
8080a Simulation:
Space Invaders

Prepared by
Anoakie Ray Turner

for
D. Pheanis

Arizona State University

Spring 2002

Table of Contents

Introduction .. 1
Overview .. 1
Scope of Study 2

Definitions ... 3

History ... 4

Conceptual Model .. 6
Design .. 6
Structure ... 7
Documentation 8
Maintenance ... 9

Simulating The 8080a Processor 11
Instruction Table 11
Fetch/Decode/Execute Instructions 11
Flags ... 12
Registers ... 12
RAM/ROM ... 13
Cycles .. 14
Interrupts .. 15

Supporting Space Invaders 17
Video RAM ... 17
Blitting .. 18
Colors .. 18
Bit shifts .. 19
Player input and Dip Switches 19
Sound ... 20

Corollaries ... 22
Processor flags 22
Byte code translation 23
Extended instructions 23
Other trade-offs 23

Testing ... 25
Debugging ... 25
Interrupts .. 26
Input and Output 27

Conclusion .. 29

References .. 30

Figures ... 32

Introduction

This document examines simulation of the 8080a processor

and the Space Invaders ROM set. The introduction covers the

abstract, the scope of the study, and the report format. This

document assumes that the reader has access to the original

source code and has an understanding of C and assembly. The

terminology used in this document can be found in the definitions

section.

Overview

My motivation behind this project is to learn how to

simulate a processor with software, preferably focusing on

simulating Space Invaders. To solve this problem, I researched

ways in which other programmers wrote their simulators and from

this research, determined the most beneficial structure for my

simulator. I found static byte code interpretation to be the

best method of simulation from a student's perspective, because

it produces readable and understandable code. From this study, I

learned that simulation was possible and how a simulator

functions. It was an educational experience that forced me to

apply most of my computer science knowledge to create the final

product.

1

Scope of Study

The scope of this study was to gain a greater

understanding of the 8080a processor and how it interfaced with

program ROMs, specifically Space Invaders. The project's scope

involved the following:

� Learning how the 8080a fetches and decodes instructions

� Learning how the 8080a reads program ROMs

� Learning how to correctly simulate video and I/O

� Writing an accurate simulator, despite poor documentation

� Writing a compatible and optimized simulator

2

Definitions

TTL – Dictionary.com defines TTL as “Transistor-transistor logic”

(Dictionary.com/TTL). It relates to the switching time and power

consumption of an integrated circuit.

Vectored interrupt – A vectored interrupt is an interrupt that

the processor executes depending on the last three bits of the

instruction. The processor multiplies these bits by eight and

resets the PC to this value. i.e., If the processor senses

interrupt three, it executes the RST3 instruction. The program

counter is reset to byte 3*8 (byte 0x18h).

SDL (Simple DirectMedia Layer) – This is a cross-platform

multimedia library (Simple DirectMedia Layer).

Blit – Blitting is the method of painting pixels to the screen.

Dictionary.com defines blit as “To copy a large array of bits

from one part of a computer's memory to another part,

particularly when the memory is being used to determine what is

shown on a display screen” (Dictionary.com/blit).

Attract Mode – Arcade games run demos of game play to attract

users to the machine and entice users to play game.

3

History

Intel released it's third microprocessor, the 8080, in

1974. The 8080 is based on the original 8008 design, which in

turn are based on the 4004 design. The 8080a is the same as the

8080 processor in every aspect, except for its TTL. The 8080a

processor is compatible with standard TTL, while the 8080 is only

compatible with low power TTL (“Shima Oral History”). The 8080a

processor has enjoyed many years of success and is used in a

variety of consumer electronics, including: personal computers

(Altair 8800b “Computers by CPU”), health monitoring hardware

(H8, “Love the H8”), and video games (Space Invaders).

The 8080a processor has a 16-bit bus, which addresses a

maximum of 64k of memory, and an 8-bit data bus, which supports

up to 256 inputs and outputs. It has ten 8-bit registers, which

include three pairs of two 8-bit registers that the processor

uses as 16-bit registers, an accumulator, a processor stats

register (Fig. 1), and two temporary registers. It also features

two 16-bit only registers, which it uses as a stack pointer and a

program counter, respectively (“Intel 8080a CPU”) (Fig. 2). The

processor's clock speed is 2Mhz and it supports up to eight

vectored interrupts. The 8080a is also a little-endian

processor.

4

Space Invaders' release date was four years after the

8080 processor's release, in 1978. It is an arcade game

originally designed by Taito and licensed by Midway for US

distribution. Space Invaders' has surpassed the popularity of

all other arcade games in history. Upon its release in Japan, it

caused a yen shortage, created a boom in arcade ownership, and

incited juvenile crime (“Space Invaders – The Classic”). Space

Invaders featured 8k of game data (ROM) and 1k of work RAM (see

8080avar.h) (Fig. 3). It also used an SN76477 analog/digital

sound chip to generate complex sounds (“Space Invaders

schematics”), a 224x256 resolution display (see graphics.c), and

two 4-way joysticks, each with one button. Since it is an arcade

machine, it also includes eight dip switches, and one coin slot

(see input.c).

5

Conceptual Model

Proper implementation of a simulator depends on two

primary elements: design and structure. I define design as a

general overview the code's functionality and any additional

considerations in the creation of the code, while structure

refers to the way the a programmer forms code. Both design and

structure enforce portability and maintenance.

Design is an integral part of a simulator. A poorly

designed simulator can be difficult to maintain. Since this

project needed to be presented on a multitude of operating

systems, I gave portability the highest priority in the early

stages of design. A cross-platform compiler with a cross-

platform media library that offered a balance of performance and

compatibility was the best choice. There were two options

available: Java or C. I decided to use C because the performance

penalty Java imposes at runtime, which does not offer a favorable

environment for a simulator, and my familiarity with C. C does

not come with a cross-platform media library, so I chose SDL as a

dependency. To keep the simulator modular, I decided to

implement a removable core. This makes simplifies maintenance

and allows programmers to include the in other projects requiring

8080a simulation. (I will discuss this in more detail in the

maintenance subsection below). There were several resource

constraints, including: Processor speed (I targeted my 300Mhz

6

Pentium II Laptop), a small memory footprint (although much of

this is reliant on the OS and the libraries the binary links to),

and a target platform of x86 (I have tested the simulator on big-

endian machines, like the PowerPC, and it does work). Other

design constraints include: targeting Space Invaders as the main

program that will be run with this simulator, using sound samples

for sound generation (see the Sound section in “Supporting Space

Invaders”), not using dynamic byte code translation (see byte

code translation), and other constraints that I imposed as I

wrote my first draft of the code. I cover these topics

throughout this paper.

Correct structure creates a hospitable environment for

future modifications and maintenance. The execution of the

simulator is broken into three phases: initialization, execution,

and cleanup. The first stage the simulator enters is the

initialization phase. This phase is typically used for

allocating memory and setting variables. During this phase, the

simulator resets any global variables needing to be set, creates

a graphics surface, initializes sound devices, and loads ROM

sets. After this phase is complete, the simulator enters the

main loop, where the actual simulation occurs. In the execution

phase the simulator fetches an instruction, decodes the

instruction, and executes the instruction. This action continues

until a user force quits the loop. Once the main loop has

finished, the simulator enters the cleanup stage. This stage

7

consists of freeing allocated memory and cleanly exiting the

program (Fig. 4).

Documentation is a large part of the code's structure,

and important for future revisions. Documentation for this

project followed a strict design created for readability and

understandability. Ryan Jones designed the original format for

the documentation, and I adapted it to fit this project. I

divided the documentation into two categories: C files and

header files. At the top of each C file, proceeding the license,

there is a heading named “Preface,” which quickly touches on the

functions the file contains and what actions they perform. Each

function contains a header that also maps out what actions it

performs (Fig. 5). I documented every line of code in each

function, along with any other additional definitions in the file

which may fall out of the scope of a function (see any C file

included with this document). At the top of each header file,

after the license, there is a “Note” to inform the reader where

documentation is located relating to the functions that I defined

in the file. Following the note is a section named “Contents”

that offers a quick overview of the functions contained in the

file as well as any important global variables definitions. I

concisely documented each function definition in the header file.

This helps the programmer who intends to include these files in

their project, but is only interested in a terse description

(Fig. 6). I noted every declaration in the header file by its

8

type (function, variable, etc.), followed by a description of its

uses. 8080a Instructions follow a similar documentation pattern

as functions, in which the name of the OPCODE is documented

first, followed by a terse description of what the instruction

does. Next is a verbose description covering all facets of the

instruction's execution (Fig. 7a). Finally, there is a section

named “Note” that includes extraneous information about the

instruction, including any related instructions. If an

instruction is related (the “child” of) to another instruction,

the documentation is terse, while its “parent” gets full

documentation (Fig. 7b). For more examples of documentation,

please read the source files included with this report.

Maintenance is an important for future revisions of this

simulator. I wrote this simulator with two maintenance concerns

in mind, which were: the ease in which the simulation programmer

can remove the core from the program, and the ability to add new

functionality to the simulator. I wrote the simulation core as

modular as possible. It depends on six files: 8080a.c, 8080a.h,

8080avar.h, 8080aio.c, 8080aio.h, and opcodes.h. 8080a.c

contains the following functions: 8080amain, which function

contains the simulation core, LoadRoms, which loads a ROM set

from the disk, and ResetProc, which resets the processor.

8080a.h contains the function definitions for the functions

defined above. 8080avar.h contains information about the 8080a

processor and 8080a data structures. The opcodes.h file contains

9

all of the 8080a opcode definitions and mnemonics. 8080aio.c

handles the 8080a's input and output system with 8080ainput and

8080aoutput, respectively. 8080aio.h contains function

definitions for the functions defined above. With these six

files, the developer only needs to reimplement the ReadInput,

UpdateScreen, and PlaySound functions to have a functional Space

Invaders simulator. The developer may be interested in adding

more functionality to the simulator or support more programs. By

modifying the functions input8080a and output8080a in the file

8080aio.c, the developer can add and modify the inputs and

outputs. To add new sounds, graphics, and input, the developer

just needs to edit the ReadInput, UpdateScreen, and PlaySound

functions. Modifications to the LoadRoms function may be

necessary if the ROM set that is being loaded has odd sized ROM

files. The source code requires no further modification to add

support for new ROMs.

10

Simulating The 8080a Processor

Simulating the core of the 8080a processor required that

I implement the following: instruction handling, memory, and

timing.

There are three parts involved in handling instructions

with the 8080a processor: the instruction table,

fetch/decode/execute phase, and flags.

The instruction table is a fundamental component of a

simulator. It contains the mnemonics for each instruction and

that instruction's hexadecimal representation (see opcodes.h).

The decode loop uses these mnemonics to determine what

instruction to execute (see the switch statement in 8080a.c).

Further optimizations are possible, which I will discuss in the

corollaries section.

The program must fetch an instruction before it decodes

it. During the fetch stage, the 8080a processor fetches

instructions sequentially from the ROM and passes them to the

decode phase. (I named the fetched instruction “OPCODE.” See

8080a.c). Once the program extracts the instruction from the

ROM, the simulator switches on the value stored in the OPCODE.

The switch contains case statements with mnemonics taken from the

instruction table. If a match is found, the execute phase

11

begins. My execution phase involved setting flags, executing the

instruction, and then resetting flags if needed (see the case

statements in 8080a.c). If no match is found, the simulator

fails.

Flag modification is the most time consuming task

involved in instruction handling during processor simulation.

Unlike the physical processor, in which it sets the flags by the

time an instruction finishes executing, simulation flag setting

consumes most of the time per instruction. For the 8080a, there

may be as many as five flags that need to be set per instruction

(see the PSW in 8080a.h and Fig. 1). To enforce the portability

design constraint, I decided to take the slower route, setting

the flags individually per instruction (see various case

statements in main8080a in 8080a.c), but I did investigate

another method that decreases the time it takes to set the flags.

I discuss this alternative method in the corollaries section.

I had to implement memory management before instruction

handling could occur. I divided the simulator's memory

management issues as follows: register simulation and RAM/ROM

simulation.

Simulating registers was a simple task. The 8080a

processor has two types of registers: 8-bit registers and 16-bit

registers. In order to simulate the 8-bit registers, I had to

define an equivalent 8-bit type. I defined the accumulator A and

12

the processor status word PSW as an unsigned 8-bit integer to

handle the 8-bit registers. There are only two 16-bit only

registers on the 8080a processor: the stack pointer and the

program counter. The remaining 16-bit registers are 8-bit

register pairs: BC, DE, and HL, respectively. I used a union to

handle the 16-bit register's 8-bit contents. With this union, I

could access the register pair by requesting the the .pair of the

union and the individual 8-bit registers by requesting .reg.H and

.reg.L of the union. A union redefines the same piece of data,

allowing the individual 8-bit registers to point to the same

piece of memory that the 16-bit register resides in. This means

that the 16-bit registers reflect changes made to one of its 8-

bit contents. I defined the 16-bit registers as unsigned 16-bit

integers (see the Variables section in 8080avar.h).

The 8080a processor can address up to 65536 bytes of

memory. To simulate the 8080a's RAM and ROM, I defined a 0x10000

hex byte 8-bit unsigned integer array. Since there is no logical

distinction between RAM and ROM in simulation, this memory is

just a sequential block. The simulator can read the content of

any address by just accessing RAM[address]. However, writing to

memory with the simulator is a much more time consuming task. If

the program is stored on a ROM chip instead of in RAM, the

simulator has to be able to prevent write attempts to the ROM. I

accomplished this task with the WriteRAM() macro, which tests to

see if the offset is less than the WORKRAM address. If it is,

13

the simulator is addressing ROM memory, and the write will not

take place. The program consequently prints an error to the

screen if the attempted write occurs. If the program is loaded

in pure RAM, then it is safe to assume the simulator will use

self-modifying code. There is a compiler switch to enable support

for self-modifying code and skip write protection (see the

WriteRAM macro in 8080a.h).

Accurate timing is essential in order to correctly

simulate the 8080a processor. Counting cycles and calling

interrupts at the proper time enforces timing.

Programmers of assembled software write 8080a programs

with hardware constraints in mind. They attempt to use every

cycle available and correctly time their code in order to

maximize the amount of code executed before an interrupt occurs.

Because of the time-based nature of interrupts, timing cannot be

inaccurate by even a few cycles, or the simulator may fail to run

correctly. To calculate the number of cycles per instruction, I

created a table named CYCLES (see the CYCLES definition in

opcodes.h). Each number in the table represents the number of

cycles required to execute an instruction. The current

instruction's opcode indexes this number. After the program

fetches the instruction from the ROM, it retrieves the number of

cycles for that instruction from the CYCLES table and adds it to

a variable named COUNTER (see references to COUNTER in 8080a.c).

14

There is a small problem with this method; the program does not

take extended or conditional instructions into account. Since

the 8080a processor does not have documented extended

instructions, I did not worry about handling extended instruction

timing. Nonetheless, the processor does have conditional

instructions. To handle these instructions, I set the number of

cycles executed for a conditional instruction as if it did not

meet the condition. Once the instruction starts to execute, if

it meets the condition, the program adjusts the number of cycles

the instruction consumes by the quantity of the number of the

cycles taken as if the it met the condition minus the number of

cycles taken as if the it missed the condition (see conditional

instructions, like CALLs, in 8080a.c).

15

The 8080a's interrupts are hardware dependent. Since I

was simulating Space Invaders, I knew what hardware I was writing

for: a 60hz NTSC monitor and a 60hz I/O system, which would

require two interrupts. Both interrupts occur every 34133

cycles. The first occurs after cycle 17066, and the second

occurs after cycle 34132 (see the Interrupts timings section in

8080avar.h). I cover this in greater depth in the testing

section.

By addressing instruction handling, memory management,

and timing issues it is possible to have a functional 8080a core.

First the simulator fetches an instruction from ROM and increases

the number of cycles that it has executed by the time it takes to

execute the fetched instruction. The simulator then decodes the

instruction, then executes it, setting processor flags based on

the result of the instruction. After execution, the simulator

checks how many cycles it has been executed and if an interrupt

needs to occur. Once this process is complete, the simulator

returns to the fetch phase and the process repeats. (Fig. 4)

16

Supporting Space Invaders

Supporting specific ROM sets on the 8080a requires

knowledge of how the ROM's program code uses the 8080a's memory

and I/O. Space Invaders was my target ROM set, so I had to deal

with video, input, and sound simulation.

There are three pieces involved in to simulating Space

Invaders' video: determining where in the RAM the game stores the

bitmap (Fig. 3), determining how to copy the array of bits to the

host computers video memory, and deciding how to correctly color

the pixels.

Space Invaders arcade uses a 224x256 resolution display.

With the help of an arcade simulation FAQ (see the SOURCES file),

I learned that the video RAM starts at location 0x2400 hex. With

this information, I was able to determine that Space Invaders

uses 0x1C00 hex bytes of video RAM by taking the y resolution of

the video memory and multiplying it by the pitch of the video

memory, which is 32. I arrived at the number 32 because the game

is black and white; therefore, I used the equation (256 pixels

wide)*(1/8 bytes per pixel). 32*224 is equal to 7168, or 0x1C00

hex bytes (see the UpdateScreen function in graphic.c and global

definitions in global.h).

17

With Space Invaders' video RAM in mind, I moved onto

blitting the pixels to the screen. Blitting is not as easy as it

sounds; it sometimes requires pixel or surface manipulations to

correctly blit the bits to the target surface. Space Invaders'

video memory is rotated 90 degrees clockwise (Fig. 8a), so it

must be rotated 270 degrees clockwise while the pixels are drawn

to the screen (Fig. 8b). Since video operations are the slowest

part of a graphic program, I took the liberty of optimizing the

pixel plotting algorithm so I could squeeze as much performance

out of the method as possible. By taking advantage of bit

shifts, the way 8080a stores its video memory (this is a linear

group that contains multiple off bits in a row), and only

plotting 'on' pixels, I was able to increase the speed of the

blits (Fig. 9). With these assumptions, I was able to decrease

the time it took to perform a screen update, compared to updating

the screen by linearly plotting every pixel in memory (see the

UpdateScreen function in graphics.c).

As previously mentioned Space Invaders was a black and

white game, using only one bit per pixel; however, many arcades

had color versions of the traditionally black and white Space

Invaders. These interesting hybrid machines were created by

laying green and red plastic over the monitor to give the

illusion of color. These color layers make the player's score

appear red, the invaders appear white, and the base appear green.

I have included this option in my simulator by coloring pixels on

18

the top and bottom of the screen to get the desired effect (see

the UpdateScreen function in graphics.h). The user can toggle

this effect by pressing the 'c' key on the keyboard during play,

assuming they compile color support (see input.c and the

Makefile).

Space Invaders uses discrete logic chips for I/O. For

input, it polls a pair of external joysticks and calculates

bitmaps. For output, it plays sounds and sets variables to create

bitmaps.

The most important aspect of input and output is the bit-

shift created bitmap (see testing section for more information).

Shift amounts are loaded into three external variables: a left

shift amount, a high order 8-bit left shift value, and a low

order 8-bit left shift value. The simulator writes these

variables during the 8080a's output phase. Once the correct

variables have been set, Space Invaders' code calls an input to

calculate a shifted value based on the data just written (Fig.

10). The game uses these bitmap shifts to draw the Invaders on

the screen and calculate collisions. They are also used to move

Invaders (see case 3 in input8080a and cases 2 and 4 in

output8080a in 8080aio.c).

User input is broken into two sections: joystick input

and dip switches. With the help of SDL, I was able to create an

19

array of currently pressed keys and map the joystick buttons to

certain keys. Dip switches required me to create three static

variables that stored the state of the switches. Since the user

can toggle these switches any time, I toggled one of the three

static variables every time a certain key was pressed. The dip

switch values were added onto the joystick input and returned

(see input.c). The way I handled player input slightly

contradicts the conventional way processors handle it, which is

reading the joystick during an interrupt. I moved the player

input section into the I/O section to keep the code readable and

modular, so when a player input interrupt occurs, the simulator

does not read any input.

Sound is the trickiest part of simulating Space Invaders.

Space Invaders boards have a special sound chip named the SN76477

complex sound generator. This chip generates complex analog and

digital sounds and is difficult to simulate. Due to of the

complexity of this chip, I chose to use samples for my sound

simulation. However, I still encountered problems. The 8080a

processor creates two types of outputs while playing sounds.

There is a type 3 sound, which is analog and a type 5 sound,

which is digital. Unfortunately, there is no defined starting

and stopping point with the complex analog sound output, and the

code will continue generating requests indefinitely. To handle

this problem, I had to create a variable, named lastout, to track

what complex sound is currently playing and to check if the game

20

requests two of the same complex sounds. If the game requests a

complex sound and there are no other complex sounds playing, and

lastout is not equal to the value of the new sound, the simulator

queues it. If the game repeatedly requests a complex sound, the

simulator ignores it. If the game requests a complex sound, and

it has the value of 0x20, then I treated this as an “end of

analog output” marker, which means lastout is set to zero. If

lastout is equal to zero, the simulator automatically queues the

next complex sound it encounters (Fig. 11). Without these

changes, complex sounds repeat infinitely (see the QueueSound

function in sound.c).

By adding video, input, and sound simulation to the core

8080a simulator, I was able to support the Space Invaders ROM

set. While the 8080a core is running, if the program encounters

an input or output instruction is encountered, it either reads

Space Invaders' input or output. Depending on the value of the

data read from the ROM, the simulator reads player input, plays a

sound, or performs a bitmap shift. After the execute phase, and

after every second interrupt, the program updates the screen.

With these additions in place, I had a working 8080a simulator

that I could use to play Space Invaders.

21

Corollaries

Every program balances performance and accuracy.

Accuracy is important for a correctly functioning system, but

sometimes the programmer must sacrifice accuracy to ensure the

program performs well. In my simulator, I focused mainly on

accuracy and readability, but I still worked to optimize

performance given my constraints.

I had difficulty addressing processor flag handling. As

stated earlier, setting flags can take up to five times as many

operations as a normal instruction (see the ACIn instruction in

8080a.c). The 8080 chip turned out to be the base processor for

all subsequent x86 processor generations. Intel followed the

8080 chip up with the 8088, and then the 8086, which both had

instruction sets that were extremely similar to one another.

Since the 586 (Pentium) processor is based on the original

workings of the 8086, it is possible to use the x86's processor

flags to simulate the 8080a's processor flags. This, of course,

would mean that I would need to use assembly, and the program

could possibly lose cross-platform portability. In the interest

of obtaining the highest performing implementation of the 8080a

processor, this tradeoff is essential. With this consideration,

executing an instruction no longer takes five flag modifications,

but the flag itself is set while the instruction executes.

22

I also considered another optimization option: dynamic

byte code translation. With proper byte code translation, a

translation program can rebuild ROM sets into a native program

that is executable on a target processor. Since the x86

instruction set is so close to the 8080a instruction set, a byte

for byte translation can occur. With this method, the translator

builds a new executable based on a ROM set, which performs like a

native x86 application. No interpretation of 8080a opcodes is

necessary while the program is running because the translator

interprets instructions ahead of time. This method simulates

8080a ROM sets more accurately and performs better than a runtime

opcode interpreting simulator. However, I did not choose to

program the simulator this way because my program would resemble

an assembler more then a simulator.

I decided not to include extended instructions, such as

those used by z80 processors, in order to keep less then 256

instructions in simulator's core. At that size, a compiler can

turn the switch statement into a 8-bit vector addressable jump

table, which will give a slight performance boost for each OPCODE

the simulator executes (see 8080a.c).

I made many other small tradeoffs to achieve higher

levels of performance. The user can disable most of these

“tradeoffs” in the Makefile during compilation (see Makefile).

Some of the tradeoffs include: Correct coloring, which allows

23

the painting of color overlays, Sleep cycles, which allows the

processor to go into a sleep mode while syncing, undocumented

8080a instructions, which supports seven extra undocumented 8080a

instructions, self-modifying code, which enables faster operation

while writing RAM because the simulator does not perform any

bounds checking, and verbose messages, which prints debug

information while the program is running and will print

instruction information if the program encounters an unknown

OPCODE.

24

Testing

When I started writing my simulator, I used a large block

of printf statements to display debugging information. In this

block, I included the instruction's mnemonic, the current opcode,

the program counter, the stack pointer, the program status word,

all 8-bit registers, the 16-bit paired registers, and the content

of the next three bytes of RAM. With this information I was able

to detect if an instruction acted as I expected. Once I felt

confident that my instructions where correct, I loaded more

advanced ROM sets. The final ROM set that I tested was the

Space Invaders set, which was 8192 bytes of 8080a code. I kept

an indexed array of opcodes that the simulator had been recently

executed, which helped me pinpoint bugs within my code. I also

kept an indexed array of opcodes that the simulator executed over

the life of the program, allowing me to observe which

instructions the simulator was not executing, and to test them

separately. Most of the bugs in my program, apart from typos,

were flag related bugs. Some instructions required estimation

(such as how flags will be set in certain cases), because the

documentation was inadequate or even wrong at times. The DAA

instruction was especially cumbersome because it required that I

translate a hexadecimal number into its decimal equivalent, as

well as requiring interpretation and modification of the carry

flags (see the DAA instruction in 8080a.c).

25

Of course, I could not run the Space Invaders ROM set

without interrupts. After trying to decipher why my first

attempt at running Space Invaders failed, I realized that CPUs

use interrupts for I/O processing. Space Invaders has two types

on interrupts: a video interrupt and an input interrupt. I did

not perform any input or output processing during the interrupts;

I simply simulated them at the necessary time and called the

input and output related functions when needed (see the end of

8080a.c). When I first implemented the interrupt system, I only

knew about the video interrupt, which was monitor dependent.

Initially, I assumed that an interrupt occurred once every 1000

instructions. Using this estimation, I only received an output

for a few stray pixels. After some thought, calculated the

interrupts by taking the speed of the processor, 2048000 cycles

per second, and divided it by the number of times the monitor

refreshed per second, 60hz. As a result, I discovered that an

instruction needed to occur approximately every 34133 cycles.

Consequently, I set the new interrupt timing system, which forced

me to implement a cycles per instruction table (see the CYCLES

definition in opcodes.h). These new modifications gave me

recognizable output. Unfortunately, this method only sustained

the system for a few seconds before freezing. I did some further

investigation and learned about NMI interrupts. I determined

that Space Invaders needed this for polling the joysticks. I

setup another interrupt, and estimated that it too needed to be

called every 34133 cycles, but opposite of the video interrupt,

26

otherwise they would conflict. I divided the number of cycles

per interrupt by two, and I determined that approximately 17066

cycles were needed per interrupt. With the input interrupts

attached, I was able to get graphics and a start-up screen.

Once I had my interrupt system fully functional, I moved

onto the I/O. Testing I/O is extremely difficult because most of

the I/O for the 8080a is ROM specific. Space Invaders' bitmap

shifts gave me the most trouble before I learned how they

functioned. Before a bitmap shift takes place, 16-bits of data

are loaded into the bitmap output. I encountered some trouble

while loading the 16-bits of data required by this output because

an 8080a output uses the data contained in the 8-bit accumulator.

After trial and error, I learned that the bitmap shifter required

two bytes in successive order, or in other words, the game calls

this output two times in a row. When the simulator writes a byte

to the bitmap shifter, it takes the value of the last byte

written to it and stores that as the most significant byte, using

the current output as the least significant byte. There is also

a bitmap-shift output used to set the left shift value for bitmap

shifts (see cases two and four for 8080aoutput in 8080aoutput.c).

If the game requests input from the bitmap shifter, this input

shifts the 16-bit value (see case two for 8080ainput in

8080aio.c). The simulator then returns the least significant

byte of this shift (Fig. 10). This shifter is what allows Space

Invaders to function. Without this shifter, the game cannot draw

27

the Invaders, cannot test for collisions, and crashes if the user

leaves attract mode.

Testing my simulator was more of a trial and error

process than the straightforward process that I have encountered

while debugging higher level languages. In order to find out if

my testing was successful, I acquired a copy of Invaders Revenge,

the sequel to Space Invaders, and tried it on my simulator

without any modifications to the code. The game ran correctly,

except for the sound sets, which would have to be modified by

hand to accommodate other games and programs.

28

Conclusion

The success of this project was a direct result of many

hours of problem solving, trial and error, and research. This

project allowed me to create a functional 8080a simulator that

supports Space Invaders ROMs. I have learned many things from

this project, such as how microprocessor simulation works and the

importance of documentation.

29

References

Computers by CPU. 10 Apr. 2002.

<http://www.geocities.com/~compcloset/

ComputersbyCPU.htm>

Dictionary.com/blit. Dictionary.com. 10 Apr. 2002.

<http://www.dictionary.com/search?q=blit>

Dictionary.com/microprocessor. Dictionary.com. 10 Apr.

2002. <http://www.dictionary.com/

search?q=microprocessor&r=2>

Dictionary.com/TTL. Dictionary.com. 10 Apr. 2002.

<http://www.dictionary.com/

search?q=transistor-transistor%20logic>

Intel 8080a CPU. 23 July 2002. History of Computing

Foundation. 10 Apr. 2002. <http://www.thocp.net/

hardware/intel_8080a.htm>

Love the H8. 16 June 2001. 10 Apr. 2002.

<http://home.attbi.com/~davidwallace2000/h8/

Introduction.htm>

Simple DirectMedia Layer. 10 Apr. 2002.

<http://www.libsdl.org/>

30

Shima Oral History. 17 May 1994. IEEE. 10 Apr. 2002.

<http://www.ieee.org/organizations/

history_center/oral_histories/transcripts/

shima.html>

Space Invaders – The Classic Arcade Games Shrine.

Retrogames.com. 10 Apr. 2002.

<http://spaceinvaders.retrogames.com/html/

Space_Invaders.html>

Space Invaders schematics. 1978. Taito. Space Invaders Color

schematics can be found at <http://www.spies.com/

arcade/schematics/>

31

Figures

Fig. 1. The 8080a's Program Status Word.

Fig. 2. The 8080a's registers. Note that the 8080a processor is

little endian.

Fig. 3. The 8080a's memory map for Space Invaders

32

33

Fig. 4. The 8080a simulator's structure.

34

/**

“FunctionName”:

 “Function description and verbose actions performed by function”.

Input:

 “VARIABLE” – “Description of VARIABLE”.

Output:

 (return value) – “Description of return value”.

**/

Fig. 5. C file source code example.

/**
*
* Function:
* --------
*
* “FunctionName” - “Function description and actions performed
* by function”.
*
**/

Fig. 6. Header file source code example.

/**
* “OPCODE” – “Terse Description”
* --------
*
* “Verbose description”.
*
* Note:
* ----
*
* OPCODEs include ... (child instructions go here, if any exist).
**/

Fig. 7a. Documentation of the parent instruction.

35

/**
* If the value of the variable OPCODE is equal to “OPCODE”,
* “shortened verbose parent description”
**/

Fig. 7b. Documentation of the child instruction.

Fig. 8a. A snapshot of Space Invaders' video RAM during play.

Note that black pixels are 'off' (0) bits and white pixels are

'on' (1) bits.

36

Fig. 8b. A snapshot of Space Invaders' video RAM during play

after 270 degree rotation. Note that black pixels are 'off' (0)

bits and white pixels are 'on' (1) bits.

Old graphics routine New graphics routine

Min 80 fps 145 fps

Mean 84.548 fps 157.308 fps

Median 84 fps 146 fps

Mode 84 fps 159 fps

Max 87 fps 170 fps

Fig. 9. Benchmarks of the graphics routines. 26 samples were

taken while the simulator was running. See doc/Bench for data

set and compilation options.

37

Fig. 10. This figure represents a sample trace of Space Invaders'

bitmap shifting.

38

Type ID Complex lastout Action Queue

3 0x04 Yes 0x00 Queue sound
(lastout != ID)

0x00

3 0x08 No 0x04 Queue sound 0x04

3 0x04 Yes 0x04 Ignore sound,
(lastout == ID)

0x04, 0x08

- 0x04 - - Sound finished,
remove 0x04
from queue

0x04, 0x08

3 0x04 Yes 0x04 Ignore sound
(lastout == ID)

0x08

3 0x20 No 0x04 Reset lastout 0x08

3 0x04 Yes 0x00 Queue sound
(lastout != ID)

0x08

- 0x08 - 0x04 Sound finished,
remove 0x08
from queue

0x04, 0x08

Fig. 11. This table represents a trace of sound requests

generated by Space Invaders' OUTp instructions. Note that the

variable lastout contains the last complex analog sound

generated.

39

