para → para (ǫ)}).

Observe that G2.3.3 is not a single-type tree grammar, since non-terminals Sec1
and Sec2 compete with each other and occur in the content model of the first
production rule. By contradiction, we can easily show that no single-type tree
grammars capture this set difference.

Theorem 2.4. The class of single-type tree languages and that of local tree lan-
guages are closed under intersection.

We defer a formal proof to Appendix, but give an informal overview. First, we
construct an intersection grammar, say G3, from two given grammars, say G1 and
G2. For each non-terminal X1 in G1 and non-terminal X2 in G2, we introduce a
non-terminal, denoted X [X1, X2], for G3. For each terminal a, we select X1 → a r1

from G1 and X2 → a r2 from G2. From r1 and r2, we create a regular expression r3

over N1 ×N2 such that r3 simulates both r1 and r2. Then, we create a production
rule X [X1, X2] → a r3 for G3. Then, we only have to show that this grammar is
local or single-type when both G1 and G2 are local or single-type, respectively.

ACM Journal Name, Vol. V, No. N, November 2004.

... · 11

Boolean operation
Grammar class

union difference intersection

local tree grammar Not Closed Not Closed Closed
single-type tree grammar Not Closed Not Closed Closed

regular tree grammar Closed Closed Closed

Table II. Summary of closure properties.

Theorem 2.5. The class of regular tree languages is closed under union, intersec-
tion, and set difference [Takahashi 1975].

This result is well known and we do not provide a proof in this paper. Interested
readers are referred to [Comon et al. 1997; Takahashi 1975]. Closure properties
under union, intersection, and difference are summarized in Table II.

3. XML SCHEMA LANGUAGES

In this section, using the three grammar classes that we introduced in Section 2, we
study various representative XML schema language proposals: DTD, W3C XML
Schema, RELAX NG. Our focus is on the mathematical properties of these schema
languages in our framework.

We capture all these schema proposals by regular tree grammars. For this pur-
pose, we slightly modify our definition of production rules. We allow production
rules without terminals; that is, they are of the form x → r, where x ∈ N and
r is a regular expression over N . However, we impose a restriction that all such
production rules can be safely expanded to regular expressions over non-terminals
whose production rules have a terminal symbol on the right hand side. For exam-
ple, x → ((y, x, y)|y) is disallowed, since this production rule causes non-regular
string languages. Note that, given such a regular tree grammar, we can rewrite
the grammar into one where all the production rules have a terminal in the right
hand side as in Definition 2.1. After such rewriting, our definitions of interpretation
and valid documents from Section 2 still hold. The notion of complex types and
interpretations as defined by W3C XML Schema require further attention and are
discussed in Section 3.2.

3.1 DTD

DTD as defined in [Bray et al. 2000] is a local tree grammar. This is enforced by not
distinguishing between terminals and non-terminals. Element type declarations of
DTDs are production rules, and “element types” of XML 1.0 are terminals as well
as non-terminals. Content models are required to be deterministic (see Section 6.6).
Attribute-list declarations of DTDs associate attributes to terminals.

As an example, consider a DTD as below:

<!ELEMENT doc (para*)>

<!ELEMENT para (#PCDATA)>

It can be captured by a local tree grammar shown below:

N = {Doc,Para,Pcdata}

T = {doc,para,pcdata}

ACM Journal Name, Vol. V, No. N, November 2004.

12 · ...

S = {Doc}

P = {Doc → doc (Para∗),Para → para (Pcdata),Pcdata → pcdata (ǫ)}

Weak expressive power of local tree grammars can be problematic in designing an
XML schema using DTD. As an example, consider elements representing paper
titles and elements represents section titles. DTD authors often would like to use
different contents for these two types of title elements. However, if they use the
same tag name title for both types, they are forced to write a single content
model. As a result, they have to introduce many tag names such as paperTitle,
sectionTitle, subSectionTitle, and so forth.

3.2 W3C XML Schema

The expressiveness of W3C XML Schema [Thompson et al. 2001] is mostly within
that of the single-type grammars, as intended by the specification. However, in
some cases, it fails to be in single-type (see Section 3.2.7). As in DTDs, content
models in W3C XML Schema are required to be deterministic (see Section 6.6).

The main features of W3C XML Schema are complex type, anonymous type,
model groups, derivation by extension and restriction, substitution groups, abstract
type definitions, and integrity constraints such as key, unique and keyref constraints.
Except for integrity constraints, the rest of the these features can be described in
our framework.

3.2.1 Complex types. A complex type defines a production rule without termi-
nals. For instance:

<xsd:complexType name="Book">

<xsd:sequence>

<xsd:element name="title" type="xsd:string"

minOccurs="1 maxOccurs="1"/>

<xsd:element name="author" type="xsd:string"

minOccurs="1" maxOccurs="unbounded"/>

<xsd:element name="publisher" type="xsd:string"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

This can be converted into production rules Book → (Title,Author+,Publisher ?),
Title → title (Pcdata), Author → author (Pcdata), Publisher → publisher (Pcdata).
The first production rule does not have terminals in the right-hand side. The other
rules are required for specifying permissible values of child elements.

Element declarations refer to complex types with the attribute type. For ex-
ample, <xsd:element name="MyFavoriteBook" type="Book"/> specifies that the
content of MyFavoriteBook elements are of the type Book .

Interpretations as defined by W3C XML Schema require that we know the
complex type associated with an element as well. In other words, I(e) as de-
fined in Definition 2.2 needs to include the complex type corresponding to the
contents of e. For example, consider the following two element declarations in
W3C XML Schema, <xsd:element name="MyFavoriteBook" type="Book"/> and
<xsd:element name="MyFavoriteBook" type="Book1"/>. Here Book and Book1

ACM Journal Name, Vol. V, No. N, November 2004.

... · 13

are complex types, with production rules, Book → (RE1), Book1 → (RE2). Now
when we rewrite the above W3C XML Schema to a regular tree grammar as in Def-
inition 2.1, we will get MyFavoriteBookAsBook → MyFavoriteBook(RE1), and
MyFavoriteBookAsBook1 → MyFavoriteBook(RE2). Now after interpretation,
we will know the complex types associated with the elements as well.

3.2.2 Anonymous complex types. Anonymous complex types are mapped to our
framework by introducing new non-terminals and production rules. For example,
consider the anonymous complex type for item, which is the second xsd:complexType

in this example.

<xsd:complexType name="Items">

<xsd:sequence>

<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

This can be converted by introducing a new non-terminal Item and the produc-
tion rules Items → (Item∗), Item → Item(ProductName), and ProductName →
productName (Pcdata).

3.2.3 Model groups. A model group definition defines a non-terminal and a pro-
duction rule without a terminal. An example in [Fallside (Eds) 2001] is shown
below:

<xsd:group name="ShipAndBill">

<xsd:sequence>

<xsd:element name="shipTo" type="USAddress"/>

<xsd:element name="billTo" type="USAddress"/>

</xsd:sequence>

</xsd:group>

This model group definition is equivalent to production rules: ShipAndBill →
(ShipTo,BillTo), ShipTo → shipTo (USAddress), and BillTo → billTo (USAddress).

Model groups can be freely referenced from other model groups or complex types,
for example, by <xs:group ref="ShipAndBill"/>.

3.2.4 Derivation. Complex types cannot be freely referenced from model groups
or other complex types. Derivation is the only mechanism for defining complex
types based on other complex types. Derivation is done by extension or restriction.
An example of derived types by extension is given below. This example is borrowed
from [Fallside (Eds) 2001] Section 4.1, but is modified slightly.

<xsd:complexType name="Address">

<xsd:sequence>

ACM Journal Name, Vol. V, No. N, November 2004.

14 · ...

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="street" type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="UKAddress">

<xsd:complexContent>

<xsd:extension base="Address">

<xsd:sequence>

<xsd:element name="postcode" type="xsd:string"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

The complex type UKAddress is derived from the complex type Address by adding
Postcode. These complex types are captured by production rules Address →
(Name,Street,City), UKAddress → (Name,Street,City ,

Postcode), and production rules for Name, Street, City, Postcode.

Derivation by restriction creates a new complex type by imposing restrictions on
another complex type. However, we are forced to write the whole content model
rather than specifying the restrictions. In the following example, complex type
WashingtonAddress is derived from Address by restriction but name, street, and
city are specified again.

<xsd:complexType name="WashingtonAddress">

<xsd:complexContent>

<xsd:restriction base="Address">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="street" type="xsd:string"/>

<xsd:element name="city">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Washington"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

The restriction imposed by complex type WashingtonAddress is that city must
have "Washington" as the value. Validators complain if a complex type derived by
restriction allows what is not allowed by the original. For example, validators raise

ACM Journal Name, Vol. V, No. N, November 2004.

... · 15

an error if WashingtonAddress introduces a child element postcode.
W3C XML Schema provides an attribute called final which prevents derived

types by extension or restriction. For example, if Address had defined final=#all ,
then we cannot derive UKAddress or WashingtonAddress from it.

3.2.5 xsi:type. An element declared to be of a complex type A can actually
be of another complex type B, if B is derived from A and the element specifies
xsi:type="B". As an example, recall the complex types Address and UKAddress
introduced above. Although an element declaration <xsd:element name="shipTo"

type="Address"/> references to Address , we can use UKAddress as the complex
type of shipTo elements thus allowing postcode. To do so, we only have to specify
xsi:type="UKAddress".

<shipTo xsi:type="UKAddress">

<name>Helen Zoe</name>

<street>47 Eden Street</street>

<city>Cambridge</city>

<postcode>CB1 1JR</postcode>

</shipTo>

In our framework, xsi:type can be captured by introducing additional “termi-
nal symbols” and production rules before validation. For example, <xsd:element
name="shipTo" type="Address"/> is represented by ShipTo → shipTo (Address).
We introduce another rule: ShipTo → shipTo@xsi:type="UKAddress"(UKAddress),
where shipTo@xsi:type="UKAddress" is a “terminal symbol”. This production
rule can be applied to those shipTo elements having xsi:type="UKAddress".

Such use of xsi:type can be prevented by specifying an attribute called block in
the original type. For example, if Address had defined “block=#all”, then shipTo

elements cannot specify xsi:type="UKAddress". Our framework can easily capture
block by not introducing additional production rules as a side effect.

3.2.6 Substitution groups. A substitution group definition allows some terminal
symbols to be substituted by other terminal symbols. For example, consider an
element declaration

<xsd:element name="comment" type="X"/>

This gets translated into the production rule comment → comment (X). Consider
the substitution group definition ([Fallside (Eds) 2001] Section 4.6) (We modify it
slightly for easy explanation):

<xsd:element name="shipComment" type="Y"

substitutionGroup="comment"/>

<xsd:element name="customerComment" type="Z"

substitutionGroup="comment"/>

This substitution group specifies that the terminal comment can be replaced by the
terminals shipComment or customerComment. W3C XML Schema requires
that Y and Z are derived from X . This is converted into grammar rules:

P = {ShipComment → shipComment (Y),

ACM Journal Name, Vol. V, No. N, November 2004.

16 · ...

CustomerComment → cutomerComment (Z),

comment → shipComment (Y),

comment → customerComment (Z)}

3.2.7 Wildcards. Wildcards allow elements or attributes without specifying tag
names. Wildcards sometimes lead to non-single-type schemas, however. For exam-
ple, the following schema4 is not single-type.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="test">

<xsd:complexType>

<xsd:sequence>

<xsd:any namespace="##any" processContents="strict"/>

<xsd:element name="foo" type="xsd:integer"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="foo" type="xsd:string"/>

</xsd:schema>

In the content model for test elements, both the wildcard (<xsd:any ...>) and
<xsd:element name="foo" type="xsd:integer"/> allow a terminal symbol foo.
Note that the latter specifies integers as contents. The following XML document is
valid against this schema, although the content of the first foo element is not an
integer5.

<test>

<foo>bar</foo>

<foo>1</foo>

</test>

The above schema is rather a restrained-competition tree grammar, which we will
cover in Section 6.3.

3.2.8 Miscellaneous. W3C XML Schema has many more additional features.
Abstract type definitions are similar to complex type definitions with the addi-
tional constraint that an abstract type should never occur in the instance docu-
ment, rather its subtype should be used. Similarly an element declared as abstract
should not occur in the instance document, instead another element belonging to
its substitution group should be used. These features can be captured in the frame-
work of regular tree grammars. W3C XML Schema also supports specification of
integrity constraints such as (keys, keyref and unique). They specify additional
constraints for an XML document to be valid against a schema. These constraints
are similar to the integrity constraints present in the relational model such as pri-
mary key, foreign key and unique key constraints. Such integrity constraints in

4We owe this example to Eric van der Vlist.
5We do not translate wild cards into our grammar production rules, rather we require that the set
of terminal symbols is finite. However we can easily extend our framework to capture wildcards
by extending our alphabet to be an infinite set, but with a finite set of equivalence classes.

ACM Journal Name, Vol. V, No. N, November 2004.

... · 17

W3C XML Schema cannot be captured using our framework, but rather require an
additional layer on top of it.

3.3 RELAX NG

RELAX NG can represent any regular tree grammar, as did its predecessors RE-
LAX Core [ISO/IEC 2000] and TREX [Clark 2001b]. RELAX NG represents pro-
duction rules by define elements. The attribute name of a define element specifies
a non-terminal in the left-hand side. The child elements of the define element
captures the right-hand side. A terminal symbol and a content model in the right-
hand side are represented by a child element element and the children of this
element element. Unlike the DTD and W3C XML Schema, RELAX NG allows
non-deterministic content models.

To increase readability, RELAX NG allows production rules not to have a termi-
nal in the right-hand side. Such production rules provide syntax sugar and can be
safely expanded without loss of information. For example, consider the following
RELAX NG schema:

<grammar xmlns="http://relaxng.org/ns/structure/1.0">

<start>

<ref name="AddressBook"/>

</start>

<define name="AddressBook">

<element name="addressBook">

<zeroOrMore>

<ref name="Card"/>

</zeroOrMore>

</element>

</define>

<define name="Card">

<element name="card">

<ref name="Name"/>

<ref name="Email"/>

</element>

</define>

<define name="Name">

<element name="name">

<text/>

</element>

</define>

<define name="Email">

<element name="email">

<text/>

</element>

</define>

</grammar>

Here AddressBook is a non-terminal that produces a tree, and inline is a non-
terminal that produces a list of trees. The above RELAX NG grammar will be

ACM Journal Name, Vol. V, No. N, November 2004.

18 · ...

represented in our framework as follows:

P = {AddressBook → addressBook (Card∗), Card → card(Name, Email),

Name → name(Pcdata), Email → email(Pcdata), Pcdata → pcdata (ǫ)}

RELAX NG has two significant extensions of regular tree grammars: attribute-
element constraints and interleaving. We will cover these topics in Section 7.3.

4. DOCUMENT VALIDATION ALGORITHMS

In this section, we consider algorithms for document validation and describe time
and memory requirements.

4.1 Preparations

In preparation, we introduce element automata. An element automaton is a usual
string automaton; however the alphabet is a set of non-terminals. We can create an
element automaton from a content model r by applying some well-known algorithm
for constructing string automata from regular expressions [Hopcroft and Ullman
1979]. We denote the constructed element automaton as M [r]; M [r] is represented
by a 5-tuple {Q, Σ, δ, q0, QF }, where Σ is a finite alphabet, Q is a finite set of states,
q0 (∈ Q) is a start state, QF (⊆ Q) is the set of final states, and δ is a function from
Σ × Q to the power set of Q. Note that this definition allows non-determinism,
since the transition function returns a set of states. By executing this element
automaton, we can determine whether or not a given sequence of non-terminals
matches the content model. We illustrate the execution of element automata below
for completeness.

Given a sequence X1X2 . . . Xn of non-terminals, we execute an element automa-
ton M by applying δ repeatedly. That is, we compute sets of states

Q0 = {q0},

Q1 = {q | q ∈ δ(X1, q
′), q′ ∈ Q0},

Q2 = {q | q ∈ δ(X2, q
′), q′ ∈ Q1}, ...

Qn = {q | q ∈ δ(Xn, q′), q′ ∈ Qn−1}.

If some state in Qn is a final state in QF , then X1X2 . . . Xn is accepted by M .
Otherwise, it is not accepted.

4.2 Validation against local tree grammars

Remember that a tree has at most one interpretation against a local or single-type
tree grammar. This uniqueness allows simple algorithms for validation against local
or single-type tree grammars.

We begin with validation for local tree grammars, which do not allow competing
non-terminals (see Definition 2.5). We validate an XML document while traversing
it in a depth-first manner. When we visit an element e, we can uniquely determine
a non-terminal n and a content model r from this start tag. When we exit from
e, we examine if the non-terminal sequence assigned to the child elements of e

matches r by executing M [r] against this non-terminal sequence. This idea is
effected by Algorithm 1. It uses a stack S of non-terminal lists. Each non-terminal
list l contains non-terminals assigned to sibling elements. This list is created as an

ACM Journal Name, Vol. V, No. N, November 2004.

... · 19

Input : XML document D

Let S be a stack of lists of non-terminals;
Let Y be a stack of production rules;
traverse D in the depth-first manner

when element e is visited

find a production rule X → a (r) such that a is the tag name of e;
//At most one such production rule is found.
if no rule is found then

report “invalid” and halt;

push X → a (r) to Y ;
push an empty list to S;

when element e is exited from

pop X → a (r) out of Y ;
pop a list (X1, X2, . . . , Xn) out of S;
//X1, X2, . . . , Xn are non-terminals assigned to the children of e;
if M [r] does not accept (X1, X2, . . . , Xn) then

report “invalid” and halt;

append X to the non-terminal list at the top of S;

report “valid”;

Algorithm 1: Validation for local tree grammars

empty list when a start tag is encountered. A non-terminal is appended to this list
when a child element is left.

We have to extend Algorithm 1 for handling text nodes. Ideally, we only have to
handle a text node as an “element”. That is, when we encounter a text node, we
perform the action for visiting it and that for leaving from it. However, XML has
a design flaw: whitespace is used for tag indentation and is also allowed as part of
the document content is. Thus, we have to discard whitespace used for indentation
and handle other text nodes as “elements”. This part is tricky and is beyond the
scope of this paper.

Observe that Algorithm 1 not only determines whether a document is valid but
also constructs a unique interpretation of the document. If we skip execution of
element automata, this algorithm constructs an interpretation without full valida-
tion.

We can improve Algorithm 1 by executing M [r] step by step. That is, whenever
we determine Xi, we compute a state set Qi as defined in Section 4.1. This im-
provement allows early detection of invalid documents: when Qi becomes empty,
we can immediately report that the document is invalid. However, to keep our
algorithms simple, we have not incorporated this improvement.

4.3 Validation against single-type tree grammars

Now, we extend Algorithm 1 for handling single-type tree grammars. This ex-
tension is quite simple, since single-type tree grammars also ensure uniqueness of
interpretations.

ACM Journal Name, Vol. V, No. N, November 2004.

20 · ...

Remember that a single-type tree grammar does not allow competing start sym-
bols and does not allow competing non-terminals within a single content model (see
Definition 2.6). Thus, for each element, we can uniquely determine a non-terminal.
This idea is effected by Algorithm 2. It uses another stack P for maintaining the
set of permissible non-terminals for the current element. If the current element
is the root element, this set is the set of start symbols. Otherwise, it is the set
of non-terminal sets occurring in the content model for the parent element. Even
when more than one production rule is found for the current element, at most one
of these production rules has its left-hand-side non-terminal in the non-terminal set
at the top of the stack.

Input : XML document D

Let S be a stack of lists of non-terminals;
Let Y be a stack of production rules;
Let P be a stack of non-terminal sets;
Push the set of start symbols into P ;
traverse D in the depth-first manner

when element e is visited

find a production rule X → a (r) such that a is the tag name of e and
X is contained in the non-terminal set at the top of P ;
//At most one such production rule is found.
if no such X is found then

report “invalid” and halt;

push X → a (r) to Y ;
push an empty list to S;
push the set of non-terminals occurring in r into P ;

when element e is exited from

pop X → a (r) out of Y ;
pop a list (X1, X2, . . . , Xn) out of S;
//X1, X2, . . . , Xn are non-terminals assigned to the children of e;
if M [r] does not accept (X1, X2, . . . , Xn) then

report “invalid” and halt;

append X to the non-terminal list at the top of S;
pop a non-terminal set out of P ;

report “valid”;

Algorithm 2: Validation for single-type tree grammars.

Our observations on Algorithm 1 apply to Algorithm 2. That is, it constructs a
unique interpretation of a valid document, and we can improve this algorithm by
executing element automata step-by-step.

4.4 Validation against regular tree grammars

Remember that a tree may have more than one interpretation against a regular
tree grammar. This non-uniqueness complicates validation. Unlike Algorithms 1

ACM Journal Name, Vol. V, No. N, November 2004.

... · 21

and 2, our algorithm for handling regular tree grammars cannot choose one non-
terminal when they encounter a start tag, but rather have to keep track of multiple
candidates at the same time.

In preparation, we reconsider element automata. We have executed an element
automaton against a sequence of non-terminals. But it is possible to execute an
element automaton against a sequence of sets of non-terminals.

Let X1X2 . . .Xn be a sequence of sets of non-terminals. We execute an element
automaton M by applying δ repeatedly for every element in Xi(1 ≤ i ≤ n). That
is, we compute sets of states

Q0 = {q0},

Q1 = {q | q ∈ δ(X1, q
′), q′ ∈ Q0, X1 ∈ X1},

Q2 = {q | q ∈ δ(X2, q
′), q′ ∈ Q1, X2 ∈ X2}, . . .

Qn = {q | q ∈ δ(Xn, q′), q′ ∈ Qn−1, Xn ∈ Xn}.

If some state in Qn is a final state in QF , then X1X2 . . .Xn is accepted by
M . Otherwise, it is not accepted. X1X2 . . .Xn is accepted if and only if we can
choose some non-terminal Xi from Xi for every i and the non-terminal sequence
X1X2 . . . Xn is accepted by M . Observe that some non-terminals in Xi may be
useless (i.e., never chosen) even when X1X2 . . .Xn is accepted. For example, Xn ∈
Xn is useless when {q | q ∈ δ(Xn, q′), q′ ∈ Qn−1} and QF are disjoint.

Now, we are ready to introduce Algorithm 3, which is an extension of Algorithm 2.
The main differences are that (1) more than one production rule may be found for
each element and (2) a set of non-terminals (rather than a single non-terminal) is
assigned to each element. Because of (1), we use X i, ri, and M [ri](i = 1, 2, . . .)
rather than X , r, and M [r]. Because of (2), we use lists of sets of non-terminals
rather than lists of non-terminals. Note that Xj (1 ≤ j ≤ n) is a set of non-
terminals. If the element automaton M [ri] accepts the sequence of non-terminal
sets (X1,X2, . . . ,Xn), then X i is added to X.

As in Algorithms 1 and 2, we can improve this algorithm by executing element
automata step by step. This improvement does complicate this algorithm, but
allows early detection of invalid documents.

Unlike Algorithms 1 and 2, this algorithm does not construct a unique inter-
pretation of the document, and does not enumerate all interpretations (see 5.4
for further discussion). This algorithm enumerates all applicable non-terminals for
each element when the validator exits from it, but some of them may be found
useless when the validator exits from its parent. To illustrate, suppose that a
document <doc><sec/><sec><para/></sec></doc> is validated against G2.3.3 in
Theorem 2.3. When the validator exits from the empty <sec/> element, it enu-
merates both Sec1 and Sec2 as applicable non-terminals, but Sec1 is found useless
when it exits from the <doc> element.

4.5 Tree model vs. event model

Programs for handling XML documents, including validators, are typically imple-
mented on top of APIs for XML such as DOM [Wood et al. 1998] and SAX [Meg-
ginson 2000]. These APIs are based on either the tree or event model.

In the tree model , XML parser reads an entire XML document and creates a tree

ACM Journal Name, Vol. V, No. N, November 2004.

22 · ...

Input : XML document D

Let S be a stack of lists of sets of non-terminals;
//Note that we have to use sets of non-terminals rather than non-terminals.
Let Y be a stack of sets of production rules;
//Note that we have to use sets of production rules rather than
//production rules.
Let P be a stack of non-terminal sets;
Push the set of start symbols into P ;
traverse D in the depth-first manner

when element e is visited

find production rules of the form X i → a (ri) such that a is the tag
name of e and X i is contained in the non-terminal set at the top of P ;
//More than one such production rule may be found.
//X i is an applicable non-terminal.
if no such production rule is found then

report “invalid” and halt;

push {X i → a (ri) | i = 1, 2, . . .} to Y ;
push an empty list to S;
push the set of non-terminals occurring in some ri into P ;

when element e is exited from

pop {X i → a (ri) | i = 1, 2, . . .} out of Y ;
pop a list of sets of non-terminals (X1,X2, . . . ,Xn) out of S;
//X1,X2, . . . ,Xn are sets of non-terminals assigned to
//the children of e;
let X be the set of X i such that M [ri] accepts (X1,X2, . . . ,Xn);
if X is empty then

report “invalid” and halt;

append X to the list of sets of non-terminals at the top of S;
pop a non-terminal set out of P ;

report “valid”;

Algorithm 3: Validation for regular tree grammars.

in memory. Then, via tree-model APIs (e.g., DOM), application programs have
access to the tree in memory and traverse it any number of times. A drawback of
the tree model is that a significantly large amount of memory is required when the
XML document is very large.

On the other hand, in the event model , XML parser does not create a tree in
memory, but rather raises events when it encounters start or end tags. Then,
an application program is notified of the events by event-model APIs (e.g., SAX)
and takes appropriate actions. As an another way to implement the event model,
recently, pull APIs such as Stax [Fry 2003] have appeared. While SAX “push”
events to application programs, pull APIs allow application programs to explicitly
request (“pull”) events from the XML parser. It has been argued that pull APIs
are more programmer-friendly than push APIs.

ACM Journal Name, Vol. V, No. N, November 2004.

... · 23

Note that all of the Algorithms 1, 2, and 3 can be implemented on top of both
tree and event-model APIs (both push and pull APIs).

4.6 Complexity

Now, let us consider the complexity of three aforementioned Algorithms. In our
experiences, the space required by documents is far more significant than space
required by validation algorithms. In other words, the distinction between the
event and tree models is more important than space complexity. Therefore, we
focus on the time complexity, ignoring the space complexity. Especially, we study
complexity with respect to the size of documents rather than the size of schemas.

Our algorithms (Algorithms 1, 2, and 3) examines each start or end tag only
once through Depth-First-Search scan. For each start or end tag, these algorithms
perform some action. The document size does not affect the time required by
this action. Thus, the time complexity of these algorithms is linear to the size of
documents.

5. DISCUSSIONS

In this section, we consider which class of tree grammars is appropriate as a basis
of XML schema languages. It is generally agreed that local tree grammars are
less appropriate as a basis for XML schema languages since the expressive power
is significantly weaker than the other classes. However, it is controversial whether
regular tree grammars are more appropriate than single-type grammars or vice
versa.

5.1 Expressiveness

The expressive power of local tree grammars is weak, as we observed in Section 2.4.
In the history of SGML and XML, this weakness has hindered the use of XML for
representing narrative documents. As an example, consider elements representing
paper titles and elements representing section titles. DTD authors often would like
to use slightly different contents for these two kinds of title elements. However,
if they use the same tag name title for both kinds, they are forced to write a
single content model. As a result, they have to introduce many tag names such
as paperTitle, sectionTitle, subSectionTitle, and so forth. The proliferation
of such tag names hinders document editing, programming, DTD maintenance,
querying, and so forth.

Local tree grammars also hinder the use of XML for representing data. Although
programmers naturally expect local scoping for data representations, local scoping
is blocked by local tree grammars. For example, if <x> subelements of <Point>
are integers, then <x> subelements of <Foo> in the same document are forced to
be integers. Furthermore, local tree grammars fail to capture syntactic constraints
imposed by HTML (Similar problems arise in the design of other schemas such as
DocBook [Walsh and Muellner 1999].)

—Anchor (<a>) elements of HTML are not allowed to nest, even indirectly. For
example, <a>......<a>...... ... is prohibited, al-
though <a> elements may contain elements and vice versa. Likewise,
form (<form>) elements of HTML are not allowed to nest, even indirectly. For

ACM Journal Name, Vol. V, No. N, November 2004.

24 · ...

example, <form>...<div>...<form>...</form>...</div> ...</form> is pro-
hibited, although <div> elements may contain <form> elements and vice versa.

—Paragraph (<p>) elements of HTML 2.0 can contain input (<input>) elements
only when the p elements are descendants of some form elements. For example,
<form>...<p>...<input>...</input>...</p>...</form> is allowed, although
<body><p>...<input>...</input>...</p></body> is prohibited.

As a remedy to the weakness of local tree grammars, SGML [ISO 8879 1986]
allow inclusion and exclusion exceptions to accompany with content models. An
exclusion exception disallows the occurrence of an element even when it is allowed
by the content model. Likewise, an inclusion exception allows the occurrence of
an element even when it is not allowed by the content model. Inclusion and ex-
clusion exceptions control not only children but also descendants. For example, if
the exclusion of anchor (a) elements is specified at the element type declaration
of anchor elements, then <p><a>...<a>... ... </p> is
disallowed, even when the content model for span allows anchor elements.

The introduction of inclusion and exclusion exceptions allows SGML DTDs to
capture non-local (but regular) tree languages. The SGML DTDs for HTML
2 [Berners-Lee and Connolly 1995], 3.2 [Raggett 1997], and 4.01 [Raggett et al.
1999] uses inclusion or exclusion exceptions for representing restrictions as shown
above. In particular, the SGML DTD for HTML 2.0 uses the combination of inclu-
sion and exclusion for capturing the constraint that every input element must have
a form element as an ancestor. However, as more element types are introduced,
this approach quickly became too complicated. HTML 3.2 and 4.0 dropped this
constraint thus allowing <input> without ancestor <form>.

XML did not inherit inclusion or exclusion exceptions from SGML. Although the
W3C XML WG was aware of their advantages, the WG concluded that they are
too complicated for implementors and schema authors. As a result, the DTD of
XML is restricted to local tree languages.

Both single-type or regular tree grammars are free from the problems shown
above. For example, (1) the use of non-terminals such as PaperTitle and Section-
Title allows <title> elements to have different content models, and (2) the use of
non-terminals LineStart and TrainStart allow <start> subelements of <Line> to
be integers and allow those of <Train> to be time.

Constraints required by HTML can also be captured by single-type or regular tree
grammars. However, such a single-type or regular tree grammar is quite lengthy.
For example, to allow or disallow <a>, , , , etc. depend-
ing on ancestor elements, we have to introduce non-terminals aWithAWithEMWith-
SPAN, aWithAWithEMWithoutSPAN, aWithAWithoutEMWithSPAN, aWithAW-
ithoutEMWithoutSPAN , and so forth. Some syntactic sugar is required for making
schemas more compact and easier to understand.

The expressive power of single-type tree grammars is weaker than that of tree
regular grammars, as we observed in Section 2.4. In other words, some schemas
(e.g., G2.1) can not be captured by single-type tree grammars but can be captured
by regular tree languages. At present, no industrial schemas require the expressive-
ness power of regular tree grammars. But we are not sure if this is because there
are no such requirements, or if this is because of the lack of sufficiently expressive

ACM Journal Name, Vol. V, No. N, November 2004.

... · 25

schema languages With the advent of RELAX NG, such schemas may appear in
the future.

5.2 Validation

Our validation algorithm for local tree grammars, namely Algorithm 1, is simpler
than our algorithms for single-type or regular tree grammars. Existing validators
for DTDs use a variation of Algorithm 1. Specifically, Xerces2 Java6 (an XML
parser in Java) uses a variation of Algorithm 1 on the basis of the event model.

Single-type grammars require Algorithm 2, which is more complicated than Algo-
rithm 1. “Schema-validity assessment”, as defined in 7.2 of [Thompson et al. 2001],
is similar to Algorithm 2. To the best of our knowledge, all implementations of W3C
XML Schema follow this reference model. For example, on the basis of the event
model, Xerces2 Java uses a variation of Algorithm 2. However, “schema-validity
assessment” differs from Algorithm 2: it uses the current state of an element au-
tomaton for uniquely determining the non-terminal for the current element. This
difference is due to the fact that W3C XML Schema deviates from single-type tree
grammars to restrained-competition tree grammars (see Section 6.3).

Regular tree grammars require more advanced algorithms such as Algorithm 3.
Two validators7 for RELAX Core use Algorithm 3 on the basis of the event model.
However, Algorithm 3 is not powerful enough for TREX and RELAX NG, since
they are equipped with attribute-element constraints and interleaving. We will
consider validation algorithms for RELAX NG in Section 7.

5.3 Boolean closure

We have considered three operations: union, intersection, difference. The class of
local tree languages and that of single-type tree languages is closed under “intersec-
tion” but is not closed under “union” or “difference”. However, the class of regular
tree languages is closed under each of these operations.

Type inference for XML programming or query languages [Hosoya and Pierce
2000; Christensen et al. 2003; Tozawa 2001; Milo et al. 2000; Murata 1997] are
based on these operations. The intersection operation is typically used for the
type inference of pattern matching. That is, the intersection of the tree language
representing a pattern and that representing a schema becomes the type of the
pattern matching expression. The difference operation can be used for checking
“subtyping” or detecting if a tree language L1 is a subset of another tree language
L2. That is, L1 is a subtype of L2 exactly when the set difference between L1 and
L2 is empty8.

5.4 Interpretations

Uniqueness of interpretations is strongly related with a fierce controversy about
XML. This controversy is called “XML class warfare” between “bohemians” and
“gentry” [Ogbuji 2002].

6Available at http://xml.apache.org/xerces2-j/index.html
7They are RELAX verifier for Java and RELAX verifier for C++. More about them, see
http://www.xml.gr.jp/relax/.
8Two efficient algorithms ([Hosoya and Pierce 2001] and [Tozawa and Hagiya 2003]) do not use
the difference operation for “subtyping”, however.

ACM Journal Name, Vol. V, No. N, November 2004.

26 · ...

This warfare stems from a basic difference of opinions on the use of schemas. One
camp (“gentry”) believes that XML documents should be annotated with type in-
formation obtained from schemas. This camp further believes that validators should
provide interpretations (type information) to application programs. Uniqueness of
interpretations is considered crucial under this scenario. Supporters of W3C XML
Schema belong to this camp typically. Meanwhile, the other camp (“bohemians”)
supports RELAX NG. Bohemians believe that XML documents without type infor-
mation are the heart of XML and that validators must not provide interpretations
to application programs9. Under this scenario, uniqueness of interpretations is not
necessary. It is worth noting that bohemians do not oppose to the use of schemas
as types. They merely want to introduce another layer, namely data binding tools
(e.g., JAXB [Fordin 2003] and Relaxer10) or XML-aware programming languages
(e.g., XDuce [Hosoya and Pierce 2000] and JWIG [Christensen et al. 2003]), for
such use of schemas. Bohemians certainly want to keep the basic layer of XML free
from types. It is interesting that data binding tools or XML-aware programming
languages may or may not require uniqueness of interpretations (e.g., XDuce does
not).

We do not examine arguments of the two camps further, since we emphasize a for-
mal approach but this controversy is rather a software architecture issue. Interested
readers are referred to [Ogbuji 2002; van der Vlist 2002].

Finally, recall that Algorithms 1 and 2 construct unique interpretations, but Algo-
rithm 3 does not. The second camp (“bohemians”) sees no problems in Algorithm 3
(and other algorithms in Section 7), while the first camp (“gentry”) does.

6. OTHER GRAMMATICAL CONCEPTS

In this section, we discuss other grammatical concepts, which are closely related
with tree grammars. They are context-free grammars, balanced context-free gram-
mars, restrained-competition tree grammars, regular hedge grammars, and deter-
ministic content models.

6.1 Context-free grammars

Some readers might wonder why we do not use context-free grammars. Context-free
grammars [Hopcroft and Ullman 1979] represent sets of strings. Successful parsing
of strings against context-free grammars provides derivation trees. This scenario
is appropriate for programming languages and natural languages, where programs
and natural language text are strings.

However, start and end tags in an XML document directly represent a tree. The
XML parser reconstructs this tree without using a schema. The XML validator
then receives this tree as an input and validates it against a schema. Thus, tree
grammars are much more appropriate for representing schemas than context-free
grammars are.

Nevertheless, early works on document schemas used context-free grammars as
schemas. XML documents are not represented by sentences of such context-free

9Bohemians do not even allow schemas to specify default values. Indeed, the RELAX NG speci-
fication does not provide default values.
10Available at http://relaxer.org/

ACM Journal Name, Vol. V, No. N, November 2004.

... · 27

grammars. Rather, they are represented by derivation trees.

Example 6.1. G2.6 in Example 2.6 can be represented as a context-free grammar
shown below.

N = {Book ,Author1 ,Son ,Pcdata}

T = {}

S = {Book}

P = {Book → (Author1),Author1 → (Son),

Son → (Pcdata),Pcdata → (ǫ)} 2

Note that the right-hand side of a production rule has a regular expression of
non-terminals, but does not have terminals. In fact, this context-free grammar has
no terminal symbols and allows no strings except the null string.

One can assume that such use of context-free grammars mimic local tree gram-
mars. In fact, it is straightforward to create such context-free grammars from local
tree grammars and vice versa. However, this approach cannot capture W3C XML
Schema and RELAX NG, since they require the expressive power of single-type or
regular tree grammars.

6.2 Balanced context-free grammars

Notwithstanding the limitations shown in the previous subsection, it is possible to
use context-free grammars to capture W3C XML Schema and RELAX NG. The
key idea is to represent trees as strings by using start-and end-parenthesis symbols.
For example, a tree <doc><para/><para>text chunk</para></doc> can be rep-
resented as a string comprising seven “symbols”: <doc>, <para>, </para>, <para>,
text chunk, </para> and </doc>, where <doc> and <para> are start-parenthesis
symbol and </doc> and </para> are end-parenthesis symbol. This representation
allows us to use context-free grammars for describing XML documents as sentences.

Example 6.2. The regular tree grammar G2.1 shown in Example 2.1 can be cap-
tured as a context-free grammar as below.

N = {Doc,Para1 ,Para2 ,Pcdata}

T = {<doc>, </doc>, <para>, </para>,pcdata}

S = {Doc}

P = {Doc → (<doc>,Para1 ,Para2 ∗, </doc>),

Para1 → (<para>, </para>),Para2 → (<para>,Pcdata , </para>),

Pcdata → pcdata} 2

In such context-free grammars, the right-hand side of each production rule has
a regular expression of non-terminals surrounded by a start-parenthesis and end-
parenthesis pair, where pcdata-only production rules are exceptions. Such special-
ized context-free grammars, called balanced context-free grammars, are studied by
[Berstel and Boasson 2002; Brüggemann-Klein and Wood 2004]. Balanced context-
free grammars and regular tree grammars are equally expressive. Although no vali-
dation algorithms are presented in [Berstel and Boasson 2002], balanced context-free
grammars help understand the derivative-based validation shown in Section 7.2.

ACM Journal Name, Vol. V, No. N, November 2004.

28 · ...

6.3 Restrained-competition

We have considered three classes of regular tree grammars. However, another class
called “restrained-competition” deserves some attention. This class allows compe-
tition of non-terminals, but requires that it is restrained by content models.

Definition 6.1. A content model r restrains competition of two competing non-
terminals A and B if, for any sequences U, V, W of non-terminals, either U AV or
U B W fails to match r. 2

Definition 6.2. A restrained-competition tree grammar is a regular tree grammar
such that

—for each production rule, its content model restrains competition of non-terminals
occurring in the content model, and

—start symbols do not compete with each other. 2

Example 6.3. Non-terminals Para1 and Para2 in the grammar G2.1 compete with
each other, and they both occur in the content model of the production rule for Doc.
However, this content model (Para1 , Para2 ∗) restrains the competition between
Para1 and Para2 , since Para1 may occur only as the first non-terminal and Para2
may occur only as the non-first non-terminal. Thus, G2.1 is a restrained-competition
tree grammar. 2

Example 6.4. The grammar G2.11 is not a restrained-competition tree grammar.
Observe that the content model (Para1∗, Para2∗) does not restrain the competition
of non-terminals Para1 and Para2. For example, suppose that U = V = W = ǫ.
Then, both U Para1 V and U Para2 W match this content model. 2

A set of trees is a restrained-competition tree language if, for some restrained-
competition tree grammar, all trees in this set are valid and no other trees are
valid. It is not hard to show that the class of restrained-competition tree languages
properly contains the class “single-type” and is properly contained in the class
“regular”.

We can easily extend Algorithm 2 for handling restrained-competition tree gram-
mars. Recall that, when a start tag is encountered, the algorithm finds a production
rule from the tag name and the content model for the parent element. To handle
restrained-competition tree grammars, we only have to take the non-terminals as-
signed to elder sibling elements into consideration.

One could argue that this class has some advantages: it is more expressive than
the class “single-type” while ensuring uniqueness of interpretations and allowing a
simple validation algorithm.

6.4 Regular hedge grammars

Although we consider trees and tree grammars in this paper, we can extend our
framework for handling hedges. A hedge is a sequence of zero or more trees. Regular
hedge grammars differ from regular tree grammars in two points: (1) the start
“symbol” of a regular hedge grammar is a regular expression comprising pairs of
non-terminals and terminals (a regular expression over N ×T), and (2) production
rules of a regular hedge grammar are of the form X → r such that r is a regular
expression over N × T .

ACM Journal Name, Vol. V, No. N, November 2004.

... · 29

Example 6.5. If we reformulate G2.1 as a regular hedge grammar, the start “sym-
bol” is a pair (doc,Doc) and the production rules are:

P = {Doc → (para[Para1],para[Para2]∗),

Para1 → ǫ, Para2 → pcdata[Pcdata],Pcdata → ǫ} 2

It is easy to convert regular tree grammars to regular hedge grammars. But the
converse is not always possible, since hedges are not always trees. Researchers (e.g.,
[Takahashi 1975]) found regular hedge grammars more naturally extend regular
string grammars than unfixed-arity tree grammars .

6.5 Validation by Tree Automata

Just like regular grammars for strings can be recognized by automata, regular tree
grammars can be recognized by tree automata. Validation of trees against regular
tree grammars can be considered as execution of tree automata.

Tree automata have been extensively studied [Comon et al. 1997]. A tree au-
tomaton examines a given tree by assigning states to nodes in the tree. The tree
automaton accepts the tree if it terminates at one of the final states.

There are top-down tree automata and bottom-up tree automata: the former
begins with the root node and assigns states to elements after handling superior
nodes, while the latter begins with leaf nodes and assigns states to nodes after
handling subordinate nodes. Moreover, there are deterministic tree automata and
non-deterministic tree automata: the former assigns a state to each node, while the
latter assigns any number of states to each node. As a result, there are four types of
tree automata: deterministic top-down, non-deterministic top-down, deterministic
bottom-up, and non-deterministic bottom-up.

It is known that non-deterministic top-down, deterministic bottom-up and non-
deterministic bottom-up tree automata are equally expressive [Comon et al. 1997].
In other words, any regular tree language is accepted by some non-deterministic
top-down automaton. Likewise, it is also accepted by some deterministic bottom-
up automaton and accepted by some non-deterministic bottom-up tree automaton.
Meanwhile, deterministic top-down tree automata are not equally expressive. In
other words, some regular tree languages cannot be accepted by any deterministic
top-down tree automata.

Algorithms 1 and 2 are similar to deterministic top-down automata. However,
deterministic top-down tree automata assign a state to a node without examining
that node; they only examine the parent node and the state assigned to it. Because
of this restriction, deterministic top-down tree automata are almost useless for
XML. On the other hand, both Algorithms 1 and 2 examine an element before
assigning a non-terminal (state) to it.

Algorithm 3 can be seen as a combination of non-deterministic top-down and
non-deterministic bottom-up as follows; (1) non-deterministic top-down: when this
algorithm visits an element, it computes a set of non-terminal candidates, and (2)
non-deterministic bottom-up: when this algorithm leaves an element, it chooses
some of these non-terminal candidates.

It is possible to use deterministic bottom-up tree automata for validation. Given
a regular tree grammar, we create a deterministic bottom-up tree automaton. This

ACM Journal Name, Vol. V, No. N, November 2004.

30 · ...

is done by introducing a state for each subset of the set of non-terminals of the
grammar and then constructing a transition function for these states. Execution
of this deterministic bottom-up tree automaton is straightforward, which is the
biggest advantage of this approach. However, a drawback of this approach is that
subset construction may cause combinatorial explosion.

6.6 Deterministic content models

DTDs and W3C XML Schema impose the constraint that content models be de-
terministic. This constraint is called “Unique Particle Attribution” in W3C XML
Schema and is called “one-unambiguous” by [Brüggemann-Klein and Wood 1998].

A content model is deterministic if, during pattern matching, we can always
choose one symbol in the content model. Formally, a content model is determin-
istic when a Glushkov automaton [Glushkov 1961] constructed from it is already
deterministic [Brüggemann-Klein and Wood 1998].

Example 6.6. (a,b) | (a,c) is a non-deterministic content model. The reason
is that we cannot choose one of the two occurrences of a when we encounter a

in a sequence ac. Only after examining c in this sequence, we can choose the
second occurrence of a. Meanwhile, an equivalent content model (a,(b| c)) is
deterministic since it has only one occurrence of a. 2

Example 6.7. (a*,a) is a non-deterministic content model. When we encounter
the first a in a sequence aa, we cannot choose one of the two occurrences of a in this
content model. Only after examining the entire sequence, we can choose the first
occurrence of a. Meanwhile, an equivalent content model (a,a*) is deterministic
since we can choose the first occurrence of a when we encounter the first a in a
given sequence and we can only choose the second occurrence of a for any other
a. 2

Example 6.8. ((a,b)*,a?) is a non-deterministic content model, since we cannot
choose one of the two occurrences of a when we encounter a in a sequence aba.
(Note that this regular expression allows both a and b as the last symbol.) No
deterministic content models exactly capture this content model. 2

Deterministic content models are first introduced by SGML and are thoroughly
studied by [Brüggemann-Klein and Wood 1998]. They have shown that determin-
istic content models cannot capture some regular languages and further shown that
the union of some deterministic content models cannot be captured by any deter-
ministic content model. For example, the union of (a,(b,a)*) and (a,b)*, both
of which being deterministic, is equivalent to the content model in Example 6.8.

There has been a lot of debate about deterministic content models. Deterministic
content models make schema authoring difficult, and they break boolean closure.
The proponents of deterministic content models, however, argue that deterministic
content models make implementations easier and faster.

It is important to note that none of the algorithms described in Section 4 require
that content models be deterministic. In particular, our validation algorithm (Algo-
rithm 2) for single-type tree grammars works for non-deterministic content models.
In other words, single-type tree grammars and deterministic content models are

ACM Journal Name, Vol. V, No. N, November 2004.

... · 31

orthogonal issues. One can design a schema language restricted to single-type tree
grammars with or without deterministic content models.

7. MORE SOPHISTICATED ALGORITHMS FOR RELAX NG VALIDATION

Although validators for regular tree grammars can be built using Algorithm 3,
modern validators for RELAX NG use more sophisticated algorithms. This sec-
tion sketches these algorithms, namely binarization and derivative-based validation,
briefly.

There are two advantages in these algorithms. First, validation becomes simpler
and more efficient, since they do not construct an element automaton from each
content model. (In our experiences, this construction deteriorates the performance
of validators.) Second, they can be easily extended for handling attribute-element
constraints and the interleaving of content models, both of which RELAX NG is
equipped with.

7.1 Binarization

Our trees and tree grammars allow a node to have any number of children. How-
ever, it is possible to convert trees and tree grammars to binary trees and binary
tree grammars, respectively. Any non-leaf node in a binary tree has exactly two
children. This binarization makes validation simpler and more efficient, since it
becomes unnecessary to create an element automaton from each content model.
Two validators for RELAX NG (Bali11 and Miaou12) are based on binarization.

It is well known that a tree can be represented by a binary tree [Knuth 1973].
A node in the binary tree represents either a node in the original tree or a null
node, denoted ǫ. Hereafter, we use “bt-node” to mean nodes in binary trees.
The left child bt-node and right child bt-node of a bt-node represent the eldest
child node and the immediately following sibling node in the original tree, respec-
tively. As a special case, the null bt-node as the left child implies that the original
node have no children, and the null bt-node as the right child implies that the
original node have no younger siblings. For example, a binary tree representing
<sec><sec><p/></sec><sec><p/></sec><sec/></sec> is depicted in Figure 3.

On the basis of this representation, it is possible to convert a regular tree grammar
to a binary tree grammar [Takahashi 1975]. A binary tree grammar [Comon et al.
1997] represents a set of binary trees. [Hosoya et al. 2000] (in Appendix A) presented
an efficient algorithm for converting tree grammars to binary tree grammars. That
algorithm does not construct element automata from content models.

Example 7.1. To illustrate, we use a regular tree grammar as below:

N = {Root ,Sec,P}

T = {sec,p}

S = {Root}

P = {Root → sec (Sec∗),Sec → sec ((Sec|P)∗),P → p (ǫ)}

11Available at http://www.kohsuke.org/relaxng/bali/doc/.
12http://www.idealliance.org/papers/xml02/dx xml02/papers/06-00-14/06-00-14.html

ACM Journal Name, Vol. V, No. N, November 2004.

32 · ...

sec

sec
����

��
��

��

p
����

��
��

��

ǫ
����

��
��

��

ǫ
��

??
??

??
??

sec
''OOOOOOOOOOOO

p
����

��
��

��

ǫ
����

��
��

��

ǫ
��

??
??

??
??

sec
''OOOOOOOOOOOO

ǫ
����

��
��

��

ǫ
''OOOOOOOOOOOOO

ǫ
''OOOOOOOOOOOOO

Fig. 3. A binary tree representing <sec><sec><p/></sec><sec><p/></sec><sec/></sec>

Final

Root
����

��
��

�

Sec
����

��
��

�

Emp
����

��
��

�

Sec
��

??
??

??
? Root

''OOOOOOOOOOO

Sec
����

��
��

�

Emp
����

��
��

�

Sec
��

??
??

??
? Root

''OOOOOOOOOOO

Sec
����

��
��

�

Root
''OOOOOOOOOOO

Emp
''OOOOOOOOOOO

Fig. 4. An interpretation of the binary tree shown in Figure 3

From this grammar, we can construct a binary tree grammar shown below:

N = {Final , Root , Sec,Emp}

T = {sec,p}

S = {Final}

P = {Final → sec(Root ,Emp), Root → sec(Sec, Root), Root → ǫ,

Sec → sec(Sec, Sec), Sec → p(Emp, Sec), Sec → ǫ,Emp → ǫ}

Note that the right-hand side of production rules of binary tree grammars are either
of the form a (x1, x2) or ǫ, where a is a terminal and x1, x2 are non-terminals. 2

As in Section 2, we can easily define interpretations and validity of binary trees
against binary tree grammars. Figure 4 depicts an interpretation of the binary
tree shown in Figure 3. Subtrees generated from non-terminals Root and Sec are
permissible contents of first- and second-level sections, respectively.

Having introduced conversion of trees and regular tree grammars to binary trees

ACM Journal Name, Vol. V, No. N, November 2004.

... · 33

Input : Binary tree D

Let E be an empty set; //a set of elected candidates
Let Y be a stack of sets of production rules;
Let C be the set of start symbols; //a set of candidates
traverse D in the depth-first manner

pre-order for bt-node e

let P be the set of production rules of the form X → a (X l, Xr) such
that a is the tag name of e and X is contained in C;
if P is empty then

report “invalid” and halt;

push P to Y ;
let C be {X l |X → a (X l, Xr) ∈ P};

in-order for bt-node e

pop P out of Y ;
let P′ be {X → a (X l, Xr) ∈ P |X l ∈ E};
if P′ is empty then

report “invalid” and halt;

push P′ to Y ;
let C be {Xr |X → a (X l, Xr) ∈ P′};

post-order for bt-node e

pop P′ out of Y ;
let P′′ be {X → a (X l, Xr) ∈ P′ |Xr ∈ E};
if P′′ is empty then

report “invalid” and halt;

Let E be {X |X → a (X l, Xr) ∈ P′′};

null bt-node ǫ

let P be the set of production rules of the form X → ǫ such that X is
contained in C;
if P is empty then

report “invalid” and halt;

let E be {X |X → ǫ ∈ P};

if E contains some start symbols then

report “valid”;

else

report “invalid”;

Algorithm 4: Validation of binary trees

and binary tree grammars, respectively, we can validate an XML document by
validating a binary tree against a binary tree grammar.

Algorithm 4 is a binary-tree version of Algorithm 3. While traversing a binary
tree in depth-first, pre-order, in-order, and post-order actions are performed for

ACM Journal Name, Vol. V, No. N, November 2004.

34 · ...

each bt-node and an action is performed for each empty bt-node. The pre-order
action and post-order action are performed when the bt-node is visited and left,
respectively. The in-order action is performed after the left child of the bt-node is
left and before the right child is visited.

For each bt-node, this algorithm constructs two sets of non-terminals. The first
set, denoted C, contains the candidate non-terminals. The second set, denoted E,
is a subset of C and contains the elected non-terminals. While C is constructed
before all descendant bt-nodes are examined, E is constructed after all descendant
bt-nodes have been examined. The initial value of C is the set of start symbols (i.e.,
the candidates for the root node). The pre-order and in-order actions for bt-node e

construct C for the left and right child bt-nodes of e, respectively. The post-order
action for e constructs E. As a special case, E is also constructed for null bt-node
ǫ.

For each bt-node, this algorithm also constructs three sets (namely P , P ′, and
P ′′) of production rules, where P ⊆ P ′ ⊆ P ′′. The pre-order action computes P

from the tag name and C for this bt-node. The in-order action computes P ′ from
P as well as E for the left child bt-node. The post-order action computes P ′′ from
P ′ as well as E for the right child bt-node. A stack Y of production rules maintains
P, P ′, and P ′′ for each bt-node.

Let us examine how this algorithm validates the binary tree in Fig. 3 against the
binary tree grammar in Example 7.1.

—The initial value of C is a singleton set containing Final .

—The pre-order action for the first <sec> (the root bt-node) finds
Final → sec(Root ,Emp), pushes a singleton set containing this rule to Y , and
sets { Root} as the value of C.

—The pre-order action for the second <sec> finds Root → sec(Sec, Root),
pushes a singleton set containing this rule to Y , and sets { Sec} as the value
of C.

—The pre-order action for the first <p> finds Sec → p(Emp, Sec), pushes a sin-
gleton set containing this rule to Y , and sets {Emp} as the value of C.

—The action for the first null bt-node finds Emp → ǫ and sets {Emp} as the value
of E.

—The in-order action for the first <p> pops a singleton set containing Sec →
p(Emp, Sec) out of Y , pushes the same set back to Y , and sets { Sec} as the
value of C.

—The action for the second null bt-node finds Sec → ǫ and sets { Sec} as the
value of E.

—The post-order action for the first <p> pops a singleton set containing Sec →
p(Emp, Sec) out of Y , and sets { Sec} as the value of E.

—The in-order action for the second <sec> pops a singleton set containing Root →
sec(Sec, Root) out of Y , pushes the same set back to Y , and sets { Root} as
the value of C.

—And so forth.

This algorithm detects invalid documents as early as possible. This is because the
in-order action uses elected non-terminals (E) of elder sibling elements for finding

ACM Journal Name, Vol. V, No. N, November 2004.

... · 35

candidate non-terminals (C) of younger sibling elements. When no candidate non-
terminals are found, the next pre-order action fails to find production rules and thus
reports an error. Meanwhile, Algorithm 3 may delay detecting invalid documents,
since it does not execute the element automaton until all child elements are handled.

7.2 Derivative-based validation

James Clark designed a novel algorithm for validation against regular tree grammars
in 200213, and we describe the idea of derivatives-based validation algorithm briefly.
For rigorous treatment, refer to [Clark 2002].

His algorithm is based on derivatives of regular expressions [Brzozowski 1964].
The derivative of a regular expression e with respect to a symbol x is a regular
expression for what is left of e after matching x. That is, it is a regular expression
that matches any sequence that when appended to x will match e. For example, the
derivative of a regular expression ab with respect to a is b. Similarly, the derivatives
of ab | ac and a∗ with respect to a are b | c and a∗, respectively.

The easiest way to understand this algorithm is to use balanced context-free
grammars (as shown in Section 6.2). As in Section 6.2, we represent a document
as a sequence of start- or end-parenthesis symbols14.

Our derivative expressions are regular expressions over terminal and non-terminal
symbols. We begin with the right-hand side of the production rule for the start
symbol. For each symbol in this sequence, we repeatedly construct a derivative ex-
pression. If we encounter a derivative expression that does not allow any sequence,
we report that the document is invalid. After examining the entire sequence, we
report that the document is valid if and only if the derivative expression allows the
empty sequence.

The rules for computing derivative expressions are given by the following equa-
tions. The first set of equations is borrowed from the standard definition of deriva-
tives. Here ∅ is a regular expression representing the empty set.

deriv(ǫ, x) = ∅ (1)

deriv(∅, x) = ∅ (2)

deriv(A |B, x) = deriv(A, x) | deriv(B, x) (3)

deriv(A∗, x) = deriv(A, x)A∗ (4)

deriv(AB, x) =

{

deriv(A, x)B (A does not allow ǫ)
deriv(A, x)B | deriv(B, x) (otherwise)

(5)

The second set of equations handles terminal symbols. Since we have start- or
end-parenthesis symbols, we need two equations.

deriv(<a>, x) =

{

ǫ (x = <a>)
∅ (otherwise)

(6)

13Jing (http://thaiopensource.com/relaxng/jing.html), a RELAX NG validator in Java, uses this
algorithm.
14After patterns in [Clark 2002] amount to end-parenthesis symbols of balanced context-free
grammars.

ACM Journal Name, Vol. V, No. N, November 2004.

36 · ...

Input : Document D as sequence of start- and end-parenthesis symbols

Let E be a regular expression; // the current derivative expression
Let x be the current symbol; // from the document
Initialize E to the right-hand side of the production rule for the start symbol;
repeat

Get current symbol x from D;
Compute deriv(E, x) and let E be the result;
if E does not allow any sequence then

report “invalid” and halt;

until D is empty;
if E allows the empty sequence (ǫ) then

// the derivative expression after reading all symbols allows ǫ

report “valid”;

else

report “invalid”;

Algorithm 5: Derivative-based Validation

deriv(, x) =

{

ǫ (x =)
∅ (otherwise)

(7)

Finally, since non-terminals occur in content models, we have to dereference
them. The right-hand side of the production rule for non-terminal X is denoted
RHS(X).

deriv(X, x) = deriv(RHS(X), x) (8)

As an example, consider the regular tree grammar shown in Example 7.1. A
balanced context-free grammar equivalent to this regular tree grammar is:

N = {Root ,Sec,P}

T = {<sec>, </sec>, <p>, </p>}

S = {Root}

P = {Root → <sec> Sec∗ </sec>,Sec → <sec> (Sec|P)∗ </sec>,

P → <p> ǫ </p>}

Let us validate an XML document <sec><sec/><sec><p/></sec></sec>. This
document is represented by a sequence (<sec>, <sec>, </sec>, <sec>, <p>,

</p>, </sec>, </sec>). We begin with the right-hand side of the production
rule for the start symbol, namely <sec> Sec∗ </sec>.

The first symbol is <sec>. By (5) and (6) , the first derivative expression is

Sec∗ </sec>

Let us construct the second derivative expression with respect to the second
symbol <sec>. By (5), deriv(Sec∗</sec>, <sec>) is deriv(Sec∗, <sec>)</sec> |

ACM Journal Name, Vol. V, No. N, November 2004.

... · 37

deriv(</sec>, <sec>). Since deriv(</sec>, <sec>) = ∅ by (7), the above expression
is equal to deriv(Sec∗, <sec>)</sec>, which becomes deriv(Sec, <sec>)Sec∗</sec>
by (4). By applying (8) for Sec, we have deriv(<sec>(Sec|P)∗</sec>, <sec>) Sec∗

</sec>. Finally, by (5) and 6, we have

(Sec|P)∗</sec>Sec∗</sec>

The third derivative expression with respect to the next symbol </sec> is

Sec∗</sec>

Note that neither Sec nor P begin with </sec> and that (Sec | P)∗ allows the
empty sequence.

The rest of this validation is done similarly. The following table shows the vali-
dation steps.

next symbol constructed derivative

<sec> Sec∗ </sec>

The first <sec> Sec∗ </sec>

The second <sec> (Sec|P)∗ </sec> Sec∗ </sec>

The first </sec> Sec∗ </sec>

The third <sec> (Sec|P)∗ </sec> Sec∗ </sec>

<p> </p> (Sec|P)∗ </sec> Sec∗ </sec>

</p> (Sec|P)∗ </sec> Sec∗ </sec>

The second </sec> Sec∗ </sec>

The third </sec> ǫ

This algorithm constructs derivatives lazily. In other words, it constructs a deriva-
tive only when it encounters the next symbol in the given document. This laziness
ensures that this algorithm always terminates, since the number of symbols in the
given document is finite. Meanwhile, if we construct derivatives non-lazily (i.e.,
sufficiently to validate any document), we may end up with an infinite number of
derivatives. For example, documents valid against the example grammar may have
an arbitrary depth. Documents having third-level sections require a derivative

(Sec|P)∗</sec>(Sec|P)∗</sec>Sec∗</sec>

and those having fourth-level sections require a derivative

(Sec|P)∗</sec>(Sec|P)∗</sec>(Sec|P)∗</sec>Sec∗</sec>,

and so forth. A non-lazy procedure has to enumerate all such derivatives and thus
will not terminate.

Although laziness ensures termination, it does not make this algorithm efficient.
The optimization techniques such as “Memoization” (shown in [Clark 2002]) makes
this algorithm astoundingly efficient.

This algorithm has two particular advantages. First, validators become simpler,
since the in-memory representation is no longer automata but derivative expres-
sions, which are closer to the surface syntax of schema languages. Second, valida-
tion of small documents is remarkably efficient, since lazy construction of derivative
expressions does not touch unused content models.

ACM Journal Name, Vol. V, No. N, November 2004.

38 · ...

7.3 Attribute-element constraints and interleaving

RELAX NG provides two significant extensions of regular tree grammars: attribute-
element constraints and interleaving. Both of them are inherited from TREX [Clark
2001b].

Although we have considered elements only, XML documents also contain at-
tributes. If constraints on attributes can be obtained from terminals or non-
terminal, validation of attributes is not difficult. DTD and W3C XML Schema
provide such constraints only. However, RELAX NG can handle constraints be-
tween attributes and child elements. That is, we cannot determine permissible at-
tributes of an element without examining its child elements. The expressive power
yielded by this extension is quite substantial. For example, we can specify that a
person element has either the attribute name or a subelement name but not both.
Two validation algorithms for handling attribute-element constraints of RELAX
NG have appeared. One is an extension of the derivative-based validation [Clark
2002]: we treat attributes as tokens and add rules for computing derivatives with
respect to attribute tokens. The other is automaton rewriting ([Hosoya and Murata
2002]): by examining attributes, attribute transitions in (binary) tree automata are
removed or rewritten as null-transitions.

The interleaving of two regular languages is a language created by shuffling two
sentences. For example, the interleaving of A and B is captured by (A, B)|(B, A).
The interleaving of A∗ and B∗ is captured by (A|B)∗. RELAX NG provides the
interleave operator for combining patterns. This operator is typically used for
representing mixed content models (e.g., the interleave of <text/> and A provides
<mixed><ref name="A"/><text/>) and for allowing any occurrence order (e.g.,
the interleave of A, B, and C allows 6 possibilities). Two validation algorithms
for handling interleaving have been presented. One [Clark 2001a] (used for jing)
extends the derivative-based validation by computing the derivative of interleave
expressions. The other (used for Bali) executes shuffle automata [Jedrzejowicz and
Szepietowski 2001], which are equipped with branching and merging transitions.

8. RELATED WORK

To the best of our knowledge, it was Kil-Ho Shin [Shin 1992] who first used tree au-
tomata for structured documents. He used tree automata for the study of document
formatting.

In the original XML working group, the XML Schema working group, and the
XML Query Languages workshop, Murata (e.g., [Murata 1999a; 1999b; Murata
and Robie 1999]) proposed that tree automata be used as basis of schema and query
languages. However, this proposal was not accepted by the XML Schema working
group. Although we have seen an interpretation of W3C XML Schema using tree
automata, it is an afterthought with some pitfalls. In a Japanese committee, Mu-
rata designed RELAX Core [Murata 2000] as an alternative schema language and
submitted it to ISO/IEC. Around the same time, [Klarlund et al. 1999] designed a
schema language DSD, which is also based on tree automata. Influenced by RELAX
Core as well as XDuce [Hosoya and Pierce 2000] and XQuery [Chamberlin et al.
2001], Jame Clark designed TREX [Clark 2001b]. Finally, RELAX NG [Clark and
Murata (Eds) 2001] was designed at OASIS by unifying RELAX Core and TREX,

ACM Journal Name, Vol. V, No. N, November 2004.

... · 39

and was standardized at ISO without any technical changes.
[Jelliffe 2000] and [Lee and Chu 2000] attempt to compare and classify more

than ten schema languages (including W3C XML Schema and RELAX NG) from
various perspectives. However, their approaches are by and large not mathematical
so that the precise description and comparison among schema language proposals
are not straightforward. On the other hand, this paper and its precursor [Murata
et al. 2001] first establish a formal framework based on regular tree grammars, and
then compare schema language proposals.

XML Schema Formal Description of W3C (formerly called MSL [Brown et al.
2001]) is a mathematical model of W3C XML Schema. However, it is tailored
for W3C XML Schema and is thus unable to capture other schema languages.
Meanwhile, our framework is not tailored for a particular schema language. As a
result, all schema languages can be captured.

Although we have considered DTD, W3C XML Schema, and RELAX NG only,
other schema languages for XML documents are of considerable interest. Here we
consider such languages.

First, there are schema languages proposed by researchers. Two notable examples
are the type system of XDuce [Hosoya and Pierce 2000], and DSD (Document
Structural Description) [Klarlund et al. 2000]. Both languages are based on regular
tree languages.

The type system of XDuce is expressive enough to represent any regular tree
language. XDuce is thus quite similar to RELAX NG. In fact, they have influenced
each other. Differences between RELAX NG and XDuce are either syntactical ones
or fine details such as mixed content and data types.

DSD 1.0 can represent any single-type tree grammars. DSD 1.0 can further
represent some regular tree grammars which are not single-type. However, the
designers of DSD 1.0 deliberately avoided the full power of regular tree grammars,
but rather required that their top-down validation algorithm assigns at most one
non-terminal to each element. As a result, DSD 1.0 is restricted to restrained-
competition tree grammars (see Section 6.3). Thus, any XML document has at most
one interpretation, and the union/intersection/difference of two DSD 1.0 schemas
cannot always be constructed. DSD 2.0 is more expressive than DSD 1.0 in that
it can represent any regular tree grammar. Thus, an XML document may have
more than one interpretation, and the union/intersection/difference of two DSD
2.0 schemas can always be constructed.

Second, there are special-purpose schema languages. Such a schema language is
dedicated to a particular type of information which may be represented by XML.
Primary constructs for such information are not elements or attributes. For exam-
ple, RDF Schema [Brickley and Guha (Eds) 2003] is dedicated to RDF meta-data,
which consists of resources, properties, and statements, and the Topic Map Con-
straint Language15 (under development at ISO/IEC) is dedicated to topic maps,
which consists of topics and associations. Special-purpose schema languages are of-
ten more powerful than general-purpose ones, since they directly handle constructs
specific to the problem domain.

Third, there are languages (e.g., Schematron [Jelliffe 2000]) for representing

15The latest draft is available at http://www.isotopicmaps.org/tmcl/.

ACM Journal Name, Vol. V, No. N, November 2004.

40 · ...

identity constraints. Identity constraints were originally developed for the rela-
tional database system, but they have been extended to XML by many researchers
(e.g., [Buneman et al. 2002]). RELAX NG does not provide any mechanisms for
specifying identity constraints, but was rather intended to inter-work with identity-
constraint languages. Meanwhile, W3C XML Schema is a standalone language
equipped with identity constraint mechanisms. As of this writing, Schematron,
is being standardized at ISO/IEC JTC1 SC34, as Part 3 of Document Schema
Definition Languages (ISO/IEC 19757).

Fourth, there is a family of languages (e.g., RELAX Namespace [Murata (Eds)
2002] and NRL [Clark 2003]) for namespace-based validation dispatching. These
languages allow the inter-working of schemas describing different markup vocabu-
laries, and further allow these schemas to be written in different schema languages.
For example, a RELAX NG schema for XHTML2 and a W3C XML Schema schema
for XForms can be easily combined. A compound XML document is validated
against this combination by dispatching elements in the XHTML2 namespace to
a RELAX NG validator and dispatching elements in the XForms namespace to a
W3C XML Schema validator. At the time of this writing, a latest member in this
family, namely Namespace-based Validation Dispatching Language[Murata (Eds)
2004], is being standardized at ISO/IEC JTC1 SC34, as Part 4 of Document Schema
Definition Languages (ISO/IEC 19757).

9. CONCLUSION

To compare XML schema language proposals, we have studied three classes of tree
languages, namely “local”, “single-type”, and “regular”. The class “regular” is
the most expressive and is closed under boolean operations, but does not ensure
uniqueness of interpretations. The class “single-type” is less expressive and the
class “local” is even less expressive. These classes are not closed under union and
difference operations. but ensure uniqueness of interpretations. We have also pre-
sented validation algorithms for these classes. Those for local or single-type tree
grammars are straightforward, since they construct one interpretation per docu-
ment. Meanwhile, those for regular tree grammars have to consider more than one
interpretation. We propose the all-at-once algorithm for regular tree grammars,
which does not construct an interpretation, but in stead, only reports whether the
document is valid or not. Then, we have shown that DTD, W3C XML Schema,
and RELAX NG are respecitvely captured by “local”, “single-type”, and “regular”,
respectively.

After introducing the three classes of tree languages, we study other grammatical
concepts that are closely related to them. First, we studied how context-free gram-
mars relate to tree grammars. Second, we introduced another class of tree grammars
called “restrained-competition”, which sits between “single-type” and “regular”.
Third, we introduced regular hedge grammars. Fourth, we compared our vali-
dation algorithms and top-down/bottom-up deterministic/non-deterministic tree
automata. Fifth, we introduced a restriction that content models be deterministic
and studied how this restriction relate to our framework.

Finally, we introduced a validation algorithm based on binarization and another
based on derivatives. They are more appropriate than our algorithms in Section 4

ACM Journal Name, Vol. V, No. N, November 2004.

... · 41

for implementing RELAX NG validators. One reason is that attribute-element
constraints and interleaving of RELAX NG can be easily implemented on top of
these algorithms.

Although schema languages and validators have been extensively studied, valida-
tor implementation is not a fully developed area. To the best of our knowledge, the
number of fully-conformant validators for W3C XML Schema and RELAX NG is
surprisingly small. We hope that the algorithms presented in this paper provide a
basis for future implementations.

APPENDIX:

In this appendix, we prove that the class of local tree languages and that of single-
type tree languages are closed under intersection.

In preparation, we show that the class of regular tree languages is closed un-
der intersection. Let two regular tree grammars G1 = (N1, T1, P1, S1) and G2 =
(N2, T2, P2, S2), respectively. Without loss of generality, we can assume that T1 =
T2 = T . We construct a regular tree grammar that captures the intersection of
L(G1) and L(G2).

Given regular expressions r1 over N1 and r2 over N2, we construct their intersec-
tion r1⊕r2, which is a regular expression over N1×N2. A sequence (n1

1, n
1
2) (n2

1, n
2
2)

... (ni
1, n

i
2) of non-terminals in N1 × N2 matches r1 ⊕ r2 exactly when n1

1n
2
1...n

i
1

matches r1 and n1
2n

2
2...n

i
2 matches r2.

This construction has four steps: (1) we create r′1 (a regular expression over
N1 × N2) from r1 by replacing each n in N1 by (n1, n

1
2) | (n1, n

2
2) | . . . |(n1, n

k
2),

where n1
2, n

2
2, . . . , n

k
2 is an enumeration of N2. Similarly, we create r′2 (another

regular expression over N1×N2) from r2; (2) we create two automaton from r′1 and
r′2; (3) we create an intersection automaton of these automata; and (4) we create a
regular expression, namely r1 ⊕ r2, from this intersection automaton.

Now, we are ready to construct the intersection of G1 and G2. The intersection
grammar is G3 = (N1 × N2, T, P3, S1 × S2), where

P3 = {(n1, n2) → a (r1 ⊕ r2) |n1 → a r1 ∈ P1, n2 → a r2 ∈ P2}.

Obviously, a tree is valid against G3 if and only if it is valid against G1 as well
as G2.

It remains to show (1) G3 is local if G1 and G2 are local, and (2) G3 is single-type
if G1 and G2 are single-type. We prove (2) only, since (1) can be similarly proved.

First, we show that different start symbols in S1 × S2 do not compete. Let two
different start symbols be (n1

1, n
1
2) and (n2

1, n
2
2), where either n1

1 6= n2
1 or n1

2 6=
n2

2. We consider the case that n1
1 6= n2

1 only. By definition, n1
1 and n2

1 are start
symbols of G1. Since G1 is single-type, n1

1 does not compete with n2
1; that is, if two

production rules in P1 have n1
1 and n2

1 respectively in the left-hand side, they do not
share the same terminal symbol in the right-hand side. Consider two production
rules in P3 having (n1

1, n
1
2) and (n2

1, n
2
2). They do not share the same terminal

symbol in the right-hand side, since they are created from production rules having
n1

1 and n2
1 in the left-hand side. Therefore, (n1

1, n
1
2) and (n2

1, n
2
2) do not compete.

Second, we show that different non-terminal symbols occurring in a single content
model do not compete. Consider a content model r3 in G3. By definition, r3 =

ACM Journal Name, Vol. V, No. N, November 2004.

42 · ...

r1 ⊕ r2 for some content model r1 in G1 and r2 in G2. Let two different non-
terminals occurring in r3 be (n1

1, n
1
2) and (n2

1, n
2
2), where either n1

1 6= n2
1 or n1

2 6= n2
2.

Again, we consider the case that n1
1 6= n2

1 only. Both n1
1 and n2

1 occur in r1, because
r3 is created from r1 (and r2). Since G1 is single-type, n1

1 and n2
1 do not compete.

The rest of the proof is the same as above.

REFERENCES

Altheim, M. and McCarron (Eds), S. 2000. “XHTML 1.0: The Extensible HyperText Markup
Language”. W3C Recommendation. http://www.w3.org/TR/xhtml1/.

Berners-Lee, T. and Connolly, D. 1995. “IETF RFC 1866: HyperText Markup Language
Specification – 2.0”.

Berstel, J. and Boasson, L. 2002. Balanced grammars and their languages. 3–25.

Bray, T., Paoli, J., and Sperberg-McQueen (Eds), C. M. 2000. “Extensible Markup Language

(XML) 1.0 (2nd Edition)”. W3C Recommendation. http://www.w3.org/TR/2000/REC-xml-
20001006.

Brickley, D. and Guha (Eds), R. V. 2000. “Resource Description Framework (RDF) Schema
Specification 1.0”. W3C Recommendation. http://www.w3.org/TR/2000/CR-rdf-schema-
20000327/.

Brickley, D. and Guha (Eds), R. V. 2003. “Resource Description Framework (RDF)
Schema Specification 1.0”. W3C Working Draft. http://www.w3.org/TR/2003/WD-rdf-schema-
20031010/.

Brown, A., Fuchs, M., Robie, J., and Wadler, P. 2001. “MSL: A Model for W3C XML
Schema”. In Int’l World Wide Web Conf. (WWW). Hong Kong.

Brüggemann-Klein, A. and Wood, D. 1998. “One-Unambiguous Regular Languages”. Infor-
mation and Computation 140, 2, 229–253.

Brüggemann-Klein, A. and Wood, D. 2004. Balanced context-free grammars, hedge grammars
and pushdown caterpillar automata. In Extreme Markup Languages. Montreal, Canada.

Brzozowski, J. A. 1964. “Derivatives of Regular Expressions”. J. ACM 11, 4 (Oct.), 481–494.

Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan, W.-C. 2002. Keys for xml. Computer
Networks 39, 473–487.

Chamberlin, D., Florescu, D., Robie, J., Siméon, J., and Stefanescu (Eds),
M. 2001. “XQuery 1.0: An XML Query Language”. W3C Working Draft.
http://www.w3.org/TR/2001/WD-xquery-20010607/.

Christensen, A. S., Moller, A., and Schwartzbach, M. I. 2003. “Extending Java for High-
Level Web Service Construction”. ACM Transactions on Programming Languages and Systems
(TOPLAS).

Clark, J. 2001a. “The Design of RELAX NG”. http://www.thaiopensource.com/relaxng/design.html.

Clark, J. 2001b. “TREX – Tree Regular Expressions for XML”. Web page.
http://www.thaiopensource.com/trex/.

Clark, J. 2002. “An Algorithm for RELAX NG Validation”.
http://www.thaiopensource.com/relaxng/derivative.html.

Clark, J. 2003. Namespace routing language. http://www.thaiopensource.com/relaxng/nrl.html.

Clark, J. and Murata (Eds), M. 2001. “RELAX NG Specification”. http://www.oasis-
open.org/committees/relax-ng/spec-20011203.html.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., and Tommasi,
M. 1997. “Tree Automata Techniques and Applications”. http://www.grappa.univ-lille3.fr/tata.

Fallside (Eds), D. C. 2001. “XML Schema Part 0: Primer”. W3C Recommendation.
http://www.w3.org/TR/xmlschema-0.

Fordin, S. 2003. “Java Architecture for XML Binding(JAXB) 1.0”. JSR.

Fry, C. 2003. “Streaming API for XML”. JSR 173. http://www.jcp.org/en/jsr/detail?id=173.

Glushkov, V. 1961. The abstract theory of automata. Russian Math. Surveys 16, 1–53.

ACM Journal Name, Vol. V, No. N, November 2004.

... · 43

Hopcroft, J. E. and Ullman, J. D. 1979. “Introduction to Automata Theory, Language, and

Computation”. Addison–Wesley.

Hosoya, H. and Murata, M. 2002. “Validation and boolean operations for attribute-element
constraints”. In Programming Languages Technologies for XML (PLAN-X).

Hosoya, H. and Pierce, B. C. 2000. “XDuce: A Typed XML Processing Language”. In Int’l
Workshop on the Web and Databases (WebDB). Dallas, TX.

Hosoya, H. and Pierce, B. C. 2001. “Regular Expression Pattern Matching for XML”. In ACM
PODS. 67–80.

Hosoya, H., Vouillon, J., and Pierce, B. C. 2000. “Regular Expression Types for XML”. In
Int’l Conf. on Functional Programming (ICFP). Montreal, Canada.

ISO 8879 1986. “Information processing – Text and Office Systems – Standard Generalized
Markup Language (SGML)”. ISO 8879.

ISO/IEC 2000. “Information Technology – Text and Office Systems – Regular Language Descrip-
tion for XML (RELAX) – Part 1: RELAX Core”. ISO/IEC. DTR 22250-1.

Jedrzejowicz, J. and Szepietowski, A. 2001. Shuffle languages are in P. Theoretical Computer
Science 250, 1-2, 31–53.

Jelliffe, R. 2000. “Schematron”. Web page. http://www.ascc.net/xml/resource/schematron/.

Klarlund, N., Moller, A., and Schwatzbach, M. I. 1999. “Document Structure Description
1.0”. Specification. http://www.brics.dk/DSD/dsddoc.html.

Klarlund, N., Moller, A., and Schwatzbach, M. I. 2000. “DSD: A Schema Language for
XML”. In ACM SIGSOFT Workshop on Formal Methods in Software Practice. Portland, OR.

Klarlund, N., Schwentick, T., and Suciu, D. 2003. XML: Model, schemas, types, logics and
queries. In Logics of emerging applications of databases. Springer Verlag.

Knuth, D. E. 1973. “Fundamental Algorithms”. Addison-Wesley.

Lee, D. and Chu, W. W. 2000. “Comparative Analysis of Six XML Schema Languages”. ACM
SIGMOD Record 29, 3 (Sep.), 76–87.

Megginson, D. 2000. “SAX 2.0: The Simple API for XML”. Web page.
http://www.megginson.com/SAX/index.html.

Milo, T., Suciu, D., and Vianu, V. 2000. “Typechecking for XML Transformers”. In ACM
PODS. 11–22.

Murata, M. 1997. “Transformation of Documents and Schemas by Patterns and Contextual
Conditions”. In Principles of Document Processing. Vol. 1293. Springer-Verlag, 153–169.

Murata, M. 1999a. “Regularity and Locality of String Languages and Tree Languages”. Web
page. http://www.oasis-open.org/cover/murataRegularity.html.

Murata, M. 1999b. “Syntax for Regular-but-non-local Schemata for Structured Documents”.
Web page. http://www.oasis-open.org/cover/murataSyntax19990311.html.

Murata, M. 2000. “RELAX (REgular LAnguage description for XML)”. Web page.
http://www.xml.gr.jp/relax/.

Murata, M., Lee, D., and Mani, M. 2001. “Taxonomy of XML Schema Languages
using Formal Language Theory”. In Extreme Markup Languages. Montreal, Canada.
http://nike.psu.edu/dongwon/publications.html.

Murata, M. and Robie, J. 1999. “Observations on Structured Document Query Languages”.
http://www.w3.org/TandS/QL/QL98/pp/murata-san.html.

Murata (Eds), M. 2002. RELAX Namespace. ISO/IEC DTR 22250-2. http://www.y-
adagio.com/public/standards/iso tr relax ns/dtr 22250-2.doc.

Murata (Eds), M. 2004. Namespace-baesed Validation Diaptching Language. ISO/IEC JTC1
SC34. http://www.jtc1sc34.org/repository/0525.pdf.

Neven, F. 2002. “Automata Theory for XML Researchers”. ACM SIGMOD Record 31, 3 (Sep.).

OASIS. 1997-2003. “SGML/XML and Forest/Hedge Automata Theory”. Web page.
http://xml.coverpages.org/hedgeAutomata.html.

Ogbuji, U. 2002. XML class warfare. Application Development Trends.
http://www.adtmag.com/article.asp?id=6965.

ACM Journal Name, Vol. V, No. N, November 2004.

44 · ...

Raggett, D. 1997. “HTML 3.2 Reference Specification”. W3C Recommendation.

http://www.w3.org/TR/REC-html32/.

Raggett, D., Hors, A. L., and Jacobs, I. 1999. “HTML 4.01 Specification”. W3C Recommen-
dation. http://www.w3.org/TR/html4/.

Shin, K.-H. 1992. “Some Equivalnce between Multi-level and Single-level Layout Processes”. In
International Workshop on Principles of Document Processing (POPD).

Takahashi, M. 1975. “Generalizations of Regular Sets and Their Applicatin to a Study of
Context-Free Languages“. Information and Control 27, 1 (Jan.), 1–36.

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn (Eds), N. 2001. “XML Schema
Part 1: Structures”. W3C Recommendation. http://www.w3.org/TR/xmlschema-1/.

Tozawa, A. 2001. “Towards Static Type Inference for XSLT”. In ACM Symp. on Document
Engineering.

Tozawa, A. and Hagiya, M. 2003. XML schema containment checking based on semi-implicit
techniques. In Implementation and Application of Automata, 8th International Conference,
CIAA 2003, Santa Barbara, California, USA, July 16-18, 2003, Proceedings, O. H. Ibarra and
Z. Dang, Eds. Lecture Notes in Computer Science, vol. 2759. Springer, 213–225.

van der Vlist, E. 2002. Can XML be the same after W3C XML Schema? XML.com.
http://www.xml.com/pub/a/2002/06/19/vdv-wxs.html.

Vianu, V. 2001. “A Web Odyssey: From Codd to XML”. In ACM PODS. Santa Barbara, CA.

Walsh, N. and Muellner, L. 1999. “DocBook: The Definitive Guide”. O’Reilly & Associates.

Wood, L., Hors, A. L., Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I., Nicol,
G., Robie, J., Sutor, R., and Wilson (Eds), C. 1998. “Document Object Model (DOM)
Level 1 Specification Version 1.0”. W3C Recommendation. http://www.w3.org/TR/REC-DOM-
Level-1/.

December 2003

ACM Journal Name, Vol. V, No. N, November 2004.

