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ABSTRACT 

An analysis  of subsynchronous resonance problems  requires a 
clear understanding  of  the physical  relationships that  produce  the 
phenomenon. This paper  presents  these  relationships  and uses them to 
derive  a number of useful formulas  for  studying  the  problems. The 
mathematical basis of these formulas is shown and the  approximations 
required for  their derivation are  described. These formulas are most 
useful in planning  a  series capacitor  compensated transmission system 
to avoid or minimize subsynchronous resonance  problems, This 
application is the subject  of a companion paper. 

INTRODUCTION 

The analysis of  subsynchronous resonance problems in  series 
capacitor  compensated transmission systems is a unique, but complex 
technical problem. If the analysis  reveals  a  serious problem, corrective 
measures may  be  required.  Even with such  corrective  measures,  series 
capacitors in ac transmission lines are by far  the  most  economical 
alternative of transmitting  power over long distances. 

To perform a detailed  subsynchronous resonance study  requires a 
method of  analysis  which  can give quantitative  results  for a  wide 
variety of  system  operating  conditions.  The  method  must be simple 
enough to visualize all the significant factors involved so that  no 
essential cases are overlooked. This paper  presents  such  a method. It 
relies on the principles  of superposition so that the  phenomena can  be 
broken into its essential components  and these  can  be  analyzed 
separately. The analysis is based on a steady  state oscillation  in the 
power  system  and it predicts  the corrective  measures required to 
achieve  a stable  system. The results  are compared  with  more  detailed 
digital computer analysis  programs to demonstrate  the validity of the 
approximations  that are  used. 

GENERATOR  RELATIONSHIPS  INVOLVED  IN 
SELF-EXCITATION 

Frequency analysis techniques using the  steady state impedances 
of electrical networks have  been traditionally used to analyze system 
stability. The application  of  such  techniques  for  the  subsynchronous 
resonance  problem  requires  a circuit  representation  of  the  turbine 
generator. A positive sequence  representation of the  generator as 
viewed from its terminals is the  most  convenient because i t  can  be 
directly  coupled to existing  power  system  network analysis  programs. 
Such a model can also provide  a  great  deal  of  insight into  the 
phenomena that produces self-excited  oscillations and  the means  of 
controlling  them. 

A derivation of the simplified generator  model that is being  used 
to indicate  the presence  of  self-excited  oscillations is shown in 
Appendix I. The model shows that  for a  mechanical  oscillation of the 
generator  rotor at a frequency fm,  the transmission system will 
contain positive sequence oscillating  voltages and  currents at the 
frequencies fn + fm  and fn - fm where fn is the normal  system 
frequency (60Hz in the U.S.). This can be seen physically  by 
considering the  action of an  open  circuited  generator  that mechani- 
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cally contains a steady  rotation  and  an oscillation. The  fundamental 
component of the air gap flux is sinusoidally distributed  and it rotates 
with the machine rotor. An instantaneous voltage is induced in each 
phase of  the stator windings that is proportional to the  time derivative 
of the  flux linking the winding. For small  amplitude mechanical 
oscillations the voltage generated is the same as would be generated by 
having three sinusoidally distributed  components of air gap flux 
rotating  with  different velocities. The magnitude of the  component  at 
synchronous  frequency will be  unchanged  by the  oscillation.  The 
magnitude of the  other  components will be proportional to the 
amplitude of the oscillation as shown in Figure 1. One will have the 
frequency  fn + fm and  the  other fn - fm. 
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Fig. I .  Fundamental  component o f  air  gap flux as viewed  from a 
plane  rotating  at  synchronous  speed  with an oscillation  of  the 
rotor of the form A sin p t .  The top view  shows  the  total 
wave  at  different  points in time. The bottom traces illustrate 
the fact  that the oscillation m y  be represented by flux waves 
rotating in opposite  directions  with respect to the synchro- 
nous plane. 

An analysis of stator voltage components  at  two frequencies 
other  than  the  fundamental can  be  made  by forming two positive 
sequence  networks where the  impedances of each  network  reflect  the 
appropriate  frequency. The currents  for  each  network can be 
calculated  separately  and  the  feedback to the rotor circuit  determined 
by the  superposition of the two components. When the voltages 
produced by rotor oscillation are expressed as per unit quantities  they 
have the  form 

V --a0Au fe 
e - 2 f m  

wbere fe is electrical frequency  (fn f fm)  and  fm is one of  the 
torsional  resonant  frequencies of the  turbine  generator.  For  most 
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systems 3,, the air  gap flux, is near  1.0  p.u. so it could be omitted 
from  the expression. Aw is the per unit  magnitude of the mechanical 
oscillating  velocity. 

The  remainder of the  circuit  model  required to represent  the 
generator can be visualized by considering the  induction motor action 
of the  machine.* Positive sequence stator currents at frequencies other 
than fn in a  generator  induce  currents in the rotor circuit at the slip 
frequency fm = fe - fn.  For a  round  rotor machine the familiar 
induction motor circuit can be  used to represent  these  effects. Since 
two  frequencies other than  fn are present in the  stator  circuit,  there 
will be an  induction  motor equivalent circuit  for each frequency. For 
the  subsynchronous electrical frequency  the effective rotor resistance 
will be negative, corresponding to  induction generator  action. For the 
super  synchronous  electrical  frequency  the effective rotor resistance 
will be positive, corresponding to induction motor  action. 

A positive sequence  circuit  model which represents  the  generator 
for  mechanical  oscillation  is  shown  in  Figure 2. It is simply  the 
combination of the voltage source that  represents  the oscillation of 
the main flux  and  the  induction machine equivalent  circuit. For 
practical turbine  generators,  the  induction machine portion  of  the 
circuit  can be represented by the series circuit which contains  the 
stator resistance, subtransient  reactance,  and effective rotor resistance 
divided by slip. In forming this circuit  the electrical  oscillation 
frequency fe is used. 

Fig. 2. Equivalent circuit to represent  a  synchronous machine at  a 
non synchronous  frequency. E, is the  voltage produced by 
rotor oscillation. Electrical quantities are  in per unit  at the 
non synchronous  frequency and for a 60 Hz system s = 
(fe - 6O)lfe. 

For analyses  where only  the  motion of one  machine  is 
considered,  the transmission system, loads, and other machines  can  be 
represented by  an  equivalent impedance  at  the given stator  frequency. 
This  impedance  in series with  the  generator  model  determines  the 
magnitude and  phase of oscillating currents. The formation of the 
equivalent  impedance requires a  circuit  representation  for all loads  and 
machines as well as the transmission system. For most load  busses, the 
short  circuit  equivalent resistance and  reactance is  used  with the 
reactance  adjusted  for  the  appropriate  frequency. The  other synchro- 
nous  machines  in the  system are represented by their  induction 
machine equivalent  circuits based on the  assumption  that  they do  not 
have a mechanical  resonance and,  hence, no motion  at  the  frequency 
of interest. More complex  representations  could be envisioned, but 
there is no conclusive  evidence to date  that  they are required. 

A plot of the  equivalent  system  reactance  and resistance 
including  induction  generator  effects as a  function  of  frequency allows 
a  quick analysis of the possibility of selfexcited oscillations due  to the 
induction machine  behavior alone.  Such  a  plot  for  a  complex  system is 
shown  in  Figure 3. The  frequencies where the  reactance is zero are the 
electrical resonant  frequencies  of  the  system. If the resistance at these 
frequencies is  negative, a self-excited  oscillation due  to  induction 
generator  action is indicated. These plots are often made excluding  the 
resistance and  reactance  of  the  generator  under  study. In that  event 

the  generator  effects can be added to the  plot  and  the necessity of 
having  pole  face amortisseur windings  can be evaluated. 
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Fig. 3. Transmission system apparent resistance  and  reactance as a 
function o f  frequency. This is the impedance seen from the 
generator for a  series-compensated transmission system. 

The simplified  analysis to determine  the presence of self-excited 
oscillations due  to the mechanical  oscillation of  the  generator rotor 
requires  an additional  assumption. This assumption is that  the 
mechanical  oscillation frequency will  be one of  the  torsional  resonant 
frequencies of  the  turbine  generator. The influence of the electrical 
system will alter  these frequencies  slightly, but these effects are less 
than  the possible  changes  caused  by  inaccuracies  in system  data. 
Therefore,  this  assumption  does  not  limit  the usefulness of the 
analysis. With the mechanical resonant  frequency  determined,  the 
corresponding  electrical  frequencies  are  also known  and  the oscillating 
currents can be calculated.  These  oscillating currents  interact  with  the 
air  gap  flux to produce an  oscillating torque  at  the mechanical 
frequency as shown  in  Appendix I. The  magnitude  and phase position 
of the  torque with  respect to  the oscillating  velocity that  produced  the 
positive sequence voltages determines  whether self-excited  oscillations 
are expected. The apparent mechanical damping  produced by the 
electrical interaction is the in-phase component  of oscillating torque 
divided  by  oscillating  velocity. For the  subsynchronous  component, 
Appendix I shows this damping coefficient to be  negative and  of  the 
magnitude 

In this expression the R is the  net resistance  of the electrical 
circuit and Z is the  impedance of the  electrical  circuit at  the frequency 
fe = fn- fm.  The damping component  produced by the  supersynchro- 
nous component has the same  form but  opposite sign.  If the  sum  of 
these two damping components  and  the mechanical damping of the 
turbine  generator is less than zero, self-excited  oscillations are 
indicated. 

Two  other ways  of  expressing the  results  of  this analysis are 
often useful  in determining  the  amount of  corrective action  required 
when self-excited  oscillations are indicated. One is to express 
mechanical interaction as a negative  resistance  in the stator circuit 
rather  than  a voltage source. This  expression can be developed from 
the  formulas in Appendix I and it is 

-R = - fe 
2 fm Dm 

where Dm is the mechanical damping of the  turbine  generator.  This 
value  of  effective  resistance,  which  may exceed 2.0 p.u. on generator 
base for  the first torsional  mode, is the resistance that would  have to 
be added in the stator circuit to prevent selfexcited oscillations for 
systems  where  series  electrical  resonance could  occur.  The  other 
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expression relates the  electrical  interaction  to  a  mechanical log 
decrement.  Appendix I1 shows  the  development of this expression 
which becomes 

where Hm is the effective generator  inertia  for  the  torsional 
oscillation. The log decrement  representation  for the damping of 
oscillations is often used because it is not  proportional  to  the 
oscillation frequency.  Therefore  the log decrement  would  not be 
expected to show as much variance between  mechanical  modes as 
w u l d  the time constant. A comparison  between  the  minimum log 
decrement  required  to  prevent growing oscillations  and  the  modal 
damping  of  the  turbine  generator is a  measure of the  mechanical 
damping  that  would have to be added  to prevent growing oscillations. 

TRANSIENT TORQUES RESULTING FROM 
SUBSYNCHRONOUS CURRENTS 

In addition  to  the  concern  for self-excited oscillations  at 
subsynchronous frequencies, there has  been a  great  amount of effort 
expended to determine  the  turbine  generator  shaft  torques resulting 
from  electrical  system  disturbances.  Any  disturbance  yill  result  in  a 
change in  the  normal  frequency  current level  of the  system  and will 
produce  transient  currents  at  the  natural frequencies of the  system to 
compensate  for  the  sudden change of  normal  frequency  current.  For 
systems without series capacitors  the  transient  currents are dc  currents 
that  decay with time constants  determined by the  ratios of inductance 
to resistance in  the  different  current  paths of the  system. 

The simplest system  and  disturbance to consider in  a series 
capacitor  compensated  system is a  three phase disturbance  in  a radial 
system, as shown  in Figure 4. Such  a  system will  have a single natural 
frequency oscillation which will decay with  a time constant  equal to 
2  L/R as long as mechanical interaction  effects are neglected. This 
natural  frequency  current will interact  with  the air gap  flux of the 
machine to produce  a  torque  that pulsates at  the  slip  frequency 
(fn - fe). As shown in Appendix I, the per unit  magnitude of torque 
and per unit  magnitude of current will be the  same if the air @p  flux 
is one per unit  and  the small oscillating flux components are 
neglected. 
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f i g .  4. Plots of generator  phase current,  electtical  torque,  and shaft 
torques  between two turbines following  a  three  phaseto- 
ground fault in a senes-compensated  transmksion system. 

The response of the  turbine  generator  rotor to the  applied  torque 
depends  on  the  torsional  resonant  frequencies of the  shaft.  Appen- 
dix I1 shows a  simple  lumped  parameter  model of the  turbine 
generator  that is satisfactory  for analysis of the  torsional response for 
the  subsynchronous  components of the  torque. This set of equations 
will exhibit several natural  frequencies or modes of torsional  vibration 
and the  shaft  system will respond to the applied torque  with 
oscillations in  each  mode.  The  technique of modal analysis is quite 
helpful in  visualizing the  mechanical response because it  transforms 
the  coupled  set of differential  equations to a  set of independent 
equations. Each of the  independent  equations will  have a single 
natural  frequency so the response to an applied sinusoid is easily 
determined. Of particular  importance is the tesponse when the 
frequency of the applied torque is one of the  modal  frequencies of the 
shaft. If mechanical  damping  is neglected and the applied torque has 
the  form 7 = 7m  edt sin wmt per unit  on  generator base, the angular 
response of the  generator will be 

In this  equation Hm is the  effective  modal  inertia  constant as 
defined  in  Appendix I1 and 8, is in per unit angle (radians/377). With 
this  result,  the  mode  shape,  and the  spring  constants of the  shafts,  the 
peak  torques  for all the  shafts  are easily determined.  For  example,  the 
peak  shaft  torque  for  the  generator  turbine  shaft  is K@ Og (1 - Omt) 
where Ornt is the angular deflection of the  turbine  in  mode  m  for  a 
generator  deflection of 1.0. 

The  peak response of  the  mechanical  system  in t h i s  mode is 
directly  proportional to the  magnitude of applied  torque  (oscillating 
current  magnitude)  and very nearly proportional  to  the  electrical  time 
constant (1/6). Typical  numbers  for  first  torsional  modes of modem 
turbine  generators are Hm = 2.5, 6 = 5, wm = 100, Ornt = 0.3, and Kgt 
= 26000.  These  constants  would give a  peak  shaft  torque of 3.64 per 
unit  for a natural  frequency  stator  current of 1 per unit at  44 Hz. 

Alternatively the  peak  shaft  torques can be determined  from  the 
inertia  constants  and  the  mode shape for  the  frequency  in  question. 
The  shaft  torque  for  a lossless mechanical  system is simply the  sum  of 
the  torques  applied to the  inertias  from  the  shaft to the  end of the 
machine. In practice  the  term (S2 + 4Wm2) 2 4Wm2. This peak  shaft 
torque can be written 

where the  index j includes  only  the  inertias  from  the  shaft to the  end 
of the machine. For  a simple two mass system the peak  shaft  torque 
becomes simply 

This formula  shows  that  the  peak  shaft  torque is related to the 
number of half cycles of applied torque.  For applied torques  that  are 
not simple exponentials,  the  idea  of  counting  the half cycles of 
applied torque to estimate  a  shaft  torque is very useful. 

When the applied torque has several frequencies  or is not  at  one 
of  the  modal  frequencies,  the analysis is more  complex. One method 
to visualize the  buildup of torque is as the  vector  sum of responses to 
a series of exponentially decreasing half  cycle impulses. When the 
applied torque  frequency is not  one of the  modal  frequencies, th is  
series of impulses is alternately  in phase and out of phase with  the 
oscillating response of the  shaft. If modal analysis is used, the response 
in each  mode  must  be  calculated. For lossless mechanical  systems, 
the  steady  state  component  of  this response for  each  mode will  be  an 
oscillation at  the modal  frequency. A pessimistic assumption of the 
peak  torque  for each shaft  would be the sum  of the peak  torques  from 
each mode.  The  assumption  would  be that all of  the  modes were at 
peak value at  the  same  time,  before  the  mechanical  damping  could 
dissipate the energy. Usually these types of transient  disturbances are 
analyzed using a digital computer  program  and  the results are 
compared to the simplified formulas  to insure that  the digital 
programs are working  correctly. Figure 4  shows  the applied torque 
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and  shaft  torque  from such a program and Figure 5 shows  a plot of 
peak shaft  torques as a  function  of  frequency  for applied torques  of 
the  form  described above. The first mode  parameters were  very nearly 
those listed  above and  the  results  show very good  agreement  with  the 
predicted value. 

Most  transmission system  disturbances are more  complex  than 
the simple exponential  described above. A  three phase-to-ground fault 
that is  successfully  cleared will produce  two  separate  shocks on the 
machine, one when the  fault is initiated  and  one when it is cleared. 
Each shock will  have natural  frequency  torque  oscillations superim- 
posed on the  step change in  steady  torque  that  accompanies  a  short 
circuit condition. The frequencies of the oscillating torques will often 
not be the same during  the  fault as after  it is cleared  because they are 
determined  by  the changed  transmission system  configuration. The 
transient  torque oscillations  resulting from  the  fault clearing operation 
may either  add  to  or cancel those  produced by the  fault  application, 
depending on the clearing  time.  Digital computer  simulation is 
presently used to determine  the  transient wave form resulting from 
these sequential  switching  operations. Peak torque values  are com- 
pared either  with  those  obtained  from short circuits on the  terminals 
of the machine or with recommended l i m i t s  supplied  by  the 
manufacturer. 

A complete analysis of the  effects  of  a  transient  disturbance on 
the  turbine  generator  rotor is quite  complex.  It requires a considera- 
tion not  only of  the peak torque  but also of  the  cumulative damage 
effects  referred to as low cycle fatigue.  These cumulative  effects are 
influenced by the  total  stress  history  of  the machine.  At present  there 
are no complete  records  of  stress  histories  of  turbine  generators  to 

compare  with  calculated results, so the accuracy  of the calculation 
methods is uncertain.  Therefore,  at  the  present  time,  these  long  term 
effects  of  shock  excitation of the  machine are being  actively studied, 
but  the results of the  studies  and simplified calculation  methods are 
not available. 

CONCLUSIONS 

The  relationship derived show  the mast significant factors  in 
analyzing subsynchronous  resonance  problems. For determining the 
likelihood of having  self-excited  oscillations due  to torsional  interac- 
tion,  these factors  are  the  net  electrical resistance and  reactance at the 
frequency  fn - fm,  the mechanical damping,  and the effective  modal 
inertia. For simple  electrical networks, the electrical  quantities  can be 
calculated  by  hand.  However, for  more  complex  networks digital 
computer programs are used. The results of t h i s  simplified  analysis  are 
shown in  the  companion  paper to be quite accurate when compared to 
more  exact  methods.1 Improved  accuracy can be obtained by 
including electrical effects  at  the  frequency fn + fm if it is required. 

The analysis of  transient  shaft  torques on synchronous  machines 
is most  accurately  performed  with  computers if the  disturbances are 
complex.  However, the  fundamental  equations  presented  show  the 
buildup in  resonance that can lead to dangerous  torque levels  if the 
applied torque has a  component at the  resonant  frequency. These 
equations also  show that  the  electrical  time  constant, mechanical 
frequency,  modal  inertia  and  mode  shape  are  important  factors in 
determining peak shaft torques. For transient applied torques  with  a 
component  at a  number  of  frequencies,  an  accurate  calculation of 
peak shaft  torque  requires  a  great deal  of computation.  The simple 
approximation  that this peak is the  sum  of  the  torques  produced by 
each  mode  equivalent is usually quite pessimistic. 
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SYMBOLS 

Ve - voltage at  frequency fe resulting from rotor oscillation. 

fn - normal system electrical frequency (60 Hz for U.S. systems). 

fe - electrical oscillation  frequency (base frequency f fm). 

fm - torsional  resonant  frequency. 

a0 - generator  steady  state air gap  flux. 

Ao - per  unit  magnitude of velocity  deviation. 

Dm - damping  coefficient  for  the  modal  frequency. 

R - per  unit resistance. 

Z - per  unit impedance. 

Hm - effective modal inertia  constant (as derived in  Appendix 2). 

Bmt - relative deflection  of  a  turbine  for  mode m. 
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W, - mechanical  frequency in radians per second. 

Kgt - spring constant  for  generator-turbine  shaft. 

7 - per  unit  torque. 

p - differential  operator  d/dt. 

APPENDIX I 
GENERATOR MODEL FOR SUBSYNCHRONOUS 

RESONANCE STUDIES 

The basic equations  that are used to represent  the  machine  make 
use of  the familiar D-Q transform originally defined by  R.  H. Park. 
For  simplicity  a  two  phase  machine  is  considered  and  a per unit 
system is defined  for  steady  state  equations  in  terms of positive 
sequence stator variables. The d e f ~ t i o n  of variables and sign 
conventions  are  those used by Kimbark for  generator a ~ t i o n . ~  The 
basic equations  required to define  the  instantaneous  stator voltages 
and  currents are the  transformation  from D-Q variables to stator 
variables, a  set  of  equations  representing  the  rotor  circuit,  and  a 
torque  equation.  The  transformation  from D-Q to two phase variables 
is 

T=[cose  -sin “1 
sine case 

The  equations to represent  the  rotor voltages and  currents are: 

E d = - R a h + p @ d - w @ q  

Eq = - R a h  + p@q + W@d (2) 

Now  assume that each variable contains  a  main  component  and  a 
variation A For  example Ed = Edo +hEd. For small amplitude 
variations all M products  are ignored. In addition,  the  trigonometric 
relations  are  written: 

m ( e o + m ) = c ~ e o - u  sine, 

s i n ( e o + ~ ~ = s i n e o + u ~ e o  

These  steps will allow a linearized set  of  pertubation  equations to 
be written  around  the  initial  operating  point.  For  example 

hEd = - R& + pA@d - W&@q - h @ q o  

Using this expansion  the  variation  in  phase voltages becomes 

where,  the variables are separated to represent  a voltage due to 
oscillatory  motion  of  the  rotor  and  the  induction  machine  action. If 0 
is equal to u,t + M then 

= A u  [ T] [::i + [* -eo -cos sin eo ‘7 pj @do (4) 

For a sinusoidal pertubation at frequency p rad/sec, M = A sin 
pt and A u  = Ap cos pt. In these  expressions A is the  amplitude  of  the 
oscillation  in radians. Using the  relation  cos 6 = j  sin 6, the voltage 
AEd becomes 

A positive sequence  per  unit  system  can  be  defined  where E+ = 
Ea LS0 in  per  unit. A consistent  set  of  per  unit variables requires  that 
Vbase = wo so that  in per unit  the positive sequence 
subsynchronous a sda t ing  voltage is 

In this  per  unit  system Au = Ap/u,. If this expression is 
substituted  into  equation 6 and @do + j eq0  is assumed to be 1.0  pu, 
the  per  unit  subsynchronous voltage is: 

A similar expression is obtained  for  the  per  unit  supersynchro- 
nous voltage. 

The  other  components of the voltage variation are: 

- Ra Md + pA@d - W&@d E:] = [TI [- Ra AIq + PA@q + O&@d ] (8 )  

For  a  round  rotor machine  with  one rotor  circuit on each axis, 
this equation leads to the familiar induction  machine  model  for  the 
generator.  The  flux linkage terms can be written in terms of current 
using the  relation 

r 1 

By using the  appropriate  trigonometric  relations,  the  equation 
for  hEa2  becomes 

For  subsynchronous  currents in the  stator  circuit,  the  direct and 
quadrature axis currents will be sinusoids at  the mechanical  frequency 
p. They will rotate in the reverse direction to  that  established by the 
stator  to  rotor  transformation.  Therefore  for  steady  state  equations as 
viewed from  the rotor,  p = - jp, m d  = Ai cos pt, and Aiq = - AI sin pt. 
If slip  is  defined as s = - p/(wo - p), the  equation  for positive 
sequence voltage becomes 

In this expression the  reactances are defined  for  the  stator 
frequency (ao - p). This equation  is  the  standard  equation used to 
represent  an  induction  machine. An approximation  that is often used 
for  synchronous  machines is to neglect X, and replace XL + X, by 
X .  The  equation  becomes 

AE2=[ -Ra- jX”-Rr / s ]  AI (12) 

The  complete  model  for  the  subsynchronous  frequency is shown 
in Figure 2. A similar model can be derived for  the  supersynchronous 
frequency. 

The  representation  of  mechanical  interaction  requires  the use of 
the  relationship  between  electrical  current  and  torque. An expression 
for  the  torque  applied to the  generator  from  the  electrical  system is 

In deriving a simplified model  for small amplitude  pertubations, 
it is useful to represent  only  the largest of the  pertubations.  If  the 
stator  circuit is near resonance, this quantity will be  the oscillating 
phase current.  The subsynchronous component  of  the  phase A current 
in  phase  with the oscillating voltage Eal will  have the  form 

A l a = A I s i n [ ( ~ o - p ) t + 6 1  
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The phase B subsynchronous  current has the  same  form, but  it is 
delayed  by 90 degrees. When these  currents are transformed to D-Q 
coordinates  with  the  transformation T1 and  the  torque  calculated, 
the result is 

In this  expression it is assumed that  the  magnitude of a0 = 1.0 
pu and  that  the A@ terms  could be neglected. Note  that  this  torque 
has the same  phase position as velocity. Therefore it would appear to 
be a negative damping in the mechanical circuit. 

The  component of  current  that is in phase with the subsynchro- 
nous voltage can be written  from  the positive sequence  circuit as: 

AI = AE R / ( R ~  + x21 (16) 

In  this expression R is the  net resistance of circuit  and  X is the 
net  reactance as viewed from  the subsynchronous voltage source. If 
equations 7 and 16 are substituted into equation 15, the  result is: 

The model  for the supersynchronous  frequency yields the same 
expression for damping  except  the s i g n  is reversed and resistances and 
reactances  are  calculated at the  appropriate  frequency.  The  net 
mechanical damping resulting from  torsional  oscillation is the  sum  of 
these  two  components. Since this torque is applied to the  machine,  a 
positive torque  represents  a negative damping  coefficient. 

APPENDIX  I1 

MECHANICAL  EQUATIONS TO REPRESENT 
TURBINE  GENERATORS  FOR SUBSYNCHRONOUS 

RESONANCE STUDIES 

The mechanical equations used to represent  the  turbine  generator 
for  subsynchronous resonance studies  are those required to describe 
the  torsional  motion  of the  unit.  The model  normally used is a  lumped 
parameter spring-mass model  with  each  major  element (e.g., a  turbine 
or the  generator]  represented by a mass and  the  shafts  between 
elements  represented  by  torsional springs. Damping is usually 
represented by viscous damping  coefficients associated with  each mass 
and spring  although it could just as readily  be represented as a viscous 
damping  coefficient associated with each mode of oscillation. 

The development of  the transformations  from  the  coupled 
differential  equations of motion to a  system  of orthogonal equations 
associated with each  mode assumes that  there is no mechanical 
damping. This assumption  does not cause  appreciable  error because 
the quality factor (Q) of these  systems is nearly 400 for most  modes. 
The  development  of the transformation is most easily done using 
matrix  arithmetic  and it follows the  methods  outlined by  Hilde- 
brand.4 

The  initial equations  of  motion are 

where [HI is a diagonal matrix  of  the  inertia  constants associated with 
each mass and [Kl is the tridiagonal  matrix of spring constants 
connecting the masses. The vector [Oil is the angular position of  each 
mass and  the  [Fi] vector is the applied torque  for  each mass. For a 
consistent  set of variables with  the  torques in per unit on generator 
KVA  base, the inertia constants are in  kw-sec/KVA and  the  spring 
constants are in per unit power per radian of deflection. For analyzing 

the  electromechanical  interactions of the  generator, all applied torques 
will be zero  except  that associated with  the  generator. 

To  form  the transformation  matrix, fmt  define  a  matrix [Dl 
such that  2[H]  =.[Dl  [Dl.  For a diagonal matrix [HI, the  matrix [Dl 
will also  be  diagonal and d c  =-Other properties of the  D  matrix 
that will  be  used are  that  it is its own  transpose  and  its inverse  is also 
diagonal with  elements d i l  = 

The eigenvalue problem that is formed  from this system of 
equations is  expressed  by the  equation 

-&ere wj is one of the natural frequencies, [a,] is the  corresponding 
eigenvector, and 

The eigenvector is related to one of  the desired mode  shapes by 
the  relation 

[ejl = [Dl-'  [ajl (4) 

The  elements of the eigenvector can be multiplied by any 
constant  without  altering  their usefulness as a  transformation. For t h i s  
problem with the applied torque on the  generator mass, they  should 
be adjusted to make O i ,  the  modal  displacement of the  generator in 
the jth  mode equal to  one radian. 

The  transformation  matrix  from angles  associated  with  masses to 
those associated with  modes is the  matrix whose columns are the 
mode  shapes  defined above. This matrix  is  denoted by the  symbol 
[TI. Applying this  transformation to equation 1 gives 

tion  [[TI * = [SI * [Dl - 1 , and the result is simplified, it will be 
If this  equation is multiplied by the transpose of the  transformit 

With the  mode  shape  defmed above and  only  an  applied  torque 
at  the  generator mass [TI * [ Fi] = [Fi] . The  matrix [ w 2 ]  is a diagonal 
matrix of modal  frequencies  and the  matrix [MI is a diagonal matrix 
of  modal masses of the  form m i  = 2 E: hj  02ji = 2 Hm. 

Therefore  the  coupled  set  of n differential  equations  become  a 
set of n equations of the  form 

A  damping  term is often added to equations to include  the 
effects of modal damping.  With this  addition,  the  equations  become 

These equations  are  identical to  those  for R-LC electrical circuits 
and  their  natural  frequency response to a  disturbance is a sinusoid 
with an exponential decay. The frequency is wm and  the  decay  time 
constant is 4Hm/Dm.  One  common  form  of expressing  mechanical 
damping is the  logarithmic  decrement (Log  Dec). It is defined as LOG 
DEC = (I/n) LOGe (AdA,) where A, is the  amplitude  of  the first 
measured oscillation  cylce  and An is the  amplitude n cycles later. 

For a  simple  exponential  decay  the log decrement is related to 
Dm  by the expression 

Dm = 4Hm  fm log dec. 
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Discussion 

Edward W. Kimbark (Bonneville  Power Administration,  Portland, 
Oregon): The  paper  states that a single-frequency  angular oscillation of 
very miall amplitude,  superposed on the  constant  rotational  speed, pro- 
duces  an  upper side frequency  (supersynchronous  frequency)  and  a low- 

what about an angular  oscillation  of  large amplitude,  which  could re- 
er side frequency  (subsynchronous  frequency) in the  stator voltages. But 

sult  from  a  disturbance in the  external  circuits  connected to  the  stator 
or to a series of such disturbances? 

Since the  stator  frequency is proportional to  the  rotational  speed, 
a  variation of that speed produces  frequency  modulation.  Such  modula- 
tion, applied to communication  circuits,  has been thoroughly investiga- 

infinite sets of upper  and lower side frequencies all of which  differ  from 
ted. [ 1, 21 A single  signal frequency modulating a carrier  wave produces 

the carrier frequency  by  whole  multiples of  the signal frequency.  Each 
side band  differs  from  the carrier frequency by a  Fourier series. As the 
degree of  modulation  approaches  zero,  the lower  side frequencies pre- 
dominate, giving the  result  obtained in the  paper by small-perturbation 
analysis. 

I wonder  whether  this  spectrum of  side frequencies would not in- 
crease the  probability of a near-coincidence  of one  of  them  with  the 
complement of one of the mechanical  frequencies. 

Manuscript received February 22,1977. 
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L. A. Kilgore, D. G. h e y .  and M. C. Hall: The authors wish to thank 
Dr. Kimbark  for  the  interest  shown in our paper. His point  that  the 
oscillation  of the generator rotor  produces sets of upper  and  lower side 
frequencies in the output voltage is correct. However, it seems  unlikely 
that analysis of  any  frequencies other  than  the fmt sidebands (syn- 
chronous  frequency  plus  and  minus  the mechanical  oscillation frequency) 
will result in other  than very secondary  modifications to the results. 
The  magnitude  of  oscillatory voltage at  the fmt sidebands rarely exceeds 
3 percent of rated voltage for oscillatory  shaft stresses at the  material 
yield point. Voltage magnitudes for higher sidebands decrease from 
that  for  the f m t  sideband in proportion  to l/N!  for  the Nth sideband. 

If any  frequency  other than  the fvst side frequency were con- 
sidered,  the bilateral coupling  described,in  the  paper  frotor  oscillation 
at frequency  fm  produces voltages at frequency fe = fn - fm;  current 
oscillations at frequency  fe  produce rotor  torques  at frequency fm) 
would not exist.  Only in the  extremely rare case where  either a machine 
has  resonant  frequencies at  both fm  and Zfm, or the  electrical system 
has  resonant  frequencies at  fn - fm and  fn - 2fm, would there be any 
response. 

Manuscript received April 14, 1977. 

1846 


