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Abstract. Continuously evolving Java technology provides effective solu-
tions for many industrial and scientific computing challenges. These so-
lutions, however, often require cooperation between Java and native lan-
guages. It is possible to achieve such interoperability using the Java Native
Interface (JNI); however, this facility introduces an overhead which must
be considered while developing interface code. This paper presents JNI per-
formance benchmarks for several popular Java Virtual Machine implemen-
tations. These may be useful in avoiding certain JNI pitfalls and provide a
better understanding of JNI-related performance issues.

1 Introduction

In only a few years Java has evolved from an embedded consumer-electronics pro-
gramming language to a powerful general-purpose technology used to solve various
problems across different hardware platforms. It has already penetrated the en-
terprise market, is gaining increasing adoption in the field of scientific computing
[6,8,2,11], and is even beginning to cope with system level programming and real-
time systems.

The evolution of Java technology has eliminated many of the reasons to com-
bine Java with native languages. The performance of modern Java Virtual Machines
(VMs) is often able to match pure native code [5]. The number of software compo-
nents written in Java is growing rapidly, enabling Java to be self-sufficient in most
areas. On the other hand, interoperability and reusability of native code simplify
smooth migration to Java technology as the value of existing, fine tuned and thor-
oughly tested native libraries can be retained. Moreover, the wider the area of Java
applications, the bigger the demand for interoperability. These reasons were the
basis for the development of the Java Native Interface (JNI) [9,10]. The JNI is a
platform independent interface specification which impose virtually no restriction
on the underlying VM implementations. As a tradeoff for portability, however, such
an approach makes it impossible for JNI to be as efficient as it would be, if the
interface were integrated more tightly with a specific Java VM.

This paper aims to provide a better understanding of JNI-related performance
issues that might help developers make more informed decisions during the soft-
ware design phase. It presents detailed JNI performance analyses for eight different
representative Java VM implementations on three popular platforms.1 Certain JNI
pitfalls are highlighted with suggestions for appropriate solutions for them.
1 The Invocation API, which enables integration of Java code into native applications, is

out of scope of this paper.



2 Compared Platforms and Benchmarking Methodology

All benchmarks described in this paper were performed for the total of eight dif-
ferent Java 1.3 implementations, which included:

– scli – SUN HotSpot Client 1.3.0-RC for Solaris,
– ssrv – SUN HotSpot Server 1.3.0-RC for Solaris,
– lcli – SUN HotSpot Client 1.3.0 for Linux,
– lsrv – SUN HotSpot Server 1.3.0 for Linux,
– lcls – SUN Classic 1.3.0, green threads, nojit for Linux,
– libm – IBM 1.3.0, jitc for Linux,
– wcli – SUN HotSpot Client 1.3.0-C for Win32,
– wibm – IBM 1.3.0, jitc for Win32.

For both Linux and Win32, the test platform was a Dell Dimension PC with a
PII-450 CPU and 128 MB of RAM. Linux tests were run under RedHat 6.2 Oper-
ating System while Win32 tests were run under MS Windows 98. Tests for Solaris
were performed on 4-processor Sun Enterprise 450 with 4 UltraSPARC 400MHz
CPUs and 1280 MB of RAM, running under control of the SunOS 5.8 Operating
System. The benchmarking suite was the same for all VMs. All timings are given in
nanoseconds. Although the results for different platforms (Solaris, Linux, Windows)
were often similar, they should not be compared directly to each other as numerous
factors like the amount of available system memory could affect performance. For
each test, the mean of at least eight runs was computed and standard variance of
each sample was used to determine accuracy. The number of test iterations var-
ied to assure accuracy of at least 1.5 significant digits and was typically between
105 and 107. In order to give the VM the opportunity to optimize the code, each
benchmark was started after a “prime” run with the same number of iterations.
Java VMs have very sophisticated run-time optimization algorithms and therefore,
the execution times for atomic operations depend on many different factors and
cannot be determined precisely. Nevertheless, we believe that our results are highly
representative as JNI functions are much less dependent on JIT optimizations than
ordinary Java code.

3 Native Method Invocation Overhead

To be used from within a Java application, native code must have the form of
native methods defined in ordinary Java classes. So the first issue when consider-
ing JNI performance concerns the overhead of calling native methods (implemented
in separate dynamically linked libraries) in comparison to invoking ordinary meth-
ods which may be JIT-compiled and inlined. Performance results measuring that
overhead are shown in Table 1. There are separate results for ordinary and native
methods, for non-virtual and virtual invocation modes, as well as for methods
with no arguments and with eight arguments of type Object. For virtual invoca-
tion mode, methods were invoked through a reference to the superclass to enforce
virtual method dispatch. For non-virtual invocation mode, the invoked methods
were private. Fields marked with * denote cases when results in the sample varied
significantly and tended to concentrate around two distinct values.



Table 1. Java vs Native Method Invocations – times in [ns]

Solaris Linux Windows

scli ssrv lcli lsrv lcls libm wcli wibm

Java, non-virtual, no args 40 0 20 0 260 25 0 36
Java, non-virtual, 8 args 70 0 35 0 390 50 0 50
Java, virtual, no args 90 *90 22 275 340 30 26 38
Java, virtual, 8 args 90 *220 50 285 420 55 45 56
native, non-virtual, no args 110 150 105 120 500 130 140 120
native, non-virtual, 8 args 340 290 210 310 940 225 710 250
native, virtual, no args 120 170 110 100 460 130 160 125
native, virtual, 8 args 400 310 205 300 970 240 720 255

Notable advance in performance can be observed here between JIT-enabled
VMs and the old-style lcls VM. The modern ones required between 100 and 170
ns per native method invocation plus about 15-25 ns per argument conversion,
except for the SUN’s HotSpot Client VM for Win32 (scli) which required as much
as about 70 ns per argument conversion. The overall native method invocation
overhead turned out to be about 3-5 times bigger than for ordinary methods, but
is worth noticing that in some cases JIT compiler was able to eliminate the latter
completely.

4 Callback Method Invocations

In many nontrivial Java to native code interfaces, callbacks may play an impor-
tant role causing Java methods to be called from native side. The results shown
in Table 2 focus on the performance of such callbacks and cover invocations of
virtual, private and static methods having no arguments or eight arguments,
respectively. These results do not include the time needed to obtain method and
class identifiers needed prior to invoking the method through JNI (since they need
to be obtained only once) nor do they include JNI exception checking code. This
test uncovered significant differences between the compared VMs. Only three of
JIT-optimized VMs (libm, wcli and wibm) demonstrated acceptable performance
requiring between 800 and 1350 ns per method call plus 25-50 ns per each passed
argument. SUN HotSpot VMs for Solaris and Linux performed poorly requiring
2500-9000 ns per call (demonstrating especially high overhead for virtual invoca-
tion mode) and as much as about 900 ns per each passed argument.

5 Field Access

Table 3 presents the performance results for Java field accesses from JNI. There
were three separate JNI benchmarks: in the first one, the instance field of the same
object to which the native method belonged was accessed; the second shows results
for accessing the instance field of another object; and the third benchmark shows
access times of a static field. In addition, a separate experiment was conducted to
determine the average field access overhead in pure Java. As before, the time for



Table 2. Method invocations from JNI – times in [ns]

Solaris Linux Windows

scli ssrv lcli lsrv lcls libm wcli wibm

private, no args 3500 2500 4100 4000 1300 1100 900 1200
private, 8 args 10100 9500 9100 9000 1800 1500 1250 1500
virtual, no args 9000 6500 9500 8600 1350 1350 830 1200
virtual, 8 args 15500 14000 14000 14400 1500 1550 1050 1600
static, no args 3100 3100 4500 4400 1200 1100 800 1100
static, 8 args 9900 9500 9100 9900 1700 1500 1170 1400

acquiring field and class identifiers was not included. The same three VMs: libm,
wcli, and wibm presented the best performance requiring only about 110-140 ns
per field access in contrast to 190-290 ns of Linux HotSpot VMs and 470-650 ns
of Solaris ones. Notice that field access overhead turned out to be an order of
magnitude smaller than those of callback method invocations.

Table 3. Field access from JNI – times in [ns]

Solaris Linux Windows

scli ssrv lcli lsrv lcls libm wcli wibm

JNI, own 590 500 260 260 190 120 110 120
JNI, other’s 470 460 285 275 200 120 110 130
JNI, static 650 610 290 290 180 120 140 110
Java 20 20 <10 0 40 0 <10 <5

6 Arrays and Strings

Perhaps the most important data structures in high performance computing are
plain, large arrays of primitive types. As currently Java is considered appropriate
for high performance computing, and because the demand for interoperability is
very strong in this matter, it becomes crucial that Java arrays could be efficiently
accessed from within native side. JNI offers three distinct ways to access Java arrays
of primitive types. Using Get / Release<type>ArrayContents() routines is one
approach, where the Java array may be manipulated through a directly exposed
native style pointer. The problem with this approach, however, is that it is up to
the Java VM implementation whether it pins down the array or instead makes a
copy of it prior to returning this pointer. In the latter case performance can be
degraded and some memory problems may occur for large arrays. The first two
rows in Table 4 report on tests of this method for accessing int[] arrays of length
100 and 1000000, respectively.
Another method of accessing arrays is using Get / Set<type>ArrayRegion() rou-
tines, but this is appropriate only when some small and precisely known portion



Table 4. Array and string access from JNI – times in [ns]

Solaris Linux Windows

scli ssrv lcli lsrv lcls libm wcli wibm

array, int, 10e2 5500 5200 3700 3300 1450 310 700 330
array, int, 10e6 3.1e7 3.1e7 8.3e7 9.0e7 1460 300 710 330
array, int, 10e6, critical 590 690 410 330 1470 370 810 410
string, 3 2400 2100 2700 2200 1550 300 620 330
string, 65536 5.3e5 5.3e5 5.0e5 5.3e5 1520 330 610 310
string, 65536, critical 580 580 320 320 1580 310 660 360
string, UTF, 3 2340 2800 3700 3000 5000 1700 1500 1300
string, UTF, 65536 1.5e6 1.5e6 3.2e6 3.2e6 2.6e6 2.3e6 1.6e6 2.0e6

of the array is accessed; therefore this approach was not tested in our benchmark
experiments. The third method is to use the Get / ReleaseArrayCritical() func-
tions. According to the specification [9], this approach is very similar to the first
one except that the Java VM is more likely to pin down the array instead of copy-
ing it. However, use of these routines is subject to some important restrictions on
the enclosed native code semantics [9]. The third row in Table 4 shows the results
for this approach. For clarity, results for arrays of types other than int are omit-
ted in Table 4 as the tests have shown that there are no important performance
differences except for the obvious dependence on element size in cases when whole
arrays were copied.

For strings, JNI offers several distinct access methods as well. One is the Get /
ReleaseStringChars() pair, which is similar to Get/ReleaseArrayContents();
performance figures are listed in rows 4 and 5 of Table 4 for strings of length 3
and 65536, respectively. The other way is to use Get / ReleaseStringCritical()
functions which are similar in semantics to Get / ReleaseArrayCritical(). The
results for this approach are presented in row 6. The next two rows refer to yet
another access method that converts Unicode Java strings on the fly to the UTF-8
[9] format, which is more natural for most native languages as it is consistent with
the ASCII character set. It is also possible to get a copy of a string segment with
GetStringRegion() routine but it has not been included in our tests.

As can be read from the gathered data, the array and string access benchmarks
were dominated by IBM’s Virtual Machines, since they were able to avoid array
copying and required only about 300-400 ns per array or string access. Such perfor-
mance could be obtained also using HotSpot VMs for Solaris and Linux but only
with Get...Critical() routines. Interestingly, the disability to perform array pin-
ning on Get<type>Array() function calls was discovered not to be a common issue
of all HotSpot VMs as the Client VM for Win32 (wcli) was able to avoid it as
well. The Classic VM for Linux (lcls), which lacks for JIT compiler support and
it generally less efficient than modern VMs, also managed to to this but with a
few times bigger performance overhead. The probable reason why modern VMs
had problems with array pinning is that they employ more sophisticated memory
management algorithms.



7 Exceptions

Table 5 presents results for exception-related JNI routines. The first row shows the
overhead of the throw statement in pure Java. The next row illustrates the same
overhead when an exception is thrown using JNI. The subsequent two rows present
the performance of the catch operation performed through JNI in the case when
there was no exception thrown (the most common case), and conversely, when there
was a pending exception. It was surprising to note that the overheads of the throw
and catch operations differ by almost three degrees of magnitude (18000-80000 ns
and 40-740 ns, respectively). Nonetheless, it is reasonable as the throw operation is
rare in properly written programs so its efficiency can be often sacrificed to improve
overall performance. As in several previous tests, the trio of libm, wcli and wibm
demonstrated the best performance here needing only 40-65 ns for exception check
in the most common case of no pending exception, whereas the same operation
took about 100 ns for Linux HotSpot VMs and about 300 ns for Solaris ones.

Table 5. Exception handling from JNI – times in [ns]

Solaris Linux Windows

scli ssrv lcli lsrv lcls libm wcli wibm

Java, throw 22800 19000 37000 29000 5000 12000 9200 12000
JNI, throw 52000 53000 82000 88000 23500 60000 18000 35000
JNI, catch, no exception 300 320 95 110 40 65 40 40
JNI, catch 740 740 350 350 190 180 160 140

8 Miscellaneous JNI Operations

Table 6 shows performance results for several commonly used JNI features which
does not fit in the categories outlined so far. In the first two rows, the execution
costs of the synchronized statement in pure Java and in JNI (which involves
usage of MonitorLock() and MonitorUnlock() operations) are compared. 2 The
next two rows compare overheads of small object instance creation in pure Java
and JNI (but without constructor invocation). Rows 5 and 6 compare runtime
type check overheads in pure Java and JNI (with IsInstanceOf() function). In
JNI, there might be several distinct reference variables with different values that
refer to the same Java object. To determine this the IsSameObject() function is
used. Rows 7 and 8 in Table 6 show the overheads of this operation in cases when
references indeed refer to the same object and when they do not (which is more
probable). Finally, the last three rows in Table 6 refer to several other widely used
JNI functions used for various purposes, like creating a new reference pointing to
given object, getting the class of a given object and the superclass of given class.

As before, three of the tested JIT-enabled VMs: libm, wcli, and wibm per-
formed much better than the others. The HotSpot VMs for Solaris and Linux
2 The lock was acquired and released by one-threaded application.



Table 6. Remaining benchmarks – times in [ns]

Solaris Linux Windows

scli ssrv lcli lsrv lcls libm wcli wibm

Java, synchronized 190 150 45 50 870 160 270 140
JNI, synchronized 1400 1320 1350 1300 740 240 300 290
Java, new 180 0 100 145 1890 560 880 500
JNI, AllocObject 1260 1330 1290 1270 1340 590 1000 470
Java, instanceof 30 15 17 0 95 <5 27 10
JNI, instanceof 410 410 300 160 150 155 130 110
JNI, IsSameObject, true 1390 1240 670 660 460 320 310 300
JNI, IsSameObject, false 340 330 130 100 50 70 50 50
JNI, GetObjectClass 480 380 280 240 230 150 190 170
JNI, GetSuperclass 620 480 510 350 250 80 120 110
JNI, NewLocalRef 490 460 270 260 200 100 110 110

confirmed vendors’ promises and presented blasting performance in the synchro-
nization and object creation from pure Java; however, the appropriate JNI equiv-
alents of these operations performed not so good. It can be also observed that the
IsSameObject() routine is optimized for case when compared references do not
point to the same object, and it can take as few as 50 ns for the fastest VMs to
detect it.

9 Benchmark Summary

As might have been expected, obtaining Java functionality from native code via
JNI function calls turned out to be much slower than pure JIT-optimized Java.
Nevertheless, the overhead factor rarely exceeded 30 what is acceptable in most
cases as JNI functions typically take only a small part in total native method
execution time. Therefore, the overall JNI performance seems to be adequate for
most applications where it really have to be used; however, there are several issues
that one has to be aware of:

– Copying arrays and strings instead of pinning them down can degrade perfor-
mance. Unfortunately, even Get...Critical() routines do not guarantee that
copying will be avoided; nevertheless, they seem to be the most efficient way
to access Java arrays and strings.

– For native methods with very small amounts of computing, the additional in-
vocation overhead can exceed the performance benefits.

– Intensive callbacks from native methods can be expensive on some Java VMs
and should be used with caution.

– As JNI implementations are not the most important parts of Java Virtual
Machines, their performance is not necessarily going to improve – in fact it it
can happen that a new VM version from the same vendor would perform JNI
calls much worse than an older version, as was the case with HotSpot VMs for
Linux (lsrv, lcli), in which JNI implementations are much less efficient than
that from the Classic VM (lcls).



10 Conclusions and Future Work

This paper focuses on approaches in the creation of efficient Java to native code
interfaces. It provides detailed performance benchmarks of several popular, mod-
ern, and representative JNI implementations, pointing out their weak points and
suggesting possible solutions.

The Janet [4,3] is a Java language extension and preprocessing tool which en-
ables convenient development of JNI-based interfaces. It completely hides the JNI
layer from the user, defining new syntactic constructs which enable mixing native
and Java codes directly. The Harness system [11,7] is an experimental metacomput-
ing framework based upon the principle of dynamically reconfigurable distributed
virtual machines. The Janet language extension and experiences gained from col-
lected JNI performance data will be combined to make Harness aware of native
code resources and libraries, increasing its interoperability and potential field of
applications.
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