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Section 7.16: Introduction to Density of States 
 
 Many physical phenomena depend on the number of states within an energy range 
(energy density of states). When a semiconductor absorbs light for example, electrons can 
be promoted from occupied valence states to empty conduction states. The energy of the 
photons must match the energy difference between the occupied and the empty states. 
Without the empty states, the transitions cannot occur.  More occupied valence states and 
more unoccupied conduction states mean the possibility of greater transition rates and 
therefore higher levels of absorption.  The same reasoning applies to thermal transitions.  
 The discussion distinguishes between localized and extended states only in their role 
in semiconductor processes.  The localized states provide a convenient starting picture for 
developing the energy density of states. All bands in a semiconductor consist of extended 
states. This section discusses density of states for electrons in bulk and heterostructure 
with special focus on reduced dimensional structures such as quantum wells, quantum 
wires and quantum dots.  Sections 7.5 and 7.6 discusses the origin and meaning of sub-
bands.  For bulk semiconductors, we indicate how satellite valleys in the bands affect the 
density of states.   The discussion includes the reduced density of states necessary for 
light emitters and absorbers.  
 
Topic 7.16.1: Introduction to Localized and Extended States 
 
 The “localized states” refer to traps and recombination 
centers.   Electrons (or holes) moving in a semiconductor 
collide with the traps and become immobilized. The 
localized electron or hole has a wavefunction with finite 
size.  For example, Figure 7.16.1 shows an electron caught 
in a trap; the electron has a Gaussian shaped wave 
function.   The trap can be thought of as finitely deep 
square well potential.  The localized states occur in the 
bulk or at the surface of a semiconductor.  The surface 
states trap either electrons or holes or act as surface 
recombination centers.    

 The position of the state within the band gap 
determines whether it behaves as a trap or as a 
recombination center. Shallowly trapped electrons require 
little energy to become free.  A semiconductor at room temperature supplies sufficient 
numbers of phonons to release the electron.  States near the center tend to be 
recombination centers since few phonons have enough energy to release the electron. 
Eventually a free hole encounters the trapped electron and recombines with it. Therefore 
the depth of the trap controls the rate of release and determines its function for 
recombination and optical processes. 
 The localized surface and bulk states affect the efficiency of electronic and opto-
electronic components.  As just mentioned, the localized states can function as 
recombination centers that lower the efficiency of the device.  For example, consider a 
light emitting diode operating under forward bias.  The recombination centers provide 
recombination current that does not contribute to the optical emission. Therefore the 

Figure 7.16.1: Trapping states 
with localized wavefunctions.



 7.105

efficiency of the bias current for producing light must be reduced as compared with the 
case for a high quality semiconductor without recombination or trapping centers. 
 The extended states refer to plane waves with infinite extent and to electrons (or 
holes) with unrestricted motion within the semiconductor.   In particular, they describe 
electrons and holes within the valence or conduction band.  The Bloch wave function has 
the plane wave as the envelope function.  A finite system can support only certain plane 
waves which gives rise to the quantized energy and discrete states.  The boundary 
conditions produce the allowed wave vectors. 
 
 
Topic 7.16.2:  Definition of  the Density of  States 
 
 In this topic, we discuss the counting procedure for the energy density of states.  We 
start with the localized states for simplicity. 
 The energy density of states (EDOS) 
function measures the number of energy 
states in each unit interval of energy and 
in each unit volume of the crystal  

( ) #statesg E
Energy XalVol

=
∗

 (7.16.1) 

We need to explore the reasons for 
dividing by the energy and the crystal 
volume. 
 First we discuss the reason for the 
“per unit energy”.  Suppose we have a 
system with the energy levels shown at 
the left of Figure 7.16.1.  Assume for now 
the number of states occurs in a unit 
volume of material (say 1 cm3).  Maybe 
the system consists of a few quantum 
wells with slightly different widths 
distributed throughout the material.  The figure shows the energy levels from all of the 
wells in the unit volume. The figure shows 4 energy states in the energy interval between 
3 and 4 eV.  The density of states at E=3.5 must be 

( ) 3

#states 4g 3.5 4
Energy Vol 1eV 1cm

= = =
× ×

 

Similarly, between four and five electron volts, we find two states and the density of 
states function has the value ( )g 4.5 2= and so on.  Essentially, we just add up the number 
of states at each energy.  The graph shows the number of states vs. energy; for 
illustration, the graph has been flipped over on its side. Generally we use finer energy 
scales and the material has larger numbers of states (1017) so that the graph generally 
appears much smoother than the one in Figure 7.16.1 since the energy levels essentially 
form a continuum. The “per unit energy” characterizes the type of state and the type of 
material.  

Figure 7.16: The density of states for the discrete 
levels shown on the left-hand side. The plot 
assumes the system has unit volume (1 cm3) and the  
levels have energy measured in eV. 
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 The definition of density of states uses “per unit crystal volume” in order to remove 
geometrical considerations from the measure of the type of state.  Obviously, if each unit 
volume has vN  traps given by 

( ) ( )v 0

#states #statesN dE g E d energy
Energy*vol vol

∞
= = =∫ ∫   (7.16.2) 

 then the volume V must have vN N V=  traps. Changing the volume changes the total 
number.  To obtain a measure of the “type of state”, we need to remove the trivial 
dependence on crystal volume.  
 What are the states?  The states can be those in an atom.  The states can also be traps 
that an electron momentarily occupies until being released back into the conduction band. 
The states might be recombination centers that electrons enter where they recombine with 
holes.  Traps and recombination centers can be produced by defects in the crystal. 
Surface states occur on the surface of semiconductors as an inevitable consequence of the 
interrupted crystal structure. The density of defects can be low within the interior of the 
semiconductor and high near the surface; as a result, the density of states can depend on 
position. 
 Let’s consider several of examples. First, suppose a crystal has two discrete states 
(i.e. single states) in each unit volume of crystal.  
Figure 9.10.2 shows the two states on the left side of 
the graph.  The density-of-state function consists of 
two Dirac delta functions of the form 

( ) ( ) ( )1 2g E E E E E= δ − + δ −  
Integrating over energy gives the number of states in 
each unit volume 

( ) ( ) ( )v 1 20 0
N dE g E dE E E E E 2

∞ ∞
= = δ − + δ − =  ∫ ∫

If the crystal has the size 1x4 cm3 then the total 
number of states in the entire crystal must  given by 

8NdVN
4

0 v == ∫  

as illustrated in Figure 9.10.3.  Although this example 
shows a uniform distribution ofstates within the 
volume V, the number of states per unit volume Nv 
can depend on the position within the crystal.  For 
example, the growth conditions of the crystal can vary 
or perhaps the surface becomes damaged after 
growth. 
 As a second example, consider localized states 
near the conduction band of a semiconductor as might occur for amorphous silicon. 
Figure 7.16.4 shows a sequence of graphs. The first graph shows the distribution of states 
versus the position “x” within the semiconductor.   Notice that the states come closer 
together (in energy) near the conduction band edge. As a note, amorphous materials have 
mobility edges rather than band edges.  The second graph shows the density of states 
function versus energy.  A sharp Gaussian spike represents the number of states at each 
energy.  At  7 electron volts, the material has six states (traps) per unit length in the 

Figure 7.16.2: The density of states 
for two discrete states shown on the 
left side. 

Figure 7.16.3: Each unit volume has 
two states and the full volume has 8. 
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semiconductor as shown in the first graph. The second graph shows a spike at seven 
electron volts.  Actual amorphous silicon has very large numbers of traps near the upper 
mobility edge and they form a continuum as represented in the third graph.  This example 
shows how the density of states 
depends on position and how 
closely space discrete levels form 
a continuum. 
 As a final example for 
localized states, let’s consider the 
role of localized states for 
nanoscale devices.  Suppose a 
small cube of length L represents a 
small electronic device.  Suppose 
electrons and holes are created in 
the bulk and on the surface either by electrical or optical pumping.  Suppose the device 
should function when carriers recombine in the bulk of the material (for example, the 
device might be a small LED).  However, some of the carriers will recombine at surface 
states, which does not contribute to the device operation.  We can reasonably assume the 
bulk and surface recombination rates depend on the total number of states at the surface 
and in the bulk.   The surface recombination rates must be 

3
bulk v v v vR C N V C N L= =  2

surf A A A AR C N A C N L= =   (7.16.3) 
where v AC ,C  are constants, v AN , N  represent the total number of states per volume and 
area.  We therefore see the ration of surface to bulk recombination rates must be 

2
surf A A

3
bulk v v

R C N L 1~
R C N L L

=      (7.16.4) 

We therefore see that surface recombination can dominate the bulk recombination at 
sufficiently small sizes.  For a device intended to operate using traditional bulk processes, 
the surface states pose significant problems and can completely destroy the device 
efficiency.  For recombination involving phonons, the surface becomes the prime heating 
agent. 
 

Figure 7.16.4: Transition from discrete localized states to 
the continuum.
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Topic 7.16.3: Relation between Density of Extended States and Boundary Conditions 
 
 So far we have discussed the density of states for the localized states.  We can add up 
the number of extended states using similar techniques.  However, the extended states 
correspond to plane waves characterized by a wave vector k  and angular frequency kω . 
For electron and hole wave functions, the band diagrams inter-relate the wave vector and 
angular frequency.  Therefore allowed values of energy E = ω  must be related to 
allowed values of k.   
 The electron can be either confined to a finite region of space or not confined at all.  
Confining an electron to a finite region of space places conditions on the allowed electron 
wavelength and hence also on the allowed wave vectors. Finite regions of space produce 
discrete allowed wave vectors and therefore discrete energy values. Boundary conditions 
mathematically model the effect of the finite regions.  Either fixed-endpoint conditions or 
periodic boundary conditions can be applied to the wavefunction for the confined 
electron.  The fixed-endpoint boundary 
conditions produce sine and cosine standing 
waves for the energy eigenfunctions.  The 
wave vectors k  have only positive 
components as given by the Fourier 
summations in Chapter 2. The periodic 
boundary conditions over a finite distance L 
usually applies to planewaves even though 
the wave must be restricted to length L. In 
this case, the wave vectors k  have both 
positive and negative components.  We 
apply these periodic conditions to 
macroscopic size L as opposed to the 
quantum well or wire.  For those electrons 
not confined to finite regions, we apply the periodic boundary conditions over the length 
L. Here the length L appears artificial in order to provide normalization for an infinitely 
sized wave.  Nevertheless, the finite size of L leads to discrete allowed wavelengths, 
wave vectors, and therefore also energy. For infinitely sized regions, we can let the 
repition length L increase unbounded.  The allowed wavelengths, wave vectors and 
energy become infinitesimally close together and essentially form a continuum.  The 
transition from the Fourier series to the Fourier transform appears very similar to this 
procedure for letting L increase without bound. In real crystals with finite sizes, the 
length of the crystal must be identical with the repetition size. In such a case, the size of 
the crystal sets a minimum spacing for allowed k. We find that each atom contributes one 
state to each band.  The number of states in each band must be the same as the number of 
atoms N. 
  Once we know the allowed energies for a finite system, we can count the number of 
allowed states.  Figure 7.16.5 shows the descrete states for the conduction band.  We can 
count the number of states in the energy range E∆  to find g(E).  However, the figure 
makes it clear that the number of states along the energy axis must be related to the 
number along the k-axis. In fact the total number of states in the range E∆  comes from 

Figure 7.16.5:  The density of energy states 
must be related to the density of k-states. 
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the two regions marked k∆ .  For 2-D systems the k∆  region corresponds to an annual 
region between two circles as depicted in Figure 3.7.3 for phonons. 
 
 
Topic 7.16.4:  The Fixed Endpoint Boundary Conditions 
 
 The fixed-endpoint boundary conditions require a wave 
to be zero at the edges of the bounding region.  The 
fundamental modes fitting the region appear as sine and 
cosine waves as shown in Figure 7.16.6. The wavelengths 
can be no larger than  

L21 =λ  
In fact, the wave must exactly fit into the distance L 
according to the relation 

…… ,
n
L2,,

3
L2,

2
L2,

1
L2

=λ  

Therefore, the allowed wave vectors must be  

( ) …3,2,1n
L
n

n/L2
2k n =

π
=

π
=  (7.16.5) 

The integer “n” must be positive when using the Fourier 
series expansion in Sine and Cosine basis set given by 

( ) ( )






= xksin

L
1,xkcos

L
1,

L2
1B nn    (7.16.6) 

On the other hand, the integers n must be positive and negative …,2,1,0n ±±=  for the 
equivalent basis set  









=
L2

e'B
xikn

     (7.16.7) 

Although the range of “n” is larger for the exponential basis set, the two sets contain the 
same number of basis functions.  
 Three-dimensional problems require three-dimensional wave vectors.  For a cube, 
with sides of length L, the allowed wave vectors can be written as 

yx znn nˆ ˆ ˆk x y z
L L L

ππ π
= + +     (7.16.8) 

 where x y zn , n , n 0, 1,= ± …  for plane waves. As we will see, traveling waves most 
naturally use the periodic boundary conditions since then the waves don’t need to be zero 
at the boundaries. 
 

Figure 7.16.6:  The end-
point boundary conditions.
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Topic 7.16.5:  The  Periodic  Boundary Condition 
 
 Periodic boundary conditions describe 
macroscopically sized real crystals. The electron 
wavefunction must repeat itself every distance L, which 
usually matches the physical size of the crystal.  For 
infinitely sized media, such as free space, the length L 
can be increased without bound.  We are primarily 
interested in finite physical crystals. In this case, the 
waves can be imagined to have infinite extent by 
imagining copies of the physical crystal next to each other as shown in Figure 7.16.7.    

 Two allowed modes with the longest 
wavelengths appear in Figure 7.16.8. The 
allowed wavelengths must be given by 

…,1,0n
n
L

n ±==λ  

and the allowed 1-D wave vectors must be 

L
n22k

n
n

π
=

λ
π

=     (7.16.9a) 

If we assume an even number of atoms N spaced apart by lattice constant “a” in the 1-D 
crystal then we can write L=Na and 

n
n

2 2 nk
a N

π π
= =

λ
    (7.16.9b) 

The longest wavelength corresponds to L=Na so that the closest spacing of k-values must 

be 2 2k
L Na
π π

∆ = = .   The smallest wavelength of interest must be max 2aλ = corresponding 

to the edge of the first Brillouin zone at FBZk / a= π . Therefore the allowed wave vectors 
can be written as  

n
n

2 2 nk
a N

π π
= =

λ
 n 1, 2, ..., N / 2= ± ± ±    (7.16.9c) 

We see that each band must have N states.  For crystals with an atomic basis, N 
represents the number of unit cells. 
 The periodic boundary conditions apply similarly to three-dimensional cubic systems 
to give an allowed set of wave vectors  

yx z2 n2 n 2 nˆ ˆ ˆk x y z
L L L

ππ π
= + +  x y zn , n ,n 0, 1,= ± …   (7.16.10a) 

where the same length “L” appears in all three terms.  This requires the wavefunction to 
be normalized to the volume of a cube. In principle, all three terms in Equation 7.16.10 
could have different denominators but it doesn’t change the calculation of the density of 
states. Let’s ssume N atoms along each edge of the cube ( 3N  total atoms) then length L 
must be L=Na and the allowed k-vectors have the form 

yx z2 n2 n 2 nˆ ˆ ˆk x y z
aN aN aN

ππ π
= + +  x y zn , n ,n 0, 1,= ± …   (7.16.10b) 

Figure 7.16.8: The first two allowed modes that 
satisfy the periodic boundary conditions.

Figure 7.16.7: Repeating the 
physical crystal every distance L.
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The size of the crystal sets the smallest spacing of the components of the wave vectors to 
be 

x y z
2 2k k k
L aN
π π

∆ = ∆ = ∆ = =  

However, we place an upper limit on the wave vectors not required by the periodic 
boundary conditions. The upper limit occurs at the edge of the FBZ where the wave can 
no longer propagate. The smallest wavelength of 2aλ =  produces components of the 
wave vector 

FBZ FBZ FBZ
x y zk k k

a
π

= = =  

Therefore the allowed wave vectors must be 
yx zn2 n 2 2 nˆ ˆ ˆk x y z

a N a N a N
π π π

= + +  x y zn , n ,n 0, 1, , N / 2= ± ±…   (7.16.10c) 

Again we see each axis has N states corresponding to the number of atoms along the axis. 
The number of states for the entire 3-D band must be 3N  corresponding to the total 
number of atoms within the solid. The total number of atoms will be very large for any 
physically sized crystal (on the order of Avagadro’s number). 
 
 
Topic 7.16.4: The Density of  k-States 
 
  
The “density of k-states” measures the number of 
possible modes in a given region of k-space.  Figure 
7.16.3 shows a two-dimensional region of k-space 
for the vectors 

2 m 2 nˆ ˆk x y m,n 0, 1,
L L
π π

= + = ± …  

that assumes periodic boundary conditions  
Consider just the horizontal direction for a moment.  
The distance between adjacent points can be 
calculated as 

( )
L
2

L
m2

L
1m2 π

=
π

−
+π  

Therefore, each elemental area of k-space 
2

L
2

L
2

L
2







 π

=
π

⋅
π  

corresponds to precisely one mode.  The number of modes per unit area of k -space must 
then be given by 

( )

2
(2D) xal

2 2 2k

A1 Lg
4 42 / L

= = =
π ππ

   (7.16.11) 

Figure 7.16.3:  The allowed values of 
k  as determined by periodic boundary 
conditions. 
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where Axal represents the area of the crystal.  Note the use of the “vector k” as opposed to 
the “scalar k” as a subscript on g. 
 The same type of calculation provides the density of states for a three-dimensional 
crystal.  In this case, we find one mode in each elemental volume of k-space  

( )

( )

3
3D xal

3 3 3k

V1 Lg
8 82 / L

= = =
π ππ

     (7.16.12) 

where Vxal is the total volume of the crystal (in direct space).    Many times the “density 
of k-states” has units of  “#modes per unit crystal volume per unit k-space volume” 
thereby requiring us to divide the last equation by Vxal.  The density of k-states becomes 

( )
3

D3
k 8

1g
π

=      (7.16.13) 

 We can likewise surmise the density of states for the 1-D crystal 
( )

( )
1D
k

1 Lg
2 / L 2

= =
π π

    (7.16.14) 

 The previous equations show that the density of states for n-dimensions can be 
written as 

( )

( )

n
n D

nk

1 Lg
22 / L

−  = =  π π
   (7.16.15) 

 
Topic 7.16.5:  The Electron Density of Energy States for a 2-D Crystal 
 
 In this topic and the next topic, we discuss the density of energy states for 2-D and 3-
D arrays of atoms. We need to clearly distinguish these cases from those encountered 
with reduce dimensional systems such as quantum wells, wires, and dots.  These latter 
systems still have 3-D arrangements of atoms. However, the 3-D pattern of atoms 
(heterostructure) produces potentials that tend to confine electrons to wells.  In this topic, 
we discuss 2-D and 3-D arrays of atoms without regard to confining the electron to 
smaller wells. For simplicity, we apply the procedure to portions of the band having a 
parabolic shape. The density of states for the entire band requires the full dispersion 
curve E=E(k) and not just the portion at the top or bottom of the band.  
 For simplicity of drawing figures, let’s first consider the 2-D case for the electronic 
density of energy states.  We need the energy versus wave vector k.  Keep in mind that 
the k-vector refers to the envelope of the Bloch wavefunction and therefore we must use 
the effective mass.  We can write the energy dispersion relation for the electron near the 
bottom of the conduction band as 

2 2

e

kE
2m

=      (7.16.16) 

where we have shifted the energy scale for convenience to set the bottom of the 
conduction band at cE 0= .  This last equation does not represent the full band ( )E E k=  

but only a portion of it.  The previous topic calculated the number of k-states per unit 
wave-number without restriction to the shape of the dispersion curve.  
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 Now we determine the number of energy states 
in each unit interval of energy E. We have seen 
that the number of energy states must be related to 
the number of allowed k-states as discussed in 
Topic 7.16.3. 
  Equation 7.16.16 relates the magnitude of the 
wave vector to the energy of the wave.  We want 
to know how many states fall within each unit 
interval of energy.  We therefore need to know 
how many states fall within each unit length 
represented by kk = .  Therefore, first find the 

number of states per unit k-length.  Figure 7.16.4 
shows the total number of states within the k-space 
area of a circle of radius “κ” is given by 

( )T
numberN total number k area
k area

= = ∆ −
−∑ (7.16.1) 

which can be rewritten as 
( ) ( )2D

T kN g dk k d= ϕ∫     (7.16.18) 
Substituting for the density of k-states and using a dummy variable κ  provides 

( )k 2 k 2 k2D xal xal
T 2 2k0 0 0 0 0

A AN d d g d d d 2
4 4

π π
= κ κ ϕ = κ κ ϕ = κ κ π

π π∫ ∫ ∫ ∫ ∫  (7.16.19) 

Integrating over k provides 
( )2D2xal

T k sp2 k

AN k g A
4 −= π =

π
    (7.16.20) 

where 2
k spA k− = π  gives the area of the circle.  We could have written Equation 7.16.20 

right from the start since ( )2D
kg  is independent of k.  The density of states per unit 

“magnitude k” can be found if desired from the last equation by differentiating  
( )

π
=

∂
∂

=
2

kA
k

Ng xalTD2
k       

Notice that this last equation differs from Equation 7.16.11 because this one gives the 
number of states per unit k-length whereas 7.16.11 gives the number of states per unit k-
area. 
 We can find the density of energy states by solving for the magnitude of the wave 
vector in the dispersion relation ( )2 2

eE k / 2m=  and then substituting into Equation 
7.16.20.  

( )2D 2xal xal e
T k sp 2 2k

A A mN g A k E
4 2−= = π =

π π
 

Therefore, the number of states per unit energy must be given by 
( )2D xal eT
E 2

A mNg
E 2

∂
= =

∂ π
    (7.16.21a) 

where Axal represents the area of the 2-D crystal.  Usually, the physical size of the crystal 
is removed from the crystal to write 

Figure 7.16.4:  The number of modes 
in length dk (over the angular range of 
2π) depends on the radius k. 
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( )2D e
E 2

m1g
2

=
π

     (7.16.21b) 

Notice that the 2-D density of energy states does not depend on the energy. 
 
 
Topic 7.16.6: The Electron Density of Energy States for a 3-D Crystal 
 
 The three-dimensional case proceeds in a similar fashion to the 2-D case.  We know 
that the density of states in k-space is 

( )
3

xalD3
k 8

Vg
π

=  

The total number of states to a radius of κ  is given by 
( )2 3D

T k0 0 0
N dk k d d k Sin g

κ π π
= φ θ θ∫ ∫ ∫  

where the integral is given in spherical coordinates with a differential volume element of 
( )( )( )dk k d d k Sinφ θ θ  

The two angular integrals can be evaluated since the density of states does not depend on 
the angles. Using a dummy variable κ , we find  

( )

( ) ( )
k k k3D2 2 2xal xal

T 3 3k0 0 0

V VN 4 d g 4 d 4 d
2 2

= π κ κ = π κ κ = π κ κ
π π∫ ∫ ∫   (7.16.22) 

This last equation  gives the total number of states in a k-space sphere of radius k 
( )

( )
3D 3xal

T k sph 3k

V 4N g V k
32

−
π

= =
π

   (7.16.23)  

The density of states in “magnitude k-space” can be written if desired by differentiating 
either Equation 7.16.22 or 7.16.23 to find 

( )
2

2
xalTD3

k 2
kV

k
Ng

π
=

∂
∂

=      (7.16.24) 

 The density of states for E-space comes from differentiating Equation 7.16.23 and 
using the dispersion relation ( )2 2

eE k / 2m=   

( )

( ) ( )

1 2
3D 3xal e xal e xalT T

E 3 32 2 2

V m 4 V k m VdN dk dN dE d 4g k k
dE dE dk dk dk 3 k 22 2

−   ππ = = = = =     π  π π 
    (7.16.25) 

The density of energy states must be written in terms of energy.  The dispersion relation 
then provides 

( )
3/ 2

3D e xal e e xal
E 2 2 2 2 3

m V 2m E m Vg E
2 2

= =
π π

  (7.16.26a) 

Usually we divide out the crystal volume as appropriate for the definition of density of 
energy states to get 

( )
3/ 2

3D e
E 2 2

mg E
2

=
π

    (7.16.26b) 

As an important note, the electron can have either spin up or spin down.  Often time, the 
spin degeneracy can be included in the density of states by multiplying by 2. 
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 The 3-D density of energy states can be plotted next 
to the band diagram as illustrated in Figure 7.16.5.  Both 
the conduction band and heavy hole valence band 
produces a density of states.  The two bands have 
different density of states although they both increase as 

E .  Notice the conduction band has been shifted back 
to its proper locaction and the density of states for the 
conduction band actually increases as cE E−  where Ec 
represents the bottom of the conduction band.  The 
effective mass controls the shape of the density of states.  
 We can see the reason that the effective mass enters 
into the formula (7.16.26) for the density of states from 
Figure 7.16.6.  The two depicted bands have different 
curvatures.  The boundary conditions produce equally 
spaced states along the horizontal k-axis.  Let E∆  
represent a small fixed energy interval.  The curvature of 
the bands produces two different numbers of states 
within the energy interval.  The band with the larger 
curvature and therefore smaller effective mass has fewer 
states within the energy interval.  The flatter band with the larger effective mass has more 
states within the interval.  
 
 
Topic 7.16.7:  General Relation Between the kg  and Eg  Mode Density 
 
 The previous topic shows how to find the k-space and E-space density of states.   
More generally, we can trace through the development of the previous two topic to find a 
general formula relating the density of states for the magnitude of k  (c.f., Equation 
7.16.24) and the density of energy states. We just need to realize that we integrating over 
k  up to some value κ  must give the same number of states as integrating the energy E 

upto some value Ω .  For example in 2-D, the radius of the circle in Figure 7.16.4 can be 
written in terms of either k k=  or ( )2 2

eE k / 2m= .  Therefore, the dispersion relation 

relates the limits of the integral to give the same number of states within the circle 
( )2 2

e/ 2mΩ = κ .  The total number of states can be written in two ways 

k T E
0 0

dk g N dE g
κ Ω

= =∫ ∫     (7.16.27) 

Similar considerations can be applied to a variety of density of states including those for 
phonons and EM waves traveling in free space. Therefore, we expect 

k Eg dk g dE=       (7.16.28) 
since κ,Ω are assumed to describe the same “region of mode space” as discussed below. 

Figure 7.16.5: The conduction 
and valence band both have a 
density of states function. 

Figure 7.16.6: Different curvatures 
place different numbers of states in 
a fixed energy interval. 
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 To see that relation 7.16.28 holds, consider the electron dispersion relation near the 

bottom of the conduction band 
2 2

e

kE
2m

= . Equation 7.16.27 becomes 

( ) ( )
E k

E T k
0 0

dE ' g E ' N dk ' g k '= =∫ ∫  

Differentiate both sides with respect to E. 

( ) ( )

( ) ( ) ( )

E k

E T k
0 0

k

E k k
0

d ddE ' g E ' N dk ' g k '
dE dE

dk d dkg E dk ' g k ' g k
dE dk dE

= =

= =

∫ ∫

∫
 

Therefore,  
( ) ( )E kg E dE g k dk=  

 
 
 
Topic 7.16.9: Tensor Effective Mass and Density of States 
 
 So far we have assumed symmetric bands in kx, ky, kz.  Now we repeat the derivation 
using the tensor effective mass  

( )1
2ij

i j

1m E
k k

− ∂ ∂
=

∂ ∂
   (7.16.29) 

from Sections 7.12 and 7.13.   
 We must use ellipsoid-shaped constant energy surfaces for the unsymmetrical band 
unlike the the spherical constant energy surfaces for the symmetrical bands.  We can see 
this as follows.  The energy as a function of the components of the wave vector can be 
written as 

( )
2

1
i jij

ij

E m k k
2

−= ∑     (7.16.30a) 

For a diagonal mass matrix  
x

y

z

m 0 0
m 0 m 0

0 0 m

 
 =  
 
 

    (7.16.30b) 

we find the energy relation 
22 2 2
yx z

x y z

kk kE
2 m m m

 
= + + 

  
   (7.16.31c) 

We put this last dispersion relation in the standard form for an ellipse 
22 2
yx z

2 2 2

x y z
2 22

kk k1
2m E 2m E 2m E

= + +
     
          

     (7.16.32a) 



 7.117

which can be written as 
22 2
yx z

2 2 2

kk k1
a b c

= + +       with     x
2

2m Ea =       y
2

2m E
b =       z

2

2m Ec =     (7.16.32b) 

 We now determine the density of states by finding 
the number of states within the constant energy 
surface as illustrated in Figure 7.16.7.  As before, the  
density of states in k  space is  

( )
3

xalD3
k 8

Vg
π

=   (7.16.33) 

The volume of the ellipsoid can be written as  
4V abc
3
π

=    (7.16.34) 

The number of states within the constant energy 
surface must be 

( ) ( )
3/ 2

3D 3/ 2xal xal
x y z3 2 2k

V V4 2N E g V abc E m m m
8 3 6

π  = = =  π π  
  (7.16.35) 

The density of energy states can be written as 
3/ 2

xal e
2 3

V mdNg(E) E
dE 2

= =
π

   (7.16.36a) 

where the effective mass must be 

( )1/3

e x y zm m m m=     (7.16.36b) 
Taking into account the two possible directions for electron spin and dividing out the 
crystal volume, we find 

3/ 2
e

2 3

2 mdNg(E) E
dE

= =
π

   (7.16.36c) 

 
Topic 7.16.9: Overlapping Bands 
 
 Gallium Arsenide has overlapping heavy hole (HH) 
and light hole (LH) valence bands as shown in Figure 
7.16.10. We will find overlapping sub-bands for the 
reduced dimensional structures such as quantum wells.  
Each band must have states corresponding to the allowed 
discrete wave vectors k.  Therefore the number of states 
within the energy range E∆ must include states from both 
the HH and LH bands.  
 We now discuss the method for calculating the density 
of states for overlapping sub-bands. For simplicity, 
consider two overlapping bands with positive curvature as 
shown in Figure 7.16.10. We can easily demonstrate that 
the density of states must be given by 

Figure 7.16.10: Light and 
heavy hole valence bands.

Figue 7.16.7: An ellipse in k-
space as a constant energy 
surface. 
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( ) ( ) ( ) ( )
3/ 2 3/ 2

3D 1 2
E 1 1 2 22 2 2 2

m mg E E E E E E E E E
2 2

= − Θ − + − Θ −
π π

 (7.16.37) 

where the step function has the definition 

( ) 1
1

1

0 E E
E E

1 E E
<

Θ − = + ≥
 

We can intuitively see that Equation 7.16.37 holds. At E=0, 
there isn’t any band structure and therefore there can’t be 
any states.  As E increases, we eventually encounter band 1 
starting at energy E1 where the states start.  The density of 
states (3-D crystal) must therefore increase as 1E E−  
according to Equation 7.16.26.  At energy E2, the number of 
states in band 2 must be included. The density of states in band 2 increases as 2E E−  
again according to Equation 7.16.27.  To find the total number of states for energy larger 
than E2, we must add the states from bands 1 and 2.  Therefore we find Equation 7.16.37. 
 The density of states can also be demonstrated using relation 7.16.28 

( ) ( )E kg E dE g k dk= .  Looking at the band #1, the dispersion relation can be written as 
2 2

1 1
1

kE E E E
2m

= + >     (7.16.38a) 

where, unlike in Topic 7.16.6, the bottom of the band remains shifted from E=0 and 
where m1 represents the effective mass for band #1.  The k  density of states relation in 

Equation 7.16.24  remains unchanged 
( )

2

2
xalTD3

k 2
kV

k
Ng

π
=

∂
∂

=      (7.16.38b) 

Therefore, Equation 7.16.28 provides 

( ) ( ) ( )
11 2 2

1 xal 1
E k 2 2 2

1

V kdE k mg E g k k
dk 2 m 2

−−   = = =   π π   
   (7.16.39) 

However, solving for k in Equation 7.16.38a, we find 

( ) ( )1
1 12

2mk E E E E= − Θ −  

where the step function ensures k does not become imaginary.  Therefore, we find 
( ) ( ) ( )

3/ 2
1 1

E 1 12 2

mg E E E E E
2

= − Θ −
π

  (7.16.40a) 

Similar reasoning applied to band 2 provides 
( ) ( ) ( )

3/ 2
2 2

E 2 22 2

mg E E E E E
2

= − Θ −
π

  (7.16.40b) 

Therefore, the total density of states can be found just by adding Equations 7.16.40 
together 

Figure 7.16.11:  Two over-
lapping 3-D bands (inverted 
for convenience). 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
3/ 2 3/ 2

1 2 1 2
E E E 1 1 2 22 2 2 2

m mg E g E g E E E E E E E E E
2 2

= + = − Θ − + − Θ −
π π

 

as required. 
 
 
 
Topic 7.16.11:  Density of States from Periodic and Fixed-Endpoint Boundary 
Conditions 
 
 The topics in the present section find the density of states using the periodic boundary 
conditions.  The length L in Figures 7.16.7 and 7.16.8 appears to be rather arbitrary.   For 
the fixed-endpoint boundary conditions, the length L matches the physical length of the 
crystal.  We make the same requirement for the length L in the periodic boundary 
conditions as illustrated in Figure 7.16.7.   However, the fixed-endpoint conditions might 
seem to give the more accurate density of states since electrons must surely be confined 
to the crystal and cannot therefore be standing wave that repeat every length L.  Let’s 
examine how the choice of the type of boundary conditions affects the density of states.  
We will find that both types give precisely the same density of state function. 
 The following table compares the wavelength, wave vectors and minimum wave 
vector spacing using periodic and fixed-endpoint boundary conditions for a 2-D crystal 
(for example). 
 
 

Periodic BCs Fixed-Endpoint BCs 
  

x L / mλ =  y L / nλ =  x 2L / mλ =  y 2L / nλ =  
  

xk 2 m / L= π      yk 2 n / L= π  xk m / L= π      yk n / L= π  
  

xk 2 / L∆ = π      yk 2 / L∆ = π  xk m / L∆ = π      yk n / L∆ = π  
  

Travelling waves Standing waves 
  

m,n can be positive and negative m,n must be non-negative 
 
 
 The spacing between allowed k values is twice the size for the periodic boundary 
conditions compared with the fixed-endpoint ones. As shown in Figure 7.16.12, the 
density of k-states from the periodic boundary conditions (PBC) must be 25% that for the 
t fixed-endpoint boundary conditions (FEBC)  

(2D)
k(febc)(2D)

k(pbc)

g
g

4
=     (7.16.41a) 
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Next, we see that the portion of the area of the 
constant energy circle covering the allowed states 
for the periodic boundary conditions is 4 times that 
for the fixed-endpoint point conditions. 

pbc febcA 4A=   (7.16.41b) 
The density of energy states can then be calculated 
from the product of Equations 7.16.41. We find the 
same result for either set of boundary condtions. 

(2D)
k(febc)(2D) (2D)

(pbc) (febc) (febc)k(pbc) k(febc)

g
g(E) g A 4A g A

4
= = =  

 (7.16.41c) 
 
 
 
Topic 7.16.12:  Changing Summations to integrals 
 
 We often use the density-of-states (i.e., density-of-modes) to find the total number of 
carriers when we know the number per state (Fermi-Dirac Distribution). However the 
same reasoning applies to other quantities besides the number of carriers.  Lets call the 
amount of some quantity per state as amount/state.  We can write 

( )spacek
spacek

states#
state

amountamounttotal −∆⋅
−

⋅= ∑  

Let ( )kA  be the “amount” per state at wave vector k  and let kg  be the k -space density-
of-modes.  The “total amount” can be written by 

( ) kdgkAamounttotal 3
k

volk
∫

−

=  

The differential kd3  represents a small element of volume in k -space such as, for 
example, the volume element in the previous topic of the form 

θφθ= dddksinkkd 23  
 The density-of-states and density-of-modes can be used to convert summations to 
integrals.  Suppose we start with a summation of coefficients kC  of the form 

∑=
k

kCS  

The index k  on the summation means to sum over 
allowed values of zyx k,k,k ; i.e., think of the two 
dimensional plot in the previous topics and imagine that 

kC  has a different value at each point on the plot.  For 
one dimension, a plot of “Ck vs. k” might appear as in 
the figure.  Suppose the allowed values of “k” are close 

to one another.  Let iK∆  be a small interval along the k-
axis; this interval is small but assume that it contains many 
of the “k” points.   Let Ki be the center of each of these 

Figure 7.16.13: Example of 
closely spaced modes. 

Figure 7.16.12: Full black circles 
represent allowed k for periodic 
BC while the sky-blue circles 
represent the fixed-endpoint BCs. 
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intervals.  The figure shows that  
( ) ( ) …++++++++= 07.106.105.104.103.102.101.100.1 CCCCCCCCS  

The sum can be recast into 

( )[ ] ( ) ( ) ( ) ( )kgkCdkkkgkCCkkgC4C4S k04.100.1 ∫∑∑ =∆≡∆=++= …  

where, for the figure, 04.0k =∆  and  ( ) 10004.0/4kg == . 
 Now let prove the above conjecture in general -- it works for any slowly varying 
function f(x).  Suppose f is defined at the points in the set { }1 2x , x ,… where the points xI 
are equally spaced and separated by the common distance x∆ . The summation can be 
rewritten as 

( ) ( )i i i
i i i

1f x f x x
x

= ∆
∆∑ ∑  

We recognize the quantity 1/ x∆  as the density of states; that is, g 1/ x= ∆ . Recognizing 
the second summation as an integral for sufficiently small x∆ , the summation can be 
written as 

( ) ( ) ( )i
i

f x dx g x f x≅∑ ∫    (7.16.42) 

 The last expression generalizes to a 3-D case most commonly applied to the wave 
vectors discussed in the preceding topics.   

( ) ( ) ( )
( )

( )3 3
3

k

Vf k d k g k f k d k f k
2

→ =
π

∑ ∫ ∫   (7.16.43) 

where V represents the normalization volume coming from periodic boundary conditions.  
We essentially use this last integral when we find the total number of discrete states 
within a sphere or circle.   
  
Topic 7.16.13:  Comment on Probability 
 
 The previous topic discusses the use of the density 
of states for computing summations.  This topic 
points out the difference between the 
average/probability and the density of states function. 
 Suppose that repeated measurement of a random 
variable X produces a discrete set  …321 x,x,x .  The 
average value of that set is given by 

∑
=

=
N

1i
ix

N
1x  

Suppose we plot the value of X vs. the measurement 
number as shown in Figure 7.16.14.  Suppose, for 
example, that 51 x,x  have the same value as 1x , that  

632 x,x,x  have the same value as 2x ,  that 74 x,x  have the same value as 4x , and N=7.  
The summation can be written as 

Figure 7.16.14:  Regrouping 
points for calculations 
involving probability. 
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( )421

N

1i
i x2x3x2

N
1x

N
1x ++== ∑

=

 

The probability of 1x occurring is ( ) 7/2xP 1 = .  Similarly, the probability of 42 x,x is 
given by ( ) 7/3xP 2 =  and ( ) 7/2xP 4 = .   Now the average value can be written as 

( )∑∑ ==
= ix

ii

N

1i
i xPxx

N
1x  

At this point, it should be clear that the indices are  unnecessary.  The average value can 
be written as 

( )∑∑ ==
= x

N

1i
i xPxx

N
1x  

The point is this:  the summation over the N observations can be rearranged into a 
summation over the observed values.  The figure shows that this is a horizontal grouping 
and does not involve the number of states i per unit i-space.  Instead, the average is more 
related to the number of states per unit x-space.  This is more apparent for the integral 
version. 
 From calculus 

i
i

i

L

0
x

L
1)x(f)x(fdx

L
1)x(f ∆== ∑∫  

 By re-grouping the possible values of ( )ii xfy =  into like values, the summation can be 
rewritten as before 

( ) ( )
L

i i i0

1f (x) dx f (x) y y dy y y dy
L

= = ρ = ρ∫ ∫ ∫  

where ρ is the probability density.  The advantage of the formula using the probability 
density is that we do not need to know the functional form of f(x). 
 


