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Abstract 

By making information easy to browse and query, current software tools make it possible for knowledge 

workers to access vast amounts of information available in document repositories and on the web. 

However, when displaying dozens of web page search hits, hundreds of files and folders in a document 

hierarchy, or tens of thousands of lines of source code, these tools overload knowledge workers with 

information that is not relevant to the task-at-hand. The result is that knowledge workers waste time 

clicking, scrolling, and navigating to find the subset of information needed to complete a task. This 

problem is exacerbated by the fact that many knowledge workers constantly multi-task. With each task 

switch, they lose the context that they have built up in the browsing and query views. The combination of 

context loss and information overload has adverse effects on productivity because it requires knowledge 

workers to repeatedly locate the information that they need to complete a task. The larger the amount of 

information available and the more frequent the multi-tasking, the worse the problem becomes. 

We propose to alleviate this problem by focusing the software applications a knowledge worker uses on 

the information relevant to the task-at-hand. We represent the information related to the task with a task 

context model in which the relevant elements and relations are weighted according to their frequency and 

recency of access. We define operations on task context to support tailoring the task context model to 

different kinds of knowledge work activities. We also describe task-focused user interface mechanisms 

that replace the structure-centric display of information with a task-centric one.  

We validate the task context model with three field studies. Our preliminary feasibility study of six 

industry programmers tested a prototype implementation of the task context model and task-focused user 

interface for an integrated development environment. Our second study involved sixteen industry 

programmers using a production quality implementation of the task context model; these programmers 

experienced a statically significant increase in productivity when using task context. Our third field study 

tested a prototype implementation of the task context model for a file and web browsing application. The 

results of this study showed that task context generalizes beyond programming applications, reducing 

information overload and facilitating multi-tasking in a cross-section of knowledge work domains.  
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1. Introduction 

Knowledge workers develop and use information in the workplace [19]. The software tools that 

knowledge workers use to browse and query the information systems with which they work make the 

structure of those information systems explicit. As one example, file browsers enable the hierarchical 

navigation of directory structure. As another example, Web query tools often rank the hits they return 

using properties of the hyperlink structure. However, when used on very large information systems, these 

structure-centric views can overload the user with information because the relevant subset of information 

is often scattered across the structure. Whether browsing the hundreds of files and directories in a 

document repository for a few key files of interest or looking through dozens of web search hits for a 

particular page, users must manually sift, scroll, and click through deep hierarchies and long lists to find 

the subset of information relevant to the task-at-hand. This information overload problem is inherent to 

tools that display information based on structural properties instead of focusing on the subset of the 

information that is relevant to the user’s task. 

Information overload problem: Many knowledge work tasks cut across the structure of an information 

system. As a result, tools for browsing and querying system structure overload users with information that 

is not relevant to the task-at-hand. 

If knowledge workers always completed the current task before proceeding to work on another, perhaps 

they could commit all of the relevant information to their memory or manually maintain a listing of the 

artifacts of interest. However, one study found that a group of knowledge workers performed ten tasks a 

day on average, spending only eleven continuous minutes on any particular task before switching to 

another [26]. All too often, before completing the given task, a worker must switch to a higher priority 

task that requires immediate attention. There is a concrete cost to such task switches; with each switch, 

workers waste time repeatedly identifying the relevant information. This loss of context complicates 

multi-tasking, which is further exacerbated by the time it takes users to recreate their context manually in 

the presence of information overload. 

Context loss problem: Browsing and query tools burden users with finding the artifacts relevant to the 

task-at-hand. This context is lost whenever a task switch occurs. When multi-tasking, users continually 

waste time recreating their context.  
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1.1 Scenario 
The larger the information system that needs to be accessed by the knowledge worker, the more onerous 

the information overload and context loss become. In the software development domain of knowledge 

work, the information systems of interest are the software applications and frameworks that programmers 

create and integrate. Many modern applications and frameworks consist of millions of lines of code1. 

Current integrated development environments (IDEs), such as Eclipse IDE2 and Visual Studio3, make 

these millions of lines of code instantly accessible to the programmer through sophisticated indexing and 

search facilities. However, when working on any particular task, such as adding a feature to an 

application, the programmer is only interested in a very small portion of the code on which he is building. 

He may try to use query tools to help identify the information relevant to the task, but as this information 

often cuts across the system structure, it is difficult to formulate adequate queries within a reasonable 

amount of time. Alternatively, he may try to tag parts of the structure with bookmarks or other annotation 

mechanisms, but constant tagging and searching is burdensome. Long lists of tags can also contribute to 

information overload when a new and higher priority task needs attention, since they may not be relevant 

to the new task.  

Consider the concrete example of a programmer trying to understand why some of the test cases for de-

serialization are failing in the moderately sized Web Services Invocation Framework (WSIF) 4 . To 

complete this task, the programmer must examine the test cases, the classes that are failing to de-serialize, 

and the serialization policy employed in the system. Using the Eclipse IDE, the programmer decides to 

find all subtypes in the WSIF code base that implement the Serializable interface, and to inspect the 

setter methods in those classes. Figure 1.1 shows a snapshot of the Eclipse IDE after the programmer is 

part way through completing this task. 

1: The Package Explorer view has become difficult to use because it includes thousands of nodes—a 

result of only a handful of navigation clicks through project files and related library classes. Hierarchical 

relationships are no longer visible without manual scrolling through the tree.  

2: In part thanks to how easy Eclipse makes navigating structural relations, the number of open editors 

can quickly bloat to several dozen when working on a moderately-sized task, making the editor list a poor 

                                                      

1 The full set of Eclipse frameworks is 7M lines of code and the Windows Vista OS is 50M, 

http://en.wikipedia.org/wiki/Source_lines_of_code [verified 2006-10-02] 

2 http://eclipse.org [verified 2006-10-02] 

3 http://msdn.microsoft.com/vstudio [verified 2006-10-02] 

4 http://ws.apache.org/wsif (1,897 classes) [verified 2006-10-02] 
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representation of the files currently relevant to the task [14]. Although using the “Close all editors” 

command cleans up this list, it also discards the editors that are relevant to the task. 

3: Using Eclipse’s Java5 Search to look for references to Serializable within the project has returned 

144 items. There is no convenient way to search for only those elements related to the task of fixing the 

failing test cases. Instead, the search result list requires manual inspection to find elements of interest. 

4: Even though the Outline view only shows the structure of the current file, it is overloaded with dozens 

of elements that are not relevant to the task.  

5: The Type Hierarchy view shows all types in the project that extend Serializable, and contains 

thousands of elements that must be manually inspected to identify those relevant to the task. 

 

Figure 1.1: Information overload in the Eclipse IDE 

Although these views and editors are overloaded, they still provide useful information to the programmer 

about the elements relevant to the task. However, as soon as the programmer starts working on a different 

                                                      

5 http://java.sun.com/javase [verified 2006-10-02] 
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task involving other parts of the application, the context built up in these views is replaced with the results 

of new searches and new navigations.  

This information overload problem is not limited to the Eclipse IDE. All current IDEs show aspects of 

whole-system program structure rather than helping the programmer focus on the program elements 

relevant to the task-at-hand. When working on a task that is not encapsulated by a single file module or 

structure view, the programmer must navigate between files, repeatedly refer to lists of open files, 

perform multiple searches, and inspect search results looking for those relevant to the task. In some cases, 

this can result in the programmer spending more time clicking than coding.  

This problem is not limited to programmers, but pertains to any knowledge worker accessing large 

information systems, whether the structure of those systems is a well-defined file hierarchy or is a looser 

collection of hyperlinks and unstructured file contents. Consider the case of a knowledge worker 

returning to the task of getting advice from an immigration attorney (Figure 1.2). She knows that the 

name of the attorney is in a file that either she or a colleague created when last working on this task, but 

browsing the dozens of project directories and opening a few candidate files fails to identify it. Since a 

text search for “lawyer” would likely come up with hundreds of candidates, she proceeds to re-find the 

information by formulating a web query similar to the one she had made when first working on this task. 

After inspecting numerous web search results, she finally finds the page identifying the attorney. This 

scenario illustrates how effort is wasted in re-finding information when switching back to an earlier task. 

 

Figure 1.2: Information overload when browsing files and web pages 
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1.2 Thesis 
The tools that knowledge workers use for working with information systems understand the structure of 

those systems and make that structure easy to navigate. For example, a Java IDE understands method call 

syntax and makes it navigable; an HTML browser understands hyperlink syntax and makes that navigable. 

Incorporating an understanding of information system structure into tools assists users by moving the 

burden of identifying the structural elements and their relations from the user to the tool.  

The tools that knowledge workers currently use do little to assist them with understanding the content of 

an information system. Instead, knowledge workers rely on semantic memory to recall and identify the 

parts of the system relevant to a particular task. Semantic memory requires multiple exposures to each 

referent, with each exposure updating the memory [61]. Semantic memory is well suited to working with 

smaller information systems where knowledge workers can become familiar with a substantial portion of 

the system in a reasonable amount of time. However, when working with a large system, the limitations 

of semantic memory become apparent. It is not possible to remember everything when working with such 

a system and the information that is remembered can quickly become obsolete. The result is that 

knowledge workers spend an inordinate amount of time reminding themselves of the bits and pieces of an 

information system that they need to understand to complete a task. 

There is another kind of memory at a knowledge worker’s disposal. Episodic memory is referred to as a 

one-shot learning mechanism, in which only one exposure is required to remember the event, and is 

described as a map that ties together semantic memories [61]. Our goal is to increase the complexity of 

the information systems with which knowledge workers can work effectively. Our approach is to off-load 

semantic memory and to leverage episodic memory. A common form of episode for knowledge workers 

is the tasks that they perform, where a task is defined as “a usually assigned piece of work often to be 

finished within a certain time” [1]. Recalling tasks worked on previously uses episodic memory, making 

tasks inherently easier to recall than the semantics of a complex information system. Our approach makes 

tasks an explicit part of knowledge work. Instead of forcing knowledge workers to recall system structure, 

we provide a facility for recalling a task worked on previously and we then automatically present the 

system structure that was relevant to that task. By capturing the interaction the user has with the structure 

of an information system during each task episode, we bring together the parts of the information system 

that are relevant to the task. We call this subset of  information relevant to a task the task context and 

follow the semantic memory concept of reinforcement [55] by automatically weighting the pieces of 

information according to frequency and recency of access. The only burden that we impose on knowledge 

workers is the need for them to indicate the episodes by defining and activating the tasks on which they 

work. 
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Thesis: A model of task context that automatically weights the relevance of system information to a task 

by monitoring interaction can focus a programmer's work and improve productivity. This task context 

model is robust to both structured and semi-structured information, and thus applies to other kinds of 

knowledge work. 

We present a model and mechanism for creating a task context, which captures and persists the elements 

of information and relations between elements of information that are relevant to a task, and weights the 

relevance of each according to the frequency and recency of access. We create a task context by 

monitoring a user’s activity and extracting the structure of the underlying information system’s elements 

and relations. Operations on task context integrate the model with knowledge work applications, 

providing features such as automatic search, automatic change management and context display. 

Together, the model and operations enable an application to present only the information relevant to the 

task-at-hand. This focus reduces information overload and prevents context loss when multi-tasking.  

To test the task context model, we conducted field studies with professional programmers and other kinds 

of professional knowledge workers. Since the work items involved in programming are well-defined and 

broad, including adding code for features and editing code to fix bugs, we were able to define a measure 

of programmer productivity called edit ratio. We have shown with statistical significance that the edit 

ratio of sixteen programmers in our field study improved with the use of our task context model. Our field 

study involving knowledge workers was qualitative. For eight subjects representing a cross-section of 

professions ranging from administrative assistants to a CTO, we found that task context supports the 

information artifacts with which they work and that the frequency and recency-based weighting can 

reduce information overload in a cross-section of knowledge work domains. 

The key contribution of this thesis is a generic task context model that represents interaction with any 

structured or semi-structured information, where the weights in the model correspond to the frequency 

and recency of a user’s interaction with the information. We demonstrate that this weighting reduces 

information overload and that capturing context per-task reduces context loss when multi-tasking for both 

programmers [39] [41] and other kinds of knowledge workers [40]. Our secondary contributions are a 

realization of task context collaboration facilities [38] and a study framework suitable for monitoring 

productivity and tool usage in the field [52]. 

We have deployed our implementation of task context for Eclipse as an open source framework called 

Mylar6, a programming tool called Mylar IDE, and a prototype file and web browsing tool called Mylar 

                                                      

6 “Mylar” is a) an aluminized film used to avoid blindness when staring at a solar eclipse  b) a focused user interface used to 

avoid information blindness when staring at Eclipse. The latter is hosted as an open source project led by the author 

http://eclipse.org/mylar [verified 2006-10-02] 
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Browser. We estimate that tens of thousands of programmers7 currently use the Mylar IDE tool. The 

Mylar framework is also being used to support task context in other domains8.  

1.3 Previous Approaches 
When working with a small information system, whether it is an example program or a small collection of 

web pages, information overload is rarely a problem because the information relevant to a task can be 

recalled. As the size of information systems has grown, several approaches have been introduced to help 

knowledge workers manage the increase in complexity. Each approach supports the capture of a subset of 

the system. The more a subset lines up with the structure a user needs to know about to perform a task, 

the more effective the mechanism is at helping the user work on the system. In this section, we describe 

approaches that apply to both programmers and other kinds of knowledge workers. When a distinction is 

needed, we identify programmers explicitly. We use the term system to refer to both software systems and 

other kinds of information systems, and specify the scenarios where a distinction matters. 

1.3.1. Modularity Mechanisms 

The better the modularity of a system, the more localized code changes become [3]. By enabling 

encapsulation and polymorphism, object-oriented programming (OOP) [13] helped localize many 

changes to one or a small number of places within the type hierarchy of a software system. As software 

systems continued to grow, aspect-oriented programming (AOP) mechanisms made it possible to 

encapsulate parts of the system that crosscut the object hierarchy [42]. Although modularity approaches 

have increased the system complexity that can be managed by a programmer, they have not solved the 

problem of information overload. They assume that a programmer will often be able to find a desired 

piece of the system by traversing the modular structure and that modifications will often fit within the 

modular structure so that once the point of interest is identified, it will be relatively easy to perform the 

desired modification.  

We have observed two problems with these assumptions. First, many modifications to a system are not 

limited to one module. For example, we found that over 90% of the changes committed to the object-

                                                      

7 Each monthly release of Mylar IDE is installed by thousands of users from the main http://eclipse.org/mylar install site, and is 

also redistributed by commercial vendors. Links to vendors, user blogs, as well as articles citing productivity improvements are 

at: http://eclipse.org/mylar/archive.php [verified 2006-12-12]  

8 The CHISEL group at the University of Victoria uses Mylar’s task context model for adaptive ontology visualizations in a 

Swing-based RDF/OWL browser: http://www.thechiselgroup.org/diamond [verified 2006-10-02] 
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oriented Eclipse and Mozilla9 source repositories, over a period of one year, involved changes to more 

than one file [51] (Figure 1.3). We then randomly selected twenty changes from Eclipse and found that 

25% of these transactions involved significantly non-local changes. Second, even when the actual 

changes related to a modification are within some form of module, say one Java package, a programmer 

often needs to know how this module works within the system, requiring him to access many other 

modules and understand their interconnections [58]. While AOP can help by improving the system’s 

modularity, we have observed that there will still be tasks that are not localized in a single aspect, for 

example involving multiple classes, aspects, and extensible markup language (XML) files [39]. As such, 

modularity approaches alone are not sufficient for defining and managing the subset of information 

relevant to the various tasks on which a programmer works. The result is that a programmer must spend a 

substantial amount of time navigating around a system’s modularity to identify the relevant information. 

 

Figure 1.3: Number of files versus check-in transactions for Eclipse and Mozilla 

IDE support for modularity mechanisms makes the structure of the modularity easily navigable by a 

programmer. Early versions of such tools made it possible to follow hyperlink-style references to other 

parts of the program. Current IDEs have augmented this support, providing views that make the entire 

object-oriented and aspect-oriented structure of the system navigable through structure views. For 

example, all subtypes of a given type may be found using a type hierarchy tree view. Another common 

mechanism for exposing modular structure is query and cross-reference support. For example, OOP tools 

commonly support a query to show all methods that could override the selected method. Similarly AOP 

tools display cross-references from a method to all of the advice that could apply to it [35]. 

Structure views and queries have made it possible to navigate the structure of a software system. As 

shown in Figure 1.1, these structure views typically show thousands of elements, only a small number of 

which are relevant to the task-at-hand. Similarly, query results often have hundreds of matches. The result 

                                                      

9 http://mozilla.org [verified 2006-10-02] 
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is that programmers can spend more time scrolling and navigating then programming. Knowledge 

workers working with file and web pages face a similar situation when using recommender systems and 

search engines that provide heuristics for ordering or filtering results of searches. Heuristic rankings 

based on structural information, such as the link structure between documents [8], are ignorant of the 

user’s task and thus include elements irrelevant to the task. Although recent research in search engines 

has attempted to address this limitation by using personalization data in rankings, these rankings are 

biased by all of a user’s past activity and are not focused on her current task (Section 6.2.2).  

1.3.2. Annotations, Tagging, and Explicit Context Models 

One way to describe the additional properties of an information system is to use metadata. The metadata 

facilities exposed by current development environments for software systems vary in how closely related 

the data is to the program code and in the amount of structure present in the resulting metadata. For 

example, the Java and .NET10 platforms’ textual annotation mechanisms allow additional properties to be 

declared on program elements. The subset of the software system defined by annotations that match a 

particular property can then be operated on by annotation processing tools and exposed in the IDE’s 

structure views (e.g., to show all methods marked @Transactional). Mechanisms for ‘tagging’ or 

‘bookmarking’ elements through the IDE’s editor and views can be used in a similar way to annotations 

to mark the elements that should form a particular subset of interest, which can then be viewed. Eclipse’s 

support for working sets is a good example of how such a subset can be integrated into an IDE. Entire 

system components can be tagged as belonging to a particular working set. Views that show the 

hierarchical structure of the system can then group the system by working sets.  

Annotation and tagging mechanisms do provide a way to identify relevant elements. However, they are 

not sufficient for capturing task context. The key problem is that they require manual work from the 

programmer to do the tagging. A second problem is that when used more heavily, for example with 

support for collaborative tagging [63], or as manifest by the behavior of Eclipse’s automatically reported 

source code comments matching a particular pattern (e.g., “// TODO: fix”), views that report these tags 

become overloaded when used on large systems. 

1.3.3. Implicit Context Models 

An alternative to having the user manually create a context is to use interaction with the tool to define the 

context. The simplest examples are tools that use the currently selected element to show related elements, 

originating with Interlisp’s Masterscope [67]. The Edit & Read Wear [31] document editing tool 

                                                      

10 http://microsoft.com/net [verified 2006-10-02] 
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formalized this concept in the document processing domain by highlighting selection patterns across a 

document. As a programmer works in an IDE, the files that have been opened, often visible through the 

editor tabs similar to those in tabbed browsers11, also reflect a context created from the programmer’s 

interaction. Such implicitly determined models can be used to focus the user interface to show only the 

subset of information that is in the context. The key benefit of an implicit approach is that it removes the 

burden of creating the context from the user. However, considering the amount of interaction that a 

knowledge worker produces in a typical week [30], and the fact that it is typical for them to work on 

many tasks in a single day [26], a simple model of this form does not scale to resolving the information 

overload that occurs on long-running tasks and to the context loss that results from task switches [39]. 

1.3.4. Explicit Task Models 

A task corresponds to a unit of work (Section 1.2). For a programmer, a typical task is a bug to fix or a 

feature to add. For another kind of knowledge worker, such as a lawyer, a typical task is completing a 

contract or drafting up a will. Approaches that make a representation of task explicit can provide a natural 

scoping mechanism to address some of the problems with the approaches described above. For example, 

some tools allow files to be attached to tasks, such as the Bugzilla bug tracker used by programmers12. 

However, this approach places the same burden on the user as explicit tagging. To address this burden, 

the TaskTracer tool [18] provides an alternative by combining explicit tasks with an implicit per-task 

tagging of resources, such as the files opened when working on a task. However, TaskTracer adds 

information to a task in a monotonically increasing fashion. In terms of reducing information overload, 

this approach assumes the information accessed for a task is well-scoped, which may not be the case for 

long-running or recurring tasks. It also assumes that a user will not make any missteps in deciding what 

information is relevant to the task. If the user does accidentally select the wrong resource, or if a resource 

loses relevance over time, this approach burdens the user with manually indicating which resources are no 

longer relevant to the task. 

1.4 Approach 
Our approach involves monitoring the user’s activity with a software application in order to create an 

interaction history for a particular task. An interaction history is comprised of a sequence of interaction 

events, each of which captures a user’s interaction with the specific elements and relations in an 

information system. The monitoring facility needs to report the elements and relations that are the target 

                                                      

11 Browsers, such as Mozilla, provide tabs that allow one window to nest multiple pages. 

12 http://bugzilla.mozilla.org [verified 2006-10-02] 
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of the interaction, as well as the kind of interaction. We focus on capturing interaction events 

corresponding to the user’s selections, edits, and commands. To support associating interaction histories 

with tasks, we also require a mechanism for determining task boundaries. 

Given an interaction history for a task, we transform the sequence of interaction events into a task 

context, which weights each element according to its relevance to the task. Our task context model uses a 

degree-of-interest (DOI) [45] weighting for each element and each relation based on frequency and 

recency of access. Different kinds of events can correspond to different weightings. Our goals are to make 

the model predictable to the user and to ensure that the DOI values capture the relative relevance of 

elements and relations over the lifecycle of a task. The frequency portion of the weighting ensures that 

elements and relations accessed most have the highest interest weighting, while the recency weighting 

ensures that the interest of elements not accessed recently decays. 

To integrate task context with the various activities that a user performs when working with an 

application, we have defined operations on task context. The slicing operation can gather a subset of the 

context, such as the elements above a particular DOI threshold. The composition operation makes it 

possible to combine multiple task contexts when an activity involves interaction with multiple tasks. We 

also provide an induction operation for propagating interaction events to structurally related elements; this 

adds the structurally related elements to the task context even though the user has not interacted with 

them directly. For example, when a user selects a file, an induction operation can propagate interest to 

each of the folders in the containment hierarchy of that file.  

Operations such as induction need to understand the structure of the underlying information system. Each 

information system can be composed of one or more kinds of domain structure, such as a Java program 

and a file hierarchy. We define bridge mechanisms that map between domain structure and interaction 

events. The more detail the bridge understands of the domain structure, the higher the fidelity of the task 

context model. For example, if an application supports monitoring interaction with elements within a file, 

such as the classes and methods in a Java file, the task context model can weigh the relevance of that 

structure, rather than just weighing interactions at the level of the file and the folder hierarchy containing 

the Java class. 

 

Figure 1.4: Illustration of task context 
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Figure 1.4 illustrates a task context as a graph in which the heights of the elements represent their DOI 

weightings. The Java class node at the top of the diagram is most interesting because the programmer has 

selected and edited it the most. Along the left of the figure, we see that interest has propagated to two 

superclasses that the user has not yet selected (indicated in the figure with lower saturation). We also see 

that a method in the model has decayed in interest to the point that it is below the DOI threshold depicted 

by the gray plane.  

To focus an application on a particular task, the task context model needs to be displayed. We call the 

mechanisms that display the task context model the task-focused user interface (UI). We have defined 

several task-focused UI mechanisms that support the display of task context in existing applications, 

including DOI filtering, ranking, decoration, expansion management, and application window 

management (Section 3.2.2). As one example, a structure view that normally shows the entire system 

structure can be focused to show only the elements within the task context that are above a particular DOI 

threshold. To display task context in an application’s existing structure views, the application needs to 

support one or more of these mechanisms. For example, if a file browser has a mechanism to filter 

elements prior to display, this mechanism may be extended to support filtering based on DOI values.  

1.5 Example 
In this section, we demonstrate how explicit task context and task-focused UI mechanisms address the 

information overload problem, using as an example the Mylar code base, which contains over a thousand 

Java classes. Consider the scenario of a programmer working on a similar task to that presented earlier: 

refactoring a policy defined by a class, which affects uses of that class in the system. However, this time 

the programmer uses a Task List to indicate the task on which he is currently working (via the “radio 

button” indicator visible in Figure 1.5-1 to the left of the task of interest): 

 T1: Refactor ResourceStructureBridge 

This task involves identifying, inspecting and changing all of the clients of 

ResourceStructureBridge. Activating the task causes the task context model to track the parts of 

the system artifacts⎯the program elements and relations⎯that are accessed while the programmer works 

on this task.  



13 

 

Figure 1.5: Task context while working on T1 (above), and shortly after activating T2 (below) 
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Mylar displays the task context within existing Eclipse IDE structure views in order to focus the 

programmer on the task-at-hand. The source code editor folds away all uninteresting elements and ranks 

content assist matches, visible in the popup window, to indicate those that are in the task context (Figure 

1.5-2). Even though the code base contains over one thousand classes and numerous other kinds of 

artifacts, only the artifacts determined to be relevant to the current task context are visible in the Package 

Explorer view of the system (Figure 1.5-3). Structurally related elements that have not yet been interacted 

with, but have predicted interest, show in the Active Search view (Figure 1.5-4). When working with task 

context and the task-focused UI, the entire IDE becomes focused on the task instead of showing all of the 

parts of the system’s structure, as was visible in Figure 1.1. Since the task context is actively trimmed to 

show only the most relevant elements, the programmer will rarely see a scrollbar in many of the task-

focused views, reducing information overload in those views. While working in this focused way on T1, a 

new high priority bug is assigned to the programmer and must be attended to immediately. 

 T2: Fix NPE in SynchronizeReportsAction. 

Using Mylar’s Task List view, the programmer activates the second task (Figure 1.5-5), causing the 

context of the first to be stored and all files in that context to be closed. As the programmer works on the 

new task, a new context starts building up for the new task. Mylar tracks all of the files that the 

programmer modifies when working on each task, and groups outgoing changes by task (Figure 1.5-6). 

All that the programmer needs to do to return to the first task is to reactivate it, causing the views and 

editors to return to the state visible on the top of Figure 1.5. 

In an almost identical way, task context enables knowledge workers to regain access almost 

instantaneously to the information that they need when multi-tasking. When a user returns to a task on 

which he worked previously, our focused file and web browsing tool displays the files and web pages 

related to that task in the Navigator view (Figure 1.6) and re-opens the most interesting documents for 

easy access. Instead of seeing all of the files in the visible directories, or all of the web pages they had 

visited as part of this task, the knowledge worker only sees the information most relevant to the task and 

is able to multi-task without losing context.  
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Figure 1.6: Browsing with task context 

1.6 Overview 
In Chapter 2, we present the task context model and operations. In Chapter 3, we describe the task-

focused UI mechanisms that support integrating this model with IDE and browsing applications, and 

describe our implementation of task context for the programming and generic knowledge work domains. 

In Chapter 4, we present our validation in the form of three field studies of professional knowledge 

workers. We discuss potential improvements to the task context model and integration with collaboration 

and visualization tools in Chapter 5, overview related work in Chapter 6, and provide concluding remarks 

in Chapter 7. 
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2. Model & Operations 

For a programmer, typical tasks include bug fixes, feature additions, and code base explorations. For 

other kinds of knowledge workers, tasks include other work activities that need to be tracked and 

prioritized [4]. For example, for lawyers, tasks can consist of creating contracts or researching prior cases. 

Some tasks are short-lived, requiring only a few minutes to complete; others are longer-lived, requiring 

some time each day over the course of weeks or months. Our model considers a task to be an atomic unit. 

Higher-level abstractions and organization of tasks, such as categorizations, hierarchies and sequences, 

may be layered on top. The examples we give in this chapter are for interaction with a software system, 

except where special provisions are made in the model to handle less well-structured information.  

We define a task context as the information that a knowledge worker needs to know to complete a 

particular task. The information consists of a graph of the parts of artifacts (elements) and relations 

between artifacts. Each element and relation in the graph has a weighting that defines its relevance, a 

degree-of-interest (DOI), to the task. Our approach forms a task context based on the interactions that a 

programmer has with system artifacts and from the structure of those artifacts. Specifically, the 

information in a task context is defined entirely by an interaction history, which is comprised of a 

sequence of interaction events that correspond to the direct interaction that a programmer has with a 

system, and the indirect interactions that a tool can have on behalf of the programmer (each described in 

Section 2.1.1). Direct interactions include a programmer’s edits and selections; indirect interactions 

include predictions and propagations that cause elements to be added to the interaction history that have 

not yet been interacted with directly in the task context.  

Figure 2.1 provides a conceptual overview of this approach. As a knowledge worker works, interaction 

history is captured (Section 2.1) and is used to produce a task context graph (Section 2.2). The nodes and 

edges in this graph reference concrete elements and relations in the target information system, in this case 

different kinds of Java declarations (M=method, C=class, I=interface). As the interaction history is 

processed, our DOI function (Section 2.2) assigns a real number weighting to each element and relation, 

corresponding to the frequency of the access to the element or relation, less a decay factor that 

corresponds to the total number of interaction events processed. Accessing an element increases its 

weight, while accessing other elements decays the weight of infrequently accessed elements. Value 

ranges on the DOI specify which elements and relationships are interesting and uninteresting (Table 2.1). 

Interesting elements or relationships are those with a positive DOI value. Uninteresting elements or 

relationships are those with a negative or zero DOI value, which occurs either through decay or because 

the element or relation has never been the target of an interaction.    
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Table 2.1: DOI value intervals 

Interval Description 

(0, ∞] Interesting 

[-∞, 0] Uninteresting 

 

A task context can be operated upon and displayed. For example, the bottom of Figure 2.1 shows, from 

left to right, a display of all elements that have changed in a system as part of a task regardless of DOI, a 

display of only elements of predicted interest, and display in which an existing view of system structure 

has been filtered to show only interesting elements. Since the task context model is typically overlaid on 

existing views of system structure tailored to specific activities, such as browsing the hierarchy of a Java 

program, we call these display mechanisms projections of task context, and describe them in the next 

chapter. 

 

Figure 2.1: Constructing and projecting a task context 

This chapter describes our core model and the minimal set of operations that we have defined to support 

integrating this model with existing information sources and user interfaces. We describe interaction 
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history in Section 2.1. We describe how to construct a task context from an interaction history in Section 

2.2. We define task context operations in Section 2.3. To help guide the description of these operations, 

we provide an overview of the four operations in Table 2.2:  the composition operation supports 

displaying and working with multiple task contexts concurrently, the slicing operation creates a new 

smaller context from an original context by applying a constraint that determines which elements and 

relations should be included in the resultant context, the induction operation induces interest on 

structurally related elements to support indirect interaction, and the manipulation operation supports 

direct manipulation of the DOI of elements by a user.  

Table 2.2: Task context operations overview 

Input Operation Output 

1..n contexts composition New context composed of input contexts 

context, constraint slicing New context resulting from applying constraint 

context 
manipulation Events appended to interaction history for 

existing context induction 

 

Our definition of task context is not coupled to any particular kind of information source, application, user 

interface or task definition. However, an implementation of task context must provide bindings for each 

of these. We discuss our implementation of task context for an IDE and for a file and web browsing 

application in the next chapter.  

2.1 Encoding Interaction 
We derive a task context from an interaction history, defined as a sequence of interaction events that 

describe accesses of and operations performed on artifacts within a user’s work environment.  

2.1.1. Interaction Events 

Each interaction event captures four pieces of information (Table 2.3). The time field stamps the event 

with the moment that it occurred. The kind classifies the event according to a schema representing the 

kind of interaction that occurred, such as a selection (Table 2.4). The content type provides an identifier 

that binds the element to a particular domain structure (e.g., “text/html”). The handle is an identifier that 

uniquely identifies that element for the given content type. This is the minimal schema needed to uniquely 
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associate typed events in time with structured elements, assuming that element identity is unique per 

content type.  

Table 2.3: Interaction event schema 

Time The time of the event occurrence 

Kind Classification of event (Table 2.4) 

Content Type Identifier describing the kind of element operated upon 

Handle Identifier for the target element 

 

An interaction history is naturally ordered by time. Events can be appended to the sequence. Deletions 

and insertions are not supported since the interaction sequence is a historical record and, as such, events 

cannot be “undone”. 

2.1.2. Element Identity 

Interaction events are created by an interaction monitoring facility, such as the Mylar Monitor (Section 

3.1.3), which is responsible for populating them with the kind, and with the identifying information of the 

concrete element corresponding to this event (i.e., the content type and handle). The content type and 

handle identifier fields bind the abstract task context elements (i.e., nodes in a graph) to domain structure 

elements (e.g., Java methods). The concrete relations between elements (e.g., method a “calls” method b) 

are defined at the domain level. A relation in the task context model is defined by an edge connecting the 

corresponding elements.  

Over the course of an interaction history, the identity of an element can change. For example, if a file is 

renamed, and the identity is derived from the name, the handle field on past interaction events may not 

correspond to future interaction events. To preserve identity the interaction history supports updating the 

identity associated with past events. All other fields on an interaction event are considered immutable.  

2.1.3. Event Classification 

Table 2.4 summarizes our classification of interaction events. Some interaction events are the result of a 

programmer’s direct interactions with program elements. For instance, a programmer may select a 

particular Java method to view its source, edit it, and then save the file containing it. Each of these actions 

corresponds to an event of a different kind being created and added to the sequence of interaction events 

for the task context, as demonstrated by the sample interaction history in Table 2.5.  
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Other interaction events are indirect, where program elements and relations are affected without being 

directly selected or edited by the programmer. For example, when working on T1 (Section 1.5), the 

programmer refactors the name of the ResourceStructureBridge class, causing all of the elements 

referring to that class to be updated. Each referring element updated through the refactoring results in an 

indirect propagation event of the edit to be appended to the interaction history. When the programmer 

directly selects the getContentType method (Figure 1.5-2), each parent of that method (its class, 

source file, package, source folder, and containing project) becomes relevant to the context, and a 

propagation event for each parent element is appended to the interaction history, so that a view can 

display these as if they had been interacted with directly.  

Table 2.4: Interaction event classification schema 

Event kind Interaction Description 

selection 

direct  

Editor and view selections via mouse or keyboard 

edit Textual and graphical edits  

command Operations such as saving, building, preference 
setting and interest manipulation 

propagation 
indirect 

Interaction propagates to structurally related 
elements 

prediction Capture of potential future interaction events  

 

We also support prediction events, which describe possible future interactions that a tool anticipates the 

programmer might perform. An example of prediction is an event describing that a test may be of interest 

to the current task because it references a class in the task context. Whereas direct events are caused by 

user interaction, the indirect prediction and propagation events are issued by the induction operation, 

discussed in Section 2.3.4. The key differentiator between propagation and prediction events is that the 

former indicates an explicit intention of the programmer to interact with the elements involved in the 

propagation. In contrast, prediction events are a mechanism for capturing recommendations within the 

interaction history.  

Table 2.5 provides an example of the sequence of interaction events that result from the programmer’s 

initial work on T1 (Section 1.5). For simplicity, we use an event number to stand in for the time field of 

an interaction event. The programmer first selects a class. The selection event propagates to structurally 
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related elements, such as the file containing the class, the package containing the file, and so on13. The 

programmer then invokes a rename operation, and edits the name of the class. This edit propagates to 

each of the files that are subsequently renamed by the refactoring command14. The user then clicks a URL 

in the Java editor, opening the browser. This causes a selection of a web page, with another propagation 

to the web site that contains the web page.  

Table 2.5: Sample interaction history 

Event Kind Target(s) 

1 selection ResourceStructureBridge class 

2..5 propagation .java file, package, source folder, project 

6 command ResourceStructureBridge class 

7 edit ResourceStructureBridge declaration 

8..16 propagation 4 XML and 5 Java references to ResourceStructureBridge 

17 selection URL to documentation page, reference to section 

18 propagation URL of web site containing documentation 

2.2 Task Context Construction 
We derive a task’s context by processing an interaction history that describes the activity performed for 

the task. Each event from the portion of the interaction history related to the task contributes to a graph 

that represents the task context. If the handle of an event being processed refers to an element not yet 

represented in the graph, a node for the element is added to the graph. A selection event from the 

interaction history contributes an edge to the graph when the target element of the current selection event 

is structurally related to the target element of the last selection event processed. For example, if a 

programmer navigates from a method call to its declaration, the interaction history will contain the 

selection of the caller followed later by a selection of the callee. The result is an edge representing the 

Java reference relation between the two corresponding element nodes. The graph of task context can 

contain cycles (e.g., as a result of navigating recursive method calls) and can have multiple edges between 

nodes (e.g., both reference and inheritance). 

                                                      

13 This propagation will cause each of those elements to become interesting and to show in the Package Explorer view (Section 

3.3.1). 

14 This propagation causes the context change set to include the refactored files (Section 3.3.5). 



22 

We use a task’s interaction history to compute a weighting for each element in the task context. The 

weighting is a real number value representing the element’s degree-of-interest (DOI) for the task. This 

DOI value is based on the frequency of interactions with the element and a measure of the interactions’ 

recency. The frequency is determined by the number of interaction events that refer to the element as a 

target. Each event kind has a different scaling factor constant, resulting in different weightings for 

different kinds of interaction. Recency is defined by a decay that is proportional to the position in the 

event stream of the first interaction with the element; like frequency, recency is also scaled. Since decay 

is proportional to the number of interaction events, it is independent of actual amount of wall clock time 

spent working with an element or relation. Instead, decay is based on the amount of interaction as 

punctuated by the events. 

Algorithm 1 describes how we compute a DOI value for an element, given an interaction history 

represented as a sequence that contains one or more events with the element as the target. We iterate over 

a subsequence consisting of just the events involving the element (line 4), increment the interest value of 

the element based on the kind of the current event (line 5) and if the interest has not offset the decay, reset 

the decay to start at the last interaction with the element (lines 7-9). This algorithm ensures that elements 

that have decayed to a negative interest have their interest become positive when interacted with again. 

DOI(element, events) 

1   elementEvents = WITH-TARGET(element, events)  

2   decayStart = elementEvents[0] 

3   interest = 0 

4   for each event in elementEvents 

5      interest += SCALING(KIND(event)) 

6      currDecay = DECAY(decayStart, event, events) 

7      if interest < currDecay then    

8          decayStart = event                // reset decay 

9          interest = SCALING(KIND(event))   // reset interest 

10  totalDecay = DECAY(decayStart, LAST(events), events) 

11  return interest – totalDecay 

 

DECAY(fromEvent, toEvent, eventSeq)    

12  decayEvents = SUBSEQ(fromEvent, toEvent, eventSeq) 

13  return |decayEvents| * SCALING(KIND-DECAY) 

Algorithm 1: DOI for Task Context 

The SCALING function returns the constant associated with each event kind and with the KIND-DECAY 

constant. The DECAY function computes the decay to be proportional to the size of the subsequence 
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from decayStart to the most recent event and includes events not in elementEvents. As an 

example, consider how the interaction history from Table 3 contributes to the weighting of the 

ResourceStructureBridge element at the end of the interaction history. The element is most 

recently edited at event 7. Assuming SCALING returns 1 for selections, 0 for commands, 2 for edits, and 

0.1 for KIND-DECAY, and noting that there were no propagated events with that element, the three 

iterations through the loop will result in 1+0+2 = 3 for interest, and (18-1)(0.1) for totalDecay, 

resulting in a DOI of 1.3. If 30 more interactions happened with another element, the DOI value would 

become -1.7. A subsequent selection would cause the DOI to be reset to 1 – 0.1 = 0.9. 

A relation in the graph is composed of a source and a target element. The DOI of a relation is computed 

using the same DOI algorithm, but using the relation’s target element: 

      DOI-R(relation, events) = DOI(TARGET(relation), events)  

For example, if a programmer navigates repeatedly between a method call and its declaration, the DOI of 

that relation will increase from repeated selections of the declaration15. If the programmer navigates 

‘back’ and ‘forward’ between the two several times, the two resulting directed edges will both have the 

same DOI. 

Our construction algorithm for task context takes as input any sequential stream of interaction events 

whether it is being gathered on-line (e.g., when the user is working on a new task), or was stored off-line 

(e.g., when resuming a previously worked-on task). At any point in the construction process, each node 

and edge in the task context’s graph can be queried for its DOI value. This value is computed from the 

interaction history that is associated with the task context when the query is made. Task context can thus 

be built interactively as a programmer works, or recreated by parsing a previously stored interaction 

history.  

The resulting task context is a graph representing each element and relation in the context. The 

weightings are not explicitly stored in the task context, and instead the DOI of each element and relation 

is computed from all the interaction with that element to date16. 

                                                      

15 Note that for some domain structures or usage scenarios it may be impossible to determine the relation between two elements 

that are consecutively navigated (e.g., a navigation that results from a suggestion made in a phone conversation). For such cases, 

the relation is an arbitrary navigation, with no binding to a concrete relation in the target domain.  

16 The DOI algorithm can be computed frequently in a typical application (e.g., in Mylar IDE thousands of DOI computations 

happen in what needs to be an instantaneous view refresh, where instantaneous is defined as <200ms by the Eclipse UI). An 

implementation can cache previous computation values or use a data structure that optimizes for the DOI computation. 

Optimizations for parsing long interaction histories are discussed in Section 3.2.4. 
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By capturing and weighting the interaction of both elements and relations that have been interacted with 

directly and indirectly, the task context exhibits topological properties that can be leveraged by operations 

(Section 2.3) and by projections that display the task context (Section 3.2.1). As illustrated in Table 2.6, 

these properties include groupings, paths, and interest propagations (Section 2.3.4) that emerge from the 

way that the DOI algorithm derives the interest of relations from interaction with elements. These 

properties can be displayed directly in graphical views of task context (discussed in Section 5.4). The set 

of properties described here is not intended to be comprehensive, but to illustrate the behavior of the 

algorithm when processing interaction sequences for structurally related elements. 

Table 2.6: Illustrations of topological properties of the task context  

Property Description Illustration 

groupings Elements worked on in conjunction will have similar DOI values 
(e.g., an API method, XML file, and web page all referred to while 
editing a method).  

 

paths When elements are frequently navigated between via less 
interesting elements, the end-points and path will have a high DOI 
(e.g., when working on two ends of a method call chain). 

propagations Repeated interaction with an element increases the DOI of 
structurally related elements (e.g., when editing a class the 
containing method and superclass will gradually increase in 
interest). 

 

2.3 Task Context Operations 
We can use a task context as input to various operations that support integrating task context into 

applications. Sometimes a single task context may not contain all of the relevant information needed for 

an activity, such as a code review. We use the term composition to refer to operations that produce a 

composite task context from individual task contexts. Sometime the converse is true and a subset of the 

context may be relevant. Even though the size of a task context is typically smaller than the size of the 

system, it can still be too large or contain too many different kinds of elements and relations to assist with 

other activities, such as the unit testing that is done by programmers, or the searches that are performed by 

query tools. We use the term slicing to refer to an operation that produces a subset of a given task context 

(i.e., a subset of the elements and relations, which can result in one or more sub-graphs depending on the 

properties of the slice). To enable a user to tailor a task context manually we also support manipulation 

operations. In order to grow the task context to encompass structurally related elements, the induction 

operation supports indirect interactions in the form of predicted and propagated interactions. 
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All operations on a task context take one or more contexts as input (as well as other arguments) and either 

update that context or produce a new context. This ensures that all of the operations are orthogonal and 

can be applied or combined in any order. Since a task context is defined by the set of interaction events 

associated with it, all of the operations are expressed in terms of adding or removing interaction events to 

form the output context. Since events cannot be removed directly from a context, operations that go 

beyond appending interaction events produce a new context (referred to as a context′ below).  

2.3.1. Composition  

Each task context’s interaction history corresponds to a single task. However, some activities can require 

displaying the contexts of several tasks simultaneously. For example, a programmer might want to create 

a composite context from T1 and T2 (Section 1.5) to perform a code review of the work that was done on 

those two tasks and have the element highlighted according to each context. The composition operation 

takes as input one or more task contexts, and combines them to form a single composite context17.  

The composition operation combines each of the interaction event sequences of the input contexts (Table 

2.7). Task contexts maintain the sequence of interaction events in time-sorted order, ensuring that the DOI 

algorithm can process the events from a composite context identically to a non-composite context. When 

the DOI algorithm is run on the composite context it returns a DOI corresponding to the interest of the 

element representative of what it would be if all of the tasks had been performed as a single task. The 

resulting composite context is identical to a non-composite context, other than the fact that it is composed 

of an aggregate sequence of interaction events.  

Table 2.7: Composition operation 

Input Output Description 

1..n 
contexts 

context′ Combine the interaction events of each context to form a single time-sorted 
sequence 

Run the DOI algorithm on the merged sequence 

 

Since a composite context is simply the combination of the interaction events of each composed task 

context, a composite context can be the target of interaction just as a single task context can be. The 

interaction mirrors the effect of the composition operation: interaction events are duplicated across each 

                                                      

17 Our implementation treats composite contexts identically to regular contexts, having each implement the same interface. 

Mylar’s task-focused UI is always operating on the currently active composite context, which by default only has one context 

that it is composed of, but enables additional contexts to be activated.  
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of the contexts that make up the composite context. The identity of interaction events plays an important 

role in supporting a user’s interaction with a composite context, for example, when the user is interacting 

with more than one task concurrently. When the DOI algorithm is used on such a composite context, it 

needs to treat identical interaction events distributed across composing contexts as a single event. 

Otherwise working with three tasks active would cause the DOI of one interaction with one element to be 

three times that when a single context is active. As such, supporting this distribution of events in an 

implementation requires either a data structure that is aware of interaction event identity (as in our 

implementation), or for the composition operation to discard duplicate events.  

2.3.2. Slicing   

Task context slicing is an operation that takes as input a task context and outputs a task context containing 

all elements and relations of the input context that meet a particular constraint (Table 2.8). A constraint 

tests one or more of the kinds of interactions associated with an element or relation (e.g., includes only 

predicted ones), DOI values (e.g., include elements and relations with a high DOI), or the underlying 

domain structure (e.g., include elements that are Java methods). An example of a slice that tests the 

interaction events but ignores the elements’ contents and DOI is to gather all interesting files that have 

interaction events of the kind edit; this slice can be used to determine which files to include in a source 

code commit (Section 3.3.5). An example of a slice whose constraint tests both the underlying structure 

and the DOI is to gather all interesting test cases for running a test suite of the active context (Section 

3.3.4).  

Table 2.8: Slicing operation 

Input Output Description 

context, 
constraint 

context′ For each element, relation, and interaction event apply the test to 
determine if the corresponding element or relation should be included in 
the output context.  

If test passes, include all interaction with the element/relation in the 
interaction history for the output context. 

 

Whereas composition produces a context that defines a superset of the interaction, slicing is an operation 

that defines a subset. These operations can be combined. For example, consider the depiction of the 

interest of two tasks that have a large number of interesting elements, represented by the two lines in 

Figure 2.2. Composing the task contexts creates a union of the elements in each, resulting in elements that 

occur in both contexts having a DOI corresponding to what it would have been if they occurred in a single 

context (line A in Figure 2.2). If all we are interested in is the intersection of the two task contexts, we can 

slice the composite context to include only the elements in both (line B in Figure 2.2). Such an 
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intersection can be used to identify ‘hot spots’ in code when composing a large number of contexts that 

result from the dozens or hundreds of tasks performed during a phase of software development. 

 

Figure 2.2: Combining task context operations  

2.3.3. Manipulation   

Our DOI function provides an approximation of interest and can produce a value that does not match the 

user’s expectation either by being tuned incorrectly or by failing to capture a relevant interaction. We 

provide a mechanism for directly manipulating a task context by allowing the user to issue command 

events that result in predictable changes to the task context. For example, if an element is interesting but 

should not be, a “Make Less Interesting” command can issue the interaction events needed to reduce the 

interest of that element and make it disappear from a view, leaving only interesting elements visible. 

Since we assume that interaction cannot be undone, it is not possible to delete elements from a task 

context. As such, making an element uninteresting is supported via an interaction event based operation 

called task context manipulation (Table 2.9). 

Table 2.9: Manipulation operation 

Input Output Description Example 

context context Add the command interaction 
event(s) to the task context  

User explicitly marks an element as a 
uninteresting via a UI affordance  

 

A manipulation operation adds one or more interaction events to the task context so that the context is 

updated in order to match the user’s expectation of the operation (e.g., in our implementation an element 

can be made explicitly interesting or uninteresting (as described in Section 3.2.2). Manipulation 
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commands differ from other interaction events because their processing must have not only a predictable 

effect on the task context, but one that causes a precise change in the DOI of the target element. For 

example, if a document has a DOI of 10, and the user issues a manipulation event that should make this 

element have a negative interest (i.e., disappear from view), the interaction must contribute -10 to the DOI. 

To avoid having the algorithm include a special rule for such events, a number of command 

manipulations corresponding to the right decrement can be issued18, effectively undoing the interest 

contributions of the other interactions with that element.  

2.3.4. Induction 

A significant fraction of the commands executed by a user are commands related to searching for 

structurally related elements that need to be edited or referenced in order to complete a task [52]. We can 

use the information in a task context to predict what elements might be relevant to completing the task, 

but with which the user has not yet interacted directly. For example, if a programmer is working on a Java 

class, which is referred to by an XML element, the XML element can have a predicted interest if a tool 

determines it is likely to be part of the task context at a future time. By “predicted interest”, we mean a 

DOI that results entirely from interaction events with the prediction kind (Table 2.4) and not by other 

events such as selections. Such predictions can come from running automatic searches on the 

programmer’s behalf, for example using context slices as both input and scope for the searches (Section 

3.3.3).  

We can also use existing interaction information to propagate the interaction to structurally related 

elements. For example, if a programmer selects a class, events can propagate to elements directly related 

to the class, such as its parents in the containment hierarchy. The propagation events differ from the 

predicted events because they express an intention of the user to select structurally related elements 

known by the domain mapping to be structurally relevant, whereas the prediction events express a 

recommendation of elements that may be relevant.   

We call the operation that adds both prediction and propagation events induction because it results in 

interest being induced on structurally related elements. The output of the induction operation is a set of 

interaction events that contribute to the task context, with an event kind of prediction or propagation 

indicating the indirect interaction (Table 2.10). As with the manipulation operation, these events are 

simply appended to the task context’s interaction history. This approach enables the use of the DOI 

                                                      

18  This can cause a large number of manipulation events if a high DOI element is reduced in interest. However, an 

implementation can compensate for this by accounting for the redundancy, e.g., by collapsing repeated events (Section 3.2.4). 
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algorithm to rank related elements, with the DOI of less frequent results decaying and more recent and 

more frequent results producing a higher DOI.  

Table 2.10: Induction operation 

Input Output Description 

context  context Use domain-specific relations or heuristics to find related elements, and add 
them to the context via prediction or propagation events. 

2.4 Task Activity Context  
To correlate each context to a particular task and to support multiple task contexts, we need a mechanism 

to associate interaction events with a task. We achieve this association by capturing a separate stream of 

interaction events in which the target elements are tasks instead of system artifacts. This stream of 

interaction events can be used to form an interaction history over tasks instead of system artifacts. This 

parallelism to how a task context is defined means that we can apply the same model and operations to 

this separate interaction stream, forming a meta task context. We call this the task activity context. As 

depicted in Figure 2.3, at the base level, the nodes in a task context are resources, and the interaction 

history contains events such as selections and edits of the corresponding files or web pages. At the meta-

level, the nodes in the task activity context are the tasks, and the interaction history contains events such 

as the selections and edits of those tasks.  

 

Figure 2.3: Illustration of task activity context 

We process the interaction history for the task activity context the same way that we process a task 

context. For example, a programmer can indicate that work should be associated with a particular task by 

opening a bug report; this action causes a selection event on that task. Commenting on the bug report 

causes an edit event. The act of a programmer switching to another application window causes a 

command event that indicates work on a task has stopped. Supporting this meta-context ensures that the 
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DOI algorithm and operations that we have defined work for the task activity context just as they work for 

the base task contexts. Keeping this interaction history separate from the task context interaction history 

ensures that working on tasks does not cause the DOI of the elements in the active task context to decay. 

The task activity context also enables an implementation to focus the UI on the highest DOI tasks, as we 

discuss in Section 5.5.6. 

 

2.5 Model Summary 
Our goal with the task context model has been to make it as simple as possible, while ensuring that we 

could capture any kind of interaction that a user could have with programming and file and web browsing 

applications. We have described a set of operations intended to focus an application on task context, and 

discuss our implementation of task context and operations in the next chapter. 
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3. Implementation 

There are two key challenges to implementing task context for a particular application: determining the 

mapping from application usage to the more abstract interaction history, and implementing the necessary 

task context operations to integrate task context with the application. We implemented task context on the 

Eclipse platform, which is a generic application framework used to build applications that include the 

Eclipse Java IDE. Eclipse provides several mechanisms that support integrating task context: a unified 

selection service for monitoring user interaction19, extensible UI mechanisms20 that support a modular 

implementation of the task-focused UI, and the OSGi plug-in mechanism21 that supports a loose coupling 

of mappings to different domain-specific artifacts (Section 3.1.1) and enables deployment to different 

application configurations. Task context can be implemented on another application platform if 

equivalent mechanisms are available on that platform. In this chapter we describe the architecture in terms 

of our Eclipse and Java-based implementation, but the concepts are generic and have been implemented 

by another research group on a different application platform [12].  

In this chapter, we describe the Mylar architecture that supports integrating task context with a diverse set 

of domain structures (Section 3.1). We define the user interface mechanisms that present task context to 

the user (Section 3.2) and we describe our two implementations of task context: one for an IDE 

application called Mylar IDE (Section 3.3) and one for a file and web browsing application called Mylar 

Browser (Section 3.4).  

3.1 Architecture Overview 
To adequately test task context, we needed an implementation that could scale to handle very large 

systems with several kinds of structured and semi-structured artifacts, that could support task 

management and that could integrate with existing tools used by knowledge workers. The Mylar 

Architecture supports these criteria by providing three frameworks (Table 3.1): Monitor, Context and 

Tasks. Each framework is broken into two parts. The “core” part provides a model and operations not 

                                                      

19 http://eclipse.org/articles/Article-WorkbenchSelections/article.html [verified 2006-10-02] 

20 http://eclipse.org/articles/Article-UI-Workbench/workbench.html [verified 2006-10-02] 

21 The OSGi plug-in model is a component model that allows a number of Java classes to form a single component and supports 

the loose coupling of components: http://eclipse.org/osgi [verified 2006-10-02] 
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coupled to any particular application platform and suitable for use in server-side applications or for 

embedding in another application framework, whereas the “UI” part is coupled to the Eclipse UI 

framework. As we describe each of the three frameworks, we also discuss how to extend each framework 

component22.  

The Monitor framework transforms a user’s interaction with the application into the interaction events 

that are processed by the Context framework. The Monitor may be extended by user study plug-ins to 

support measuring usage statistics in field studies, as described in the next chapter. 

The Context Framework implements the task context model, including interaction histories and task 

context operations. The Context Framework requires a definition of tasks and is flexible in this definition 

because it is not coupled to the Task framework. As such, an alternative task management framework can 

be used for task management and activation purposes. The UI portion of the Context framework 

implements the task-focused UI (Section 3.2.2) which we implemented both for programmers and for 

knowledge workers (Sections 4, 4.4).  

The core of the Tasks framework provides the definition of tasks that maps user-defined work items to 

tasks. The UI portion of the Tasks framework provides task management facilities (Section 3.2.3). 

Table 3.1: Mylar frameworks 

Framework Core UI API clients  

Monitor Interaction history Interaction monitoring Monitors 

Context Task context Task-focused UI mechanisms  Bridges 

Tasks Task management Task views and editors Connectors 

 

Each framework supports a different kind of API client. The Monitor Framework supports monitors that 

observe user interaction. For example, user observation mechanisms described in the next chapter 

incorporate monitors for the purpose of measuring productivity and reporting on task activity. The 

Context framework supports bridges, which map between the abstract elements in the task context model 

and the concrete elements in some domain, for example, the Java programming language. The Tasks 

                                                      

22 The Mylar 0.7 implementation is 82,684 source lines of Java code (SLOC), 8,042 lines of XML and XML schema, 107 

packages, 950 classes, and 50 interfaces. The Mylar framework components are 3,695 source lines of code, 24 packages, 399 

classes, and 40 interfaces. I implemented over 80% of the total code in Mylar 0.7, the entire Context and Monitor frameworks, 

and led the implementation of the other components, such as the Tasks framework. Credits to the many open source 

contributors are summarized at: http:// eclipse.org/mylar/team.php [verified 2006-12-20] 
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Framework supports connectors, which define the unit that makes up a task. For example, the Bugzilla 

connector defines tasks as bug reports or enhancement requests. 

 

Figure 3.1: Mylar architecture showing OSGi plug-ins and their dependencies 

Figure 3.1 demonstrates our component model, with each box corresponding to an Eclipse OSGi plug-

in23. The key property of this architecture, that is needed to support our validation, is the loose coupling of 

the framework components. For the IDE study, we required the ability to deploy only the monitoring 

facilities to support gathering baseline data of Eclipse IDE usage (i.e., the monitor.core, and 

monitor.ui components). We then needed to deploy the full Mylar IDE integration and a mechanism 

for integrating the Bugzilla task repository used by programmers (all components listed in Figure 3.1). 

For the knowledge worker study, we needed to deploy the Mylar Browser without any of the IDE-specific 

components or the Bugzilla Connector, and to integrate task context with a subset of the Eclipse platform 

                                                      

23 An Eclipse-based application, such as the Mylar Browser, is a collection of OSGi plug-ins. 
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that was suitable for file and web browsing. The other plug-ins visible are the Trac24 connector (Section 

3.2), and the version control system (VCS) bridges used for integrating change sets support CVS25 and 

Subversion26 (Section 3.3). 

In the next section, we zoom into part of this diagram to show how bridges integrate with the underlying 

application. 

3.1.1. Bridges 

While our task context model is defined in terms of a generic set of interaction events, the actual events 

need to be issued by a mechanism that understands both domain structure (e.g., Java) and the UI of the 

tool for working with that structure (e.g., the Eclipse UI for Java development). We call this mechanism a 

bridge from the task context model to the domain structure. Each bridge handles a single content type. 

We have created bridges for Java, two XML dialects (Ant27 and Eclipse plug-in descriptors), files, web 

resources, and the tasks themselves. 

A structure bridge is responsible for mapping elements and relations in the task context to and from the 

domain structure of a particular content type. This involves mapping context elements to domain model 

elements and resolving relations between elements. Structure bridges must also update the identity of 

elements in the model when elements move within the domain structure as a result of refactoring. For 

example, the Java structure bridge integrates with Eclipse’s Java model (derived from a Java AST), and is 

able to map between the handle identifiers of Java elements in the task context and the objects 

corresponding to those elements in the IDE. It resolves the relations between Java elements including 

references, inheritance, and read/write access of fields. When elements are moved or refactored and their 

handle identifier changes, the Java structure bridge notifies the task context model so that the identity of 

those elements, and the previous interaction with hose elements, can be preserved.  

The implementation of a structure bridge defines the level of granularity of domain structure supported, 

which can include both well-structured and semi-structured data. For example, the Java structure bridge is 

                                                      

24 http://trac.edgewall.org [verified 2006-10-20] 

25 http://www.nongnu.org/cvs [verified 2006-10-20] 

26 http://subversion.tigris.org [verified 2006-10-20] 

27 http://ant.apache.org [verified 2006-10-02] 
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well-structured and maps the identity of elements down to the member level28. In contrast, the file 

structure bridge is only aware of the file and directory structure, and not of the contents of files. This 

means that it works equally well for both binary images and Microsoft Word29 files. However, if semi-

structured data is interacted with inside such a file, for example, a section in a Word document, the 

interaction will only be registered at the level of the file. The finer the granularity of structure bridges in 

an application, the higher the fidelity of the task context model (discussed further in Section 5.5.2).  

A UI bridge is responsible for monitoring interaction with the parts of the IDE for which it is 

implemented, such as Eclipse’s Java tools in the case of the Java UI bridge. It maps the programmer’s 

interaction with the UI to the interaction history schema of selections, edits, and commands. These can 

include keystrokes in the Java editor, refactoring commands, and element selections. Each UI bridge also 

specifies which views and editors participate in task context projection (Section 3.2.1).  

context.ui
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operations

context.core

model 
operations

jdt.core

java model

jdt.ui

java and junit 
views and editor 

java
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and relation 
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and editor 
mappings

core

UI

org.eclipse.mylar org.eclipse

monitor.ui

view and editor 
monitoring

monitor.core

interaction 
history

 

Figure 3.2: Mylar plug-in architecture and Java bridges 

Figure 3.2 shows the dependency structure of a bridge implemented as an Eclipse plug-in, with arrows 

corresponding to plug-in dependencies. The context.core and context.ui plug-ins provide the 

structure and UI bridge extension points that the java plug-in uses to map and display the concrete Java 

elements on which the programmer is working. Bridges for other languages may exist alongside the 

bridges for Java. Bridges can also be composed. For example, the java structure bridge30 extends the 

                                                      

28 It is feasible to implement an even finer-structured bridge, which maps identity down to the statement and expression level. 

However, as the structure views in IDEs, such as Eclipse, show structure only down to the member level, this was not 

necessary. 

29 http://office.microsoft.com [verified 2006-10-02] 

30 It is also possible to implement bridges as separate core and UI plug-ins, for example, if the core plug-in is to be reused in a 

non-UI application. 
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resource structure bridge responsible for understanding file and directory structure (not shown in Figure 

3.2 for the sake of simplicity).  

3.1.2. Mapping to Interaction History 

Bridges should not issue interaction events directly31 , but instead provide the identity and relations 

between elements. The monitoring framework issues interaction events corresponding to the concrete 

domain elements specified by the bridges. For example, when a propagated event needs to be issued for 

the parent of a selected element, the bridge corresponding to the element is asked for the identifier of the 

parent, and the interaction history facility uses the induction operation to issue the event. Since bridges 

can be composed, the induction operation can involve multiple bridges. For example, if a Java method is 

selected, the Java structure bridge provides the class containing the method. When the next propagation 

needs to occur, from the class to the file containing the class, the file structure bridge provides the identity 

of the file. The same is true for predicted events where the relations may be all Java references to a 

particular method. In this case, resolving the relation involves performing a Java search and returning the 

results, which the induction operation then appends to the interaction history.  

To support voluntary use of the tool for daily work on real systems, we needed to ensure that the 

interaction event architecture scaled to large systems without excessive memory or performance 

overhead. Task context grows with the amount of interaction, not with the system size, ensuring 

scalability for large systems. Scalability to large or long-running tasks results from the relatively small 

amount of interaction that users perform in relation to the system size (Section 3.2.4). Since the number of 

propagation events can vary with system size, the number of propagation steps is bounded by an 

exponential drop off which limits the number of events issued from each interaction. The search scopes 

used for prediction are based on context slices and scale with the size of the context. For example, 

whereas a user-driven search through the workspace might include every resource and can be slow to run 

on a large workspace32, a context search can query only the slice of interesting elements (Section 3.3.3). 

                                                      

31 This is not yet strictly enforced by the Context framework to support flexibility and experimentation, but would be beneficial 

to prevent a poorly implemented bridge from issuing an unrepresentative number of interaction events.  

32 Although Eclipse provides rich text indexing facilities, making many searches fast, the size of an enterprise programmer’s 

workspace is still too large for such searches to constantly run in the background on current commodity PCs (e.g., 2GHz CPU 

2GB RAM). 
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3.1.3. Interaction Monitoring 

The Mylar Monitor component provides interaction monitoring. The Mylar Monitor is a separately 

installable component that collects information about a user’s activity in Eclipse. Clients of the monitor 

include the Context UI and user study plug-ins, which can report on Eclipse usage trends [52]. The 

monitor plug-in accepts listeners to different Eclipse events, including preference changes, perspective 

changes, window events, selections, and commands invoked through menus or key bindings and URLs 

viewed through the embedded Eclipse web browser. The InteractionEvent class used by the monitor 

encapsulates direct and indirect interactions. Since the monitor encapsulates the mapping between user 

interaction and the interaction history, consistency between how different kinds of affordances generate 

interaction events is important. Scaling factors are used to determine the bias between different kinds of 

interactions (e.g., bias of edits vs. selections). We have used a single set of scaling factors throughout the 

study versions and latest released version of Mylar 0.7, listed in Table 3.2. We discuss the formulation of 

these scaling factors in Section 5.1.4. 

Table 3.2: Scaling factors used in Mylar implementation 

Factor Value 

selection 1

edit 0.7

decay 0.017

command 0 (ignored)

propagation 1

prediction 1

 

The monitor.ui plug-in supports the transparent capture of these events into a local file and the upload 

of these events to a web server. The uploading mechanism includes functionality to track anonymous IDs 

for users, to obfuscate the handles of targets of selections and other such user data, and to prompt the user 

to view and send the log to a web server. The Monitor also detects and reports when there has been a 

period of inactivity with Eclipse. User study plug-ins that extend the monitor were used for the validation 

of both the Mylar IDE and Mylar Browser applications. To help with the analysis of traces collected with 

the Mylar Monitor, an additional monitor.reports plug-in provides an API to process records for a 

user across one or more interaction histories, enabling the analysis of interaction history data (Section 

5.4.3).  
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3.2 Integration 
Integrating task context into an application requires mechanisms to project the context onto existing data 

structures and UI facilities to present these projections to the user. Together we refer to these mechanisms 

as the task-focused UI. To support task context, the task-focused UI mechanisms must be combined with 

task management facilities that allow a user to indicate on which tasks work is occurring. In addition, a 

mechanism for storing and retrieving contexts is required. These mechanisms, described in the following 

sections, are common to any application supporting task context, including our Mylar IDE and Mylar 

Browser implementations. 

Each of the integration mechanisms relies on one or more of the task context operations described in 

Section 2.3. Projections rely on slices, task-focused UI mechanisms rely on both slices and manipulation, 

and task management mechanisms rely on composition. The Active Search facility, discussed in Section 

3.3.3, uses the prediction mechanism. 

The integration mechanisms also use a categorization of elements and relationships based on their DOI. 

Table 3.3 defines the two thresholds we use to define three categories. Interesting elements (and 

relationships) are all of the elements with a non-zero DOI, meaning all elements (and relationships) that 

have been previously selected and have not decayed to be uninteresting (Section 2.2). Landmark elements 

(and relationships) are elements (and relationships) that are considered very interesting because their DOI 

has passed a threshold. Uninteresting elements (and relationships) have a negative DOI.  

All of the task-focused UI mechanisms that we have implemented rely on fixed thresholds. Later in this 

thesis, we discuss alternative implementations of thresholds, including the possibility of implementing 

adaptive thresholds, which can be combined with filtering and tree expansion management to implement 

features such as the guaranteed visibility [50] of landmarks in a filtered view  (Section 5.5.3). 

Table 3.3: Thresholds used in the Mylar implementation 

Threshold Value 

interesting 0

landmark 30

3.2.1. Task Context Projections 

Task context projections use the task context to decorate an existing data structure (Table 3.4). 

Projections use the DOI values from the task context to display a weighted version of the data structure. 

Projections can be combined with the task context slicing operation if the display mechanism is focused 

on displaying one kind of element or one kind of relation. For example, we project a task context onto a 
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hierarchical view of system structure (the Package Explorer, Figure 1.1) to show only elements with a 

positive interest in the current task context, filtering all uninteresting elements. Similarly, a projection of a 

task context onto a table can be used to sort elements by interest. To integrate projections without needing 

to modify the original data structure, the user interface facilities of the underlying platform must support 

third-party extensions. For example, the Eclipse user interface allows decorators, filters, and sorters to be 

added to any view in Eclipse.  

Table 3.4: Task context projection 

Input Output Description Example 

context,  
data 
structure 

decorated 
data 
structure 

For each element and/or relation 
in the data structure decorate it 
with the interest level 

Show only interesting elements, and 
making the most interesting 
elements bold 

 

Projections can support any view of the structure in the task context. In this chapter, we describe 

projections onto tree and list views. Graphical layouts are also possible and are discussed in Section 5.4.2.  

3.2.2. Task-Focused UI Mechanisms 

Task-focused UI mechanisms (see Table 3.5) integrate task context with the existing UI facilities in an 

application framework. The goal of each mechanism is to focus the UI by projecting the task context onto 

a particular UI facility; for example, ensuring that only the elements within the context are visible in a 

structure view and that the interesting elements are always expanded. In this section, we describe the task-

focused UI mechanisms that we defined for the Eclipse framework. These mechanisms generalize to other 

application frameworks that use similar UI mechanisms33. 

Mylar implements each mechanism listed in Table 3.5, using either the entire task context or a slice of the 

task context as input. For instance, in Mylar IDE, the filtering, sorting, highlighting, text folding, and tree 

expansion management facilities use a slice of all interesting elements as their input. The editor 

management uses a slice of all interesting files. The Eclipse perspective34 management uses a slice of all 

views last visible in the context35. It is not necessary for an implementation to support all of these 

                                                      

33 A key difference between Eclipse and window managers such as Microsoft Windows is that Eclipse uses views, editors, and 

perspectives in place of windows. As such, the “application window” section of Table 3.5 describes mechanisms for managing 

each. The same facilities could also apply to managing windows. 

34 An Eclipse perspective is a layout of structure views and editors that can be changed and later restored. 

35 View opening and closing issues command interaction events. 
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mechanisms. The choice of mechanisms can be tailored to the particular activities supported by the 

implementation. For example, an implementation of task context for a text viewer could use the interest 

decoration mechanism alone to help the user pick out relevant regions of text. 

Table 3.5: Task-focused UI mechanisms for exposing interest 

Target Mechanism Description Applies to 

structure 
views 

Filtering Elements below a certain DOI 
threshold are excluded 

List, tree, or graphical view 

Ranking Elements are ranked or sorted by 
their DOI 

List views, child nodes within 
tree views 

Decoration Foreground or background color 
of elements indicates DOI 

Any view, can be continuous (e.g. 
background gradients) or discrete 
(landmarks are bold) 

expansion 
management 

Tree nodes are automatically 
expanded to correspond to a slice 
of interest 

Text corresponding to 
uninteresting automatically 
elided 

Any tree view (e.g. landmark 
nodes always expanded) 

Any text viewer supporting 
folding 

application 

window 

view 
management 

Automatically apply focusing 
mechanisms to a view on task 
context activation 

Any structure view 

editor 
management 

Editors corresponding to 
uninteresting elements are 
automatically closed 

Any editor listing (e.g., open files 
in an application) 

perspective 
management 

The views associated with a 
context are automatically 
restored on activation 

Any view management facility 
(e.g. Eclipse’s view groupings) 

 

The first four mechanisms listed in Table 3.5 can be applied to any structure view, where a structure view 

is defined as a UI mechanism that displays elements and may additionally display relations between 

elements. For example, the “Focus on Active Task” button that Mylar can add to any structure view in 

Eclipse causes all four of these facilities to be enabled. The filtering causes any element without a positive 

DOI to be removed from the view. The ranking causes items within the view to be ordered according to 

DOI value. Decoration provides a visual representation of DOI level with one or more of foreground 

color, background color, font, textual annotations and iconography. Expansion management causes the 

nodes in a view with nesting, such as a tree, to be automatically expanded according to some task context 

slice. For example, Mylar’s extension to the Package Explorer has a mode where it keeps all of the 
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interesting elements expanded. The text folding mechanism is analogous to the tree expansion 

management but works for text editors that support folding (Section 3.3.1).  

The three application window management mechanisms listed in Table 3.5 enable the views and editors 

visible in the application window to match those relevant to the context. When a task is activated, Mylar 

automatically opens all of the views that were last used when the task was active (perspective 

management), opens editors for all interesting elements (editor management) and applies the view 

focusing mechanisms to each view (view management)36. As the user works with editors, other editors for 

elements that have sufficiently decayed in interest are automatically closed. When a task is deactivated, 

all editors are closed and views are returned to their original configuration. The goal of each of these 

mechanisms is to focus the application on showing the task context, without requiring manual effort from 

the user.  

3.2.3. Task Management 

To properly associate task contexts with tasks, we required a means for a user to specify which tasks are 

being worked on and when that work occurs. The goal of this integration is to ensure that users work with 

tasks within the monitored application, such as Eclipse and Mylar, where their interaction is monitored 

and contributed to the task context. We implemented the Tasks UI to support task management for 

Eclipse. This UI supports both programmers working with bug reports, and personal tasks used by both 

programmers and other kinds of knowledge workers.  

The Tasks UI includes the Task List view, shown in Figure 3.3. This view allows users to create, 

organize, edit and share the tasks on which they work. The Task List allows tasks to be created, and their 

description, priority, personal notes and scheduling information to be edited. Tasks worked on previously 

can be recalled either by browsing or querying their description or other attribute such as completion date. 

Since teams often use a shared repository for tasks, the Task List connects to various task repositories, 

which support the sharing of tasks. For example, for programmers, Mylar 0.7 integrates tasks stored in the 

Bugzilla, Trac, and JIRA37 web-based repositories. These are used by programmers for working with bug 

reports and feature enhancements. To enable monitoring of all of a user’s interaction with tasks, Mylar’s 

task management support allows the properties and comment threads on tasks to be edited directly from 

within Eclipse. This facility ensures that when a programmer works with a bug report all interactions are 

monitored, such as interactions between the structure of the system and the task (e.g., navigating a link 

                                                      

36  The view management and perspective management mechanisms were added after the Mylar 0.3 release used for the 

programmer field study (Section 4). All mechanisms were available in Mylar 0.5. 

37 http://www.atlassian.com/software/jira [verified 2006-10-02] 
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from an exception stack trace in a bug report to the corresponding Java element). Tasks can be organized 

via categories, or by using queries over a shared repository. In Figure 3.3, the queries and repository tasks 

are identified by the small blue server image that is overlays the bottom of their icon. 

To support task context, the implementation’s task management needs to enable a mechanism for the user 

to indicate which task is currently active. We use a “radio button” style toggle for this indicator (Figure 

3.3, task with bold font38). This task management integration indicates to the task context model which 

interaction history events to associate with which task. If more than one task is activated, the composition 

operation associates the interaction events with each task that is active. Task activation can be streamlined 

further; for example, the opening of a task can automatically trigger the activation39. 

For the purpose of our validation, the task management facilities had to be of sufficient fidelity for 

participants to use them for their daily task management. Additional details of the task management that 

we implemented are available in the Mylar user documentation [36]. Monitoring interactions with the 

tasks themselves allows the task activity context (Section 2.4) to be used for focusing the Task List to 

reduce information overload when working with large numbers of tasks (Section 5.5.6).  

 

Figure 3.3: Task management facilities for activating and editing tasks 

                                                      

38 Categories and queries are also decorated bold when they contain a task that is active.  

39 This is a user-configurable option in our implementation, turned off by default in order to match the expectation task opening 

with that of file opening. 
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3.2.4. Interaction History Storage 

A storage mechanism is required to enable persistence and recall of task contexts. Since the interaction 

history particular to each task encapsulates all of the information that is needed to derive the task context, 

the task context model itself is not persisted. Instead, when a task is re-activated, the corresponding 

interaction history stream, stored as an XML file, is re-processed. We also store a single XML file of the 

same form for the task activity context. In memory, we maintain the meta-context and a single composite 

context that allows any number of task contexts to be loaded concurrently. As the user works, interaction 

events are appended to the corresponding event stream, which is periodically externalized as an XML file. 

If more than one context is active, the interaction events are distributed equally among the streams 

(Section 5.1.1). The approach of storing only the interaction insulates the storage mechanism from the 

implementation, algorithm, and processing method. It provides flexibility for operations on task context, 

as discussed in Section 2.3.  

Early benchmarks indicated interaction history file sizes of 1-10MB for a full workday of interaction. 

However, given our field study data we estimate that programmers working full time should generate only 

around 1MB of interaction history information per month. The difference comes from the large 

redundancy in interaction histories that result from repeated interaction with the same elements. To 

address this redundancy, Mylar’s persistence support can collapse the interaction history for any context. 

Collapse can be lossless if it uses run-length encoding, or lossy if it produces aggregate events for all 

interactions of one kind with a single element. On average, the latter reduces file sizes by ten times. Our 

remaining size differential comes from storing interaction histories as XML text files, and text 

compression yields another ten times file size reduction. As an example, the largest of the 1,166 task 

context files in the author’s task context store is 204KB. The result is that even though a large amount of 

interaction may need to be read for very long-running tasks, the performance of activating a task is 

dominated by the time that it takes Eclipse to open editors, not the time that it takes to load the context. 

3.3 Mylar IDE Implementation  
To support investigations into the effect that an explicit task context has on programmer productivity, we 

needed a high-fidelity integration of task context with an IDE. Mylar IDE implements the task context 

model for the Eclipse IDE, enabling programmers to work in a task-focused way in every commonly 

used40 part of the Eclipse IDE. We provide a thorough description of all Mylar IDE features in the 0.7 and 

                                                      

40 We report Eclipse usage statistics elsewhere [52]. These results are unrelated to this thesis, but provide data that indicates the 

most commonly used parts of the Eclipse IDE. 
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later versions elsewhere [36] [37]. In this section we describe how we integrated the task-focused UI 

mechanism with the Eclipse IDE and overview the features that were present in the Mylar 0.3 field study 

release41 (Section 4).  

3.3.1. Task-focused UI for Programming 

To focus the IDE’s user interface on the elements relevant to completing the programming task, we 

project the task context onto the IDE’s structure views. Decoration is supported by every structure view 

that shows Java elements. Interest filtering is supported by the Eclipse IDE’s Package Explorer, Project 

Explorer, Navigator, Document Outline, Debug, Search, Members, Types, Problems, and Tasks views. 

Focusing these views involves adding DOI-based decoration, filtering, automatic expansion, ranking, 

folding, and editor management (Table 3.5).  

When browsing, editing, or debugging Java programs, Mylar IDE decorates elements in any currently 

active task context with their interest level. This decoration is visible in the Search view (Figure 3.4 

bottom right) where the gray elements are uninteresting, black elements are those with a direct interest, 

and bold elements are landmarks. This decoration scheme indicates the DOI of elements consistently 

regardless of the view in which they are displayed. 

Filtering has the effect of removing the uninteresting elements from view and works consistently for 

views that show the elements directly, such as the Package Explorer (Figure 3.4 top-left), and those that 

show proxies for the elements, as in execution stacks in the Debug view (Figure 3.4 top right). Filtering is 

toggled using the right-most “Focus on Active Task” button visible as the rightmost icon on the toolbars 

of those views. 

                                                      

41 Mylar 0.1, described in Section 4.2, provided only task-focused UI mechanisms and no explicit support for tasks. Although it 

was available with Mylar 0.3, we do not describe the working set management integration here. Working sets are user-defined 

groups of files, folders, and project. The facility was not used either due to a cumbersome UI or to the fact that Mylar already 

provides a lighter-weight version of working sets. Its role was to define a scope based on interest in a way that integrates with 

Eclipse’s working set management. Conceptually this is identical to the change set management integration described in 

Section 3.3.5. 
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Figure 3.4: Decoration, filtering and ranking of Java elements 

Interest filtering and decoration work for all of the Eclipse IDE views that are used to navigate system 

structure, not only for views that show Java elements. If a view shows a file, such as the Project Explorer, 

interest filtering works whether the file is structured and has contents for which a structure bridge is 

registered, or whether the file is unstructured, as in the case of the “refresh.gif” image file (Figure 3.5 top 

left). For structured files, the Outline view, which provides a structural view of the file being edited, 

filters all uninteresting XML elements from the build.xml file (Figure 3.5 bottom left). The Problems and 

Tasks views, which show static checker or annotation-determined items in a list (Figure 3.5 bottom right) 

can also be filtered to show only the items relevant to the task context.  
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Figure 3.5: Decoration, filtering and ranking of various program artifacts 

Tree views support the automatic expansion mechanism. For example, when interest filtering is on, the 

Package Explorer always has all of its nodes expanded to avoid the user needing to repeatedly expand and 

collapse nodes. Auto expansion is always enabled when the view is filtered, meaning that the user cannot 

manually collapse the tree. Removing this ability from the user is acceptable because decay ensures that 

interest-filtered views do not show a scrollbar when working on a typical task and when used on a 

sufficiently large display (e.g., 1000 pixels tall and higher). 

The task-focused UI mechanism that corresponds to filtering and automatic expansion for editors is 

automatic DOI-based text editor folding. For example, when editing Java code, Mylar makes task context 

explicit by automatically unfolding the interesting elements and folding all uninteresting elements (Figure 

3.6). 
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Figure 3.6: Automatic folding and content assist ranking in Java editor 

Interest ranking can be applied to any list that orders elements by sorting the view on the DOI values of 

elements and relations. Many views in the IDE also provide their own ranking. To separate task context 

ranking visually from other rankings, such as those based on structural heuristics, we insert a separator. 

For example, Eclipse’s content assist provides a ranking of suggested completions in the editor based on 

Java heuristics. Mylar projects DOI values onto that ranking, adds a separator and moves the elements 

that are in the slice of all interesting elements to the top of the list above the separator. The elements 

above the separator are in DOI sorted order (Figure 3.6). The elements below the separator remain in the 

order of the existing structural heuristics (e.g., Java scoping rules). 

To support the editor management mechanism, when a task is activated, the focusing mechanisms are 

applied automatically to every view, open editors are closed and all of the editors for the interest files in 

context are opened. Elements that decay out of the slice of all interesting elements have their editors 

automatically closed as the programmer works. When a task is deactivated, all editors are closed. 

3.3.2. Inducing Interest  

The induction operation allows Mylar IDE to display elements that have not yet been interacted with in a 

view. For example, when a method is selected in a filtered view, propagation events cause each parent of 

the method to become interesting so that all of the parents, up to the project containing the method, show 

in the view. Another propagation that we support is the interest of errors. For example, if the programmer 

is working on a class, “Foo”, and accidentally changes the name of the class to “Fooo”, all of the classes 
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that use it will break. To make the programmer aware of this, interest propagates to each of the references 

to the class, causing it to appear in the view (Figure 3.7). Only elements with a direct interest are 

decorated with a black text font. Since the programmer has never directly interacted with any of the other 

elements, such as “baz” or “Jazz.java”, these elements appear in gray.  

 

Figure 3.7: Propagated interest of errors in the Package Explorer 

Another instance of interest propagation is made visible by the Active Hierarchy view (Figure 3.8). This 

view projects a slice that includes all Java classes with a DOI exceeding the landmark threshold, as well 

as the superclasses of those classes. This induction is similar to the propagation that occurs when a file is 

selected, but propagates along the inheritance hierarchy instead of the containment hierarchy.  

 

Figure 3.8: Propagated interest of superclasses in the Active Hierarchy view 

3.3.3. Active Search 

The Active Search facility uses the induction operation to compute the predicted interest of elements and 

relations, thereby expanding the task context. The input for Active Search is a slice of the active task 

context for elements with a DOI value over the landmark threshold. The scopes that Active Search uses 

are slices of the task context model; in the UI we refer to the different kinds of scopes as degrees-of-

separation. This term is indicative of the distance from the highest interest elements. We define degrees-
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of-separation by both the DOI level and by the containment relations. As a context grows, lowering the 

degree of separation is akin to tightening the search scope to decrease the number of results. To focus 

results, the Active Search view42 uses the same ranking and decoration mechanism as the other views. 

Figure 3.9 shows the degree-of-separation scopes supported by Mylar IDE, each of which corresponds to 

a slice of the active task context. 

1) Landmark elements: the most interesting elements 

2) Interesting elements: all elements above the interesting threshold 

3) Interesting files: all interesting files (often interesting via propagation) 

4) Interesting projects: all interesting projects (usually via propagation) 

5) Interesting dependencies: all interesting project dependencies (usually via propagation) 

 

Figure 3.9: Degrees-of-separation for Active Search 

The Active Search view shown in Figure 3.10 displays a projection of all landmark elements and their 

relations to elements that are interesting, whether the interest of those elements results purely from 

prediction or from direct interaction. When configuring a view to take a particular projection of the task 

context model, an important decision is whether or not the corresponding slice should include elements of 

predicted interest. As these can be high in number, we do not show elements with predicted interest in the 

                                                      

42 Active Search is a facility that provides the induction operation to propagate predicted interest. However, unlike all the other 

operations we describe, which always run whenever a task is active, neither the Active Search nor the Active Hierarchy 

operations are enabled unless the corresponding view is active. Although the memory and performance overhead of these 

features is minimal, we wanted to ensure that they could be turned off on very slow machines or in the case where users 

encountered bugs. 
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standard Eclipse views, only those with direct or propagated interest. The Active Search view is the only 

exception as it displays a slice that includes elements with predicted interest. 

 

Figure 3.10: Elements and relations with predicted interest in the Active Search view 

3.3.4. Context Test Suite 

Eclipse provides an integrated JUnit43 facility, used for running unit test suites. A unit test is defined by 

being a subclass of junit.framework.TestCase. When using Eclipse, the programmer will 

specify a test suite or collection of test suites to run. On a large system, such collections can involve a 

large number of slow-running tests. The context test suite uses a slice that gathers all subtypes of 

junit.framework.TestCase in the task context. Since elements of a predicted interest are part of 

the context, this includes all test cases interacted with directly and those that have a predicted interest 

because they are structurally related to elements with positive DOI. For example, when editing a method, 

the method can become a landmark, which causes the Active Search facility to find all unit tests for that 

method; these tests become a part of the task context. Running the context test suite is identical to running 

a regular test suite (Figure 3.11), but does not require the programmer to indicate which test types should 

be run.  

                                                      

43 http://www.junit.org [verified 2006-10-02] 
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Figure 3.11: Automatic context test suite 

3.3.5. Context Change Sets  

In Eclipse and other IDEs, change sets are groupings of outgoing or incoming revisions to files. A 

programmer can set up change sets manually to perform revision operations (e.g., commits, updates) on 

parts of the system rather than on the whole system. Mylar IDE’s automatic change set management 

creates a change set for each activated task and populates that change set automatically with a slice 

corresponding to all of the files modified as part of the activity associated with the task. These slices 

differ from other slices presented by the task-focused UI because they ignore decay and because they 

persist when a task is no longer active. For example, if outgoing changes remain when the programmer 

switches to a new task, the previous task’s context change set will continue to contain the outgoing 

changes until they are committed (Figure 3.12 left). This support enables the programmer to switch 

between multiple tasks without committing the code modified as part of the current task before switching 

to another. As with other facilities that are automated by task context, the change set management 

removes the burden of manual change set creation from the programmer. The explicit association between 

change sets and tasks also supports automatic commit messages, which can then be used to navigate back 

to a task from a commit of the context change set, as visible in the History view (Figure 3.12 right).  
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Figure 3.12: Automatic context change sets 

3.4 Mylar Browser Implementation 
 To validate task context for the more generic knowledge work domain, we needed an implementation of 

Mylar that supported the resources commonly accessed by knowledge workers: files and web pages. 

Email is another medium used by knowledge workers for defining work items, and approaches such 

Taskmaster [5] have demonstrated that tasks can be made a more primary part of the email inbox. In order 

to make tasks the central mechanism for interaction, our approach is to enable collaborations around tasks 

and task context via the Task List (Section 5.3) rather than integrating task management into existing 

tools such as email readers.  

Unlike Mylar IDE, which is integrated with the Eclipse IDE, the Mylar Browser is a standalone 

application composed of the parts of the Eclipse platform that support working with files and Eclipse’s 

embedded web browser. We created a new view, called Resources, which supports the display of files, 

folders and web site URLs44. The task management and task-focused UI features were identical to those 

of the Mylar IDE. Unlike the Mylar IDE, which provides additional task context integration facilities such 

as change set management, the Mylar Browser is a simpler application that provides only task-focused UI 

integration. The task context model, operations, scaling factors, and thresholds, and all other parts of the 

Mylar frameworks were unchanged in Mylar Browser. 

                                                      

44 The Mylar Browser is an Eclipse Rich Client Application that uses the file management features from the Eclipse Platform, but 

excludes any programmer-specific features: http://eclipse.org/rcp [verified 2006-10-02] 
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The key difference in the integration of task context with a browsing tool is the difference in the structure 

of information that knowledge workers view and create. A program has an explicit primary structure. The 

task context model in Mylar IDE is aware of interaction with the program’s explicit primary structure 

down to the commonly used and fine-grained member level of granularity45. In contrast, the documents 

that knowledge workers use often have a less apparent structure.  

3.4.1. Navigation Support for Files and Web Resources 

To support users navigating with files and web resources, we created a Resources view (Figure 3.13). 

This view allows the user to link in any folder from their file system or from a network drive (e.g., the 

“My Documents” folder). Each folder linked is a root node in the tree. By default, the tree is in focused 

mode, showing only interesting resources in the current task context. An additional root node called “Web 

Context” contains all of the web pages in the task context. 

3.4.2. Capturing Interaction with Files 

Knowledge workers browse and edit a variety of files. Some of these have a well-defined structure that is 

understood by Mylar (e.g., XML documents); others have a structure, but the structure is not understood 

by Mylar Browser (e.g., Microsoft Word documents with sections); and finally some do not have a well-

defined structure all (e.g., images). Mylar Browser monitors selections down to the file level of 

granularity. The more a file is selected the more interesting it becomes (i.e., toggling between two visible 

editors will increase interest identically to how it would when toggling between elements visible in a 

structure view in Mylar IDE). Mylar Browser also understands directory structure, and propagates interest 

to directories containing the file when a file is selected. If an Eclipse-based editor is available for the file, 

selections in the editor are also captured. If the Eclipse-based editor supports modifying the resource, and 

Mylar supports the editor, edit interaction events are also captured.  

Since many of the documents that knowledge workers edit are Microsoft Office based and not Eclipse 

based, we needed to ensure that interaction with these editors was monitored sufficiently. To support this 

requirement, we relied on the SWT 46  toolkit’s ability to embed Microsoft Office documents. 

Implementing a structure bridge specific to the contents within Microsoft Office or other semi-structured 

documents is technically possible and would result in additional selection and edit events for parts of a 

                                                      

45 For Java, this is members such as classes and methods, for XML it is elements. The same level of granularity is commonly 

shown in IDEs’ structure views. 

46 http://eclipse.org/swt [verified 2006-10-02] 
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document, such as outline section headings. We did not implement this bridge as we did not require this 

level of support for our validation of the Mylar Browser (Section 4.4).  

Figure 3.13 shows the author’s workspace with the Mylar Browser when working on this dissertation. 

The Task List is identical to that of Mylar IDE and shows both shared tasks (those with ‘incoming 

arrows’) and personal tasks, such as “book FSE trip”. The editor pane shows an embedded Microsoft 

Excel document and the Resources view shows the files and pages that are part of the task context.  

 

Figure 3.13: Mylar Browser showing Task List and embedded Excel document 

3.4.3. Capturing Interaction with Web Resources 

To support interaction with web resources, we needed a mechanism for monitoring web browsing 

activity. To maintain a similar level of granularity to file navigation, we chose the URL47 as the element 

of interaction. The monitor was extended to capture successful retrieval of URL contents for any click 

                                                      

47 http://www.w3.org/Addressing/URL/Overview.html  [verified 2006-10-02] 



55 

made within the browser embedded within Eclipse (Internet Explorer on Windows 48  or Mozilla on 

Linux49). The only structural relations that we infer form URLs is the web site from which the relation 

originates. The result is that the task context capture and display used for web documents looks and feels 

consistent to that used for files.  

Unlike its abstractions for working with resources such as files, the Eclipse Platform provides no support 

for handling or displaying web documents. In this respect, the integration of web resources differs from 

other kinds of files: when a task context is active, the Resources view shows all of the web resources in 

the context. When a task context is not active, no web resources can be shown because they only exist in 

the context50 (i.e., are stored in the interaction history).  

3.5 Implementation Summary 
The primary goal of our implementation was to support the study of how the task context model supports 

programmers and other kinds of knowledge workers. We implemented a generic task-focused UI and task 

management facilities to support both kinds of users. We integrated Mylar IDE deeply with almost every 

part of the Eclipse IDE, to ensure that the entire user experience when programming with Eclipse could 

be re-focused around task context. This involved using each of the operations defined in Section 2.3. We 

then extracted the parts of Mylar IDE that were generic to working with files, added support for web 

browsing, and, without altering any of the task context model or task-focused UI, created the Mylar 

Browser. In the next chapter, we discuss the validation of task context via field studies performed on 

these two applications. 

                                                      

48 http://microsoft.com/windows/ie [verified 2006-10-02] 

49 http://mozilla.org and http://linux.org [verified 2006-10-02] 

50 An alternative approach would have been to store all of the web navigation history in the user’s workspace, and then to use a 

filtering mechanism similar to files. This kind of global persistence of web navigation information was beyond our validation 

needs. However, we did have to implement a cache for all page titles in order to ensure that context activation did not require 

waiting for frequent round-trips to the server.  
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4. Validation 

To validate our thesis, we needed to test how the use of task context impacts the productivity of 

programmers and to test whether the task context model generalizes to other kinds of knowledge work. In 

this section, we describe two field studies we performed of programmers using task context for working 

on well-structured software systems and a third field study that involved a more generic class of 

knowledge workers using task context for a broader set of less structured artifacts.  

Our first field study was a preliminary feasibility test of task context involving the Mylar 0.1 prototype, 

which added the task-focused UI and a single task context model to the Eclipse IDE. This study involved 

six professional programmers at IBM who were willing to try Mylar 0.1 for one week [39]. The data from 

this study showed that programmers voluntarily used and liked Mylar 0.1 (Section 4.2). In addition to 

gathering qualitative data, we also measured the impact that Mylar 0.1 had on the IBM programmers’ 

productivity. To measure the effect on productivity, we devised a simple metric called edit ratio, the 

proportion of edits over selections. Although the number of subjects was too small to yield statistical 

significance, the usage data from the IBM study indicated a promising average increase in the edit ratio of 

the participants (Section 4.2.4). The study results also indicated that task management and a better 

integration of task context with Eclipse was required for the programmers to use Mylar on an ongoing 

basis. 

Our second field study of programmers involved the use of Mylar 0.3. This version of Mylar supported 

task context for multiple tasks, provided a view for switching between tasks, and integrated a Bugzilla 

client to support programmers using Bugzilla repositories for their task management. To recruit study 

subjects we presented a preview version, Mylar 0.2, at the EclipseCon 2005 conference51. We then 

released a standalone Mylar Monitor (i.e., no Mylar UI components) to the 99 programmers who signed 

up for our study following EclipseCon. We measured the edit ratio of the programmers in the study 

during approximately two weeks of full-time programming. After they passed a pre-determined threshold 

of activity, we allowed programmers to install Mylar 0.3. We required approximately three weeks of full-

time programming with Mylar to accept their usage data in the study (Section 4.4.2). At the end of the 

study, we had sixteen accepted subjects. Our analysis of this usage data showed a statistically significant 

improvement in the edit ratio of these subjects (Section 4.3.3). 

                                                      

51 http://eclipse.org/mylar/publications.php [verified 2006-10-02] 
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The first two studies tested the task context model on programmers working with software systems, 

which have a clear and explicit structure. To test whether task context supports other kinds of knowledge 

workers who interact with less structured information, we deployed a field study of the Mylar Browser, 

which supports task contexts for file and web browsing activities. The Mylar Browser uses the same task 

context model, algorithms, and task-focused UI facilities, but does not include programmer-specific 

features. The study involved eight participants with a broader range of professions. All of the participants 

used Microsoft Windows, Microsoft Office and web browsers for their knowledge work activities. We 

asked them to try to use the Mylar Browser to work with these applications. The results of the third study 

demonstrate that the task context model generalizes to supporting file and web browsing activities 

(Section 4.4). The usage data indicates that when used for file and web browsing the task context tends to 

represent a small subset of information from the large set of information available on shared document 

repositories and on the internet. We conclude that our interaction-based frequency and recency based 

weighting was effective at showing the relevant information to knowledge workers authoring and 

browsing documents and web pages. We also found that a key component of our approach for these 

works is the decay mechanism that prevents views of task context from becoming overloaded. 

4.1 Methodology 
We chose to validate the task context model through field studies because validating the claims made 

about this model required observing the effects of the model on the performance of knowledge work. 

Knowledge work typically occurs in a demand and deadline-driven, collaborative, and multi-tasking 

environment [26]. We did not believe that we could reproduce this environment with sufficient fidelity 

with time-constrained and mocked-up laboratory studies. In addition, we did not have evidence that the 

inherently non-expert student subjects who were available to us for longer-running laboratory 

experiments would provide a sufficient approximation of experts working in the field. Finally, we wanted 

to ensure that we tested the effects of subjects’ voluntary use of task context for daily work over the 

course of many days and weeks, not just over the time-constrained period of a laboratory study. As a 

result, the field studies on which we report involve monitoring subjects in their own work environment. 

The monitoring facilities we designed and used allowed us to interpret the activity of the workers without 

affecting their work process and without requiring them to send company-private information52.  

For each of the three studies described in the following sections we describe the methodology used (in the 

Method and Study Framework section for each study). We also describe any shortcomings or factors that 

could affect the validity or accuracy of our results (in the Threats section for each study).  

                                                      

52 The Mylar Monitor uses a one-way hash function to obfuscate the handle identifiers of elements. 
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4.2 Study I: Programmer Feasibility Study 
Our first study sought to gather data about how programmers might use task context and whether 

programmers liked working with an explicit task context.  

4.2.1. Subjects 

The participants in our study were six senior IBM Toronto Lab programmers working in Eclipse 3.0 on 

projects involving WebSphere53, XDE54 and Eclipse plug-ins. We also involved a summer intern for the 

purpose of having a more interruptible subject who could test any patches and releases made during the 

study. We did not include the intern’s data in the results we report; the results presented are for the six 

experienced professional developers. Before the study, subjects were given a questionnaire asking about 

their experiences and problems using Eclipse (Appendix A). The problems cited included a dislike of the 

way in which editors and files were handled, and overpopulation of tree views, such as the Package 

Explorer. Table 4.1 lists the answers that the subjects had to the question of “gripes that you have with 

Eclipse’s current support for your navigation needs”. The responses of subjects 1, 2, 4 and 5 are indicative 

of the problem of information overload and the need to scope down the amount of information presented.  

Table 4.1: Subject comments related to information overload in Eclipse 

Subject Answer 

1 “I wish the content in the navigator view and the package explorer view can 
be more condensed, e.g. reducing the vertical spaces between each package. 
So that the more [sic] information can be displayed in a view with the same 
size.” 

2 “I like to collapse the tree that I have finished looking at and only expand 
those that I need at the moment.  It may be complicated if I have many Java 
projects in the workspace…. User has to filter out unwanted files 
explicitly.” 

3 “I am a simple user, does not like fancy stuff. just basic functions are fine 
with me.” 

4 “Extremely slow. For instance, unfolding or folding the tree . Navigating 
between open editors using keyboard. Do quick fix using keyboard so that I 
don’t have to change to different views” 

                                                      

53 http://www.ibm.com/software/info1/websphere [verified 2006-10-02] 

54 http://www.ibm.com/software/awdtools/developer/rosexde [verified 2006-10-02] 
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5 “I would like to have a blank view which I could drag files and bookmarks 
onto which would serve as a navigator. That way I don't have too be 
confined to packages, projects, etc… I don’t like managing the expansion 
state of trees” 

6 “Sorry, none off the top of my head.” 

 

4.2.2. Method and Study Framework 

We used a diary study format  to gather feedback from the subjects [57]. The programmers were asked to 

use the Mylar 0.1 prototype and to provide daily qualitative reports about their experiences. The study 

required that programmers work with plain Java code since Mylar 0.1 only provided a structure bridge for 

Java. We augmented the diary study format with the Mylar Monitor’s quantitative measurement by 

recording the programmers’ activity. 

For the duration of the study, a researcher was co-located with all but one participant. However, to 

minimize the time taken from the participants, support and interaction over the week was kept to a 

minimum and was provided through email. During the five-day study, the programmers used a 

configuration of Eclipse 3.1 that included the Mylar Package Explorer, Outline, and Problems List. 

Programmers were given the suggestion to try, but were not forced, to use the Mylar views. To support 

our goal of producing an intuitive user interface that exposed DOI, without diverging too much from the 

feel of Java views or requiring too much time from the subjects, we provided no training and only 

required the programmers to read a single page of documentation. 

Before the week of the study, we collected baseline data about the programmers’ Eclipse usage, logging 

their edits and selections as they worked, and capturing summary data. The total amount of time that 

Eclipse was active on the programmers’ machines was 25.45 hours for the three days of baseline 

monitoring. The Mylar Monitor provides a monitoring framework that reports some low-level summary 

statistics (e.g., Figure 4.1 right side) as well as exporting this usage from the programmers’ desktop. The 

Monitor also exports this information to a log file. An additional view also allowed us to inspect the 

subjects’ single task context model during the exit interviews (e.g., Figure 4.1 left side). 
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Figure 4.1: Ranking of elements, usage statistics 

This study was performed using Mylar 0.1. The most notable differences between this early version of 

Mylar and later versions are that it supported only one task that was always active and that it did not 

provide task management support. In addition, the task-focused UI provided replicas of the Eclipse views 

rather than integrating with the existing Eclipse views and did not allow the highlighting scheme to be 

turned off. Figure 4.2 depicts how Mylar 0.1 presented task context for each of the three views visible in 

Eclipse’s default Java perspective. The highlighting scheme used color to decorate elements with interest 

level, with deeper hue indicating a higher DOI55. Since Eclipse already uses highlighting to indicate the 

currently selected element, Mylar 0.1 used bold font to indicate the currently selected element. There are 

several items to note in Figure 4.2. 

1) Mylar Package Explorer: Interest-based filtering is enabled, resulting in only the files and libraries 

relevant to the task being displayed. The number of filtered elements is indicated on the parent label. For 

example, the org.apache.wsif package in Figure 4.2 shows eight interesting files of the fourteen 

files in that package. The filtering mode reduces the need to manually expand and scroll the tree by 

                                                      

55 The color and icon scheme metaphor in Mylar 0.1 was that of a bathygraphic map, one of the original inspirations for the task 

context model, where uninteresting elements were ‘sunk underwater’.  
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actively maintaining the visibility of high-interest elements; this helps keep hierarchical relationships 

visible, such as the package structure. A highlight-only mode can be toggled in which no elements are 

filtered and items of interest stand out through highlighting. 

2) Mylar Problems List: Problems of interest are highlighted to stand out from the large number of items 

typically populating this view. This view is populated identically to the JDT problems list, but 

corresponding program elements are additionally displayed and used to highlight the DOI of the problem. 

Mylar 0.1 did not provide filtering in this view. 

3) Mylar Outline: Interest filtering and highlighting shows only the members related to the task. The 

Mylar editor has an option to actively fold and unfold elements according to interest, reflecting the 

filtering state of the Mylar Outline.  

 

Figure 4.2: Mylar 0.1, used for IBM study 

4.2.3. Results: Usage statistics 

The study ran for five business days. During the study, we logged a total 56.99 hours of Eclipse usage 

across subjects. At the end of each day, we asked the subjects to send their usage data and answers to a 
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one-page survey of their day’s experiences. At the end of the week, we conducted half-hour wrap-up 

interviews in person with each of the subjects.  
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Figure 4.3: Mylar view vs. standard Eclipse view selections across subjects 

For all but the Outline view, when a Mylar view was available as a replacement for a plain Eclipse view, 

the programmers used the Mylar view more than the plain Eclipse view (Figure 4.3). The view used most 

by the programmers was the Mylar Package Explorer, which is consistent with the baseline ratio of view 

usage where the participants used the regular Package Explorer most. The reason for the Outline’s lower 

use is that the most active programmer, who contributed to 80% of that statistic, had not read the page of 

documentation and had not enabled the Mylar Outline view (enabling this view was the only 

configuration required of the study subjects). Once enabled, the subject used the Mylar Outline almost 

exclusively. The complete usage statistics for the week using Mylar are visible in Figure 4.3. Note that the 

“editor” selections are the result of following references and links in the Java editor and are independent 

of the Mylar views. The “other” selections are dominated by use of the Type Hierarchy view. 

4.2.4. Results: Edit Ratio Change 

To measure any effects that an explicit task context could have on the subjects’ productivity we defined 

the edit ratio measure. The edit ratio is the number of keystrokes in the editor over the number of 

structured selections made in the editor and views. We hypothesized that if the elements relevant to a task 

are visible and highlighted in the IDE views, programmers should spend less time trying to find those 

elements and more time working on their task. The improvement we observed in edit ratio between the 

baseline usage data and the Mylar usage data was encouraging. Finding a meaningful statistic of this ratio 

was challenging not only due to the small sample size, but also due to the short duration of the study. 

From the daily diary responses, we learned that several subjects switched tasks between the baseline week 
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and the study week (e.g., one stopped developing code and moved to a debugging stage). A similar factor 

was a change in the amount of time of active Eclipse development between the baseline and Mylar week 

(e.g., two programmers spent less than one half-hour in Eclipse during the baseline week). Although the 

sample size in this study was too small to yield any conclusive results, the 15% average edit ratio 

improvement across subjects was promising. Also, the single most active subject, who actively worked in 

Eclipse for nineteen hours during the week and accounted for 40% of the activity across both weeks, 

reported that she worked on similar tasks both weeks. Her edit ratio improved by 49%. During the wrap-

up interview, we asked the subjects if the significant increase in the edit ratio was consistent with their 

impressions. All of the subjects agreed, stating that they did not need to navigate or search for elements as 

much as they did with the plain Eclipse views. 

4.2.5. Results: Model Feedback 

All of the subjects reported that the task context model accurately represented the information relevant to 

their work. During the wrap-up interviews, we showed them the hidden DOI Model view (Figure 4.1) and 

asked how closely the ranking matched their work over the week. All reported that it closely represented 

the parts of the system on which they had worked. We had built this view for internal debugging and 

inspection purposes. Some programmers were surprised by the accuracy of this view and expressed 

interest in using it for their programming activity. 

Most of the subjects stated that the predictability of the model was important to them; for instance, they 

knew that clicking on a method in the editor would make it appear in the filtered Outline view. The key 

shortcoming reported was the inability of the model to understand task switching. For example, the 

subjects complained that to start on a new bug report they would have to clear the model, even though 

that model may be needed again.  

Two subjects asked for a “silent activity” mode in which usage would not be recorded when the current 

task diverged momentarily. They wanted Mylar to better support debugging activity, which overpopulated 

the model (e.g., single-stepping caused too many irrelevant elements to become interesting). 

Overpopulation was also reported when code not relevant to the current task was accidentally explored; 

the UI for manually reducing interest was not intuitive enough for some of the programmers. From our 

own early use, we knew that the stability of the DOI function could be a problem, causing the DOI of 

interesting elements to fall too quickly. As a result, we decided on an overly conservative tuning that lead 

to the overpopulation.  



64 

4.2.6. Results: View Feedback 

Although all of the subjects liked the task context model that the task-focused UI views exposed, there 

was a mixed response to the highlighting scheme: three programmers liked it, one felt neutral, and two 

programmers found it visually loud and disliked the intensity of the color added to the views. For the 

purpose of consistency, the programmers could change neither the color used in the highlighting nor the 

text annotations on the elements.  

The Mylar Package Explorer view was liked the most. Subjects found the automatic filtering and auto-

expansion mode in the Package Explorer useful because it drastically reduced the amount of scrolling and 

inspection they needed to do. Some liked the auto-expansion idea but found that the UI interaction 

differed too much from a typical tree view. As one example, users could not collapse nodes containing 

children of high interest since the collapse function was not mapped to an interest operation on the model. 

Contrary to our intuition, most of the programmers were not interested in seeing the annotation of how 

many elements were filtered, and explained that they were used to elements missing from the Package 

Explorer since they regularly used structure-based filtering mechanisms.  

The Mylar Problems List was also liked, which was surprising because in the baseline study only five 

Problems List selections were made over all of the programmers. The subjects reported that the interest 

highlighting helped with the overpopulation of the list and some asked for interest-based sorting of that 

list.  

The persistence of the model was liked by all the subjects because when they restarted Eclipse after a long 

break, the last working context was retained. The most commonly asked for feature was a Mylar version 

of the Type Hierarchy view and the Content Assist popup view. All of the programmers expressed 

interest in using future releases of Mylar56.  

4.2.7. Threats 

One key threat to the results of this study is the short amount of time that the programmers used the tool. 

For example, a subject may have worked on only one particular task for the duration of the week, such as 

testing a feature. In such a case, we would not have observed a sufficient amount of that programmer’s 

activity to determine the effect on the programmer’s productivity. To mitigate this risk, we asked the 

programmers about the kinds of tasks on which they worked each day and found that most worked on 

                                                      

56 Since we wanted to focus development effort on incorporating study results and not on supporting the Mylar 0.1 release, we 

asked the subjects to uninstall the tool at the end of the week. The following week we were forwarded an email stating that one of 

the programmers found the tool too useful to uninstall and continued to use it. 
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various tasks. A related threat is that, for the period of one week, the programmers were willing to try the 

tool and have their behavior affected by using this new tool in a way that is not representative of their 

normal work practice. We could not address this threat in this preliminary study but addressed it in our 

second field study by using a study period that was several times longer. Finally, the number of subjects 

was too small to gather enough data for a statistically significant test of the edit ratio change. We also 

addressed this threat in our follow-up study by using many more subjects. 

4.3 Study II: Programmer Field Study 
Our initial study exposed a single primitive DOI weighting across all of a programmer’s work. From this 

experiment, we learned that programmers need separate contexts for the different tasks on which they 

work and that a simple weighting of the frequency of element selection is not sufficient. Although the first 

study suggested our basic approach had potential, we learned it was not ready for daily use and lacked 

specific evidence that it improved programmer productivity. 

To answer the question of whether an explicit task context improves programmer productivity, we 

conducted a much larger field study. Again, we chose a field study because the time-constrained tasks 

performed on medium-sized systems possible in a laboratory setting are not representative of the real 

long-term tasks performed on large systems in industry. 

4.3.1. Subjects 

The target subjects for our study were industry Java programmers who used the Eclipse IDE. To solicit 

participation, we demonstrated the Mylar 0.2 tool at an industry conference (EclipseCon, March 2005) 

and advertised on a web page. Early access to Mylar was only possible by signing up for our study 

through a web form. Ninety-nine individuals signed up for the study over the eight months between the 

announcement and the conclusion of the study. As visible in Table 4.2, the majority of these individuals 

were industry programmers, about half of them worked in organizations with more than fifty people and 

most identified their industry sector as software manufacturing [52].  

Table 4.2: Demographics of the ninety-nine participants 

Job % 

Application developer  65 

One individual 19 

Academic 13 
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Application architect  12

Manager/CIO/CTO 4

Other 6

Organization Size  

Fewer than 50 employees 32

50 to 500 employees  26

More than 500 employees 23

Sector  

Software manufacturing 48

Academic 19

Financial/retail 13

Communications/networking 7

Government 5

Other 8

 

To study whether and how Mylar affects programmer productivity, we needed to be able to compare 

activity during a subject’s baseline period, in which they used Eclipse in their normal configuration, with 

their treatment period in which Mylar was also installed into their Eclipse. For instance, if a subject was 

mostly coding during the baseline period and mostly testing during the treatment period, the activity in 

the two periods would not be comparable. Since we were interested in comparing activity as a participant 

worked on multiple tasks, we also needed to ensure that both periods were long enough to encompass 

typical tasks.  

Based on these goals, we defined criteria for a participant to be included in our analysis. The first was to 

ensure an appropriate amount of programming by setting thresholds on the amount of editing; only after a 

participant had reached a certain number of edit events was he moved to the treatment period. The second 

was to ensure that the effects of learning to use Mylar did not overly bias the usage data. To meet these 

criteria, our threshold of acceptance of a participant was triple the number of events (i.e., 3000 events) 
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needed to move from the baseline to treatment periods (i.e., 1000 events57). As the Active Search and 

Active Hierarchy features required the use of additional views, we did not allow subjects to install this 

feature until they had crossed the 1500 event threshold in the treatment period, in order to avoid creating 

too steep of an initial learning curve.  

Subjects thus progressed through the study as follows. For the first 1000 events, participants were 

monitored only. After they crossed this initial threshold, they were given an option to download the tool. 

After they downloaded the tool and used it for another 1500 events, they were given the option to install 

the additional views. After that, if they accumulated 1500 or more events, their data was accepted for 

analysis. We refer to individuals accepted for analysis as subjects, and use the term participants for the 

entire set of individuals who registered. We standardized on the number of events rather than the time 

spent programming to account for variations in the rate at which different programmers work.  

Of the ninety-nine initial participants, sixteen met the criteria to be considered subjects. This one-in-six 

ratio is indicative of the challenge we had in recruiting subjects: industry developers typically have little 

time to try out new tools unless they perceive an immediate and concrete benefit. The minimum two-

week delay in getting the Mylar UI was one contribution to the drop-off, as was the need to use Mylar and 

continue participating in the study for several weeks to reach the 3000 edit event acceptance criteria. 

Participant feedback indicated that those who dropped out did not program as much during this period, 

did not use Bugzilla (the only task repository Mylar 0.3 supported), or stopped using the tool after they 

encountered a bug or incompatibility with another Eclipse plug-in they were using.  

4.3.2. Method and Study Framework 

We designed our field study to measure the effects of our tool within subjects. Participants joining our 

study were asked to install a subset of the tool, called the Mylar Monitor, which captured and stored their 

interaction history without affecting how they normally work with Eclipse. The monitor was extended 

with a module that would periodically prompt the participant to upload their interaction history as an 

XML file to a server at UBC, along with exception logs and feedback. To ensure anonymity, each 

participant was assigned a unique identifier. To ensure privacy, any part of the interaction history 

referring to the elements in the system on which the participant worked, such as Java type names, was 

obfuscated using a one-way hash function. We refer to this period of a participant’s involvement in the 

study as their baseline period.  

After the participant reached a certain threshold of work, which we chose to be 1000 edit events over no 

less than two weeks, the participant was prompted as to whether they wanted to install the Mylar task 

                                                      

57 1000 edit events corresponded to approximately 1-3 weeks of full-time programming based on trials of individuals in our lab. 
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context and task task-focused UI features. Installing these moved a participant into the treatment phase of 

the study. As before, the Mylar Monitor would continue to prompt the participant to upload their 

interaction history to a server at UBC. A participant was also notified when there were updates available 

for Mylar, including both feature additions and bug fixes. We ran the study for four months, July 6 to 

October 28, 2005 using Mylar 0.3. The task context model, scaling factors, and UI thresholds were frozen 

for the duration of the study (and for subsequent releases up to the latest Mylar 1.0). 

To analyze participants’ interaction histories, we created a reporting framework that allowed us to play 

back interaction to reproduce usage patterns and gather statistics. We used this framework to analyze the 

effect of Mylar on what programmers did and how they did it. We discuss the tuning of the scaling factors 

and thresholds for the study in Section 5.1.4. 

4.3.3. Results: Analysis and Edit Ratio 

Our focus for this field study was to measure the effect of task context on programmer productivity. We 

approximate productivity by comparing the amount of code editing that programmers do with the amount 

of browsing, navigating, and searching. To capture this behavior, we refined the edit ratio metric from the 

preliminary study to use an abstract notion of edits instead of keystrokes, but kept the same equation (i.e., 

#edits / #selections). The abstract edits corresponded to a sequence of characters before a pause in a text 

editor (e.g., a word written), and to manipulations in a graphical editor, such as changing a table value in 

the visual representation of Eclipse’s plug-in editor, which results in an automated textual change of the 

underlying file. Edit ratio treats interaction consistently across different kinds of artifacts, whether the 

artifact is source code, another kind of file, or a binary library. Edit ratio also allows us to measure 

programming behavior independently of the task management features that Mylar provides since only 

interaction with program structure affects the ratio. This is important because edit ratio assumes that only 

edits of the system resources contribute to our productivity metric and not edits of tasks (e.g., comments 

on bug reports). For this study, we ignored interaction events that resulted from editing and selecting the 

tasks themselves since our goal was to validate how well task context represents the artifacts relevant to 

the task. The next study reports on interaction with tasks (Section 4.4). 

Table 4.3 shows the edit ratios for each of the subject’s baseline and treatment periods and highlights 

percentage change in the ratio. To determine whether there was statistical significance in the changes of 

edit ratios we normalized the edit ratios across subjects by taking the log of each and performed a paired 

t-test. The result is statistically significant with p = 0.003, indicating that the use of our Mylar tool 

improves edit ratio. Given that our choice of acceptance criteria for a participant to be considered a 

subject in the study was pre-defined and somewhat arbitrary, we also wanted to see if there was stability 

in this result for different acceptance criteria. We thus analyzed the edit ratios of programmers with a 

range of both lower and higher thresholds of baseline/treatment edit event cut-offs. Statistical significance 
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of the t-test (p < 0.05) holds until lowering the threshold results in inclusion of subjects whose usage data 

indicates that they did not use Mylar for their daily work (i.e., they are far below our acceptance criteria), 

and until raising the threshold is increased to the point where only six of the sixteen subjects remain. 

Table 4.3: Field study data and percentage improvement 

  edit ratio filtered  selections activity 

id baseline treatment delta explorer outline problems hours tasks 

3 2.9 7.8 172.0% 25% 7% 0% 91.3 61

8 10.1 26.4 161.4% 16% 0% 0% 71.3 30

6 14.1 36.0 155.8% 0% 0% 41% 64.7 23

7 2.6 5.4 111.3% 18% 5% 3% 44.4 54

12 2.7 5.4 102.3% 3% 0% 0% 24.4 5

15 1.7 3.3 91.7% 0% 0% 0% 25.3 3

16 8.8 13.0 47.7% 30% 14% 0% 35.1 7

10 5.8 8.2 42.1% 32% 22% 40% 11.3 6

2 11.3 14.8 30.8% 8% 1% 0% 27.5 11

9 6.7 8.7 30.7% 27% 0% 0% 43.4 12

13 6.8 7.4 9.7% 14% 3% 0% 48.5 4

5 4.1 4.3 5.4% 2% 3% 0% 6.5 12

11 2.2 2.2 3.5% 6% 0% 6% 12.4 7

1 7.7 6.9 -10.2% 25% 5% 0% 62.5 52

14 15.9 13.5 -14.7% 0% 0% 0% 66.2 9

4 11.0 8.1 -26.6% 0% 0% 0% 17.1 1

 

4.3.4. Results: Qualitative analysis 

Our main hypothesis is that task context improves programmer productivity by making it easier for 

programmers to find the information that they need to complete a task, whether that is done by focusing a 

view in the user interface or by running only the tests relevant to changes made during the task. The edit 
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ratio analysis described in the previous section provides evidence that, for at least one measure, task 

context improves programmer productivity. In this section, we further analyze the content of the task 

contexts created by the programmers to determine whether the contexts were capturing the appropriate 

information. We consider the following questions: How accurately did the model capture the context of 

programmers’ tasks? Did the programmers create and perform multiple tasks to which they returned? 

How much and in which views was filtering used? 

Accuracy 

Across the sixteen subjects, we observed three notable trends in the selection of elements: 84.2% of the 

selection events were of elements in the model with a positive DOI (i.e., the elements were visible in a 

filtered view); 5.3% of the selections were of elements that had only a propagated or predicted interest 

(i.e., not previously selected or edited, but visible in either a filtered view, Active Search, or Active 

Hierarchy); and 2.1% of the selections were of elements with a negative DOI (i.e., the elements had 

decayed out of visibility in a filtered view). 

The first trend is indicative that programmers work on only a subset of the system artifacts and provides 

evidence to confirm that a task context does capture the majority of the elements often used as part of a 

task. The number of propagated and predicted element selections is slightly lower than expected due to 

our decision to not allow subjects to install the Active Search view until they had used Mylar for half of 

the treatment period’s threshold, specifically 1500 events. We delayed the introduction of this view to 

avoid an overly steep initial learning curve. Once it was introduced, Active Search was not used as much 

as the other facilities and was used repeatedly by only five users. Qualitative feedback indicated several 

reasons for lack of use: performance problems, not having screen real estate available for another new 

view, and the view reporting too many matches58. 

The number of decayed selections indicates that the decay scaling factor may have been set too high. In 

contrast, usage data of the “Make Less Interesting” action indicates that at times too many elements were 

being shown, since two of the more active users frequently used this action (225 times for subject 3, 210 

for subject 7, none for all others). This tension between data indicating that in some cases too much was 

shown, and in others too little, highlights the difficulty of providing one set of scaling factors for all tasks 

and all users (see Section 6.2.1).  

 

 

                                                      

58 The degree-of-separation value needed to be decreased manually as the number of interesting elements within the default 

degree-of-separation (interesting files) grew large. The number of landmarks growing too large was not a problem because the 

landmark threshold was tuned so that no matter how long-running a task was there would not be a large number of landmarks. 
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Task Activity 

We designed our study around measuring the effects of task contexts, and unfortunately did not include 

sufficiently rich monitoring of the meta-context to determine when the subjects recalled a specific 

previously worked-on task. However, we do know from the task activity how often subjects switched 

tasks (Table 4.3). Although Mylar is designed around facilitating work with multiple tasks, it can be used 

with one active, often long-running task (i.e., subject four, whose usage data indicates he or she worked 

with the same task active across eight Eclipse sessions). We are encouraged by the fact that most subjects 

used the task switching facilities regularly and those with the largest improvement in edit ratio used them 

heavily. The hours column in Table 4.3 is an indication of the total time a subject worked with some task 

active, approximated by issuing a timeout event when no interaction events had been observed for three 

minutes. 

View Filtering Usage 

Whenever a task was active in the treatment period, a task context was being formed and the UI of the 

IDE would show which elements were interesting through interest decoration. To inform and guide the 

effectiveness of UI mechanisms by which we project the interest model onto the IDE, we also analyzed 

usage trends related to the view filtering and predicted interest facilities. The percentages of selections 

made with the view in filtered mode are visible in Table 4.3 (for Package Explorer, Outline, and Problems 

views); the relatively frequent use of filtered selections is encouraging. Unfiltered selections result from 

either no task being active or the task being active but the view being in unfiltered mode. When a view is 

in unfiltered mode, many more selections are typically required to find the same information than when 

filtered; this causes the percentage of selections in filtered mode to appear lower than a subject might 

actually perceive.  

4.3.5. Threats 

One threat to the accuracy of the study results is that the subjects are not representative of typical industry 

programmers. The incentive to participate in the study was gaining access to a preview release of Mylar, 

and as such, this selection process was likely biased to early adopters of new programming technologies. 

Our study results must be viewed in terms of this potential weakness. Another threat is that we had no 

control over the tasks performed by subjects between baseline and treatment periods so their activity may 

have varied widely. This threat is addressed by the large amount of both baseline and treatment 

interaction we had for each subject. If programmers had worked on a single task across the baseline and 

treatment periods, changes in the edit ratio across the lifecycle of a single task could have been a problem. 

However, we have evidence that most subjects switched tasks multiple times during a workday (on 

average 2.3 tasks switches per active hour). Finally, bugs in interaction history creation, parsing, and 
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analysis could skew results. Our bootstrapping, testing, and ongoing use of the Mylar Monitor framework 

by ourselves and others is continuing to harden it against such errors.  

An objective and generic measure of industry programmers’ productivity is difficult as it depends on how 

a developer works (i.e., their process), what they work on (i.e., their domain) and how quality is measured 

in that domain. Although a definitive measure of productivity is elusive, edit ratio provides us with a 

measure of effort spent writing code versus effort spent looking for the information needed to write code. 

Since programmers chose to use the tool voluntarily, their choice to continue using it is also a positive 

indicator that the edit ratio metric approximates programmer productivity. 

 

4.4 Study III: Knowledge Worker Field Study 
To test whether the task context model supports more generic knowledge work, we adopted the same 

user-monitoring framework used for the programmer study. In particular, we wanted to investigate 

whether the model could accurately reflect the information needed to complete a task when the interaction 

was occurring with less structured information than in the programming domain. The goal of this study 

was not to determine whether task contexts make knowledge workers more productive, since the 

productivity of generic knowledge workers cannot be as easily approximated as that of programmers, 

whose productivity is typically defined by how much code they produce (Section 4.2.4). Instead, our goal 

was to gather usage data on how knowledge workers use task context. We also wanted to learn whether or 

not knowledge workers would explicitly mark their task boundaries voluntarily using the task 

management facilities, how accurately task context represented the file and web documents with which 

they work, and how necessary the support for decaying uninteresting items is for supporting file and web 

browsing activities.  

We refer to the configuration of Mylar used for this part of the study as the Mylar Browser (Section 3.3). 

Rather than performing ad-hoc tuning of the task context model for knowledge work, we wanted to gather 

usage data to test how well this model worked for less well-structured data. For this reason, we left the 

scaling factors and all other implementation aspects of task context identical to those offered in the 

programmer study. The only substantial addition to the implementation of the tool is that it provided an 

additional structure bridge to support interaction with web documents. We also removed all of the 

programmer-specific features from the tool (e.g., Java development tools, Mylar Java Structure and UI 

bridges).  
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4.4.1. Subjects 

The participants that we targeted for this study were knowledge workers within and related to our 

university that were not programming as part of their work activities. We advertised the study to 

approximately two dozen individuals who had heard of the programming tool. In all, eight individuals 

installed Mylar Browser, used it, and responded to our follow-ups for gathering usage data and feedback. 

The job descriptions, activities, and desktop applications other than the common ones listed below are 

summarized in Table 4.4.  

Table 4.4: Accepted subjects in knowledge worker study  

 Job Description Activities Desktop Apps Web Apps59 

S1 Technology transfer 
officer 

Technology assessment, 
literature reviews, patent 
search, market analysis 

patent search patent search, 
marketing search 

S2 M.Sc. student in 
Biology 

Literature/database 
search, grant proposals 

gene search gene search, 
spreadsheet  

S3 Secondary School 
Teacher  

Lesson planning, 
Financial planning 

finance finance 
management 

S4 Instructor  Teaching, managing 
administrative assistants  

n/a calendaring 

S5 CEO Manage operations of 
small company 

n/a contact 
management 

S6 Project coordinator Project management, 
hiring, reporting 

web authoring finance, student 
management 

S7 Student services 
coordinator  

Coordinating undergrad 
programs, student 
advising 

n/a student 
management 

S8 Communications 
coordinator  

Organize publicity and 
publish documents 

graphic design, web 
authoring 

n/a 

 

Most of the individuals used the Firefox/Mozilla web browsers. Some used Mozilla and Thunderbird60 for 

email, others used Microsoft Outlook61. All used Microsoft Office 2003 with the exception of S3 who 

                                                      

59 All reported using Google as the primary search engine, http://google.com [verified 2006-12-21] 

60 http:// mozilla.com/thunderbird [verified 2006-10-02] 



74 

used the Microsoft Office 2007 beta. The commonly used Microsoft Office applications were, in order, 

Word, Excel, and PowerPoint.  

4.4.2. Method and Study Framework 

Participants were asked to use the tool as they saw fit for their daily work. Each was given a thirty-minute 

tutorial on how to use the tool by one of the researchers. Questions that arose about the usage of the tool 

during the study were answered by email and in person. Participants were provided bug fix updates of the 

tool. Since participants joined the study over a period of six weeks, the period over which we collected 

data for each participant varied. Subjects S2, S4, and S5 signed up in the last two weeks of the study. 

Multiple subjects had vacation days over the study period, or were out of the office, so we report days 

actively using the Mylar Browser in Table 4.5. Over the study period, we collected subjects’ usage data. 

At the end of the study, we conducted exit interviews. 

4.4.3. Results: Task Activity 

The active workdays in Table 4.5 indicate the number of days in which subjects activated tasks. Subjects 

sometimes worked on tasks without activating them, for instance, if the task represented a work item that 

did not correspond to files or web pages. The broad spectrum in the number of active workdays is in part 

due to some subjects signing up at the tail end of the study period (S2, S4, and S5), and, in one case, due 

to a lack of use of the tool (S7). Although there is a broad spectrum in how many workdays subjects 

activated tasks, the table indicates that subjects will voluntarily indicate which tasks they are working on 

when using Mylar Browser. We believe this occurs because the automatic creation of task context 

supported by the Mylar Browser provides users with an incentive to activate tasks. The tasks/day column 

indicates how many unique tasks were activated that day. The activations/day column is higher in all but 

the S7 case, indicating that most subjects returned to tasks on which they had worked earlier that day. 

This indicates that subjects used task contexts for the purpose of restoring context when multitasking.  

 

 

 

 

 

                                                                                                                                                                           

61 http://microsoft.com/outlook  [verified 2006-10-02] 
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Table 4.5: Task context activation  

 Active 
Workdays 

Total tasks 
activated 

Tasks/day Activations/day 

S1 25 26 5.0 7.0 

S2 5 5 2.8 9.0 

S3 8 22 5.6 11.0 

S4 4 9 2.75 3.8 

S5 4 5 2.5 6.8 

S6 26 41 1.8 2.2 

S7 1 1 1 1 

S8 14 29 3.4 3.8 

 

Mylar’s task management facilities do not impose any process for how tasks are defined. For this study, 

we also did not provide subjects with guidelines on how tasks should be defined. All subjects used 

personal tasks, not shared tasks (Section 3.2.3). Table 4.6 reports the kinds of work items that subjects 

managed with Mylar’s tasks and the items for which they did not choose to use Mylar Browser. 

Table 4.6: Work items reported by subjects to be associated with tasks 

 Used Mylar for Did not use for 

S1 most work items very short tasks, phone calls, meetings 

S2 scholarship applications literature/database search 

S3 some work items, web research working in quicken, phone calls 

S4 most work items, personal tasks  quick email messages, new documents first without 
task then made them 

S5 some work items, personal tasks  tasks defined in email 

S6 most work items task defined in email, meetings 

S7 one work item paper tasks, web application forms 

S8 some work items desktop publishing, web authoring 
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4.4.4. Results: Task Context and File Structure 

To determine how the information visible in the task context corresponded to the underlying information 

that knowledge workers access, we devised several methods of measuring the contents of the subjects’ 

task contexts. Our goal was to understand how effective our approach was at gathering and showing the 

relevant information compared to other common methods of organizing information, such as hierarchical 

filing or the use of consistent naming or tagging approaches to facilitate query-based retrieval. If workers 

were already organizing their information in a way to make relevant information to a task easy to find 

with existing mechanisms, we also wanted to know how much irrelevant information the Resources view, 

which showed files and web documents relevant to the task, was hiding with its interest filtering facility. 

This filtering facility was always on by default. The methods presented in this section consider only files. 

For web documents, since the amount of information available online dwarfs what a subject accesses in a 

typical task, the majority of available information is always hidden.  

The degree to which Mylar Browser helps find and filter files depends on the size and structure of the file 

systems being used. Four subjects (S1, S4, S6 and S8) accessed shared document repositories that 

contained at least tens of thousands of files. Three subjects (S2, S3, and S5) accessed local folders that 

contained at least hundreds of files. Subject S7 did not use the file browsing feature. The mechanism by 

which we measured these metrics differed from all the other quantitative measurements we made because 

they required measuring the subjects’ file systems and the Mylar Monitor preserves file system privacy. 

As a result, we performed the measurement on a limited sample due to subjects’ time constraints. We did 

not take any measurements for subject S5 because that subject’s file system was not available to us. For 

measurement, we chose the last two tasks that the subject had activated and that contained files in the 

context. 

We defined four metrics to determine the relationship between the subset of the information in the task 

context and the information that would normally be shown through structure-centric views, such as 

through a tree view of directory structure or as the results of a query over all files tagged via naming 

conventions. 

1) Average path length. This metric captures the average path length of all interesting files (i.e., files 

in the context with a positive DOI) to the root folder. The higher the number of nested folders that 

are used to file relevant information to the task, the higher the value of the hierarchy metric. The 

higher the value of this metric, the more folders the user would need to click and open in order to 

get to the file(s) of interest when resuming a task, unless they manually created and managed 

explicit links to folders, as subjects S1 and S5 had done prior to using Mylar Browser. 

2) Average directory density. This metric captures the average ratio of interesting files in every 

directory within the context to all other files within that directory. The lower this number, the 
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more irrelevant information being hidden by the task context. For example, S6 frequently used 

shared directories that contained hundreds of Microsoft Office documents. However, S6 typically 

required only a few of those documents for her tasks.  

3) Scattering62. This metric captures the average distance of an interesting file to a common parent 

directory. The higher the value of the scattering metric, the larger the number of places in the 

hierarchy that contain files of interest. For example, if the subject were working on a file 

a/b/c/foo.doc, and a second file in a/d/bar.doc, the scattering measurement would be (3+2)/2) = 

2.5. A scattering of 0 means all files were in the same directory. 

4) Tagging ratio. This metric captures a ratio of the number of interesting files that share a common 

tag in the name of the file to the number of all interesting files in a context. For example, “Case1” 

might be the tag used in two files, such as “Case1-Intro.doc” and  “Case1-Data.xls”. 

Table 4.7: Task context content structure measurements 

 Avg. path 
length 

Avg. directory 
density 

Scattering Tagging ratio 

S1 5.5 0.1 1.5 0.3 

S2 2.7 0.2 1.1 0.9 

S3 3 0.1 1.4 0.4 

S4 2 0.3 0 0 

S5 n/a n/a n/a n/a 

S6 1 0.01 1 0.4 

S7 n/a n/a n/a n/a 

S8 n/a n/a n/a n/a 

 

As discussed above, the subjects with “n/a” values did not use the file browsing feature sufficiently to 

produce data for the tasks we sampled or we were unable to measure the contents of their file systems. 

For the other subjects, Table 4.7 indicates that the path metric was highest for S1, who worked on the 

largest network file system shared across dozens of employees, whereas the others had relatively short 

                                                      

62 We use the term “scattering” from AOP, where it connotes the amount of structure not cleanly modularized within the 

dominant decomposition. In the case of a file system, the dominate decomposition is the directory structure. 
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paths to interesting files63. S1 used the richest hierarchical structure and tended to organize all files along 

with tasks. Since the subjects were able to map any file system folder into the Mylar Browser and since 

we performed the measurements within the Mylar Browser, in each case the path length is shorter than it 

would have been if accessed directly via the Windows file system. For example, S6 mapped only the few 

parts of the shared network drive that contained documents relevant to her into the Mylar Browser, using 

this as a shortcut to avoid needing to browse through additional path segments (e.g., omitting the first 

drive letter and two directories in “Z:\Documents\Planning\New Project” and mapping “New Project” 

directly into Mylar Browser).  

All of the subjects’ task contexts exhibited a low density over the file system structure. The low density 

measurement demonstrates a key benefit of task context; the vast majority of files within a directory were 

uninteresting and the task-focused UI showed only the few interesting ones. Scattering was present in 

every case other than S6, who mapped the parts of the file system containing her files, resulting in a flat 

structure with hundreds of files in each directory (with only a 0.01 density).  

Tagging was done by S1, S2, S3, and S4. The ratio of tagged files was 40% or less, indicating that 

tagging was not a reliable way to identify all files relevant to a task.  

4.4.5. Results: Task Context Contents 

In addition to gathering data about the relation of the context to the structure, we also wanted to 

understand what was contained in the task contexts. Table 4.8 summarizes the task context contents. This 

data includes all files with which interaction occurred, even if the file had decayed out of the Resources 

view. The unit of measurement for the two size columns are elements; for example, on average S1’s 

contexts referred to 69 web pages  The total number of tasks for each subject is lower than that the total 

listed in Table 4.5 because subjects periodically created tasks that had neither a web or file context. For 

instance, some created a task for the purpose of an appointment and used the personal note feature of 

tasks (Section 3.2.3) to capture information relevant to the appointment. 

This data indicates that both web and file contexts had a non-trivial size. Some task contexts accumulated 

many documents, as in the case of S1, who for long-running tasks accumulated 239 files in one context 

and 317 web pages in another. It also indicates that subjects used task context for working with files and 

for browsing, sometimes simultaneously. Six out of the eight subjects worked with task contexts that had 

both web and file elements, and for S1 and S5 most task contexts had both a web and file elements. This 

                                                      

63 S1 had been creating shortcuts to each directory he worked with frequently on his desktop in order to avoid having to browse 

to the directories of interest each time. S1 had dozens of such shortcuts on his Windows desktop. 
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indicates that task context model’s ability to uniformly represent interaction with various kinds of artifacts 

is useful, since many tasks involved both file and web resources. 

Table 4.8: Task context content size measurements 

 Web contexts File contexts Tasks 
with 
both  Tasks Avg. size Max size Tasks Avg. size Max size 

S1 7 69.1 239 16 42.7 317 6

S2 4 5.3 8 5 4.0 14 2

S3 9 17.8 96 2 3.0 4 1

S4 2 3.0 4 1 3.0 3 0

S5 5 32.2 125 4 68.8 225 4

S6 5 5.2 12 2 2.0 2 1

S7 1 5.0 5 0 0 0 0

S8 9 4.9 13 3 4.7 9 2

 

4.4.6. Results: Task Context Model Accuracy 

To determine how accurately the task context model represented what users were interested in, we 

gathered data on the landmark, interesting, and decayed elements within the model, considering work 

done across all tasks (Table 4.9). This data indicates that in most cases more web pages and files were 

being filtered from the UI than were visible. This leads us to assume that the task context’s ability to 

decay low DOI elements out of view is key to accurately representing the elements relevant to the task. 

Since some subjects had very long-running tasks (e.g., S1), our DOI ranking can change substantially 

over the course of the task. If not for the frequency and recency based DOI, the Resources view would 

likely have been so populated with elements that it would have not provided the task-focused UI benefits 

of being able to select an element of interest without scrolling or expanding a tree structure to find it. 

Coupled with the general feedback that the task context represented what subjects worked on (Section 

4.4.7), we conclude that capturing an interaction-based weighting, and only showing the most relevant 

elements based on that weighting, provides an automated mechanism for focusing knowledge workers on 

their task and for facilitating multi-tasking.  
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Table 4.9: Proportions of task context model slices (direct interest only)  

 Web (%) Files (%) 

 Landmark Interesting Decayed Landmark Interesting Decayed 

S1 1 10 89 3 8 89 

S2 0 73 27 5 50 45 

S3 1 30 69 45 55 0 

S4 0 100 0 0 75 25 

S5 2 13 85 2 19 79 

S6 4 96 0 0 1 0 

S7 20 60 20 0 0 0 

S8 3 52 48 3 34 63 

 

4.4.7. Results: Feedback 

With both a large amount of interaction recorded and a high occurrence of decay, the question that 

remained was how accurately the visible elements represented what was relevant to the subjects’ tasks. To 

judge this aspect, we asked each of the subjects about the accuracy of the task context model that was 

presented in the Resources view. Table 4.10 summarizes their assessments. 

Table 4.10: Feedback on how much information relevant to the task was displayed 

 Too 
much 

Too  
little 

About 
right 

Comments 

S1  X  Some web documents disappear from context too quickly after 
reactivating context 

S2   X Page redirects sometimes pollute the web context 

S3 X   Initial navigation puts too much uninteresting information in the context

S4   X Sometimes too much was shown initially in web context 

S5 X X  Sometimes too much shown initially, not always a reflection of how 
time is spent 
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S6   X Since it is not the default browser some relevant web context missing 

S7   X Did not use enough 

S8 X   Initially web context tracks too many wrong site visits 

 

All of the subjects were very positive about the idea of context being tracked automatically as they 

worked, expressing that the task context represented what they worked on and that they liked seeing only 

the files and web pages relevant to their task. However, when asked how accurately the task context 

model portrayed the files and web pages in which they were interested, almost all recalled cases where 

either too many or too few elements were filtered away. Common feedback indicated that web contexts 

often get overpopulated at the beginning of a task when nothing has decayed but many links have been 

clicked in search of something, especially when performing a web search. Some reported that, in many 

cases, only the last pages browsed were highly relevant. Also, some subjects reported that interaction with 

web documents could cause files to prematurely disappear from the context. Finally, we asked subjects 

whether they liked using the tool and asked if they would continue using Mylar Browser. We are 

encouraged that all stated they would continue using it (Table 4.11). 

Table 4.11: General feedback 

 Like Dislike Did not use 
enough 

Will continue 
using 

S1 X   X 

S2   X X 

S3 X   X 

S4 X   X 

S5 X   X 

S6 X   X 

S7   X X 

S8 X   X 

 

We conclude that task context can be integrated into knowledge work applications. If provided with the 

benefit of the task context, knowledge workers will voluntarily indicate on which task they are working. 

Although the tuning of the scaling factors and thresholds could have been more precise, feedback from 
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subjects indicated that integration with other applications (e.g., email, better Windows integration) was 

far more important to the subjects than task context model tuning improvements. 

Based on the low task activation usage and task context model contents of the S7 subject, whose 

occupation involved the highest proportion of data entry, we hypothesize that the task context model may 

be more useful for knowledge workers needing to access a large amount of information than for those 

spending most of their workday in a single data entry application. 

In terms of task context model implementation, the key lesson we learned is that differences between 

structure bridge implementation and monitoring can have a major impact on how task contexts evolve 

when they contain aggregations of different kinds of resources. For example, when a context had a lot of 

web interaction, interesting files decay out of the context too quickly. This situation happened because the 

Mylar Browser monitored more interaction with web pages (every click) than with Microsoft Office 

documents. Extending monitoring facilities to include scrolling or time-based interaction events for semi-

structured resources could improve the accuracy. However, we believe that the existing scenario, where 

different structure bridges provide different levels of structural awareness, will be common. We discuss 

approaches of addressing this issue, such as normalizing or scaling the relative amount of interaction, in 

Section 5.1.3.  

4.4.8. Threats 

The number of subjects in our study was small, and these subjects may not be representative of any 

interesting class of knowledge workers. Given that the subjects fulfill a variety of roles, the results may 

generalize to an interesting population, although further study with a better sampling across a wider 

population is warranted. The generalizability of our results is also limited because the amount of data 

collected for four of the eight the subjects corresponded to one workweek or less. Another threat to our 

results is that the subjects may have only used the Mylar Browser for tasks well suited to the tool. We do 

not know what percentage of their daily tasks for which they used the tool. The heavy use of the tool by 

some participants suggests that it does fit some work patterns; for example, one participant (S1) even 

stopped using MS Outlook task management in favor of the task-focused desktop. Future studies should 

consider which tasks our task context model supports and which it does not and why. 
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4.5 Summary 
Our user studies have validated that an explicit task context makes programmers more productive. We 

have shown with statistical significance that productivity, as defined by the amount of time spent 

navigating versus editing, increases for programmers when they work with explicit task contexts. We also 

demonstrated that task context generalizes to file and web browsing activities. As a result, we believe this 

is a promising technology for reducing information overload in the knowledge work domain. 
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5. Discussion 

In this chapter, we discuss potential improvements to the task context model to better support both 

programming and other kinds of knowledge work. Many of these potential improvements are based on 

experiences from the field studies and on the feedback from the user community of Mylar IDE64. In this 

chapter, we review ways to improve the accuracy of the task context model (Section 5.1) and the task-

focused UI (Section 5.2). We then describe and discuss support in Mylar IDE for task context 

collaboration (Section 5.3). We also present methods of visualizing task context (Section 5.4) and 

conclude this chapter with a discussion of future work (Section 5.5).  

5.1 Improving Task Support and Context Accuracy 

5.1.1. Working on Multiple Tasks Concurrently 

Our preliminary study data indicated that programmers needed support for working on multiple tasks 

concurrently. We interpreted this input as programmers needing to have multiple tasks active and 

implemented support for multiple active tasks in Mylar 0.2-0.3. This implementation distributed 

interaction events among all active tasks. The fact that no Mylar IDE users complained when we 

eventually removed this feature has indicated that our interpretation was wrong. Although our existing 

user base needs support for working with many tasks concurrently, for the common cases, they do not 

need support for working with tasks in parallel. Use of this feature also makes the interaction with task 

activation considerably more complex. As a result, we removed the capability of activating multiple tasks 

in Mylar 0.4, and instead we have focused on making switching between tasks easier. 

5.1.2. Related Tasks 

Our model treats a task as an independent atomic unit. In practice, tasks are often related. Consider a 

programmer working on fixing a bug. The programmer creates and activates a task for the bug. As work 

progresses on the bug, the programmer identifies and begins work on a related bug before the first bug 

can be resolved. With our current model, the programmer has two choices: deactivate the first task and 

                                                      

64 In the 11 months since the conclusion of the programmer field study (Section 4), Mylar IDE users have filed 260 enhancement 

requests and 928 integration and bug reports: http:// eclipse.org/mylar/bugs.php [verified 2006-10-12] 
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recreate the context when starting work on the bug, or do both tasks under the context of the first. Both 

choices are problematic, and while the latter is easier, it causes a potential loss of context as the 

programmer cannot return to the context for just the second bug. We believe that addressing this problem 

will require extending the model to support schemas for tasks (e.g., subtasks, sequences) and allowing the 

programmer to have one or more related task contexts active by means of context composition. For 

example, if a user activates a task with three subtasks, each of the contexts of the subtasks could be 

activated simultaneously, so that the parent task includes all of the contexts of the subtasks. This 

technique would also support pre-populating the context of a new task, for example, with the composite 

context of a parent task. Pre-population is a commonly requested feature. This feature requires careful UI 

design to avoid the complexities that arose in our previous attempts to support multiple simultaneous 

active tasks.  

5.1.3. Task Context Lifecycle 

Our task context model is oblivious to the lifecycle of a task. We use the same scaling factors and apply 

the same algorithms for operations whether a task is near its start and has a sparse context, or near its 

completion and has a rich context. Making the model sensitive to a task’s lifecycle could further improve 

accuracy. For example, at the beginning of a task, it may be beneficial to have a slower rate of decay, and 

suggestions for related structure could come from a broader degree-of-separation when the task context is 

small. Near the end of a task, the core set of information in the context has stabilized and the context 

contains more information. The size of the task context could be used to adapt the DOI function, scaling 

factors and degrees of separation, helping tailor the contents of the model to the task’s lifecycle. 

5.1.4. Tuning the Scaling Factors 

A concern we had prior to starting the field study was that poorly tuned scaling factors could prevent the 

task context model from capturing the information programmers needed and that scaling factors might 

need to be personalized for different tasks types, programmers, and display resolutions. We decided not to 

expose a mechanism for a programmer to change the scaling factors because we believed that the problem 

of information overload was so severe for large system development that an approximate tuning would 

suffice. We chose an order of magnitude value for each scaling factor and used it in our daily 

programming with Mylar. This resulted in only slight variations within those orders of magnitude being 

set for the Mylar 0.3 field study release (Section3.1.3). 

We did not focus our validation on the settings or tunings of these parameters because they only play a 

minor role in the overall effect of adding task context into an application. For example, if we turned up 

the decay several times higher, task context would still help, but would show fewer of the relevant 
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elements. If we turned it down several times lower, the user would have to scroll more but would still see 

the information relevant to the task.  

Although we expected to change the scaling factors and thresholds based on feedback from the study 

participants, the values continue to work and remain unchanged through to the 1.0 release. As a result, we 

believe that a substantial improvement may require a more sophisticated tuning approach that adapts to 

properties such as the task’s lifecycle, the type of task and programming domains, and the user’s profile. 

Further study is necessary to determine how varying and adapting scaling factors affects the accuracy and 

precision of the task context model.  

5.2 Improving the Task-Focused UI 

5.2.1. Decorating Elements to Indicate Interest Level 

A notable change we made between Mylar 0.1 and 0.3 was to remove the forced highlighting scheme 

(Figure 4.2) as a default. In Mylar 0.7, the highlighting was removed entirely from the Mylar distribution. 

We had initially thought that using a background color to indicate how interesting an element was would 

help distinguish elements that were most interesting, or that were about to decay out of the view. We 

supported both a discrete and a continuous highlighting scheme and allowed the assignment of 

highlighters per-task. The user study data we collected did not show much use of the highlighting scheme. 

Feedback from users also indicated that they found the highlighters to be visually distracting. Since 

neither we, nor the user community, expressed a need to be able to distinguish beyond the three levels of 

interest (e.g., uninteresting, interesting, landmark), we removed this facility. 

One of the reasons we thought that the foreground highlighting would be necessary was to allow multiple 

active tasks (Section 5.1.1) to be distinguished visually. Although that support is gone from the 

programming parts of the UI, the highlighting idea may be useful for supporting other activities that 

involve multiple contexts being active, such as code reviews (e.g., inspect all contexts for a release) and 

context comparison (e.g., compare remote context with local workspace’s context). 

5.2.2. Exposing the Interest Thresholds 

An alternate approach to creating smarter threshold levels and scaling factors is to expose these to the 

user for manual tuning. We prototyped this support in the UI and occasionally still use it for debugging 

purposes. We have chosen not to expose it to avoid complicating the UI with manual tuning facilities. We 

believe that this approach could be useful in some situations, for instance when viewing large 

aggregations of contexts (e.g., for code review).  
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An example UI to allow direct manipulation of thresholds is shown in Figure 5.1. This context slider 

enables the programmer to directly manipulate the thresholds for encoded interest visibility and predicted 

interest visibility. The former can control the interest filtering threshold for elements with a direct interest 

(e.g., allowing more task context to be shown on larger displays). The latter can be used to define how 

much predicted context is made visible to the user (e.g., more can be shown when exploring, less when 

working on a well-defined task). Sliding the left slider to the left will show more of the past interaction 

history, while sliding the right slider to the right will show more of the potential future interaction history. 

Sliding them both to the centre will result in only the current selections being visible. 

 

Figure 5.1: Mockup of threshold control UI 

5.3 Collaborating with Task Context 
Two or more programmers often end up working on the same task. This kind of collaboration can occur 

in at least three different ways: programmers may huddle around the same computer, they may pass the 

task back and forth with one programmer making progress and then delegating it to another, or they may 

work on the task at different times and in different places, such as when one programmer revisits a task 

completed previously by a colleague. 

Mylar helps programmers in each of these scenarios. When multiple programmers work on a task 

simultaneously at one computer, the focus provided by the task context can make it easier for the 

programmers to discuss the software and for the non-driving programmers to follow the actions of the 

driving programmer on the screen. 

Mylar provides assistance for the other two scenarios by facilitating the sharing of task context. We have 

experimented with two means of sharing task context. Most commonly, we attach the context used in 

solving a bug to the task describing the bug in a shared task repository. Second, a context for a task can be 

passed through email. We use the former approach in the Mylar project, since we promote transparency in 

the development process by making our task contexts openly available. 
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Figure 5.2: Context sharing initiated from the Task List 

A programmer who wishes to work on a task unfinished by another programmer or who wishes to see 

how a bug was resolved, can import the context for that task into his or her workspace (Figure 5.2). Just 

as one programmer can switch between tasks, a programmer importing a task context can switch to that 

context thereby accessing just that subset of the software system that the original programmer had 

considered in completing the task. When contexts for tasks are stored in a shared repository, such as the 

Bugzilla repository used for the Mylar development itself, the repository becomes a richer source of 

knowledge about how to complete problems. Currently, the Mylar source repository has contexts attached 

for 253 tasks (as of September 14, 2006). These shared contexts have made it much easier for Mylar’s 

developers to work on reopened bug reports and to delegate partially completed tasks. The Mylar open 

source project also has a policy of requiring task contexts to be submitted as patches. This policy has 

made it easy to apply dozens of patches contributed each month. 

Mylar also helps focus communication between multiple programmers by providing an Eclipse-based 

user interface for working with repository tasks via the Mylar Task List. In particular, Mylar supports the 

use of queries to watch for changes in particular categories of tasks (Section 3.2.3). For example, a query 

may be added to watch all updates made to a task by a particular colleague. When the colleague adds a 

comment to a task, the programmer will see the task appear under the query in the Mylar Task List and 
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will see an incoming arrow to represent the changes that have been made. When the programmer opens 

the task, the editor for the task highlights the incoming changes and unfolds all new comments. 

Another way to add more collaborative support for working with task context is to provide 

recommendations. Mylar provides an experimental form of recommendation called Active Search, which 

for resources of landmark interest, automatically runs and displays reference-based searches. For 

example, the Active Search may display the callers of a particular method that have a high-degree of 

interest. By knowing the context of a task, when a programmer begins work on a new bug report, it is 

possible to similarly recommend previous bugs completed in the past and to provide rich support in 

suggesting which parts of the system may be relevant to solving the problem [51]. These 

recommendations provide focus when they are sufficiently accurate; inaccurate recommendations would 

reduce the focus of the programmer. 

At times, it would also be useful for programmers to know which parts of the system are being worked on 

in parallel by other team members. One way of presenting this information is through decorations to 

resources in the IDE [10]. This decoration can be overwhelming when applied to all resources in the 

system. By knowing the current task contexts of other programmers, it may be possible to scope the 

collaboration information presented to provide more focus. For example, Figure 5.3 is a mockup UI that 

could be used to show a programmer that the bug she is fixing is also active in a team members’ task 

context (via the bug icon on the left of Figure 5.3). Clicking this icon would then bring up a dialog with 

the bug details that could show the overlap between the two programmers’ task contexts. The presence of 

overlap could serve as a warning to prevent a conflict that could result from their simultaneous editing of 

the same code, or as a prompt to share expertise. 
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Figure 5.3: Mockup of overlay showing overlap between two team members’ contexts 

5.4 Visualizing Task Context 
Our implementation and validation focused on displaying task context within the existing display 

facilities offered by modern IDEs.  For the field studies, we targeted a 1280x1024 screen resolution. Even 

at this resolution, we received feedback that programmers did not have enough screen estate to show a 

view such as the Active Hierarchy even if they found it useful65. In the knowledge worker study, the 

situation was worse because some subjects had 1024x768 screen resolutions and were accustomed to a 

full-screen browser.  

                                                      

65 The Mylar 0.7 documentation recommends not using Active Search or Active Hierarchy with screen resolutions lower than 

1920x1200, a typical maximum resolution available on today’s developer workstations. 
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However, larger screen resolutions are becoming more common. We have experimented with several 

graphical views of task context. We have found these visualizations of task context useful for our own 

internal experimentation.  

Our first attempt at depicting interaction history was called Pathfinder, which used a grid layout where 

interesting files were arranged horizontally according to the package in which they were contained. 

Rather than sorting files in descending interest, this view placed the most interesting files in the middle, 

and sorted less interesting files in descending order above and below those. The intent was to allow a 

ridge of the most interesting paths through the package navigation to form, as visible in Figure 5.4. In 

addition to the background highlighting, the border of the file node was decorated to indicate with 

decreasing luminosity the place that this file had in the interaction history in order to make it easier to 

know where the “Back to previous file” navigation would lead. The problem with this view was that when 

many files within a single package were selected it required either too much vertical space or forced 

scrolling. We discarded this visualization and instead tried to show the same structure using the existing 

Package Explorer view. From this start, we came up with the idea of filtering existing tree views to focus 

on the task context. 

 

Figure 5.4: Table layout showing interesting files 

Unlike the Pathfinder view, the visualizations we describe below are actively in use for the purpose of 

debugging or inspecting the task context model and for the purpose of continued experimentation with 
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task context visualization techniques. Those that refer to the “Sandbox” in their view title indicate that 

they are in the developer part of the Mylar open source repository66. 

5.4.1. Spring Graph of Task Context 

For the purpose of debugging and inspecting the task context model, we use a view called the Context 

Tree (Figure 5.5). This view shows all of the elements and relations in the task context. It also shows, 

through annotations, the DOI level of the elements and relations. This view is similar to Active Search, 

but takes the slice of all elements and relations in the model, regardless of DOI. The problem with this 

view is that it is difficult to get an overall sense of the relations in the model. For example, Figure 5.5 

shows a cycle in the task context graph that causes the tree view to expand indefinitely. 

 

Figure 5.5: Task context tree view showing relations of elements 

To address this issue, we created a force-directed or spring [25] layout of task context that uses the DOI 

of each relation as a weighting for the layout algorithm, as show in Figure 5.6. A higher the value of the 

weight corresponds to a greater the tension on the spring, resulting in the closer the proximity of the 

corresponding elements. This view explicitly displays the task context model’s interest groupings and 

propagations that we discussed in Section 2.2. A key property of this visualization of task context is that it 

exhibits high stability as interaction is processed. Thanks to the frequency and recency weighting, task 

context tends to contain a small number of landmark elements with high interest, as well as high interest 

relations connecting those elements. This results in a high spring tension between those elements. Only 

small local disruptions occur to the layout when a new element is added. 

                                                      

66 http://eclipse.org/mylar [verified 2006-10-02] 
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Our spring layout can also be adapted to other visualizations that show elements and relations, such as 

Unified Modeling Language (UML) static structure diagrams. Although this layout requires considerably 

more screen estate than the tree views we currently rely on, we believe that it may be an effective task 

context display mechanism once larger screen resolutions become more common.  

 

Figure 5.6: Force-directed layout of task context 

5.4.2. Seesoft Visualization of Task Context 

The Seesoft layout provides a view of system structure that can be used to highlight changes [22]. We 

wanted to test how well task context supported this layout. Figure 5.7 shows a Seesoft visualization of 

task context67 where the vertical bars correspond to the slice of interesting files and the highlighted 

regions correspond to the slice of interesting elements within those files (e.g., Java methods). Our own 

experience using this view indicates that its information density is likely to be too low for most 

programming activities. However, we do make it available for experimental use in the Sandbox. We 

believe that such a view could be useful for other activities such as reviewing code to find “hot spots” that 

could, for example, be candidates for refactoring.  

                                                      

67 For this we use Visualiser component provided by the http://eclipse.org/ajdt project [verified 2006-10-06] 
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Figure 5.7: Seesoft visualization of task context 

5.4.3. Interaction History Chart 

In addition to prototyping views to improve how task context is displayed to the user, we also created 

visualizations to improve our understanding of the massive amounts of usage data that came from our 

field studies. One example of such a visualization is shown in Figure 5.8, where the task context 

algorithm was run on a user’s data to simulate what would be visible in their Eclipse if he had been 

working with a single task active for the entire duration. This visualization ignores decay and depicts a 

few elements that gradually gain landmark interest, and the large number elements with low interest. We 

have used these visualizations for to look for trends such as frequency of landmarks and the range of their 

interest, and believe that such visualizations have potential for future work in identifying patterns in 

interaction histories. 
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Figure 5.8: Visualization of interaction history with decay ignored 

5.5 Future Work 
We have defined a model of task context and validated an instance of the model for a development 

environment and for a file and web browsing application. Our implementation is one particular point in 

the design space of using interaction to scope down the information presented in an application. In this 

section, we discuss alternative approaches and future work that could improve task context accuracy and 

applicability. 

5.5.1. Transforming and displaying interaction history 

Alternate implementations of task context could use different schemas for representing interaction, 

different algorithms for transforming interaction history into a task context and different data structures 

and operations for modeling task context. As one example, a simplified model could ignore interaction 

with generic relations as elements in the model and make the common containment relation (i.e., 

hierarchy) a first-class part of the model. Another could make relations more prominent, if the domain 

made relations a direct target of interaction (e.g., an interactive visualization tool that allows direct 

selections of the edges between elements). 
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We have defined a set of task-focused UI mechanisms, suitable for use with Eclipse and similar UI 

frameworks. Different task-focused UI mechanisms could be used to display task context. For example, in 

addition to sorting or using force-directed layout to focus a view, groupings or visualizations that cluster 

elements with related interest values could show additional properties of the task context model. 

Navigation patterns present in the interaction history could also be overlaid on task-focused UI displays in 

order to further highlight elements interacted with recently (e.g., building on the simplistic shading in the 

Pathfinder visualization described in Section 5.4).  

5.5.2. Extending Support to Other Domains 

Our implementation for task context targeted an IDE and a file and web browsing tool. Task context 

could also be applied to other application domains. Extending task context to domains that have a well-

defined notion of task and structure is straightforward, but more work is needed to determine how the task 

context model could be extended to support domains where tasks and structure are less well-defined. In a 

domain where tasks are less structured, entire activities, such as listening to music, could correspond to a 

task context. Supporting such domains would also involve exploring integration with artifacts that are 

typically considered unstructured, such as images, audio, or video files. What would be required to 

integrate with such artifacts is a notion of identity of the elements in those artifacts. For example, the 

identity of the elements in an audio file could be time ranges. Alternatively, the identity of elements in a 

video file could come from the metadata for that video. Once such a notion of identity is defined, the 

interaction monitoring and structure bridge frameworks could be used to focus interaction with these 

kinds of resources. 

5.5.3. Improving Interaction with Filtered Views 

Knowledge workers tend to use a variety of displays ranging from mobile devices to high pixel count 

desktop or wall-mounted displays. All of the task-focused UI mechanisms that we have defined have used 

fixed threshold values. These thresholds determine which elements are landmarks, and when elements 

decay out of a view. Consider a programmer working on a task on his 1024x768 laptop. Given our current 

tunings, it is likely that this programmer will see a scrollbar in their Package Explorer and will need to do 

some scrolling to find landmarks of interest. Conversely, a programmer working on a 2048x1536 display 

is likely to see a considerable amount of unused space in their Package Explorer. The thresholds for tree 

views could be adapted to the available vertical space in the views. As the context grows, the threshold 

for an element to be interesting could be gradually raised from -∞ in order to fill the visible area of the 

view without adding a scrollbar. Coupled with the automatic view expansion (Section 3.2.2) this 

technique could be used to ensure the guaranteed visibility [50] of landmark elements. The tradeoff with 
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this technique is that it would set the threshold per-view, which would come at the cost of different views 

showing different slices of the context.  

5.5.4. Unified Interaction, Context, and State Model 

Task contexts provide a full history of the interaction with a task. When considered along with a 

representation of the changing state of information, such as a version-aware document repository, task 

contexts could enable “rewinding” both interaction and state concurrently, enabling a worker to easily 

return to a previous state in their work history. Our usage metrics indicate that programmers generate 

roughly 1-10 Megabytes of interaction information per month. This means that it could be feasible to 

maintain a unified model of all of the interaction all users have and link this with the state changes, 

without adding substantial overload to document repositories, which are often measured in terms of 

Gigabytes. Such a unified interaction and document storage facility could support rewinding the state of a 

system across one or more tasks. Our current model has no support for undoing interaction, and 

supporting this might require the ability to fork interaction histories.  

A related challenge is handling resources that change beyond of the reach of the interaction monitoring 

framework. For example, currently it is possible for the task context model to be updated by all the 

changes in a software system as long as the source code repository tracks those changes (e.g., by storing 

the refactoring information that details how elements are renamed). For this to be feasible for web pages, 

the task context model would need to be notified of changes to the structure of the internet, or of a 

particular intranet of interest.  

5.5.5. Cascading Contexts 

We have ignored the schemas that knowledge workers use to define their tasks, such as grouping tasks by 

project or structuring them into subtasks, sequences, or dependencies. Since the task repositories with 

which Mylar integrates support such task structuring, Mylar IDE users have made frequent requests to 

allow tasks contexts to contain other tasks and their contexts. For example, if task A has subtasks B and C, 

the context of task A could be the composite context of task B and C. Mylar can be extended to support 

this kind of flexible cascading of task contexts using the composition operation. Support for cascading 

contexts could have a profound effect on the representation of the task context model. For example, 

instead of storing individual contexts and requiring composition of those contexts, a task context could be 

identified by a set of spans of an interaction history and relations to other such spans. Activating a task 

context could then involve “swapping in” the corresponding segments of interaction. A simplistic version 

of this is approximated by our current implementation, which always maintains a composite context of the 

activated tasks in main memory. However, due to disk space and memory constraints we discard repeated 
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events with the same element corresponding to the same task context’s interaction history (Section 3.2.4). 

More availability of main memory and disk space could remove this restriction allowing the model to 

have access to all previous interaction, enabling facilities such as interaction pattern detection and the 

ability to rewinding interaction across one or more tasks. 

5.5.6. Focusing the Workweek 

Once task management becomes an integral part of the work process, it is possible for the Mylar Task 

List to become inundated with tasks. For example, the author’s task list currently contains 2394 tasks, 677 

of which are incomplete. In realizing this, we initially became concerned with the profound irony of 

having moved the information overload problem from the structure views to the task management view. 

However, we then realized that we could apply task context to tasks (Section 2.4). We use the same 

operations and similar task-focused UI mechanisms to filter tasks that are not relevant to a slice of the 

context for the current workweek (Figure 5.9). Tasks that are not scheduled for this week are 

uninteresting and filtered. The slice of tasks scheduled for the current workday is highlighted in blue, and 

the slice of those overdue is highlighted in red. Tasks of a high interest, such as those with incoming 

comments, are always visible (blue arrows in Figure 5.9). The Mylar bug database indicates that a 

substantial number of users work in this “Focus on workweek” mode in order to manage the large number 

of tasks in their Mylar Task list.  

 

Figure 5.9: Focusing the work week 
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The key difference with the way that the task activity context is projected is that it uses a binary notion of 

decay: either a task’s recency places it in the current workweek or it does not. It also uses a discrete 

notion of recency: a task is active this week, active today, active now. Although this has the benefit of 

predictability, it misses a considerable part of the benefit of our interaction-based weighting and forces 

the user to constantly manage their task list to ensure that not too much is scheduled for any given day or 

week, and that tasks with incoming comments are read so as not to pollute the view. We believe that 

converging these mechanisms with those used for the artifacts themselves could automate some of the 

manual task list management currently imposed on the user; this is left to future work. 
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6. Related Work 

Task contexts capture information that is relevant to a knowledge worker’s tasks. In this chapter, we build 

on our summary of other approaches (Section 1.3) and compare task contexts to related work that can 

identify and represent task information, including query and recommender tools (Section 6.1). Some of 

these approaches include mechanisms that take into account a worker’s interaction with information to 

implicitly create a context (Section 6.2). We also compare our approach to task management tools 

(Section 6.3) and information focusing user interfaces (Section 6.4). Our comparisons include approaches 

that target programmers specifically and approaches that target a more general class of knowledge 

workers. 

6.1 Mechanisms for Identifying Relevant Structure 
When performing a task that involves understanding a subset of a large information system, hierarchical 

decompositions alone are often insufficient [42]. In this section, we describe query and concern 

management tools that have made it possible for programmers to find information related to their task. 

We also describe how the task context model builds on this previous work by providing a novel data 

structure that makes interaction explicit while also representing the elements and relations of the 

underlying system that correspond to the interaction. We describe how our application of task context to 

focus a user interface goes beyond the models currently being used by search engines and collaborative 

filters in order to show the user the most relevant task-specific information.  

6.1.1. Query and Concern Management Tools for Programmers 

A programmer can use traditional query tools, such as grep or a program database [67], to find individual 

points in the system structure in which he is interested. The idea of “slices” took the idea of a query 

further, recognizing that a collection of related points in the code is often the desired result. For instance, 

Weiser’s original notion of a slice identified all code affecting (or affected by) a particular variable at a 

particular point [70]. Many now use the term “concern” to describe a collection of such points. Concern 

management tools support a more flexible definition of slices by including points in the system based on 

modularity properties, external specifications, or annotations in the code. For example, JQuery [33] 

provides a comprehensive query language and UI for expressing, storing, and viewing slices based on 

modularity. Concern Graphs [59] and CAT [28] use an external specification that represents the key 

structure of code contributing to a concern. The AOIG tool extends search heuristics beyond the system 
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structure to include natural language content in related artifacts such as comments and annotations in the 

code [60].  

All of these approaches put the burden of accurately formulating queries or annotations on the 

programmer. In contrast to the structure-centric approach of most query, slice, and concern tools, task 

contexts are an interaction-centric approach. NaCIN is similar in constructing a Concern Graph from a 

programmer’s navigation activity [48]. Whereas NaCIN’s model is a lazily-created subgraph of system 

structure, task context builds on this idea and instead makes the primary abstractions in the model be 

based on interaction, preserving interaction events in order to determine usage-based weightings. Our 

approach is also novel in enabling interaction-based weightings of both the elements and the relations 

accessed, representing indirect interactions, and supporting operations on task context such as inducing 

the interest of elements that have not yet been the target of interaction.  

6.1.2. Search Engines and Collaborative Filtering 

The most notable difference in the information that knowledge workers access compared to programmers 

is that the information accessed by a general knowledge worker tends to contain more unstructured 

information (e.g., in the form of Microsoft Word documents or image files). Query tools that use 

filenames and text indices often return a very large number of hits when queries are made on the little 

structure that is available. Similar to programming tools, approaches for improving the relevance ranking 

of query results have focused on adding additional heuristics based on the structure of the data, such as 

Google’s Page Rank algorithm that weighs results based on hyperlink structure [8]. The Squeal tool [62] 

has demonstrated that additional structure can be mined directly from web document themselves, for 

example by mining sections within pages. The Semantic Web roadmap [6] promises to make more of the 

structure embedded in web pages explicit.  

An alternative to relying on a well-defined structure is to make it easy for users to add their own metadata 

by providing affordances for creating and sharing tags, as social bookmarking tools such as Flickr’s photo 

tagging or del.ic.ious’ bookmark tagging [27]. Such tools facilitate the sharing of metadata to increase the 

accuracy of the hits returned by search engines or recommender systems. Collaborative filter 

recommenders have also been demonstrated in the IDE domain by tagSEA [63]. 

These search and tagging approaches typically burden the knowledge worker with accurately tagging 

elements and formulating queries, whereas task context determines the relevant structure automatically 

from monitoring interaction. Systems that employ user activity to support collaborative filtering are a 

notable exception. For example, the amazon.com item-to-item recommender system uses an implicit 

notion of activity [46], the purchasing of a product, to inform the recommender. Although task context 

builds on this idea of weighting via interaction, it makes both interaction and the underlying structural 
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elements and relations a part of the model. This enables task context to be extended to any domain 

structure that can be represented as elements and relations and supports uniformly weighting interaction 

with different domain structures. Other key differentiators are the explicit representation of users’ tasks, 

and the operations that task context supports, such as inducing interest on structurally related elements. 

6.2 Using Interaction to Create a Context 
In contrast to structural approaches for creating a context, several tools have employed a user’s interaction 

with an application to formulate the set of relevant elements. Such interaction-based contexts have been 

used for focusing displays on the relevant information (Section 6.2.1) as well as improving search results 

(Section 6.2.3). We also present alternative approaches to mining user interaction (Section 6.2.4) 

6.2.1. Displaying Usage-Based Context 

Many IDE tools show the programmer structural context for the currently selected element, starting 

perhaps with Interlisp’s Masterscope [67]. Providing a richer context than the currently selected element 

can be accomplished by monitoring and recording the user’s interaction. For example, in the document 

editing domain, the Edit and Read Wear tool was one of the first to do this by highlighting editing and 

selection patterns that a user had performed on a document to indicate areas of high interest and change 

[31]. Mylar 0.1 [39] and Wear-Based Filtering [16] (developed independently in parallel) expanded this to 

the programming domain by using interaction frequency to highlight the elements of interest in the IDE 

UI and filter away uninteresting elements. Both Mylar 0.1 and Wear-Based Filtering had an overly 

simplistic model of interest decay, did not represent weightings of relations, and lacked the ability to 

perform operations such as interest predictions and propagations.  

Team Tracks used interaction with program elements gathered across multiple uses by multiple users to 

drive a recommender that can suggest to other team members which program elements may be of interest 

[15]. Parnin uses an alternative to Mylar’s user interaction-based DOI function [53] for the similar 

purpose of providing recommendations in a team environment, and extends interaction monitoring to 

include the queries that the user has formulated (e.g., via searching for all references to a particular 

method). A recent Focus+Context approach to UML visualization, in which “A class is displayed at a 

particular level of detail using a degree of interest (DOI) function based on the frequency of access to a 

particular class and its distance from the current object in focus”, also captured interaction to focus the 

user interface [32].  

The key shortcoming of these approaches is that they do not have an explicit representation of 

programmers’ tasks. This results in information overload on long-running tasks and the context loss 

problems that we identified during the preliminary study of Mylar 0.1, which also lacked such a facility 
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(Section 4.2). In addition to making tasks explicit, the task context model is novel in capturing the 

interaction with the tasks themselves, enabling the display of task activity (Section 5.5.6). 

6.2.2. Ranking Search Results 

Recent approaches to improving information retrieval accuracy for applications, such as web search 

engines, have been “personalizing” search results [54], for example by incorporating interaction data into 

their ranking algorithms [66] [2]. Each of these employs user click-through data to improve the ranking of 

search results, for example, ranking web pages the users have previously visited higher than those that 

they have not. A key difference with task context is of the ability to weigh the various kinds of interaction 

with aggregate kinds of structured and semi-structured data. Task context also explicitly represents tasks, 

making it possible to express task-specific weightings of interaction that support interest decay, and 

enabling operations that treat structure-based weightings separately from interaction-based weightings. 

For example, in contrast to the search tools cited above, which blend interaction-based rankings and other 

heuristics to create a single ranked list of results, task context makes it possible to separate structure-

based rankings from interaction-based ones. This separation enables distinguishing task-specific 

interaction-based rankings from global structure and heuristic-based rankings. For example, the content 

assist dialog rankings in Figure 6.1 below make this separation of interaction- and structure-based ranking 

clear with a visual separator. Maintaining interaction-based rankings separate from structure-based 

rankings enables switching the interaction-based rankings with each task, while ensuring that the heuristic 

rankings remain a predictable view of system structure.  

 

Figure 6.1: Separation of interaction-specific rankings from structure-based rankings 

6.2.3. Implicit Search and Usage-Based Scoping 

Implicit or automatic query facilities can provide a mechanism for driving search without the explicit 

need for the user to invoke the search. Such facilities can use detailed information about the user’s 

environment. For example, just-in-time information retrieval agents use keyword occurrences within 
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currently-selected documents to drive an implicit search and can recommend relevant web pages [56]. As 

implemented by our Active Search (Section 3.3.3), task contexts provide two additional facilities to such 

mechanisms. First, by virtue of defining a set of the most interesting elements in a particular context, a 

slice of the context, such as all landmarks, can be used as an input to implicit search. In the Active Search 

view, this provides stability, since the set of landmarks changes much less frequently than the currently 

selected element. Second, a broader slice of the context can be used to provide a usage-based search 

scope that is task-specific.  

6.2.4. Mining User Interaction 

Hilbert provided a framework for monitoring application events to determine which information was the 

target of interactions. He also identified the challenge of determining which parts of the interaction were 

relevant when monitoring is done at a fine-grained level of detail [30]. Mylar addresses this problem by 

providing weightings based on interaction frequency and recency. Machine learning or user modeling can 

also be used to determine the relevant parts of a user’s interaction history. Such learning approaches have 

been implemented for the purpose of monitoring web-based document navigation [71]. One approach 

used mouse movements to determine interest in the relevant area of a web-based document [11]. More 

recent work has extended this mouse tracking approach to create a model from additional interaction such 

as tracking UI commands, scrolling, and the time spent on particular pages [29]. TaskTracer has 

additionally used the time that a page is open, the execution copy commands, and the occurrences of 

words in the contents of the page to determine relevance [44]. These above approaches employ Bayesian 

networks or other classifier and machine learning techniques to predict the relevance of documents and 

other information to the user [72].  

Although Mylar has rich facilities for monitoring user interaction, a driving design goal is to make the 

transformation from interaction to the model predictable to the user. Additional study is needed to 

determine whether predictability can be preserved when employing finer-grained and more sophisticated 

monitoring mechanisms such as cursor position, time spent on a document, or the visible areas of 

scrollable pane, as has been done by the above approaches. In addition, our choice not to use sophisticated 

and statistical learning models for creating a task context was deliberate. We wanted to ensure that the 

task context model did not exhibit the failures of adaptive and adaptable menus [23], whose lack of 

predictability made them difficult to use. However, there are other areas of where adaptability could 

potentially enhance task context model accuracy. Additional testing will be needed to determine if 

machine learning approaches can provide improved accuracy while maintaining predictability.  
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6.3 Task Management Tools 
Some of the foundations on managing the context of documents in a task-centric way come from the 

Placeless and Presto projects from Xerox PARC [17], which supported a flexible configuration of 

documents and provided the “Vista” display of tagged. This supported organizing and browsing files by 

user-defined categories and topics, making it possible to avoid navigating through deep hierarchies. This 

approach is now available in the Microsoft Windows Vista 68  operating system. However, these 

approaches require users to manually categorize their files rather than building up context implicitly. 

Additional early work in supporting task models and task switching focused on the definition of explicit 

structure for the tasks (e.g., [9]). Other systems have taken the approach of extracting the definitions and 

contents of tasks from relevant information sources, such as email (e.g., [5]).  

Our approach is most similar to those that make the association of information with a task and the 

determination of the tasks themselves as unobtrusive as possible (e.g., UMEA [34] and TaskTracer [18] 

[64]. UMEA and TaskTracer both monitor the user’s interaction and create a listing of the elements 

interacted with as part of each task, in the case of TaskTracer, and as part of each project, in the case of 

UMEA. In these systems, the resources associated with a task increases with the amount of interaction 

unless a user takes explicit action to delete information from the task. Various mechanisms for 

determining relevance of a piece of information with a task are discussed in this earlier work, but little 

empirical evidence of experience with these mechanisms is provided. Our work differs in providing DOI 

values for each piece of information accessed and in maintaining structural links between information 

traversed, based on the frequency and recency of the interaction during the task. This makes it possible to 

present a display of task context that does not grow indefinitely on long-running tasks, since the least 

relevant elements are decayed out of view automatically. 

The only other work we are aware of in trimming the documents associated with a task automatically is 

by Lettkeman et al. [44]. They tested, within the TaskTracer environment, whether machine learning 

could predict which web pages accessed as part of a task were likely to be revisited. Their work did not 

consider file interactions as part of tasks; however, we have shown these interactions to be useful in our 

field study of knowledge workers. In the future, it would be interesting to compare the precision of a 

decay feature based on interaction with a statistical approach. 

                                                      

68 http://microsoft.com/windowsvista/ 
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6.4 Information Focusing User Interfaces 
The idea of using a DOI function to control which parts of a large set of structured data should be 

displayed to the user originated with Focus+Context and fisheye views [45]. In this section, we discuss 

how our work relates to information visualization in general and to related efforts in software 

visualizations.  

6.4.1. Information Visualization 

One goal of task context is to improve the density of IDE and information browsing views. However, 

whereas Card’s DOI [9] is purely a function of the tree structure used to determine which parts of the 

structure to display, the DOI function for task context is based on a user’s interaction history and supports 

a graph structure. Task context extends the notion of DOI beyond navigation by supporting the encoding 

of the interest of relationships and interaction-based manipulation of DOI values. By virtue of providing a 

DOI function that defines the elements of high interest, task context is related to Focus+Context views, 

such as those used for navigating large hierarchies [43]. Our DOI function provides weightings based on 

interaction with structure, not on a weighting that is purely defined by structural properties alone, as is the 

case with the above approaches. Task context employs a general interaction-based DOI that can provide 

an alternative input to such Focus+Context visualization, as discussed in Section 5.4.1. 

Force-directed graph drawing [21] [25] provides some of the basis for how interest is induced along 

relationships since task context treats the transitive effects of the induction operation similar to the way 

force-directed graphs compute layout. The use of force-directed techniques has been demonstrated for 

rendering diagrams of software structure with a UML representation [20]. The notion of weighted 

relationships, used in task context by the DOI level of relations, is also used in the VisualThesaurus tool 

[24]. However, similarly to the other existing DOI work, the underlying model that these existing 

approaches take is a function of the structure and not of the interaction history.  

Part of the original inspiration for task context was to make navigating software structure as intuitive as it 

is to navigate physical topographies69 . As such, concepts from wayfinding and cognitive maps are 

represented in Mylar’s UI mechanisms. The ideas of landmarks and paths originate from Kevin Lynch’s 

work on urban planning [47]. Lynch’s work has been adapted to navigating information by Vinson, who 

also used the ideas of landmarks and paths for navigating virtual information spaces [69]. Vinson 

discovered that paths are an emergent phenomenon and arise from the development of spatial knowledge 

                                                      

69 Our original term for task context was “taskscape” in order to connote this topographical property. Since we have de-coupled 

the model from its visual representation, we now only use the term taskscape for topographical visualizations of task context. 
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for virtual environments in a very similar way to how they emerge for real environments. This implicit 

representation and emergence of paths is also present in the task context model (Section 2.2). Moonen 

extended the idea of wayfinding in cities to exploring software systems, but his work focused on not on 

interaction history but on relating software structure to the concept of landmarks, nodes, paths, districts, 

and edges [49]. 

6.4.2. Software Visualization 

In addition to the generally applicable information visualization approaches described above, some 

software visualization tools have used related Focus+Context ideas to reduce information overload in 

displays of large software systems. The Argo/UML visualization tool has a notion of mapping “to do” 

items to files, but these all fall short of a task representation as they only provide program element 

specific tags [65]. A structure-based notion of DOI has been used for distortion-based techniques of 

visualizing system structure in terms of data flow and entity-relationship diagrams [68]. These tools 

manifest the same limitations of structure-centric approaches as discussed above. The work on Instability 

Visualization and Analysis [7] bears some similarity to our own because the visualization of version 

control information takes the shape of a surface, and because this surface is constructed with a force-

directed mechanism that is based on the structure of the revisions. This use of revision history provides a 

very coarse form of interaction that is not suitable for an interactive tool (e.g., an element may not 

populate the context until it is committed to revision control). Our task context model provides a finer-

grained representation of interaction.  
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7. Conclusion 

Information overload and loss of context are a bottleneck on the productivity of knowledge workers. 

Current tools make it easy to browse and query the structure of the information that knowledge workers 

need to access. However, given the complexity of today’s information systems, knowledge workers end 

up spending an inordinate amount of time looking for the information relevant to the task-at-hand. As 

they are constantly multi-tasking, they are also burdened with repeatedly creating and recreating the 

context they need to get work done.  

Our approach is to move the burden of finding and identifying the relevant information from the user to a 

software tool. We leverage users’ episodic memory by having them indicate and recall the tasks that form 

their units of work. In support of this approach, we have created a model of task context, defined user 

interface and interaction mechanisms for integrating this model with knowledge work applications, and 

implemented it for an IDE and for a file and web browsing tool. Through a field study of professional 

programmers, we have demonstrated with statistical significance that an explicit task context makes the 

programmer class of knowledge workers more productive. Through a study of knowledge workers from a 

cross-section of professions, we have demonstrated that the model generalizes to supporting interaction 

with less well-structured information systems and that, when provided with the benefits of an explicit task 

context, knowledge workers will voluntarily indicate the tasks on which they work. 

This thesis makes the following contributions to the field of software engineering, and the broader field of 

knowledge work. 

First, we provide a generic task context model that represents interaction with any structured or semi-

structured data that can be represented as elements or relations. The elements and relations in this model 

are weighted based on the frequency and recency of interaction with those elements and relations. We 

demonstrate that this weighting is key to reducing information overload and that capturing context per-

task is key to reducing loss of context when multi-tasking. 

Second, we provide operations on task context that support composing and slicing task contexts in order 

to integrate the model with views and tools that display system structure. We provide the induction 

operation for growing the model to encompass structurally related elements and to support implicit search 

facilities. We also provide operations that support direct manipulation of the interest levels in the model. 

We demonstrate with our task-focused UI mechanisms that these operations support making task context 

explicit in an IDE and in a file and web browsing application. 
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Third, we provide a specific instantiation of the model for Java, XML, generic file and web document 

structure, as well as tasks themselves, and provide an architecture that supports integrating the model with 

various other kinds of domain structure. Our model can be extended to other kinds of domains and 

application platforms, and has already been implemented for a different application platform by another 

research group70. 

Fourth, we provide a monitoring and reporting framework that can be used for studying knowledge work, 

as has been demonstrated by the other research groups that have reused this framework71. 

We have deployed our implementation of task context for programmers widely; tens of thousands of 

programmers now use Mylar IDE daily, presumably because it gives them productivity benefits as we 

saw in our field study. In the future, we hope to see widespread adoption of this technology for facilitating 

knowledge work across a broad spectrum of domains. We also hope that capturing knowledge in the form 

of task contexts will provide long-term productivity and knowledge sharing benefits to both individuals 

and organizations. 

                                                      

70 See footnote 8. 

71 http://wiki.eclipse.org/index.php/Mylar_Related_Research_Projects [verified 2006-10-02] 
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Study I Questionnaire 

Subjects of Study 1 (Section 4.2) answered the following questions before starting the study. 

• How much development experience do you have? How much Java development? 

• Briefly describe your development responsibilities. 

• Would you describe yourself as an Eclipse beginner, intermediate, or expert user? How much of 

your day do you spend in Eclipse? 

• What do you like about Eclipse’s navigation mechanisms and tree views?  What don’t you like? 

• Do you find that views such as the Package Explorer and document outline contain too much 

information? Is it cumbersome to manage the large trees?  

• For browsing class members do you use the Document Outline, the Package Explorer, both, or 

something else? 

• What do you think of Eclipse’s current support for presenting and managing open editors? 

• Do you use the navigation history commands? Are you ever unclear about where the back or 

forward command will take you? 

• Do you use the editor’s folding feature?  If so, does it cause you problems when code you were 

expecting to see is folded away? 

• Please list anything else particular about your navigation style, and any gripes that you have with 

Eclipse’s current support for your navigation needs. 
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