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Abstract

With the growth of interest on the web services, people have paid more
attentions on the choreography, that is, to describe collaborations of par-
ticipants from a global viewpoint, in accomplishing a common business
goal. WS-CDL is the official language proposed by W3C for the speci-
fication of choreography. In this paper, based on a simple choreography
language and a role-oriented process language, we studied some funda-
mental issues of choreography, and discussed a number of basic concepts,
including semantics, projection and natural projection, well-formedness
and restricted natural choreography, implementation and conformance
problems, etc. The results of this study can help us to have a deeper
understanding of choreography, and to have a better understanding of the
problems related to the language design, implementation, wellformedness
checking etc., and the specification and verification of choreographies.

1 Introduction

Web services have been becoming more important recently, which promise the
interoperability of various applications running on heterogeneous platforms over
Internet. Web service composition refers to the process of combining web ser-
vices to provide value-added services, which has received much interest to sup-
port enterprise application integration. WS-CDL (for Web Service Choreogra-
phy Description Language) [8, 7] is a W3C candidate recommendation for web
service composition designed for describing the common and collaborative ob-
servable behavior of multiple services that interact with each other to achieve
a business goal. WS-CDL focuses on specifying the business protocol among
participants (roles). All the behaviors are performed by the participants, and
the WS-CDL specification gives a global observation.

Voluminous literatures exist on the specification of systems, for example,
[6] and [10]. However, almost all of them discussed the specification from a
local viewpoint. Even for the communication, the description is still local, as it
expresses when a process sends or receives a message from a specific channel.
Furthermore, there is not a special concept of the participants of the compu-
tation. By the blooming of web-technology, more and more real computation
are established in a kind of processes that various computing facilities take part
in. These facilities are independent entities and might reside in any place over
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the world. For accomplishing the goal of the computation, they should not
only have “correct” functionalities, but also correctly interact with each other.
With the interaction becoming more complex, the problems related to specify
the interaction of the participants will be harder too, if we still want to do it
locally. Moreover, it is even harder to verify the interaction locally. These are
the motivation under the design of WS-CDL. Thus, a deeper understanding of
the choreography and various relative problems is very urgent and important
for the successful development of the web-based computation and application
systems. It is better done at a suitable abstract level, to make a clear scenery
of choreography. This is the motivation of the work presented here.

For exploring the essence of choreography, we defined a small language Chor,
a model of the simplified WS-CDL, and a simple process language for the de-
scription of roles from a local viewpoint, both with formal syntax and semantics.
Based on these models, we discussed the concept of projections, which map a
given choreography to a set of role processes. We proposed a special map named
natural projection, which partitions effectively choreography by following its
structure. With the semantics of the languages and the natural projection, we
proposed another level of well-formedness, and defined the concept of restricted
natural choreography based on them. We proposed two structural conditions as
a criterion to distinguish the restricted natural choreography. Then we discussed
other possibilities of projection, especially, a projection which can remedy the
sequential order problem of choreographies which are not restricted natural.

Using a projection, we will get a set of processes, where each of them rep-
resents a role in the choreography. We studied the implementation of the roles,
which is commonly called the conformance problem. What we concerned in this
work is better named local conformance, because the implementation of each
role is considered independently.

After the sections on the results of this study, we had a section to discuss
some important problems related to choreography in detail, including a com-
parison between local and global conformance, rationality of the two semantics
proposed, some extensions and criticism of the choreography description lan-
guages. In this study, we have also given a large number of small examples,
to help us and the readers to get a better understanding of the phenomena
appeared here, and various properties of choreography.

The rest of the paper is organized as follows. In Section 2 and Section 3, we
define the language Chor and a simple process language. Section 4 devotes to
an important concept, projection and various issues related to it. In Section, we
consider another revised semantics and various problems related to it. A number
of general issues related to is discussed in Section 7, then the conclusion.

2 The Choreography Language Chor

We suppose that there is a finite set of roles taking part in the choreography C ,
where each role is associated with a number of basic activities:

RC = {R1, . . .Rn}
locals(Ri) = {ai

1, . . . , a
i
ni
}

We will use meta-variable ai to denote an arbitrary activity of Ri , use a, a1, . . .
for activities of any role, and locals(C ) for the set of all local activities in C .
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Figure 1: Syntax of Chor
A ::= BA (basic activities)

| A; A (sequential)

| AuA (choice)

| A ||A (parallel)

BA ::= skip (no action)

| a i (activity in role Ri)

| i
c→j (communication)

The communication from role Ri to Rj takes the form i c→j , where c is the
mark of the communication, Ri and Rj the sender and receiver respectively.
We will use c, c1, . . . for concrete communication marks in examples. We take
no care about the messages transferred, nor the variables receiving them.

The syntax of basic choreography language Chor is defined in Figure 1. A
choreography (similar to a “program”) is simply an action A. The activity set of
choreography C , acts(C ), is the set of all activities appearing in C. We call role
Ri (role i) the performer of local activity ai , and role i and j the performers of
communication i c→j . The activity set of role Ri is defined as:

acts(Ri) = {α | Ri is a performer of α}
Beside, we will use comms(C ) and comms(Ri) to denote the set of all commu-
nication activities in C or performed by Ri respectively. We will use α, β, . . .,
possibly with subscript, to denote arbitrary (local or communication) activity.

2.1 Semantics

We consider the meaning of a choreography in Chor as the set of all possible
traces of its execution. A trace 〈α1, α2, . . . , αn〉 is a sequence of activities, where
n is its length, possibly 0 for the empty trace. We will use t , t1, . . . to denote
traces, and T ,T1, . . . to denote sets of traces. We will use the ordinary operators
on the sequences: a for concatenation, hd and tl for head and tail respectively.
We lift the a operator to the trace set on either or both sides

t a T =̂ {t a t ′ | t ′ ∈ T}
T a t =̂ {t ′ a t | t ′ ∈ T}
T1

a T2 =̂ {t1 a t2 | t1 ∈ T1, t2 ∈ T2}
For the definition of the semantics of parallel composition, we need a func-

tion interleave(T1,T2) which interleaves each pair of traces from T1 and T2

respectively, gives the set of all result traces. The definition is routine and
omitted here. We all know that interleave(T1,T2) = interleave(T2,T1).

We will also use a filter operation on a trace (or a trace set). For a trace t
(or a trace set T ) and a set S , t ¼ S (or T ¼ S ) retains only elements of S in
the trace(s), and keeps the order within the trace(s) unchanged.

The rules for the semantics of Chor are listed in Figure 2. Here we adopt the
interleaving semantics for parallel composition. This will have real consequence
in the follows. We will discuss the problem later.

Definition 1 (Traces of Choreography) The trace set of choreography A is
the set [[A]] defined by the rules in Figure 2. ¤

3



Figure 2: Semantics of Chor
Basic: [[skip]] b= {〈 〉} [[a]] b= {〈a〉} [[i

c→j ]] b= {〈c[i,j ]〉}
Sequential: [[A1; A2]] b= [[A1]]a [[A2]]

Choice: [[A1 uA2]] b= [[A1]] ∪ [[A2]]

Parallel: [[A1 ||A2]] b= interleave([[A1]], [[A2]])

Figure 3: Laws in Chor
(A1; A2); A3 = A1; (A2; A3) (; assoc.)

(A1 uA2)uA3 = A1 u(A2 uA3) (u assoc.)

(A1 ||A2) ||A3 = A1 ||(A2 ||A3) (|| assoc.)

(A1 uA2); A = (A1; A)u(A2; A) (;-u distr.1)

A; (A1 uA2) = (A; A1)u(A; A2) (;-u distr.2)

(A1uA2) ‖ A = (A1 ‖A)u(A2 ‖A) (‖-u distr.)

A1 uA2 = A2 uA1 (u sym.)

A1 ||A2 = A2 ||A1 (|| sym.)

skip;A = A;skip = A (; unit)

skip ‖ A = A (‖ unit)

AuA = A (u idem.)

2.2 Properties and Examples

Many laws hold for choreographies in Chor. We list some of them in Figure 3,
where = represents semantical equivalence. The proofs are straightforward and
are omitted. We might find many other laws about this language.

In company with other laws, we can use the unit and idempotent laws to
remove all unnecessary skip from a choreography, and replace AuA to A, to get
a simplified choreography without changing its semantics.

The choices can always be moved out by the distribution laws related to
u. By repeated using of these laws, any choreography can be transformed
into a structure of the form A′1 u . . .uA′m , where no choice appears in each of
these A′1, . . . ,A

′
m . Using these laws in another direction, we can transform a

choreography to make every u to a minimal scope. Thus we have the following
definition.

Definition 2 (Choice Normal Form) A choreography in Chor of the form
A′1 u . . .uA′m , where no choice appearing in any of the A′1, . . . ,A

′
m , is called

in the Distributed Choice Normal Form. A choreography in which the scope of
every u can not be limited is called in the Restricted Choice Normal Form.

We know that a choreography in Chor can be transformed into an equivalent
Distributed Choice Normal Form, or Restricted Choice Normal Form.

One interesting fact is, although a choreography in Chor may have parallel
structures, no deadlock can happen in its execution.

Theorem 1 (Deadlock free) Suppose that every basic activity in a choreog-
raphy will terminate, then the choreography will always terminate.

Proof. The theorem is obvious, because that all traces in the trace set of any
choreography of Chor can be constructed. Even if we adopt the true concur-
rency semantics for the parallel structures, this theorem holds still. ¤

Now we give some examples, to illustrate characteristics of Chor.
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Figure 4: A choreography which can not be described naturally in Chor

a1
2

a1
1 a2

1 a3
1

R1 R2 R3

c1

c2

�

-

Exam. 1 Here is a simple choreography written in Chor:

C1 =̂ (a1
1 ‖ a2

1); 1c1→2; a2
2; 2c2→1

Each of R1 and R2 performs a local activity in the first. Afterward, R1 sends a
message to R2, then, R2 performs a local activity and sends a message to R1.

We can calculate the trace set of this choreography as follows:

[[C1]] = [[a1
1 ‖ a2

1]] a [[1c1→2]] a [[a2
2]] a [[2c2→1]]

= {〈a1
1, a

2
1, c1

[1,2], a2
2, c2

[1,2]〉, 〈a2
1, a

1
1, c1

[1,2], a2
2, c2

[2,1]〉}

This choreography has two possible traces. ¤

Exam. 2 Here is another very simple choreography:

C2 =̂ (a1
1 ‖ a2

1); a1
2

[[C2]] = [[a1
1 ‖ a2

1]] a [[a1
2]] = {〈a1

1, a
2
1, a

1
2〉, 〈a2

1, a
1
1, a

1
2〉}

This example will show some very interesting features of choreographies. We
will return to this example and discuss it further in Sec. 4.1. ¤

Exam. 3 Some very natural choreographies can not be described naturally in
Chor (and also not in WS-CDL). We give a simple one in Figure 4.

In the description, we should guarantee that a3
1 can appear any time providing

it occurs before 2 c2→3, in the same time, a1
2 can interleave with a3

1 and 2 c2→3
arbitrarily. It is not hard to see that the only means to describe it is to write
the choreography as a choice, where each branch of it corresponds directly to a
possible trace. This is really not ideal. The problem is not only the ugliness
of the description. If we extend the language with structures producing infinite
trace set (e.g., iteration or recursion), the similar cases will not be specifiable.

From our point of view, the incapability comes from the structural construc-
tion in the language, adopted by WS-CDL and also Chor. Although the struc-
tural composition is (almost) enough in sequential and even parallel program-
ming, it is not clear whether these limited flow forms are enough in the chore-
ography field. This should be investigated practically and theoretically. As an
example, [5] proposes a graphic notation for choreography description. ¤
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Figure 5: Syntax of the Role Language
P ::= BP (basic processes)

| P ; P (sequential)

| P uP (choice)

| P ||P (parallel)

BP ::= skip (no action)

| a (local activity)

| c! (send message)

| c? (receive message)

Figure 6: Semantics of the Role Language
Skip: skip

〈 〉−→ ε Local: a
〈a〉−→ ε

Sequential: P1
σ−→ P ′1

P1; P2
σ−→ P ′1; P2

ε; P2
〈 〉−→ P2

Choice: P1 uP2
〈 〉−→ P1 P1 uP2

〈 〉−→ P2

Parallel: ε ‖ ε
〈 〉−→ ε P1

σ−→ P ′1
P1 ‖ P2

σ−→ P ′1 ‖ P2

P2
σ−→ P ′2

P1 ‖ P2
σ−→ P1 ‖ P ′2

c!; P1 ‖ c?; P2
〈c〉−→ P1 ‖ P2 c?; P1 ‖ c!; P2

〈c〉−→ P1 ‖ P2

3 A Process Language for the Roles

A choreography describes the interaction between some roles from a global view.
It is intended to be implemented by the coordination of a set of independent
processes. Now we study the relationship between the globally described chore-
ography and the coordinative activities of each roles. In this section, we define
a simple process language for the description of roles, and then, in the next
section, we will we investigate the relationship mentioned above.

The process language used here is similar to the ordinary process algebra
CSP. The syntax of the language is given in Figure 5. The only difference of
this language from Chor is that it takes the local view about communications.
There are send and receive activities, because they represent the role’s local
viewpoint about the communication. As in CSP, a send and a receive engage
into a handshake when they have the same channel name (marked the same c)
and the two roles involved are ready to perform them.

We can also define the sets locals(P), comms(P) and acts(P). The defini-
tions are similar to what in Chor (Sec. 2), and are omitted here. We use ε to
denote the empty process, i.e., the process with no command.

We consider the semantics of a process in the role language as a set of traces
too. An operational semantics to the language is defined by rules of the form
P σ−→ P ′, where P and P ′ are processes, and σ is a sequence of activities (a
trace), to mean that after execution of the activities in σ from process P , we
will arrive process P ′. The semantical rules are given in Figure 6.

If in a situation, no rule defined can be applied to a process which is not
empty, we say that the process is deadlocked, use a special symbol £ to represent
this situation, and introduce a rule:

P 6= ε and P is deadlocked

P
〈�〉−→ ε
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For the definition of the trace of the processes, we define:

P σ−→ P ′

P σ=⇒ P ′
P σ−→ P ′ P ′ σ′=⇒ P ′′

P σaσ′=⇒ P ′′

Now, we can have the definition of the trace set corresponding to a process.

Definition 3 (Traces of Process) If P σ=⇒ ε, then σ is called a trace of P.
The trace set of process P is defined as the semantics of P:

[[P ]] = {σ | P σ=⇒ ε}

Although we adopt the same notation [[·]] for the semantics of the two differ-
ent languages, it will not cause confusion.

We can also explore the equivalent relation between processes. All the laws
presented in Sec. 2.2 hold for the processes. Some of these laws will be used in
Sec. 4 etc., in the simplification of the processes produced by the projections.
People have proposed many more useful laws for other similar process language,
which are out the scope of this study.

The choreography given in Exam. 3, which does not have a natural descrip-
tion in Chor, is easy to defined using this process language naturally.

R =̂ a1
1; c1?; a1

2 R =̂ a2
1; c1!; c2! R =̂ a3

1; c2?

Now R ‖ R ‖ R has the intended behavior. This shows the different expres-
sive power of these two languages.

4 Projection

A choreography is a global description of a task participated by a number of
partners. With a choreography, we need a concept of its implementation. From
our point of view, a reasonable definition of the implementation is based on
the concepts of projection and local conformance. We will consider the issues
related to projection in this section.

Some researchers proposed other definitions for the implementation of chore-
ography, which can be named as global conformance, for example [3]. Briefly
speaking, our definition pays more appreciation on the roles described in the
choreography, and think them as concrete entities taking part in the interac-
tions. We have some discussion and comparison in Sec. 6 on the rationale of
the two definitions.

By projection, we mean a procedure which takes a choreography in Chor and
delivers a set of processes in the role language, while each of the processes cor-
responds to a role in the choreography. We wish that a projection can partition
a choreography into a set of processes which can mimic the behavior described
by the choreography, that is, for projection proj, we wish that:

[[proj(C , 1) ‖ . . . ‖ proj(C ,n)]] = [[C ]] (1)

In this sense, we think that these processes make up an implementation of the
choreography. Please note that, if the execution of the left hand side may engage
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Figure 7: The Natural Projection
nproj(skip, k) b= skip

nproj(a i , k) b= a i if k = i

nproj(a i , k) b= skip if k 6= i

nproj(i
c→j , k) b= c[i,j ]! if k = i

nproj(i
c→j , k) b= c[i,j ]? if k = j

nproj(i
c→j , k) b= skip if k 6= j

∧k 6= j

nproj(A1; A2, k) b= nproj(A1, k); nproj(A2, k)

nproj(A1 uA2, k) b= nproj(A1, k)unproj(A2, k)

nproj(A1 ‖ A2, k) b= nproj(A1, k) ‖ nproj(A2, k)

in a deadlock, some of its trace will end with the special symbol £. No trace in
[[C ]] has this symbol as a part, thus, in this case, the equation will never hold.

There is not a standard definition on the projection. We will study a sim-
plest one in Sec. 4.1 with some discussion, and try to consider the problems
recognized from this study afterward.

4.1 Natural Projection

It is natural that a projection works by directly following the structure of the
choreography. The simplest projection we define is a simple partition procedure,
named natural projection. The projection takes a choreography and a valid
role number as arguments, produces a role description in our process language.
Giving it all valid role numbers, we can get a set of processes, each for a role.

Definition 4 (Natural Projection) The definition is in Firgure 7, where the
basic cases are on the left, and the structural on the right. We think [i , j ]
as a part of the channel name. The projection follows the structure of the
choreography, and partitions it according to the role number. ¤

The projection may leave many skip and P uP in the role process. We can
introduce a procedure simp to simplify the result and keep the semantics, using
the rules in Figure 3. Because what we concern the most is the semantics, we
will not care about the details of the simplification in the following, and simply
write down the simplified version of the process.

Exam. 4 Let us apply nproj to the choreography of Exam. 1:

nproj(C1, 1) = a1
1; c1[1,2]!; c2[2,1]?

nproj(C1, 2) = a2
1; c1[1,2]?; a2

2; c2[2,1]!

It is easy to see that [[nproj(C1, 1) ‖ nproj(C1, 2)]] = [[C1]]. ¤

However, this is not always the case. Let us see another example.

Exam. 5 Consider the choreography in Exam. 2. We have:

nproj(C2, 1) = a1
1; a1

2

nproj(C2, 2) = a2
1

Thus [[nproj(C2, 1) ‖ nproj(C2, 2)]] = {〈a2
1, a

1
1, a

1
2〉, 〈a1

1, a
2
1, a

1
2〉, 〈a1

1, a
1
2, a

2
1〉}. Obvi-

ously, it is not the same as [[C2]] (see Exam. 2). ¤
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From this example, we know that the natural projection do not guarantee
that the parallel composition of the partitioning results has the same behavior
as the original choreography. When (1) does not hold, we could impute the
guilt to the choreography under consideration, or as well as, to the projection
defined. We will investigate the problem further following these two points of
view.

4.2 Restricted Natural Choreographies

It seems that the natural projection is very intuitive. Thus, from one point
of view, we can take this projection as a criterion to distinguish the “good”
choreographies from the “bad” ones, and might say that the choreography in
Exam. 1 is “good’, but the one in Exam. 2 is “bad”. From this view point,
we have the following definition:

Definition 5 (Restricted Natural Choreography) Suppose C is a chore-
ography with n roles. We call C a restricted natural choreography, if

[[nproj(C , 1) ‖ . . . ‖ nproj(C ,n)]] = [[C ]] (2)

We use the name of restricted natural choreography (RN choreography), be-
cause we think that this class of choreography is natural, but also too restricted
(as we will see in the following). We hope that by some approach similarly,
we can find a useful class of natural choreography, which can catch the concept
“implementable” reasonably and effectively.

In the rest part of this section, we will take the RN choreographies as “good”
ones, i.e., think that Definition 5 defines a restricted level of well-formedness.
If a choreography is RN, we can efficiently partition it into a set of independent
processes, and these processes will show the expected behavior.

Although the definition above is accurate, it is not easy to use. Now we
will look for the structural features of RN choreographies. We want to answer
the problem: what structures make an RN choreography? We consider some
sufficient conditions here. In the rest of this subsection, when we use the word
“projection”, we always mean the natural projection.

4.2.1 Sequential Composition

The problem related to sequential composition is the keeping of the order in the
result processes produced by the projection. We have seen a counterexample in
Exam. 5. Because the processes produced by natural projection can not keep
the relative order of their activities, thus, an extra trace appears.

We need to ask the projection keeping the original relative order between
the different roles. For description of the structural condition on the sequential
composition, we define two activity sets in the first:

Definition 6 (Leading and Ending Activity Sets) For any activity (either
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basic or not) we define two activity sets recursively as follows:

lead(skip) = end(skip) = ∅
lead(α) = end(α) = {α}
lead(A1 ‖ A2) = lead(A1) ∪ lead(A2)
lead(A1 uA2) = lead(A1) ∪ lead(A2)

lead(A1; A2) =
{

lead(A2) if A1 equivalent to skip
lead(A1) otherwise

end(A1 ‖ A2) = end(A1) ∪ end(A2)
end(A1 uA2) = end(A1) ∪ end(A2)

end(A1; A2) =
{

end(A1) if A2 equivalent to skip
end(A2) otherwise

In words, lead(A) includes all activities which can be executed at the beginning
of the execution of A, and end(A) includes all activities which can be the last
activity of the execution of A. ¤

Now we can write down the condition where each sequential composition in
a natural choreography must satisfy:

Condition 1 (Sequential Composition) A sequential composition A1; A2

is restricted natural (is RN), if it satisfy:

∀α1 ∈ end(A1), α2 ∈ lead(A2) • α1 and α2 have a common performer. (3)

The concept performer is defined in Sec. 2. ¤

Here are some choreographies where all sequential compositions are RN:

a1
1; a1

2

(a1
1 ‖ a2

1); 1 c→2

(1c1→3 ‖ (a2
1; 2c2→4)); 1c3→2; a1

1

The last example shows, when one side of a sequential composition is a parallel,
we need to consider each of its branches separately. It is also the case for choices.
Because choices admit more restrictions, we omit examples involving it here, and
will discuss its details in the next subsection.

Exam. 6 A simplest counterexample is a1
1; a2

1. After the projection we get

P1 = a1
1

P2 = a2
1

In execution of P1 ‖ P2, the relative order between a1
1 and a2

1 can not be kept.
The trace set becomes {〈a1

1, a
2
1〉, 〈a2

1, a
1
1〉}. If we add a communication to sep-

arate these two activities to get a1
1; 1 c→2; a2

1, this new choreography is RN,
because the synchronization between these two processes enforces the order. The
choreography in Exam. 2 can be amended into an RN one in the similar way
too.
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Exam. 7 Condition (3) has a sad consequence. In a choreography, we have no
way to enforce local activities of more than two roles to terminate at the same
time, when they run in different parallel branches. Here is an illuminating exam-
ple. Consider a simple non-RN choreography C4 =̂ (a1

1 ‖ a2
1 ‖ a3

1); a1
2. We can

not even make an RN choreography based on it by adding some synchronization
activities. Suppose we add two communications as follows

C ′
4 =̂ (a1

1 ‖ a2
1 ‖ a3

1); 1c1→2; 1c2→3; a1
2

Then we will have:

nproj(C ′
4, 1) = a1

1; c1[1,2]!; c2[1,3]!; a1
2

nproj(C ′
4, 2) = a2

1; c1[1,2]?;

nproj(C ′
4, 3) = a3

1; c2[1,3]?;

[[C ′
4]] = {〈a1

1, a
2
1, a

3
1, c1

[1,2], c2[1,3], a1
2〉, 〈a1

1, a
3
1, a

2
1, c1

[1,2], c2[1,3], a1
2〉,

〈a2
1, a

1
1, a

3
1, c1

[1,2], c2[1,3], a1
2〉, 〈a2

1, a
3
1, a

1
1, c1

[1,2], c2[1,3], a1
2〉,

〈a3
1, a

1
1, a

2
1, c1

[1,2], c2[1,3], a1
2〉, 〈a3

1, a
2
1, a

1
1, c1

[1,2], c2[1,3], a1
2〉, }

[[nproj(C ′
4, 1) ‖ nproj(C ′

4, 2) ‖ nproj(C ′
4, 3)]] =

[[C ′
4]] ∪ {〈a1

1, a
2
1, c1

[1,2], a3
1, c2

[1,3], a1
2〉, 〈a2

1, a
1
1, c1

[1,2], a3
1, c2

[1,3], a1
2〉}

Other arrangements will have the similar results. ¤

Some researchers proposed to add a kind of multipartite communication
activity to remend this problem, for example [2].

4.2.2 Choice

The natural projection maps a choice in a choreography to a choice in each
of the role processes. After parallel composition, these role processes will run
independently. Thus, we have no way to guarantee that they will take consis-
tently the same branch when they run to their own version of the choice. The
inconsistent choice can result extra traces, or even result deadlocked traces. We
will have some examples below to illustrate various situations.

The simplest example showing the problem clear, is choreography a1
1 u a2

1.
It has trace set {〈a1

1〉, 〈a2
1〉}. After the projection and parallel composition, we

have (a1
1 u skip) ‖ (a2

1 u skip) with trace set {〈 〉, 〈a1
1〉, 〈a2

1〉, 〈a1
1, a

2
1〉, 〈a2

1, a
1
1〉}.

For a choice to bring no trouble, one possibility is that only one real choice
appears in all role processes after the projection. Thus we have a condition:

Condition 2 (Choice) For a choice, if we can determine a dominant role from
it, where for all the other roles involved, the activities related to each of them
are consistent in all branches of the choice, then the choice is an RN choice.
An activity is related to a role if the role is its performer. ¤

This condition means that, after projection of an RN choice, each role pro-
cesses of A produced by the projection can reduce to a process without choice,
using the laws (Figure 3) related to “u”, except that at most one of them is not
the case, which is the process corresponding to the dominant role of the choice
structure, and it can do anything.

Now we give some examples to illustrate the condition. In the following
example, we assume the implicit simplification is extended with laws related to
choice, to merge identical choice branches.

11



Exam. 8 Choreography C5 includes an RN choice with communication activi-
ties:

C5 = a1
1; ((a1

2; 1 c→2)u(a1
3; 1 c→2)); a2

1

R1 is the dominant role in this choice. The projection produces

nproj(C5, 1) = a1
1; (a1

2; u(a1
3)); c[1,2]!

nproj(C5, 2) = c[1,2]?; a2
1

It is easy to verify that [[C5]] = [[nproj(C5, 1) ‖ nproj(C5, 2)]]. ¤

Exam. 9 Here is a negative example with communication activities:

C6 = a1
1; ((a1

2; 1c1→2)u(a1
3; 1c2→3)); a2

1

nproj(C6, 1) = a1
1; ((a1

2; c1[1,2]!)u(a1
3; c2[1,3]!))

nproj(C6, 2) = (c1[1,2]?u skip); a2
1

nproj(C6, 3) = (c2[1,3]?u skip)

Three processes produced by the projection can not have a consistent view on
their choices. The parallel composition of them may run into deadlock. ¤

4.2.3 Structural Theory of RN Choreography

For the parallel composition, we find no extra conditions to make the choreogra-
phy RN. The interaction between parallel and sequential composition has been
studied in Sec. 4.2.1. Now we think about the interaction between the parallel
composition and the choice. Exam. 8 is an example for this interaction. We
give some more illustrative examples here:

Exam. 10 Consider C7 = ((a1
1; 1c1→2)u(a1

2; 1c1→2)) ‖ (2c2→1; a2
1). The dominant

role in the choice is R1. By the projection we have:

P1 = ((a1
1; c1[1,2]!)u(a1

2; c1[1,2]!)) ‖ c2[2,1]?

P2 = c1[1,2]? ‖ (c2[2,1]!; a2
1)

No matter which branch P1 chooses, it can synchronize with P2. It is not hard
to see that we have [[C7]] = [[P1 ‖ P2]].

Now consider an example similar to the one above, but involving parallel
composition of two choices with different dominant roles:

C8 = ((a1
1; 1c1→2)u(a1

2; 1c1→2)) ‖ ((2c2→1; a2
1)u(a2

2; 2c2→1))

The dominant roles of two choices are R1 and R2, respectively. We have:

P1 = ((a1
1; c1[1,2]!)u(a1

2; c1[1,2]!)) ‖ c2[2,1]?

P2 = c1[1,2]? ‖ ((c2[2,1]!; a2
1)u(a2

2; c2[2,1]!))

No matter which branches P1 and P2 choose, the synchronization will not meet
a problem. We can easily determine that [[C8]] = [[P1 ‖ P2]]. ¤
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Ideally, we hope to find a set of structural conditions, which are able to
distinguish the RN chorographies from the others, both necessary and sufficient.
However, we can only prove that the conditions given above are sufficient.

Theorem 2 (Restricted Natural Choreography) Suppose choreography C
is in its Minimal Choice Normal Form (Definition 2), if each of the sequential
composition and choice in C satisfies Condition 1 or Condition 2 respec-
tively, then C is restricted natural.

Proof. The proof is lengthy but not hard. We put it in the Appendix. ¤

A simple counter example that shows the conditions are not necessary is
(a1

1; a2
1)u(a2

1; a1
2). It is restricted natural but violates Condition 1.

4.3 Revising the Projection

As pointed in Sec. 4.1, we can also blame the projection defined (the nproj)
for the failure of Equation (1) in general. Taking other definitions may make
an equation similar to (1) hold for more choreographies. There are many possi-
bilities to define such projections. We consider one of them in this subsection.

Now we want to remedy the ordering problem in the partitioning of the
roles. From the discussion and the examples above, the approach is quite clear.
To enforce the order of activities between different role processes, we can in-
sert extra communication activities in the proper positions to synchronize these
processes. We are going to define a procedure, given a choreography C with
n roles, which might violate Condition 1 (but not violate Condition 2), the
procedure inserts some communication activities (in either direction) in some
positions of C , to produce a revised choreography C ′, such that we can ensure

[[nproj(C ′, 1) ‖ . . . ‖ nproj(C ′,n)]] ¼ acts(C ) = [[C ]] (4)

here ¼ is the filter operation described in Sec. 2.1.
The insertion procedure is clear: We need to check each sequential compo-

sition in the choreography, to see if the insertion is necessary. In general, for
a composition A1; A2, suppose S1 = end(A1) and S2 = lead(A2). For each
activity a ∈ S2, we insert a sequence Ma of communication activities as the se-
quential precedents of a, where the communications in Ma “links” the performer
of a with all the roles which are the performers of activities in S1.

The general philosophy is, with the enough insertions of communication, we
can separate the activities of different roles in some steps, force the roles related
synchronizing with each other in these position. Of course, there might be some
optimization. For example, we should not use communication to synchronize
activities of the same role, etc. There are some other special cases that may be
used to reduce the number of insertions:

• If either S1 or S2 includes only one activity, which covers at least one role
involved in each activity on the other hand, then we should not insert
anything between A1 and A2.

• If there are communication activities in S1 and/or S2, the separating com-
munication set need links only one performer for each communication.
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The insertion procedure is easy to define rigorously. We omit the details here
and rely on the readers’ intuition. We give in the follows some examples to
illustrate the procedure, and show some special situations.

Exam. 11 For the simplest case C = ai ; aj , (i 6= j ), we insert a communica-
tion from Ri to Rj , to get C ′ = ai ; i c→j ; aj . It satisfies (4).

For choreography (a1 ‖ 2c1→3); 1c2→2, we don’t need to insert anything.
Now consider C4 in Exam. 7, which involves parallel composition of local

activities of three roles. Inserting two communications to get C ′
4, we have

[[nproj(C ′
4, 1) ‖ nproj(C ′

4, 2) ‖ nproj(C ′
4, 3)]] ¼ acts(C4) = [[C4]]

Now Equation (4) holds, because the additional activities are filtered out. Com-
paring this with Exam. 7, the equation considered is not the same. ¤

From these examples, we know that this projection with Equation (4) can
admit some choreographies which are not RN. We can follow the approach used
in Sec. 4.2, and define an extended class of “good” choreography.

The problem related to Condition 2 can not be solved in current framework,
because it involves the consistent choice in different roles. To solve this problem,
we need not only the communication ability, but also a mechanism to make
choice according to the communication. We can extend the role language with
the guarded command and external choice structure, and then try to solve this
problem. This possibility will be an interesting future work.

5 Conformance and Implementation

With a projection defined, we can get a set of processes from a choreography
which represent all the roles taking part in the task described by the choreogra-
phy. In this section, we will turn to define the concept of the implementation of
a role. Naturally, if a process can play as a role in a choreography, it can take
part in the choreography, and play with the other valid roles.

We can think that the roles of a choreography define a set of requirements on
a set of concrete processes (or, web services). In this case, when having a process
at hand, we should have a way to decide if this process can play as a specific
role. This is called the conformance problem. It want to determine if a process
conforms with a specific requirement expressed by a role. As said before, what
we define and discuss here can be named local conformance, because it want
to determine locally a relation between a role (requirement) and a process (a
potential implementation).

In fact, there can be different definitions on the conformance, with less or
more restricted conditions. We will discuss some possibilities in this section. We
want to have an informal discussion about the rationality of the conformance in
the first, and then the formal treatments.

5.1 Basic Consideration

Because we think a choreography as a behavior and interaction protocol of a
specific task performed by a number of roles, any process which can join the
interplay as a role must obey the specific part of the protocol related to the role.
In the first, we have some basic assumptions about a choreography:
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• It describes all important roles token part in the task. Each role should be
implemented by an distinguishable independent process (an independent
web-service) in the implementation. This also means that there should
not be other substantial roles taking part in the interaction, except for
the implementation of some local activities for some role(s).

• It describes all important message passing between the roles. The imple-
mentation should not add in other substantial interactions between roles,
that is, no additional (substantial) message passing is allowed.

• The local activities described for each role are important. The imple-
mentation of a role (a process or a web-service) must perform the local
activities of the specific role in a distinguishable way.

In fact, these assumptions are the fundamentals of our study on the projec-
tion and conformance. It has deep effect on our discussions in the last section
(Sec. 4). In a special case, the extended projection proposed in Sec. 4.3 does
insert additional communications into the “implementation”. We think that
they are not substantial, because the only effect of them is synchronization, and
no real message is passed in these communications.

When we have a role (protocol) R in a choreography C , a process P can be
think as an implementation of R, written P ¥R, if

• P can execute all communication required by R with other roles of C , in
suitable time, with suitable order.

• P support all the local activities mentioned in R.

We can allow P to support extra functions, or even to delegate part of its local
work to some other processes (web services), provided that those processes do
not communicate with other roles in choreography C during their work. On
the other word, it is forbidden that these delegations form new communication
pathes between the roles other than what described in C .

Practically, this kind of delegation seems unavoidable. For example, a seller
service often needs to ask a relative storage management service to check if there
are enough amount of required goods. By taking different allowances, we can
have different definitions of the conformance.

5.2 Play

For the formal definition of the conformance, we use the concept of play : a pro-
cess is an implementation of a role, if the process can play the role. There are
possibly different definitions for the play, we will define, initially, the most gen-
eral one, and then some special and most useful ones related to the conformance
problems concerned here.

In the following definitions, we use meta variable ω, ω1, . . . to represent se-
quences of activities. Now, the general definition.

Definition 7 (General Play) A process P can play a role R of choreography
C , if and only if a binary relation ¥ exists between them, that satisfies:

(1) ε¥ ε.
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(2) If R
〈α〉−→ R′, then there exists two activity sequences ω1, ω2 (possibly

empty) and a process P ′, such that P
〈ω1,α,ω2〉=⇒ P ′ and P ′¥R′.

where P ¥R can also be written as R £ P. ¤

Definition 7 guarantees that P executes every activity of R in a distin-
guished way, with also other activities admitted. For expressing this clearly, we
define the concept of role traces, which concerns activities performed by a role
from a local view.

Definition 8 (Role Traces) The role trace set of a role process is defined by
the following rules:

[[[a]]] = {〈a〉}
[[[c!]]] = {〈c!〉}
[[[c?]]] = {〈c?〉}
[[[P1; P2]]] = [[[P1]]] a [[[P2]]]

[[[P1 uP2]]] = [[[P1]]] a [[[P2]]]
[[[P1 ‖ P2]]] = interleave([[[P1]]], [[[P2]]])

Here we omit the synchronization problem. ¤

Now we have the following result:

Theorem 3 If P ¥R, then for each trace t ∈ [[[R]]], there is a trace t ′ ∈ [[[P ]]]
such that t is a sub-trace of t ′, written t ¹ t ′, where ¹ is defined recursively:

〈 〉 ¹ 〈ω〉
〈α, ω1〉 ¹ 〈α, ω2〉 ⇔ 〈ω1〉 ¹ 〈ω2〉
〈α, ω1〉 ¹ 〈β, ω2〉 ⇔ 〈α, ω1〉 ¹ 〈ω2〉 when α 6= β

Proof. Obviously from the definition of Definition 7 and Definition 8. ¤

In fact, the Definition 7 is too general to be accepted, because the ω’s
might include any activity, thus, generally, the result may possibly violate our
basic assumptions proposed in the last subsection. For the more reasonable
conformance, we define here some more restricted simulations.

Definition 9 (Play) If P ¥R for a process P and a role R of choreography
C , we have the following additional definitions:

• If all ω’s introduced in Definition 7 (2) are empty, we say that P plays
R exactly, and write P ¥exact R.

• If all ω’s introduced in Definition 7 (2) include only local activity which
do not belong to acts(C ), we say that P plays R with extra local activities,
and write P ¥a R.

• If all ω’s introduced in Definition 7 (2) include only communication ac-
tivity with communication partners out of RC (the role set of C), we say
that P plays R with extra communication, and write P ¥c R.
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• If all ω’s introduced in Definition 7 (2) include only local activity which
do not belong to acts(C ) or communication activity with communication
partners out of RC , we say that P plays R with extra local activities and
communication, and write P ¥ac R. ¤

Definition 10 (Conformance and Implementation) We have correspond-
ing definitions for the conformance and implementation:

• If P ¥exact R, we say that P conforms to R exactly, or P is an exact
implementation of R.

• If P ¥a R, we say that P conforms to R with relaxed local activity, or P
is an implementation of R with relaxed local activity.

• If P ¥c R, we say that P conforms to R with with relaxed communication,
or P is an implementation of R with with relaxed communication.

• If P ¥ac R, we say that P conforms to R with with relaxed local activity
and communication, or P is an implementation of R with with relaxed
local activity and communication. ¤

6 Discussion

Semantics. The semantics used in this paper is not the only one reasonable,
and we can think about it. In the semantics defined in Sec. 2, we admit that
all the relative order between activities described in the choreography are im-
portant, even if they appear in different (and independent) roles. Thus, we
distinguish the choreographies such as:

a1; a2 a2; a1 a1 ‖ a2

However, is the distinguishing of these choreographies important? Some other
papers also keep the relative speed of different roles, but without a discussion
about its rationality. We think that more practice and theoretical study is
necessary before a conclusion.

Although the semantics used here is useful in exploring properties and prob-
lems of the choreography. We can also think about other definition of semantics.
Now we are working on another reasonable semantics, called Role-Oriented Se-
mantics, where the relative speed of different roles is not important, except
when they synchronize with each other in the communication. We find that
many results we had in this paper can be transferred to that semantics, and
we can also get a class of choreography, defined by natural projection. These
primitive results tell us that the concepts and the approach used in this paper
are reasonable. It is too early to say which semantics is superior. Now we are
trying to understand them in details.

Conformance. As written in the WS-CDL Recommendation [8], a choreog-
raphy describes a multi-participant contract from a global perspective, as a
replacement to natural languages which are used today for this purpose. The
document does not define clearly and accurately what is a “correct” implementa-
tion of a choreography, but proposes a concept called conformance. It says that
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“Each participant can then use the global definition to build and test solutions
that conform to it. The global specification is in turn realized by combination
of the local systems, on the basis of appropriate infrastructure support”. This
leaves the definition of implementation open, and makes some confusions.

From our recognition, there exist at least two basic viewpoints to define
the implementation of a choreography: With the Global View, a choreography
describes a (business) process. An implementation is a process which has the
behavior represented by the choreography. N. Busi et al. [4] gave a definition
following this vein. On the other hand, with the Role-based View or Local
View, a choreography describes a (business) process implemented by a set of
participants. An implementation is a set of processes, each of these process
implements one of the roles in a clear way, and the combination of these processes
implement the behavior represented by the choreography.

The fundamental dissimilitude of these two viewpoints is whether the roles
and activities described in the choreography must have their reincarnations in
an implementation. The local view says that it is really important, but the
global view says it is not the case.

We think that the definition of implementation following the the global view
is too loose. The extreme case is that an implementation with only one process,
which executes all the activities of all roles of the choreography, and makes all
the communication activities as local assignments. Our approach takes the way
of projection and local conformance. Following this approach, each role will be a
real process in any valid implementation which runs parallel with other processes
corresponding to other roles. In this case, the projection and local conformance
discussed in this paper play important roles in the implementation, and should
be studied in details further.

Language. As shown by many evidences in this paper, we are still in the first
step in defining a language for the choreography. One problem is the control
flow structures, as we have a glimpse of it in Exam. 3. Another example
is the controversial issues about the control structure workunit taken in the
WS-CDL [2]. Aalst et al. listed some challenges including defining a “real”
choreography language in their paper [12].

7 Conclusion

By the blooming of web-technology, more and more computation are estab-
lished by processes (services) residing over the Internet. Due to the nature of
web services interaction, to guarantee the correct interaction of independent,
communicating services becomes even more critical [11]. This is the motiva-
tion under WS-CDL [8], which is designed for specifying choreography, i.e., the
global observation of business protocol among participants (roles). A deeper
understanding of the choreography and relative problems is urgent and impor-
tant.

N. Busi et al. formalize choreography and orchestration with process al-
gebras and conformance takes the form of a bisimulation-like relation [4]. J.
Mendling and M. Hafner proposes a simple projection mechanism from WS-CDL
to WS-BPEL [9]. Based on π-calculus, Decker et al. [5] provide an execution se-
mantics for a language Let’s Dance, which can describe the choreography with
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graphical notations. Another interesting reference is the Pi4SOA project [1].
However, none of them takes the idea we use here: to use the projection as a
mean to define the well-formedness and implementable of the choreography.

In this paper, we explored some basic concepts related to the choreography.
We defined a small language Chor with formal semantics, which is a simplified
formal model of WS-CDL. We defined also a simple process language for the
description of roles in a local viewpoint, with its syntax and semantics.

Based on these formal models, we discussed the procedure of projection,
which maps a given choreography into a set of role processes. A special map
named natural projection is discussed, which can effectively partition choreogra-
phies following the structures. In a previous work [13], this projection is used in
the verification of the choreography. With the semantics and the natural pro-
jection, we defined the concept of Restricted Natural Choreography as another
level of well-formedness. For checking whether a choreography is restricted nat-
ural (RN), we proposed two structural conditions as criterion to distinguish
the RN choreography, and proved that they are sufficient in the Appendix.
We discussed other projections, especially, a projection which can remedy the
sequential order problem of choreographies which are not RN.

By applying a projection, we get a set of processes where each of them repre-
sents a role in the choreography. We studied the implementation of roles, which
is the conformance problem. What we concerned here is better named local con-
formance, because the implementation of each role is considered independently.
We had a discussion about the local conformance vs. the global one.

We also discussed some problems related to choreography, including a com-
parison between local and global conformance, rationality of the semantics, ex-
tensions of the choreography description languages, etc. In this study, we have
also given many examples, to help the readers getting better understanding of
the phenomena appeared here, and of various properties of choreography.
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Appendix

Proof of Theorem 2:

In the first, we list some conventions:

• We will write nproj(C0, 1) ‖ ... ‖ nproj(C0,n) as p(C0) for short.

• Before the discussion, we require any two activities of a Chore have differ-
ent names except when they reside in two branches of a choice. Formally
saying, in each substructure like “C1; C2” or “C1 ‖ C2”, Acts(C1) ∩
Acts(C2) ⊆ {skip}. We can always rename some activities to achieve this
condition.

We list some simple facts here:

Proposition 1 If rpi is role process (i = 1, 2), then [[rp1]] a [[rp2]] = [[rp1; rp2]].

Proposition 2 If pi
j is a role process, p1

1 ‖ p2
1 is free of dead lock, and so is

p1
2 ‖ p2

2 , then [[(p1
1 ‖ p2

1); (p1
2 ‖ p2

2)]] ⊆ [[(p1
1 ; p1

2) ‖ (p2
1 ; p2

2)]].

Definition 11 Function actLead is defined as:

actLead(ai) =̂ {ai}
actLead(p1; p2) =̂ actLead(p1)
actLead(p1 ‖ p2) =̂ actLead(p1) ∪ actLead(p2)

∪{c! ‖ c? | c! ∈ lead(pi) ∧ c? ∈ lead(pi)}

where the function lead is defined similar to the definition in Sec. 4.2.1, but
for the role process. ¤
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Proposition 3

[[p]] =
⋃

t∈actLead(p)

[[t ; cutF irst(p,Acts(t))]]

when there is no choice in p (p contains only ”;” and ”‖”). cutF irst(p,A) is
a process p′ which is obtained by erasing the first occurrence of each activity in
A from the process p.

For example, we have

cutF irst((a1; a2), {a1}) = a2

cutF irst((((c?; a1) ‖ (c!; a2)); a3), {c!, c?}) = (a1 ‖ a2); a3

Definition 12 Restrict operator ”¼” was applied on a role process and a set of
process activities, resulting another role process. ”¼” was defined recursively as
below where ba stands for basic activity and ¤ stands for any of the connectors.

ba ¼ S =̂
{

ba if ba ∈ S
skip if not

(p1¤p2) ¼ S =̂ (p1 ¼ S )¤(p2 ¼ S )

¤
The result of p ¼ S may be simplified by equivalence laws to erase all unnecessary
skip. This has no effect on the discussion below.

Definition 13 We define a function θ from Chore activities to Role Process
activity-set as follows:

θ(ai) =̂ {ai}
θ(skip) =̂ ∅
θ(i c→j ) =̂ {c?, c!}

we promote θ to function on activity-set, θ(S ) =
⋃

p∈S θ(p). ¤
Lemma 1 For any activity-set ac, for any Role Process p, if p is free of dead-
lock, [[p]] ¼ ac = [[p ¼ θ(ac)]].

Proof: Transform p into Distributed Normal Form. Apply induction on number
of connectors appeared in p.
Basics:
If p contains no connectors, p can not be c! or c? because p is free of deadlock
by precondition, p must be ai .

if ai ∈ ac, then ai ∈ θ(ac), then [[p]] ¼ ac = {< ai >} = [[ai ]] = [[ai ¼ θ(ac)]],
else ai 6∈ ac,ai 6∈ θ(ac),[[p]] ¼ ac = {<>} = [[skip]] = [[ai ¼ θ(ac)]].
Induction:
Suppose proposition is true if p contains less than k connectors, we are going
to proof it also be true when p has exact k connectors.
Case 1 : p is p1; p2,

[[p1; p2]] ¼ ac = ([[p1]] a [[p2]]) ¼ ac

= [[p1]] ¼ ac a [[p2]] ¼ ac

= [[p2 ¼ θ(ac)]] a [[p2 ¼ θ(ac)]] (hypothesis)
= [[p1 ¼ θ(ac); p2 ¼ θ(ac)]]
= [[(p1; p2) ¼ θ(ac)]]
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Case 2 : p is p1 u p2,

[[p1 u p2]] ¼ ac = ([[p1]] ∪ [[p2]]) ¼ ac
= [[p1]] ¼ ac ∪ [[p2]] ¼ ac
= [[p2 ¼ θ(ac)]] ∪ [[p2 ¼ θ(ac)]] (hypothesis)
= [[p1 ¼ θ(ac) u p2 ¼ θ(ac)]]
= [[(p1 u p2) ¼ θ(ac)]]

Case 3 : p is p1 ‖ p2,

[[p1 ‖ p2]] ¼ ac

= (
⋃

t∈actLead(p)[[t ]]
a [[cutF irst(p,Acts(t))]]) ¼ ac (Proposition 3)

=
⋃

t∈actLead(p)([[t ]] ¼ ac) a ([[cutF irst(p,Acts(t))]] ¼ ac)

=
⋃

t∈actLead(p)[[t ¼ θ(ac)]] a [[cutF irst(p,Acts(t)) ¼ θ(ac)]]

(hypothesis)

=
⋃

t∈actLead(p)[[t ¼ θ(ac)]] a [[cutF irst(p ¼ θ(ac),Acts(t))]]

=
⋃

t∈actLead(p)∧[[t]]⊆ac [[cutF irst(p ¼ θ(ac),Acts(t))]]

∪⋃
t∈actLead(p)∧[[t]]∩ac=∅[[t ]] a [[cutF irst(p ¼ θ(ac),Acts(t))]]

=
⋃

t∈actLead(p)[[(t ; cutF irst(p ¼ θ(ac),Acts(t)))]]

= [[p ¼ θ(ac)]] (Proposition 3)

So, the lemma was proved. ¤

Lemma 2 If Ci is RN (i = 1, 2), then [[p(C1; C2)]] ¼ Acts(Ci) = [[p(Ci)]].

Proof. Obviously, p(C1; C2) ¼ θ(Acts(Ci)) = p(Ci). By applying Lemma 1,
we can get Lemma 2.

Lemma 3 If Ci is RN (i = 1, 2), then for all t ∈ [[p(C1; C2)]], there exist
t1 ∈ [[C1]], t2 ∈ [[C2]], such that t ∈ interleave(t1, t2).

Proof. From lemma, we know ∀ t ∈ [[p(C1; C2)]],∃ t1 ∈ [[p(C1)]], t2 ∈ [[p(C2)]],
s.t ., t1 = t ¼ Acts(C1), t2 = t ¼ Acts(C2). Obviously, Acts(t) ⊆ Acts(C1; C2)
because Ci is RN and p(Ci) is free of deadlock, so Acts(t) = Acts(t1)∪Acts(t2).

Now, we can construct t from t1 and t2 as following.
If head(t) ∈ Acts(t1), then head(t) = head(t1), otherwise t ¼ Acts(t1) 6= t1.

The situation for t2 is all the same. So we get the head of t1, and recursively
construct tail(t) from tail(t1) and t2. It’s quit trivial and we omit the formal
algorithm. ¤

We rewrite the two structural conditions here as a reference:

Condition 1. For each sub-structure as A1; A2, for each pair of a ∈ end(A1)
and b ∈ lead(A2), there is a role r which is a performer of both a and b.

Condition 2. Suppose C is an n roles choreography, in its each sub-structure
of the form C1 u, . . .uCm , for each role number j except at most one role
Ri , we all have nproj(C1, r j ) = ... = nproj(Cm , r j ) where j 6= i .
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Lemma 4 The conditions proposed above are sufficiency: When C is a chore-
ography with n role, which satisfies Condition 1 and Condition 2, then it is
a Restricted Natural Choreography.

Proof. We prove it by induction on the structure of C .

Basics. When C is a basic activity, it is RN obviously.

Induction. According to structure of choreography, C must be C1; C2, or
C1 uC2, or C1 ‖ C2. (For the structures with u and ‖, we prove here only the
special cases with two branches. The general cases can be proved similarly but
rather tedious.)

Case 1 (; ): When C is C1; C2, where C1 and C2 are RN by inductive hypoth-
esis. We have

[[C ]] = [[C1]] a [[C2]] (Definition)

= [[p(C1)]] a [[p(C2)]] (C1 and C2 are RN)
= [[p(C1); p(C2)]] (Proposition 1)
⊆ [[p(C1; C2)]] (Proposition 2)
= [[p(C )]]

Thus [[C ]] ⊆ [[p(C )]]. Now we are going to prove [[p(C )]] ⊆ [[C ]].
We know that for each t ∈ [[p(C )]], there exists t1 ∈ [[C1]] and t2 ∈ [[C2]] such

that t ∈ interleave(t1, t2) (Lemma 3). To prove that t = t1 a t2, we suppose it
doesn’t hold, then

∃ a1 ∈ t1, a2 ∈ t2 • t = 〈..., a2, a1, ...〉
⇒ ∃ a ′1 ∈ t1, a ′2 ∈ t2 • a ′1 ∈ end(C1) ∧ a ′2 ∈ lead(C2)

∧ t = 〈. . . a ′2, . . . , a ′1, . . .〉
⇒ ∃ i • Ri performs both a ′1 and a ′2 (Condition 1 holds in C )
∧ nproj(C , i) = nproj(C1, i); nproj(C2, i)
∧ p(C ) = . . . ‖ nproj(C1, i); nproj(C2, i) . . .

⇒ t = 〈. . . , a ′2, ..., a ′1, . . .〉 6∈ [[p(C )]]

This conflict to the fact that t ∈ [[p(C )]]. Thus we have

t = t1 a t2 ∈ [[C1]] a [[C2]] = [[C ]]

Therefore, we have [[p(C )]] ⊆ [[C ]] and [[C ]] = [[p(C )]].

Case 2 (u): Suppose C is C1 uC2 and Ci(i = 1, 2) is RN. From Condition
2, we know, there is a role r i , such that ∀ r j ,nproj(C1, j ) = nproj(C2, j ) when
r j 6= r i . Thus we have

[[p(C )]]
= [[(nproj(C1, 1)unproj(C2, 1)) ‖ . . .

‖ (nproj(C1,n)unproj(C2,n))]]
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= [[nproj(C1, 1) ‖ . . . ‖ nproj(C1, i − 1) ‖ (nproj(C1, i)unproj(C2, i))
‖ nproj(C1, i + 1) ‖ . . . ‖ nproj(C1,n)]] (Condition 2)

= [[nproj(C1, 1) ‖ . . . ‖ nproj(C1, i − 1) ‖ (nproj(C1, i)unproj(C2, i))
‖ nproj(C1, i + 1) ‖ . . . ‖ nproj(C1,n)]] (Definition)

= [[p(C1)]] ∪ [[nproj(C1, 1) ‖ . . . ‖ nproj(C1, i − 1)
‖ nproj(C2, i) ‖ nproj(C1, i + 1) ‖ . . . ‖ nproj(C1,n)]]

= [[p(C1)]] ∪ [[p(C2)]]
= [[C1]] ∪ [[C2]]
= [[C ]]

Case 3 (‖): C is C1 ‖ C2 and C1,C2 are all RN. We have

[[C ]] = interleave([[C1]], [[C2]]) (Definition)
= interleave([[p(C1)]], [[p(C2)]]) (C1,C2 are RN)
= [[p(C1) ‖ p(C2)]] (definition)
= [[(nproj(C1, 1) ‖ nproj(C2, 1)) ‖ . . .

‖ (nproj(C1,n) ‖ nproj(C2,n))]] (‖ is commutable)
= [[nproj(C1 ‖ C2, 1) ‖ ... ‖ nproj(C1 ‖ C2,n)]] (definition)
= [[p(C )]]

The lemma is proved. ¤

Theorem 2 is a direct consequence of Lemma 4. If we transform the
choreography into its Minimal Choice Normal Form, we can use Condition 1
and Condition 2 to find more Restricted Natural choreographies.
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