Rock:
A SPARC CMT Processor

Shailender Chaudhry
August 26, 2008

M e e e

8 Memory links
Total 48 GB/s effective BW
plus compression

4 512kB L2$ banks

Each: 64 bytes every other clock
Muxing between 2 banks to keep
4x4 crossbar

1 Gen2 PCle x16 link
4x4 Crossbar 10 I/F 5.32Gbs

4 32kB ISs

Each supplies: 16 instructions/clock

8 32kB DSs
16 banks/D$;2 Rd or 1Wr/clock/bank
Load/use latency: 3 clocks;Write-through

16 Cores and 16 FGUs in 4 Clusters
Each Core: 4 issue superscalar,4 user threads,
each thread with scout threading

Each Core has 6 pipes: load/store, 2 ALU, branch,
FMADD, FMOVE

Rock Features

Microcores 16
Strands/microcore T1or2
Strands/chip 16 - 32
L1D$ 8 x 32KB
L11$ 4 x 32KB
L2$ 2MB

L3$ size (off chip) 16MB/ROCK
Peak I/0 BW 8 GB/s
Peak Mem BW 48 GB/s
Area 396 mmA/2
Frequency 2.1 GHz
Gate Count 5.5 Million
Flop Count 1.1 Million
Transistor Count 321 Million
Power 250W

General Availability 2" half '09 (ROCK 2.0 in Lab today)

Two Processor Topolog

TL PCI-E

1/O ctrlr

y

Rock -« =

Rock <

'

1/O ctrlr

w PCI-E

Rock Die Photograph

CerPeafO) iy swrr gy gt 1

uCore

NITUFITAT FUTY

)
s
bl
@ L
ey
v

i uSerhosi R i i Y it 58 1

Rock Pipeline Overview

I-Buffer
Fetch [
I-cache |44 pipeline
>

— IWRF
" Ao ALU [T o
IARF
Defer ‘ |
>| Instr. _ " A1l ALU |-@ > |-
Queue Instruction .
Queue 7'y
—
Decode —_— BR
Pipeline
— y |
» FP FP pipeline |-| FARF
—IFWRF
A _
—p
» MEM MEM pipe —
—

Reservation Stations

Scout threading
Execute Ahead (EXE)

Retire independent instructions while scouting

Simultaneous Speculative Threading (SST)
Use two strand resources to parallelize a single thread in HW

Long latency operation and its dependent instructions form a
parallel thread of computation

Transactional Memory
Parallelization of programs

* HW Scout Idea
> HW scout is invisible to SW

> Long-latency instruction starts automatic HW scoult:
* L1D$ miss

* micro-DTLB miss
* divide
> HW scout:
» prefetches for loads and stores (Memory Level Parallelism - MLP)

* warms branch predictor
> Long-latency instruction completes
> Execution resumes at the long-latency instruction

> HW Scout Implementation

> 2 copies of each register:
= checkpoint (frozen at long-latency instruction)

= working (includes speculative updates from scout instructions)

> Each register has NT (NotThere) bit:
> destination register NT is set iff a source register is NT

* branches with NT condition codes use predictor

> Checkpoint operation: freeze checkpoint copies of registers
* 0-cycle latency

> Resolved operation: return to execution following checkpoint
> refetch latency (akin to branch mispredict)

S

Scouting Improvement - Database

3.00

2.50 > No
0 // Scout
% 2:00 | Buys 12 MB =
D _—
= 450 _- Buys 7 MB //V
o
Z 1.00— § 40% Better

" Performance
0.50

256KB512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB
L2 Cache Size

Source: ROCK Simulator running TPCC traces

S

Scouting Improvement - SPECfp2000

1.60

Scout Better performance
0 1.50 than 64 MB
0 1.40 >
—
8 1.30 — No
h Buys 5 MB Scout __—
© 1.20 _—
>
é 1.10 —
®)
Z 100 34% Better
Performance
0.90 g
0.80 —
0.70

256KB 512KB 1MB 2MB 4MB 8\MVB i6MB 32MB 64MB
L2 Cache Size

Source: ROCK Simulator running SPECfp traces

Sun Microsystems - MT06 11

Rock Execute-Ahead

- Execute-Ahead (EXE) Idea

> EXE operation is invisible to SW

> Long-latency instruction starts automatic EXE strana:
 L1D$ miss

e micro-DTLB miss
e divide
> EXE strand:
e prefetches for loads and stores (MLP)
e warms branch predictor

> defers instructions to deferred queue (DQ) that are dependent on the long-
latency instruction along with any operand value that is “there”

* speculatively retires remaining instructions

> Long-latency instruction completes
= only execute deferred instructions from DQ

- if all deferred instructions complete successfully, "join" moves state to end
of EXE strand's execution

» otherwise, "fail" resumes execution at the long-latency instruction

12

Rock Execute-Ahead

* EXE Implementation

> 2 copies of each register:
* checkpoint (frozen at long-latency instruction)

* working (includes speculative updates from EXE instructions)

> Each register has NT (NotThere) bit:

e destination register NT is set iff a source register is NT

* branches with NT condition codes use predictor

» NT-operand instructions are deferred to DQ

» deferred instructions use a separate NT field when re-executed
> original NT field used to resolve WAW hazards

> Checkpoint operation: freeze checkpoint copies of registers
* O-cycle latency

> "Join" operation: continue execution from end of EXE strand's
execution
» (0-cycle latency (unless bubbles introduced in fetch & decode stages)

> "Fail" operation: return to execution following checkpoint
* refetch latency (akin to branch mispredict)

13

EXE Memory Ordering Implementation

Stores placed in store queue by EXE strand
used for RAW-bypasses

not committed to memory until "join" operation

EXE strand's loads performed out of program order
each EXE strand's load sets "s-bit" on entry in L1D$ for given strand

invalidation of line with "s-bit" set fails speculation
replacement of line with "s-bit" set fails speculation
"join" or "fail" clears all "s-bits"

Instructions independent of long latency operation
are not re-executed.

Simultaneous Speculative Threading (SST) Idea
SST mode is configured by SW

one SW thread per microcore

SW thread gets all resources of both HW strands (e.g. store queue, DQ)
SST operation is invisible to SW

Operate as in EXE mode until long-latency instruction completes
1 HW strand executes deferred instructions ("behind strand")
1 HW strand continues to execute speculatively ("ahead strand")
Ahead and behind strands execute completely independently
Result is automatic dynamic extraction of ILP and MLP

Ahead strand starts deferring instructions to new DQ

If behind strand "fails", single strand starts from checkpoint

If behind strand "joins", it then starts executing deferred
instructions from other DQ

Rock SST

> SST Implementation
> Use EXE implementation of registers for ahead and behind strands

> Use EXE implementation of memory ordering
- store queue needs to accommodate loads from two points in program order

- Additional SST Benefit

> Allows Out-of-Order execution around branches
* checkpoint register state at branch

= "fail" speculation if branch is mispredicted

16

Rock TM - Lock Example

Thread 1

Release Lo

Execution

Release Lo

A thread acquires a lock prior to
entering critical section

Uses atomic operation
> Expensive
Serializes execution

> Pessimistic

Complex

> Requires ordering to avoid
deadlocks

17

Rock TM - TM Example

Thread 1

[
Wi

Checkpoint

Thread 2

.\/.

- Parallel

. Execution

s

4Ly
[

A thread uses a transaction for a
critical section

No atomic operation required

Allows parallel execution
> Optimistic

Less complex
> No ordering to avoid deadlocks

18

Transactional Memory (TM) Implementation
"RISC" approach:

most small transactions executed efficiently by HW

best effort: transaction can fail due to contention or implementation reasons
The same checkpoint mechanism is used to update arch state or fail

Transaction is initiated by SW
loads and stores to multiple locations are atomic in the memory order

checkpoint: starts transaction and gives PC of failure path
commit: completes a successful transaction

Enables:
lock elision: better performance from unchanged source code

atomic replacement: better performance for atomic instructions

high-performance transactions: good performance for new code using small
fransactions

SW TM: better performance for SW-implemented TM
hybrid TM: HW transactions when possible, SW transactions otherwise

Rock TM

* TM Implementation

> Transaction is executed speculatively by EXE strand
* checkpoint is "long-latency instruction”

> Use EXE implementation of registers

> Use EXE implementation of memory ordering
* "s-bits" track lines read by transaction and detect conflicts (provides load
atomicity)

« L.2% buffers stores and tracks conflicts until commit, then locks lines until
they are updated (provides store atomicity)

20

Autopar/Transactional Parallelization (TP)/SW Scout:
Use multiple SW threads to speed up a single target SW thread

Invisible to user SW
C/C++: implemented by compiler

Java: implemented by JVM

Autopar and Transactional Parallelization:
Nonspeculative and speculative thread-level parallelization

Use Rock's HW TM support to detect conflicts with parallelized
code
The program can have dependencies and still be parallelized

SW Scout:
Separate SW thread performs prefetching for target thread
Uses Rock's shared L1D$ to prefetch to L1

Can use Rock's BRNR (branch-on-register-not-ready) to report
L1D$ misses to scout thread

Rock's Strenqgths

» Area-Efficient High-Performance Core
> Reasonable frequency
> 2-strand support (SMT)
> 000 4-issue pipeline
> 14 mm”2 in 65nm
> <10W

» Cache-Miss Tolerance

> Scout thread (MLP without reorder buffer area or limitations)
> EXE thread (ILP under cache miss)

* Near-Linear Scalability to multiple Sockets

Rock's Strenqgths

* Use of CMT Resources for Single-Thread Performance
> SST mode

= resource sharing (store queue, DQ)
* automatic dynamic parallelization by HW
» 00O issue around branches

> Low-latency communication and shared L1D$
> Transactional Parallelization (TP)

- HW Transactional Memory

23

Abbreviations

I/F - interface

FGU - Floating Point and Graphics Unit
MMU - Memory Management Unit

MCU - Memory Control Unit

IFU - Instruction Fetch Unit

SIU - System Interface Unit

A0 - Simple ALU

A1 - Complex ALU

BR - Branch Pipe

FP - Floating Point Pipe

MEM - Memory Operations Pipe

FWREF - Floating Point Working Register File
FARF - Floating Point Architectural Register File
IWRF - Integer Working Register File

IARF - Integer Architectural Register File

24

Rock

Shailender Chaudhry

