
I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.1

Key Design Features

● Synthesizable, technology independent VHDL Core

● Phillips® I2C-bus compliant

● Intuitive command interface featuring a simple valid-ready
handshake protocol

● Master instruction FIFO permits queuing of sequential I2C
requests

● Slave read-data FIFO permits queuing of slave read data

● Fully configurable clocking allows Standard (100kHz), Fast
(400kHz) and user-defined data rates up to any desired
frequency1

● Configurable setup and hold times on the SDA line

● Supports standard 8 and 10-bit addressing modes

● Supports slave clock-stretching

Applications

● Driving I2C slave devices

● Inter-chip board-level communications

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

mast_inst[3:0] in Master instruction data

mast_data[7:0] in Master I2C data to be
serialized

data

mast_val in Master instruction valid high

mast_rdy out Master instruction ready
handshake

high

scl i/o I2C bi-directional SCL
clock pin

As per
Philips® I2C
specification

sda i/o I2C bi-directional SDA
data pin

As per
Philips® I2C
specification

slv_inst[3:0] out Slave instruction data

slv_data[7:0] out Slave I2C data received
from slave device

data

slv_val out Slave data valid high

slv_rdy in Slave data ready
handshake

high

1 Generally, the maximum attainable frequency will be determined by
the physical characteristics of the bus and the choice of output buffer

Block Diagram

Generic Parameters

Generic name Description Type Valid range

t_period SCL clock period (as
number of system
clock cycles)

integer ≥ 10

t_data_su SDA setup time (as
number of system
clock cycles)

integer ≥ 2

cs_enable Enables slave clock-
stretching functionality

boolean True/False

wfifo_depth Master instruction
write FIFO depth

integer ≥ 2

wfifo_depth_log2 Master instruction
write FIFO depth log2

integer log2
(wfifo_depth)

rfifo_depth Slave read data FIFO
depth

integer ≥ 2

rfifo_depth_log2 Slave read data FIFO
depth log2

integer log2
(rfifo_depth)

General Description

I2C_MASTER is a Philips® I2C compliant serial interface controller
capable of driving a standard two-wire bus in single-master mode. The
controller receives data and instructions via the master instruction
interface. These instructions are then processed by the controller core in
order to generate the appropriate responses on the SCL and SDA lines.
Likewise, any slave responses on the I2C-bus are captured by the
controller and de-serialized for presentation at the slave read data port.

Copyright © 2010 ZIPcores.com Download this VHDL Core Page 1 of 6

Figure 1: I2C Master Serial Controller Architecture

http://www.zipcores.com/i2c-master-serial-interface-controller.html

I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.1

The I2C master controller is comprised of three main blocks as described
by Figure 1. These blocks are the master instruction write FIFO, the I2C
controller core and the slave read-data output FIFO.

The I/O ports SCL and SDA are connected to bi-directional tristate
buffers. Note that when the I2C controller is inactive, both the SCL and
SDA lines will be tristate and as such, these pins should be externally
pulled up as per the I2C specification.

The SCL clock-period is determined by the the generic parameter:
t_period. This parameter specifies the SCL period in system clock cycles.
As an example, if the system clock 'clk' is running at 100MHz and an SCL
clock frequency of 100kHz is required (I2C standard mode), a value of
t_period = 1000 should be specified.

In addition, the generic parameter t_data_su permits the SDA data-line to
be delayed by 'n' system clk cycles relative to the SCL line. In this way,
the SDA setup and hold specification can be modified accordingly. Figure
2 demonstrates how the parameters t_period and t_data_su effect the
output signals on the I2C-bus. By modifying t_data_su, the user can
ensure a stable data window during the active-high SCL pulse.

Slave Clock-stretching Support

Clock-stretching may be enabled by setting the generic parameter
cs_enable to true. Clock-stretching allows the I2C Master to interface to
slower slave devices by allowing the slave to pull the clock line low and
delay the clock pulse. If clock-stretching is enabled, then the output
enable of the tristate buffer is disabled for the 'high' part of the SCL clock
cycle allowing the external pull-up resistor to pull the SCL line high. The
master controller state machine performs an extra check to ensure that
the SCL line is high before continuing the bus transfer.

Master Write FIFO

Instructions to the I2C master controller are sent via an input FIFO whose
depth is determined by the generic parameter wfifo_depth. The write
FIFO interface operates in accordance with the valid/ready pipeline
protocol meaning that Instructions and data are written to the FIFO on the
rising edge of clk when mast_val is high and mast_rdy is high2

The write FIFO may be used to 'queue up' a sequence of commands
while current commands are being processed on the bus. As soon as the
write FIFO becomes full then the FIFO will disable the mast_rdy signal
signifying that further requests are not possible.

2 See ZIPcores application note: app_note_zc001.pdf for more
examples of the valid/ready protocol and it's implementation

Likewise, the mast_rdy signal will also be disabled if the slave read-data
FIFO becomes full. In both situations, no further commands will be
accepted by the I2C controller until the FIFOs have emptied.

The instructions to the I2C controller are very intuitive and follow the exact
sequence of commands that the user wishes to appear on the I2C bus.
The following table outlines the set of commands accepted by the
controller via the Master write FIFO:

MASTER INSTRUCTION INPUT FORMAT
mast_inst[3:0] mast_data[7:0] Description

“0000” [7:0] : 'X' Don't care RESET

Reset controller to initial
conditions and set I2C pins to
tristate

“0001” [7:0] : 'X' Don't care START

Issue a I2C start command
(SCL high, SDA falling edge)

“0010” [7:0] : 'X' Don't care STOP

Issue a I2C stop command
(SCL high, SDA rising edge)

“0011” [7:1] : Slave Address
[0] : R/W flag

ADDR

Write an 8-bit Slave Address

“0100” [7:0] : Write data WDATA

Write 8-bit data

“0101” [7:0] : 'X' Don't care RDATA

Read 8-bit slave data

“0110” [7:0] : 'X' Don't care MACK

Issue a master ack signal
(SDA low, SCL clock pulse)

“0111” [7:0] : 'X' Don't care NACK

Issue a master no-ack signal
(SDA high, SCL clock pulse)

“1000” [7:0] : 'X' Don't care SACK

Slave ack (SDA tristate, SCL
clock pulse)

Other values [7:0] : 'X' Don't care NULL

Performs no action (other
than filling up the FIFO)

As an example, to write two consecutive bytes to a slave device, the
following sequence of instructions might be be sent to the controller:

A consecutive two byte read might be performed as:

Copyright © 2010 ZIPcores.com Download this VHDL Core Page 2 of 6

Figure 2: I2C Timing Specification

http://www.zipcores.com/i2c-master-serial-interface-controller.html

I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.1

Of course, the exact sequence of instructions required will depend on the
functionality of the slave device that is to be addressed. For this reason,
there is no restriction in the ordering of instructions that may be sent to to
the I2C master controller. This is useful, for example, if 10-bit slave
address is required, where some controllers may not allow two
consecutive address commands to be sent in series.

I2C Master Controller Core

The master controller is a state-machine that accepts instructions from
the write FIFO and generates the appropriate signals on the I2C bus.
Immediately after an asynchronous reset of the core, the state machine
starts in the reset state in which both the SCL line and the SDA line are
high-impedance (tristate). On receipt of the first valid instruction, the state
machine will take control of the bus and drive the SCL/SDA lines in
response to the received instructions.

The master controller is also responsible for capturing slave responses on
the I2C bus - in particular, the slave ack (or no-ack) and serial slave data
bits. As each instruction is processed by the controller core, the results
are written to the Slave read FIFO.

Slave Read FIFO

For every master instruction received by the controller, the controller also
sends a copy of the original instruction plus the slave read data (if
applicable) to the Slave read FIFO. In the case that the originating
instruction was not a slave read (e.g. a START or ADDR instruction) then
the slave read data contains a copy of the original master data. The
following table gives a brief summary of the instruction format:

SLAVE INSTRUCTION OUTPUT FORMAT
slv_inst[3:0] slv_data[7:0] Description

“0000” [7:0] : (same as
original mast_data)

RESET

“0001” [7:0] : (same as
original mast_data)

START

“0010” [7:0] : (same as
original mast_data)

STOP

“0011” [7:1] : Slave Address
[0] : R/W flag

ADDR

“0100” [7:0] : (same as
original mast_data)

WDATA

“0101” [7:0] : Slave Data RDATA

“0110” [7:0] : (same as
original mast_data)

MACK

“0111” [7:0] : (same as
original mast_data)

NACK

“1000” [7:0] : “00000000” SACK

“1001” [7:0] : “00000000” SNACK

Other values [7:0] : (same as
original mast_data)

NULL

Note that the slv_inst outputs are identical to the mast_inst inputs with
the exception of 'SNACK'. This is a Slave no-ack signal and indicates
that the slave responded with a no-ack at the end of a particular 8-bit
transfer on the I2C bus. In the case of a Slave no-ack, it is up to the user
to decide whether to ignore the response or reissue the desired
command.

Functional Timing

Figure 3 shows a simple series of instructions sent to the the controller.
The sequence is: START, ADDR, SACK, STOP. Note that the FIFO is
full after the third instruction and mast_rdy is de-asserted for one clock
cycle. In the following cycle, mast_rdy goes high and the final instruction
is transferred.

Figure 4 demonstrates the corresponding I2C bus signals that are
generated in response to the previous instructions in Figure3. The
dashed line signifies the point in which the master releases the SDA line.
It is then up to the slave device to pull the line low (ack) or high (no-ack)
accordingly.

Finally, Figure 5 demonstrates the series of responses on the Slave port
for the same set of instructions. The sequence of instructions is the same
with the exception that in this particular instance, the Slave generated a
SNACK (0x9) indicating that the address transfer failed.

Copyright © 2010 ZIPcores.com Download this VHDL Core Page 3 of 6

Figure 4: I2C bus signalling

Figure 3: Master Instruction interface timing

http://www.zipcores.com/i2c-master-serial-interface-controller.html

I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.1

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

i2c_mast_stim.txt Input stimulus text file

i2c_inbuf.vhd Input buffer

i2c_iobuf.vhd Bi-directional tristate buffer

i2c_delay.vhd Adds delay to the SDA line

i2c_fifo.vhd Input/output FIFOs

i2c_master_cont.vhd Main I2C master controller

i2c_master_cont_cs.vhd Main I2C master controller
(clock-stretching version)

i2c_master.vhd Top-level block

i2c_slave_dummy.vhd I2C dummy slave device

i2c_master_file_reader.vhd Reads master instructions from a
text file

i2c_master_bench.vhd Top-level test bench

Functional Testing

An example VHDL test bench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. i2c_inbuf.vhd
2. i2c_iobuf.vhd
3. i2c_delay.vhd
4. i2c_fifo.vhd
5. i2c_master_cont.vhd
6. i2c_master_cont_cs.vhd
7. i2c_mast.vhd
8. i2c_slave_dummy.vhd
9. i2c_master_file_reader.vhd
10. i2c_master_bench.vhd

The VHDL test bench instantiates the i2c_master component together
with a dummy slave I2C device and an a file-reader module that reads the
master instructions from a text file.

The input text file is called i2_master_stim.txt and should be put in the
current top-level VHDL simulation directory. The format of the input text
file is : 'A B CC' where 'A' is either '1' or '0' signifying a valid or invalid
instruction, 'B' is the 4-bit instruction mast_inst, and 'CC' is the 8-bit data.
mast_data. All values are specified in hexadecimal.

As an example, in order to send the sequence: START, ADDR, SACK,
STOP to the controller, where the write address is 0x54, the text file
would read:

1 1 00 # start
1 3 54 # write address 0x54
1 8 00 # slave ack
1 2 00 # stop

In addition to setting up the input stimulus file with the desired master
instructions, the user may also modify the generic parameters on the I2C
master component as required. Careful attention must be made to select
the correct timing parameters in relation to the system clock frequency in
order to conduct a realistic simulation.

In the default set up, the simulation must be run for around 30 ms during
which time the file-reader module will drive the I2C master with the input
instructions. A dummy I2C device will generate random slave responses
on the I2C bus in response to the master requests.

The simulation generates two text files: i2c_master_in.txt and
i2c_master_out.txt. These files respectively contain the input and output
data captured at the master instruction and slave data ports during the
course of the test. The contents of these two files may be compared to
verify the operation of the I2C master controller.

(Note that when comparing the input and output files, there will be a
mismatch between the Slave ACK and Slave READ responses. This is
because the dummy slave device is a very simple model that drives
random data on the bus).

Development Board Testing

The I2C Serial Interface Controller was implemented on a Xilinx®
2V3000 FPGA running at a system clock frequency of 65MHz. The
controller was then used to drive a series of I2C slave devices including a
serial EEPROM (24LC02B), a temperature sensor (MCP9800), a 12-bit
ADC (MCP3221), a 10-bit DAC (TC1321) and an 8-bit I/O Expander
(MCP23008). The controller was set up for 400kHz (Fast mode)
operation with the generic parameters t_period = 163 and t_data_su = 41.

After testing was performed at 400kHz, further testing was performed to
verify correct operation at 100kHz (Standard mode) and at 1.7MHz which
was the maximum permissible clock speed allowed by the Slave devices.

Figure 6 below demonstrates the I2C bus signals operating at 400kHz.
The top trace is the SCL line and the bottom trace is the SDA line. As the
system clock is 65MHz, with t_period = 163, we would expect the SCL
line to toggle at 65MHz/163 = 398.8kHz.

Copyright © 2010 ZIPcores.com Download this VHDL Core Page 4 of 6

Figure 5: Slave Instruction interface timing

http://www.zipcores.com/i2c-master-serial-interface-controller.html

I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.1

Figure 7 shows the measurement of the SDA setup time before the
rising-edge of the SCL line. With t_data_su = 41, the data should change
and be stable at about one-quarter cycle before the rising SCL clock
edge. An empirical measurement of ~640 ns was measured from the
waveform trace.

Figure 8 demonstrates a series of I2C master commands which comprise
of a START, ADDR, SACK and STOP. The Slave write address in this
particular example is 0x40. Notice the small 'glitch' during the slave
acknowledge cycle. This is perfectly normal and it happens in the low
period of SCL as the slave hands back control of the bus to the master.

Finally, figure 9 shows a normal read transfer with clock-stretching
enabled. In this case, the Master releases the bus during the 'high' part of
the clock cycle. Only when the SCL line has been pulled-up to the logic
'1' threshold does the Master take control of the bus once more. Note
that in clock-stretching mode, there may be some performance loss due
to the slower rise time of the clock.

Copyright © 2010 ZIPcores.com Download this VHDL Core Page 5 of 6

Figure 6: I2C fast-mode SCL-clock detail (400kHz)

Figure 7: I2C Fast-mode setup-time measurement

Figure 8: A series of I2C master commands

Figure 9: I2C SCL line with Clock-stretching enabled

http://www.zipcores.com/i2c-master-serial-interface-controller.html

I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.1

Synthesis

The files required for synthesis and the design hierarchy is shown below:

● i2c_master.vhd
○ i2c_master_cont.vhd
○ i2c_master_cont_cs.vhd
○ i2c_fifo.vhd
○ i2c_delay.vhd
○ i2c_iobuf.vhd

The VHDL core is designed to be technology independent. However, as
a benchmark, synthesis results have been provided for the Xilinx Virtex 5
and the Altera Stratix III series of FPGA devices. The lowest and highest
speed grade devices have been chosen in both cases for comparison.

Note that in order to achieve the fastest and most area efficient designs
the size of the FIFOs should be kept to a minimum.

Trial synthesis results are shown with the generic parameters set to:
t_period = 100, t_data_su = 10, cs_enable = false, wfifo_depth = 8,
wfifo_depth_log2 = 3, rfifo_depth = 8, rfifo_depth_log2 = 3.

Resource usage is specified after Place and Route.

VIRTEX 5
Resource type Quantity used

Slice register 94

Slice LUT 192

Block RAM 0

DSP48 0

Clock frequency (worst case) 315 MHz

Clock frequency (best case) 348 MHz

STRATIX III
Resource type Quantity used

Register 160

ALUT 187

Block Memory bit 192

DSP block 18 0

Clock frequency (worse case) 206 MHz

Clock frequency (best case) 260 MHz

Revision History

Revision Change description Date

1.0 Initial revision 01/10/2008

1.1 Added clock-stretching feature 16/02/2010

Copyright © 2010 ZIPcores.com Download this VHDL Core Page 6 of 6

http://www.zipcores.com/i2c-master-serial-interface-controller.html

