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Introduction

Large overthrusts have been recog-
nized since the end of the 19th
century, but a mechanical paradox
quickly appeared because the motion
of large rock masses along low-angle
thrust faults seemed mechanically
impossible, or restricted to distances
smaller than about 10 km (e.g. HsuÈ ,
1969). Proposals to solve this problem
include: (i) large strength contrasts
between exceedingly weak rocks in the
deÂ collement horizon and much stron-
ger ones within the thrust sheet;
(ii) propagation of incremental slip
domains; and (iii) close to lithostatic
¯uid pressures within the deÂ collement
horizon (e.g. Schmid, 1975; Price,
1988; Henry and Le Pichon, 1991;
Twiss and Moores, 1992).
Displacement along the Glarus

thrust is at least 30 km (P®�ner,
1985) (see Fig. 2). This thrust is a
very well de®ned fault underlined by a
thin layer of the famous `Lochseiten-
kalk' (LK) (Heim, 1921). Classically,
the LK is interpreted to be smeared
out Mesozoic carbonates from foot-
wall and/or hanging wall (Schmid,
1975; P®�ner, 1982). Superplastic ¯ow
has been proposed as the dominant
deformation mechanism within the
LK to explain the extremely high

strains `without necking' (Fig. 1) and
as a solution to the mechanical para-
dox of large overthrusts (Schmid
et al., 1981; Schmid, 1982a). Earlier
speculations about the mechanics of
the Glarus thrust involved lithostatic
¯uid pressures (HsuÈ , 1969). Based on
strongly altered stable isotope signa-
tures within the LK and structural
observations, Burkhard and Kerrich
(1990) and Burkhard et al. (1992)
proposed a veiny origin for most, if
not all of the mylonite calcite.
This contribution presents new

structural and microstructural obser-
vations relevant to the discussion of
the origin and structural evolution of
the LK and the mechanics of this large
overthrust.

Geological setting

Tectonic units at the front of the Alps
in Eastern Switzerland (Fig. 2) are
subdivided into a `Helvetic complex'
above and an `Infra-Helvetic complex'
below the Glarus thrust (P®�ner,
1981; P®�ner, 1993). The Helvetic
Glarus nappe comprises Permian
Verrucano overlain by a concordant
Mesozoic series. The `Infrahelvetic'
complex consists of a crystalline base-
ment overlain by a sedimentary cover
of Mesozoic carbonates and Tertiary
Flysch and some South Helvetic and
Penninic (Sardona) Flysch. The latter
were emplaced onto the parautochth-
onous carbonates in early Oligocene
times during the `Pizol phase'
(P®�ner, 1977). In a second, main
deformation stage (Calanda phase),

the whole Infrahelvetic complex was
intensely folded and imbricated.
Thrusting of the Glarus nappe (Ruchi
phase) postdates these deformations
(P®�ner, 1977) in an out-of-sequence
manner.
Metamorphism ranges from anchiz-

one in the North to lower greenschist
facies in the South (Frey, 1988; Rahn
et al., 1995). The peak of this meta-
morphism postdates the Calanda
phase deformations (Groshong et al.,
1984) estimated at 30±25 Ma. The
`anchi-/epizone-boundary' is offset
along the Glarus thrust by about
2 km (Groshong et al., 1984, Fig. 3;
Frey, 1988) as the result of postpeak-
metamorphic thrusting between 25
and 20 Ma (Hunziker et al., 1986).

Macroscopic observations
at the Glarus thrust contact

The Glarus thrust is characterized by
the presence of a continuous thin layer
(20 cm to 5 m) of calc-mylonite (LK)
and a strongly asymmetrical strain
gradient away from the contact.
Thrust-related deformations are virtu-
ally absent 2±5 m below the contact,
whereas strong mylonitic foliations,
subparallel to the main thrust, can be
observed tens of metres above it and
fading out gradually into the hanging
wall. In this paper, attention is
focused on structures within the LK;
for a complete description of the
structures in the footwall and hanging
wall (Fig. 3) see Schmid (1975),
Siddans (1979), Burkhard et al.
(1992) and Lihou (1996). Schmid
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(1975) and Burkhard et al. (1992)
described the turbulent appearance
of the LK owing to the refolded
alternation of white, pure calcite and
black stylolitic layers. This banding
locally de®nes sheath folds and very
complex 3D patterns (see Fig. 5A,
left-hand side). Neither pervasive
schistosity nor stretching lineation
are observed within the classic LK
(Schmid, 1975). The so-called `sep-
tum' is a conspicuous extremely thin
(mm to cm) planar horizon crosscut-
ting all internal structures of the LK.
It consists either of gouge or a very
sharp shear zone and has been inter-
preted to have resulted from some
modest, late motion of the Glarus
nappe (Schmid, 1975).

The lower contact of the LK with
the ¯ysch is strongly cuspate-lobate
(Schmid, 1975) (Fig. 3). The upper
contact with the Verrucano, as well as
lower contacts with Mesozoic carbon-
ates (in the South) are irregular too,
but lobes and cusps have smaller
amplitudes. The pattern of cusps and
lobes seems to indicate a higher vis-
cosity for the LK than for the ¯ysch or
Verrucano. This observation, con-
®rmed by the boudinage of LK in
the ¯ysch, contrasts with the expected
weak behaviour of the calc-mylonite
(see Schmid, 1975).
In the south, where the footwall

consists of Mesozoic carbonates, LK
seems to be derived from the former
and has a generally smoother appear-

ance (Fig. 5B) with a locally pervasive
foliation and well-developed stretch-
ing lineation (see also P®�ner, 1982).
In a few places, lenses of Verrucano

are trapped within the LK. They can
be interpreted either as slivers of
tectonically emplaced Verrucano with-
in the LK, or as `islands' of Verrucano
isolated from their surrounding coun-
try rock by the addition of massive
calcite veins, a�ected by strong ductile
overprinting and folding near the
basal thrust contact. West of Riseten-
pass, the LK deviates signi®cantly
from its ordinary planar con®gur-
ation, describing a N-vergent fold of
metric amplitude with ¯ysch in the
anticline core. This fold demonstrates
clearly that ductile deformation con-

Fig. 1 Superplasticity has been proposed as an explanation for the extreme strain localization in the Lochseiten calc-mylonite
(Schmid et al., 1977). (a) Superplastically deformed Pb±62%Sn alloy in a metallurgical stretching experiment from Langdon
(1982). (b) Schematic cross-section of the Glarus thrust. A metre-thick calc-mylonite connects Mesozoic carbonates in the footwall
and hanging wall over a total thrusting distance of about 30 km N±S; drawn to scale, the calc-mylonite would measure less than
2 lm thick in this ®gure.

Fig. 2 Tectonic overview of the central, accessible portion of the Glarus overthrust (modi®ed from Oberholzer, 1933). Some of the
key localities mentioned in the text are indicated for their relative position in a NNW±SSE pro®le. North of the type locality
`Lochsite' the thrust surface plunges below topography; it re-emerges some 15 km further north.
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tinued after the formation of some
planar LK (see also Schmid, 1975). In
some places, the LK±Verrucano con-
tact exhibits macroscopic evidence of
brecciation and cataclasis (e.g. at
Ringelspitz and Pizol) (Fig. 5A,
right-hand side).

Microscopic observations

Thin-section observations

At low magni®cation, typical LK
from the northern areas exhibits the
chaotic structure of a foliated and
folded cataclasite (cf. Snoke et al.,

1998, Fig. 16; and our Fig. 4b). The
foliation is underlined by the alterna-
tion of dark stylolitic and light col-
oured layers. The light layers can
often be identi®ed as former veins
variably fractured, folded and sheared
(see also Burkhard et al., 1992). Sev-
eral generations of veins can be
distinguished. In the southern areas,
the structure is smoother and locally a
true planar foliation is developed
(Fig. 4a). However, former white
veins parallel to this foliation can still
be recognized. In both types of LK,
younger veins crosscut the general
structure at high angles, even these

latest veins are often fractured and
sheared (Fig. 4a).

Optical microscopy on ultra
thin sections

Microstructures on the grain scale
within the LK mylonite are observed
in ultra thin sections (< 3 lm) where
calcite appears in di�erent shades of
grey. Grain size ranges from
> 100 lm to < 1 lm. Coarse grains
clearly belong to veins and are always
heavily twinned (type III or IV accord-
ing to Burkhard, 1993) (Fig. 6a,b).
Intermediate size grains occur in
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Fig. 3 Schematic overview of macroscopically observed structures within the LK and its contacts with ¯ysch in the footwall and
Verrucano in the hanging wall (modi®ed after Burkhard et al., 1992). In the ¯ysch, a steeply dipping foliation (Calanda phase) can
be transposed totally by a younger crenulation cleavage (9) within the last few metres below the contact (Ruchi phase). In the
Verrucano a well-developed foliation, subparallel to the thrust, is increasingly mylonitic towards the contact. Stretching lineations
in the hanging wall (1) have a very constant N±S direction (compare Siddans, 1979). Crenulations (3) within the Verrucano
immediately above the contact have N±S-orientated fold axes, parallel to the stretching lineation. Further up, however,
crenulations are orientated E±W. Abundant C¢ shear bands (4) and asymmetric strain fringes (2) on pyrite grains consistently
indicate thrusting towards the North. Structures in the LK (see also text) include: 5, cuspate/lobate contacts; 6, sheath folds;
7, `septum'; 8, internal banding: strongly folded, sheared and crumpled stylolites and former veins.

Fig. 4 Photomicrographs of Lochseiten calc-mylonites: (a) sample from Grau Berg (736.300/192.900), south; (b) foliated gouge
structure in a sample from Lochsite (725.860/206.400), north.
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isolation within a matrix of very ®ne
grains (< 5 lm). Vein calcite grains
display variable degrees of disruption
and exhibit ample evidence for
dynamic recrystallization (Fig. 6a,b)
in the form of subgrains, sutured
grain boundaries and a mortar struc-
ture. Grain boundary migration
(GBM) is observed clearly on
thick twins (type IV according to
Burkhard, 1993). Increasing defor-

mation and associated recrystalliza-
tion causes coarse and intermediate
grains to be progressively replaced
by very small `matrix' grains. In
contrast to the strongly sutured grain
boundaries of large and intermediate
grains, very ®ne grains have more
regular, smoother grain boundaries,
but bulging still documents GBM
(Fig. 6c,d). Even very small grains of
less than 2 lm are occasionally

twinned, as already pointed out by
Schmid et al. (1981).

Matrix grains often show very
strong Lattice-Preferred Orientation
(LPO), as visualized through the use
of a gypsum plate (Fig. 5C,D) and
documented by semiquantitative,
photometric analyses (Price, 1973)
(Fig. 5E). Along the ultra-thin edges
of thin sections, LPOs can be seen to
be coherent on the scale of a few
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millimetres across domains with very
®ne-grained matrix and coarser
grains. No Shape-Preferred Orienta-
tions (SPO) could be detected in the
very ®ne-grained matrix in the north,
whereas weak SPO with mean axial
ratios of up to 2 are developed in the
south (Fig. 6c,d).

Cathodoluminescence on thin sections

In cold cathodoluminescence (CL),
calcite appears in various shades of

orange and yellow as a consequence of
minute substitutions of Ca2+ byMn2+

and the presence of other trace
elements (Barbin and Schvoerer,
1997). CL microscopy reveals the pres-
ence of an unexpected composite layer-
ing within optically homogeneous
veins. Most interestingly, CL provides
evidence for completely recrystallized
`ghost' veins within the ultra®ne-
grained matrix (Fig. 5F,G). Optically
nondetectable, such ghost veins
apparently preserved some subtle

geochemical vein signature despite
intense folding and shearing and
associated dynamic recrystallization.
Diffuse boundaries (Fig. 5F,G) of such
ghost veins are thought to be the result
of chemical diffusion associated with
GBM (Hay and Evans, 1987).

Discussion and conclusions

Based on experimental data and the
absence of clear LPOs within LK
mylonite samples, Schmid proposed

Fig. 5 Structural and microstructural observations in LK mylonites. (A) Left-hand side: complex structures observed in the LK
from northern exposures include sheath folds, shear bands and `crumpling' of the alternation of white, pure calcite and black,
stylolitic layers. Sample from Piz Sardona (738.150/197.600). Right-hand side: Contact LK-Verrucano at Ringelspitz (745.200/
195.800), the Verrucano is brecciated and cut by the septum consisting of a cataclasite (lower contact). (B) Glarus thrust at Plaun
Grond (730.3/192) with LK representative of southern localities. General banding in di�erent colours results from strongly
deformed light coloured veins, dark stylolites and traces of secondary dolomite responsible for the orange/yellow alteration colour
at the LK-Verrucano (green) contact. (C) Ultrathin (< 3 lm) edges of a LK thin section from KaÈ rpf (726.3/196.95) display strong
lattice-preferred orientation visualized through the use of a gypsum plate (530 nm) and crossed polarizers. Note horizontal
banding. (D) Close-up of the same sample as shown in (C). Average grain size of matrix calcite is less than 3 lm; note fairly
straight grain boundaries and the absence of a shape preferred orientation. The large ameboid orange grain possibly represents the
relic of a former vein. (E) Photometrically determined rose diagram illustrates the preferred orientation of calcite c-axes (projected
onto the plane of observation) measured in six different spots with 200 lm diameter along the ultrathin edge of the section shown
in C. (F) Cold cathodoluminescence reveals the presence of an old and sheared ghost vein in the calc-mylonite sample from the
Grau Berg locality (South). Three successive generations of veins are easily distinguished in CL. Dark red grains along the second
vein are quartz. (G) Same thin section as F, seen in normal light, displays a homogeneous ®ne-grained calcite matrix in the places
where CL reveals the presence of ghost vein.

Fig. 6 (a) Heavily twinned coarse calcite grains of veiny origin. Recrystallized `matrix' grains nucleate along twin- and grain-
boundaries resulting in a mortar texture. Sample from KaÈ rpf (726.250/197), thin section view, crossed polarizers. (b) idem, SEM
view. (c) Shape-preferred orientation in an LK sample from Vorab Pign (732.25/192.525), southern part of the Glarus thrust, thin
section view, crossed polarizers. (d) idem, SEM view.
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grain boundary sliding (superplastic
¯ow) as the dominant deformation
mechanism to account for the extreme
strain localization observed at the
base of the Glarus thrust (Schmid
et al., 1977; Schmid et al., 1981;
Schmid, 1982a). In this interpretation,
the LK is considered a very weak
deÂ collement layer on which the Glarus
nappe was translated as a rigid block.
Burkhard et al. (1992) provided stable
isotope evidence for considerable ¯uid
advection during thrusting and there-
fore speculated about the role of such
¯uids in deformation (cf. Bowman
et al., 1994). Meso- and microstruc-
tural observations document the
alternating activity of brittle and crys-
tal-plastic deformation processes and
the omnipresence of dissolution-cry-
stallization processes. These observa-
tions are dif®cult to reconcile with the
idea of a single, dominant deforma-
tion mechanism such as the superplas-
ticity proposed by Schmid et al. (1977,
1981) and Schmid (1982a). Brittle
deformation features have been noted
by earlier authors (Heim, 1921; Sch-
mid et al., 1981; P®ffner, 1982) but
generally such observations were dis-
carded as unimportant, late overprint-
ing. However, there is no evidence
for an evolution from plastic to brit-
tle deformation with time. Foliated
gouge textures and overprinted vein
bands are more obvious in northern
than southern localities. This, how-
ever, can be interpreted in terms of a
temperature gradient up-dip, rather
than re¯ecting an evolution through
time. Ductile deformation and
dynamic recrystallization were merely
more ef®cient in wiping out the evi-
dence for brittle deformations further
south, rather than being more import-
ant in terms of their contribution to
total strain and thrust translation.
The absence of LPOs was a central

argument used by Schmid et al.
(1977) in favour of superplasticity.
The present observations of strong
LPOs seen in optical microscopy
(Fig. 5C±E) contrast with the lack
of LPOs in the XRD-samples ana-
lysed by Schmid et al. (1981). It
could be argued that these optically
visible LPOs are a local phenomenon,
inherited from other LPOs resulting
from twinning of some coarse vein
grains that have totally recrystallized.
However, according to Walker et al.
(1990), grain boundary sliding in the

®ne-grained matrix, should not allow
the preservation of strong LPOs.
Alternatively, when measured inte-
grally on large (cm-size slides) by
XRD techniques, LPOs may be
`diluted' by the rotation of mm- to
cm-size rock fragments, which are
apparent in the form of `chaotic'
foliated gouge textures (Figs 4b, 5A).
The Glarus thrust roots at mid-

crustal levels (P®�ner, 1985). Dewa-
tering by compaction and prograde
metamorphism in the footwall pro-
duce considerable amounts of ¯uids
with a general tendency to escape
upward towards the foreland (Oliver,
1986; Marquer and Burkhard, 1992).
The role of such ¯uids in deformation
depends critically on the ¯uid produc-
tion rate and permeability in the
surrounding rock masses (Connolly
and Thompson, 1989; Gueguen et al.,
1991). It is proposed herein that
an abrupt change in permeability
between the footwall and hanging wall
lead to ¯uid channelling at this par-
ticular thrust contact. In this scenario,
¯uids produced in the footwall perco-
late continuously upward, preferen-
tially along the steeply inclined
pre-existing (Calanda phase) foliation.
The clay-rich Verrucano thrust sheet,
with actively forming subhorizontal
foliation, represents a permeability
barrier to this percolation. In analogy
to the fault-valve scenario (Sibson,
1990), ¯uid pressures would increase
below this contact up to the threshold
for hydrofracturing associated with
seismic slip (Sibson, 1990; Petit et al.,
1999). As a result of dilatency, ¯uid
pressures would drop abruptly to
values lower than within wall rock.
Healing of the fracture network and
formation of veins would progres-
sively seal the thrust fault, allowing
¯uid pressures to build up again.
Between fracture events, ductile intra-
crystalline deformation and dynamic
recrystallization would result in the
formation of a microcrystalline matrix
within the LK and of LPOs within this
matrix. Thrust faults do not have
the ideal orientation for such fault-
valve behaviour (Sibson, 1990;Nguyen
et al., 1998). However, similar struc-
tural observations and interpretations
have been reported from other thrusts
in the Apennines (Coli and Sani,
1990), the McConnell thrust in the
Canadian Rockies and the Hunter
Valley thrust in the Appalachians

(Kennedy and Logan, 1997; Kennedy
et al., 1998), and the Gavarnie thrust
in the Pyrenees (McCaig et al., 1995).
The paradox of the lobate±cuspate

contact, which suggests a competent
LK sandwiched in between less
comptetent Verrucano and ¯ysch,
®nds an elegant solution in the fault-
valve/seismic failure scenario. Frac-
turing and calcite mineralizations
along the base of the Verrucano thrust
sheet are triggered by ¯uctuations in
¯uid pressure, because ¯uids are
stored below this `permeability bar-
rier'. The planar septum horizons,
cataclasites and veins re¯ect some of
the latest brittle events. Background
deformation of the entire thrust zone
in the ductile regime is responsible for
the repeated shearing and folding of
older septums, veins and the LK±wall
rock contacts, as well as mylonitiza-
tion of the Verrucano and folding of
the topmost metres of ¯ysch. The
relative contributions of seismic and
plastic deformation to the total thrust
translation are di�cult to evaluate. In
the present interpretation, the thrust
translation was accommodated mostly
by numerous seismic slip events. In
summary, the Glarus nappe with its
enigmatic LK, is a good candidate for
a major thrust fault which owes its
localization and apparent softening
to transiently near lithostatic ¯uid
pressures (Etheridge et al., 1984;
Carter and Dworkin, 1990; Carter
et al., 1990; Henry and Le Pichon,
1991), rather than to the presence of
a permanently weak deÂ collement
lithology.
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