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Molecular dynamics with atomic details is limited to time scales in the order of 100
ns. Events that are in micro- or millisecond range and beyond, as well as system
sizes beyond 100,000 particles, call for methods to simplify the system.

The key is to reduce the number of degrees of freedom. The first task is to define
important degrees of freedom. The ’unimportant’ degrees of freedom must be
averaged-out in such a way that the thermodynamic and long time-scale properties
are preserved.

The reduction of degrees of freedom depends on the problem one wishes to solve.
One approach is the use of superatoms, lumping several atoms into one interaction
unit. The interactions change into potentials of mean force, and the omitted de-
grees of freedom are replaced by noise and friction. On an even coarser scale one
may lump many particles together and describe the behavior in terms of densities
rather than positions. On a mesoscopic (i.e., nanometer to micrometer) scale, the
fluctuations are still important, but on a macroscopic scale they become negligible
and the Navier-Stokes equations of continuum fluid dynamics emerge. A modern
development is to handle the continuum equations with particles (DPD: dissipative
particle dynamics).
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REDUCED SYSTEM DYNAMICS

Separate relevant d.o.f. r′

and irrelevant d.o.f. r′′

Force on r′:
part correlated with positions r′

part correlated with velocities ṙ′

rest is ’noise’, not correlated with positions or velocities of primed par-

ticles.

F i(t) = −∂V mf

∂r′i
+ F friction

i + F i(t)
noise

F friction
i (t) is a function of vj(t− τ ).

F i(t)
noise = Ri(t) with

〈Ri(t)〉 = 0

〈vj(t)Ri(t + τ )〉 = 0 (τ > 0)

R(t) is characterized by stochastic properties:

• probability distribution w(Ri) dRi

• correlation function 〈Ri(t)Rj(t + τ )〉
Projection operator technique (Kubo and Mori; Zwanzig) give ele-
gant framework to describe relation between friction and noise

[Van Kampen in Stochastic Processes in Physics and Chemistry (1981): “This
equation is exact but misses the point. The distribution cannot be determined
without solving the original equation...”)]
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POTENTIAL OF MEAN FORCE-1

Requirement: Preserve thermodynamics!

Helmholtz free energy A:

A = −kBT ln Q

Q = c
∫

e−βV (r) dr

Define a reaction coordinate ξ (may be more than one dimension). Sep-

arate integration over the reaction coordinate from the integral in Q:

Q = c
∫

dξ
∫

dre−βV (r)δ(ξ(r)− ξ)

Define potential of mean force V mf(ξ) as

V mf(ξ) = −kBT ln
[
c

∫
dre−βV (r)δ(ξ(r)− ξ)

]
,

so that

Q =
∫

e−βV mf(ξ) dξ

and

A = −kBT ln
[∫

e−βV mf(ξ) dξ
]

Note that the potential of mean force is an integral over multidimensional

hyperspace. It is generally not possible to evaluate such integrals from

simulations. As we shall see, it will be possible to evaluate derivatives

of V mf from ensemble averages. Therefore we shall be able to compute

V mf by integration over multiple simulation results, up to an unknown

additive constant.
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POTENTIAL OF MEAN FORCE-2

To simplify, look at cartesian coordinates. ξ = r′. So r′ are the impor-

tant coordinates, and r′′ are the unimportant coordinates. How can we

determine the PMF from simulations?

Let us perform a simulation in which r′ is constrained, while r′ is free

to move.

V mf(r′) = −kBT ln
[
c

∫
e−βV (r′,r′′) dr′′

]

∂V mf(r′)
∂r′i

=

∫ ∂V (r′,r′′)
∂r′i

e−βV (r′,r′′) dr′′
∫
e−βV (r′r′′) dr′′

=
〈∂V (r′, r′′)

∂r′i

〉

′′
= 〈F c

i〉.
Derivative of potential of mean force is the ensemble-averaged constraint

force (cartesian).

The constraint force follows from the coordinate resetting in constraint

dynamics.

(This is still true in more complex ’reaction coordinates’, but there are

small metric tensor corrections)
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DIFFUSION COEFFICIENT

How to determine the diffusion constant from constrained simulations?

Determine fluctuation of constraint force ∆F c(t) = F c(t)− 〈F c〉.
Fluctuation-dissipation theorem:

〈∆F c(0)∆F c(t)〉 = kBTζ(t)

ζ =
∫ ∞
0

ζ(t) dt

D =
kBT

ζ

Hence

D =
(kBT )2

∫∞
0 〈∆F c(0)∆F c(t)〉 dt
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LANGEVIN DYNAMICS-1

General form of friction force: approximated by linear response in time,

linear in velocities:

F fr
i (t) = mi

∑

j

∫ t

0
γij(τ )vj(t− τ ) dτ

This gives (in cartesian coordinates) the generalized Langevin equation:

mi
dvi

dt
= −∂V mf

∂ri
−mi

∑

j

∫ t

0
γij(τ )vj(t− τ ) dτ + Ri(t)

If a constrained dynamics is carried out with r′ constant (hence v′ = 0),

then the ’measured’ force on i approximates a representation of Ri(t).

So one can determine an approximation to the noise correlation function

CR
ij (τ ) = 〈Ri(t)Rj(t + τ )〉

.

(assumption: motion of r′′ that determines R(t) is fast compared to the

motion of r′)

There is a relation between friction and noise.
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LANGEVIN DYNAMICS-2

Relation between friction and noise

Average total energy should be conserved
(averaged over time scale large compared to noise correlation time)

• Systematic force is conservative (change in kinetic energy cancels

change in V mf)

• Frictional force is dissipative: decreases kinetic energy

• Stochastic force has in first order no effect since 〈vj(t)Ri(t+ τ )〉 =

0. In second order it increases the kinetic energy.

The cooling by friction should cancel the heating by noise (fluctuation-

dissipation theorem). This leads to

〈R(0)R(t)〉 = kBTmγ(t)
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LANGEVIN APPROXIMATIONS

(write miγij = ζij)

Generalized Langevin

miv̇i(t) = −∂V mf

∂xi
−∑

j

∫ t

0
ζij(τ )vj(t− τ ) dτ + Ri(t)

with

〈Ri(0)Rj(t)〉 = kBTζji(t)

includes coupling (space) and memory (time).

Simple Langevin with hydrodynamic coupling

miv̇i(t) = −∂V mf

∂xi
−∑

j
ζijvj(t) + Ri(t)

with

〈Ri(0)Rj(t)〉 = 2kBTζjiδ(t)

includes coupling (space), but no memory.

Simple Langevin

miv̇i(t) = −∂V mf

∂xi
− ζivi(t) + Ri(t)

with

〈Ri(0)Rj(t)〉 = 2kBTζiδ(t)δij

includes neither coupling nor memory.



'

&

$

%

Espoo Feb 2004

9

BROWNIAN DYNAMICS-1

If systematic force does not change much on the time scale of the ve-

locity correlation function, we can average over a time ∆t > τc. The

average acceleration becomes small and can be neglected (non-inertial
dynamics):

0 ≈ F i(x)−∑

j
ζijvj(t) + Ri

with

Ri =
∫ t+∆t

t
R(t′) dt′

〈Ri(0)Rj(t)〉 = 2kBTζjiδ(t)

Be aware that the average acceleration is not zero if there is a cooperative

motion with large mass

Hence vj(t) can be solved from matrix equation

ζv = F + R(t)

Solve in time steps ∆t

Random force Ri with

〈Ri〉 = 0

〈RiRj〉 = 2kBTζji∆t

Ri and Rj are correlated random numbers, chosen from bivariate gaus-

sian distributions.
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BROWNIAN DYNAMICS-2

Without hydrodynamic coupling:

vi =
F i

ζi
+ ri

ri is random number chosen from (gaussian) distribution with variance

2kBT∆t/ζi.

xi(t + ∆t) = xi(t) + vi∆t

Velocity can be eliminated. Write D = kBT/ζ (diffusion constant)

yields Brownian dynamics

x(t + ∆t) = x(t) +
D

kBT
F (t)∆t + r(t)

〈r〉 = 0

〈r2〉 = 2D∆t

F must assumed to be constant during ∆t. The longer ∆t, the smaller

the noise.

For slow processes in macroscopic times the noise goes to zero.
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REDUCED PARTICLE DYNAMICS

Superatom approach

Lump a number of atoms together into one particle (e.g. 10 monomers

of a homopolymer). Design force field for those superatoms including

bonding and nonbonding terms. For polymer:

• soft harmonic spring between particles, representing Gaussian distri-

bution of superatom-distance distributions

• harmonic angular term in chain, representing stiffness

• Lennard-Jones type interactions between particles

• solvent: LJ particle

Derive parameters from

• experimental data (density, heat of vaporization, solubility, surface

tension, . . .,

• atomic simulations of small system (radius of gyration, end-to-end

distance distribution, radial distribution functions, . . ..

Perform normal Molecular Dynamics. Adding friction and noise has

influence on dynamics, but is not needed for equilibrium properties.

Example: Nielsen et al., J. Chem. Phys. 119 (2003) 2043.
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DPD

We can also describe the space and time-dependent densities as the im-

portant variables (e.g. described on a grid of points), and consider all

detailed degrees of freedom as unimportant. This leads first to meso-

scopic dynamics (still including noise), and for even coarser averaging

to the macroscopic Navier-Stokes equation.

The Navier-Stokes equation is normally solved on a grid of points.

Dissipative Particle Dynamics attempts to solve the Navier-Stokes

equations using an ensemble of special particles.

Originally proposed by Hoogerbrugge and Koelman, Europhys. Lett. 19
(1992) 155.

Improved by Español, Warren, Flekkoy, Coveney.

See article by Español in SIMU Newsletter Issue 4, Chapter III,

http://simu.ulb.ac.be/newsletters/N4III.pdf


